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ABSTRACT

The paper extends the recent work (JAM, 88, 061002, 2021) of the Eshelby’s tensors for
polynomial eigenstrains from a two dimensional (2D) to three dimensional (3D) domain, which
provides the solution to the elastic field with continuously distributed eigenstrain on a polyhedral
inclusion approximated by the Taylor series of polynomials. Similarly, the polynomial eigenstrain
is expanded at the centroid of the polyhedral inclusion with uniform, linear and quadratic order
terms, which provides tailorable accuracy of the elastic solutions of polyhedral inhomogeneity
by using Eshelby’s equivalent inclusion method. However, for both 2D and 3D cases, the stress
distribution in the inhomogeneity exhibits a certain discrepancy from the finite element results
at the neighborhood of the vertices due to the singularity of Eshelby’s tensors, which makes it

inaccurate to use the Taylor series of polynomials at the centroid to catch the eigenstrain at the
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vertices. This paper formulates the domain discretization with tetrahedral elements to accurately
solve for eigenstrain distribution and predict the stress field. With the eigenstrain determined at
each node, the elastic field can be predicted with the closed-form domain integral of Green’s
function. The parametric analysis shows the performance difference between the polynomial

eigenstrain by the Taylor expansion at the centroid and the C° continuous eigenstrain by particle

*Address all correspondence related to ASME style format and figures to this author.
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discretization. Because the stress singularity is evaluated by the analytical form of the Eshelby’s
tensor, the elastic analysis is robust, stable and efficient.
Keywords: Eshelby’s tensor, Polyhedral inclusion, Equivalent inclusion method, Eigenstrain,

Particle domain discretization

1 Introduction

Considering an ellipsoidal inhomogeneity embedded in the infinite elastic medium, Eshelby [1, 2]
provided the solution through substituting the inhomogeneity by the matrix with continuous eigenstrain
field to simulate the material mismatch, which is named as the equivalent inclusion method (EIM). The
generic name, “eigenstrain”, refers to nonelastic strains, such as phase transformation [3], plastic de-
formation [4] and thermal expansion [5], etc. Thanks to the EIM, several homogeneization theories and
models are proposed such as the Mori-tanaka, self-consistent and their extensions [6—12]. In Eshelby’s
celebrated paper [1], the eigenstrain is uniform over the ellipsoidal domain because the Eshelby’s ten-
sor for a uniform eigenstrain is a constant. However, when particle shape is angular, the Eshelby’s
tensor that is composed of fourth-derivative of the biharmonic potential ¥ and second-derivative of the
harmonic potential ® becomes non-uniform, which was documented in Rodin’s original work ( [13]) and
our recent work [14,15]. The non-uniform features of eigenstrain can be caused by particle shapes,
loading conditions, boundary effects, and interactions between inhomogeneities [16]. Therefore, it is
meaningful to derive the Eshelby’s tensor of arbitrary shaped polyhedral inclusions with polynomial-
form eigenstrain.

In the literature, Eshelby’s tensors for polynomial eigenstrains have been well studied for the ellip-
soidal / elliptical inclusions [16,17]. Special shaped inclusions have been explored but limited to uniform
eigenstrain, such as cuboid [18—20], Jewish star [21], hon-convex or polynomial order surface [22] and
weakly non-circular [23]. Regarding the arbitrary shaped inclusions, on the basis of the Newtonian
potential by Waldvogel [24], Rodin [13] derived the closed-form solution to the Eshelby’s tensor over ar-
bitrary polygonal / polyhedral inclusions. Taking the advantages of geometric construction, the domain
(volume / area) integrals are evaluated directly whereas the effort to obtain their derivatives is reduced
by divergence theorem. Subsequently, based on Mura’s notation of ellipsoidal integral [16], Nozaki and
Taya [25, 26] creates a unit auxiliary circle with rays connecting observing points and vertices on the
polygon. Ru [27] provided analytical solution for Eshelby’s problem for full plane and half-plane cases.
Recently, Trotta and colleagues [28—30] improved the expressions by directly adopting coordinates of

vertices. With the above works, the effective mechanical properties of the reinforced composite can be

o)
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evaluated based on the assumption of uniform eigenstrain over the inhomogeneity.

Among the solutions of the higher order Eshelby’s tensor, Liu and Gao [31], Gao and Ma [32] com-
bined it with the strain gradient theory [33] and compared the strain gradient based Eshelby’s tensor with
the classic one inside the polygon / polyhedral. Their motivation is to involve the one of the microstruc-
tural effects, the size effect, in the tensors. Li et al. [34] focused on the displacement field caused by
a linear distributed eigenstrain in a polygonal inclusion. In [15], Wu and Yin derived the closed-form
expressions of linear, quadratic along with the integral scheme to obtain higher order Eshelby’s tensors.
Using the EIM, the stress of isosceles with various aspect ratio (width / height), inhomogeneitity stiffness
is compared with FEM. Based on the comparison, though the involvement of quadratic (higher order)
terms improve the accuracy significantly, it is hard to obtain good enough approximation especially for
the neighborhood around vertices of the polygonal due to the rapid changing features of the eigenstrain.

On the basis of the pioneer works, to capture the microstructural effects, one typical strategy is to
increase the order of continuous eigenstrain field, such as the combination of strain gradient theory,
approximation by the Taylor series expansion [35]. Alternatively, like other numerical methods, the do-
main discretization helps to capture the eigenstrain variation. In the literature, the domain discretization
approaches includes two categories: (1) Discretize the entire inhomogeneity domain with basic cu-
bic [36, 37] / rectangular [38] elements. We simply assumed the uniform eigenstrain distribution over
such small elements, thus the equivalent stress conditions are set up at the centers. As demonstrated,
merely the singularity effects has significant impact on the neighborhood of vertices, such as the tetra-
hedron, which may leads to large number of elements. On the other hand, such discretization approach
disobeys the fundamental features of continuity, since numerical jumps are allowed between basic ele-
ments. (2) Discretize the entire domain in the same fashion as FEM, where the eigenstrain field (FEM
using displacement field) is distributed based on the shape functions of the element, which ensures the
C° continuity of eigenstrain over the innomogeneity. Nakasone et al. [39] provides the implementation
scheme of numerical EIM, and Yin and Wu [?] extended it as a semi-analytical approach by deriving
the closed-form solution of shape function interpolated domain integrals (of Green’s function). In the
same fashion, this paper will propose the similar shape function based domain integrals for 10 - node
tetrahedron (quadratic shape function) as illustration. This method can be extended to other order
shape functions, i.e linear 4 - node elements, with the Eshelby’s tensor at various order of polynomial
eigenstrains.

Following Mura’s work [16, 35] for ellipsoidal inclusions, this paper derives the linear and quadratic
Eshelby’s tensors for polyhedral inclusions. Application of polynomial-form eigenstrain with EIM pro-

e}
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vides approximated results with tailorable accuracy, though it is not the exact solution for the arbitrary
polyhedrons. Section 2 and Section 3 provides the necessary derivations to obtain uniform and higher
order Eshelby’s tensors, respectively, while the detailed implementations (partial derivatives) are en-
closed in the Appendix A. Section 4 shows the closed-form expressions for the domain discretization
with linear shape functions along with the scheme to obtain reader-desired combinations. In Section 5,
the closed-form Eshelby’s tensors are verified by a classic spherical inclusion (infinite space) problem
with polynomial eigenstrains. Then a tetrahedral inhomogeneity problem is solved with the EIM and is
compared with the FEM results, which illustrates some limitations in the classic EIM with polynomial
eigenstrains and motivates us to develop the domain discretization solution scheme. The accuracy of
domain discretization method is investigated through solving the tetrahedron inhomogeneity problem

with various sizes of elements.

2 Eshelby’s tensor for a uniform eigenstrain on a polyhedral inclusion

Considering an arbitrary polyhedral subdomain Q embedded in an infinite isotropic elastic medium
D, the domain integral of the Green’s function is expressed in terms of biharmonic ¥ = [, |x — X|dX’
and harmonic ® = [, |x — X’|~'dx’ potentials. Subsequently, through the partial differentiation in 3 and 4

times, the Eshelby’s tensor for displacement g;; and strain S;;; is obtained, respectively, as Eq.(1).

gikl = 71 =v) W ikt — 2V P i — 2(1 — ) (8y P 4 + i D /)]

| (1)

Sijk = 71 =v) (W kiij — 2v8 @i — (1= V) (8D jx + 8P ji + 8 ;1P ik + 8P 1) |

Following the previous work [13, 24], the potentials will be derived in a 3D transformed coordinate
(B3DTC). Without the loss of any generality, let N; and N;; denote the number of surfaces and number of
edges on the I'" surface ; x and x’ denote the observing and source points. Shown in Fig.(1), the 3DTC
is built upon the J'" edge (defined by two vertices v}t,) in the I'" surface. The geometric parameters are
introduced as follows, (1) &? is the unit outward normal vector of the I'" surface; (2) a; = (v};)m —%m) (ED)m
is the perpendicular "distance” between the observing point x and the I'* surface, where the “distance”
a; can be negative when observing points are inside the polyhedron; (3) )»9, and nY, are the unit outward
normal and directional vector, respectively; (4) by = ((vi;)m — xm) (A% is the perpendicular "distance”
between the projection (of observing points) x,, and J™ in the I'" surface; (5) I5; = (v3;)m — Xm) (MY iS

the “distance” along the J"* edge in the I'" surface.

4
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Fig. 1: Schematic plot of the 3D transformed coordinates for an arbitrary polyhedral on the J** edge on
the I'* surface

It is noted that Rodin [13] has provided a scheme to obtain volume integral over a tetrahedron,
however, in this paper, we offer an alternative approach with clear definitions of the integral limits.
Indicated in Fig.(2), for any arbitrary piece-wise function G(|x —x’|), its domain integral over the entire

polyhedron is expressed as Eq.(2),

hh”

1+tan[0]2

tan’l[f‘/bﬂ]
| Gx—xpax = [~ * G(V/IP+p?) pdpdhdd @)
Q tan l[l‘”/b_][}

0 Jo

where, p is the triangular ray starting at the projection x,; 6 is the angle between the ray and A;;; i
is the height coordinate starting at the observing point x. Let Gy = |x — X/|, the biharmonic potential is

obtained as,

N; Ny 4 _
aj l .
V= Z Z - 4( blji/ai +b3+ (L) +bulyy/ af + b3, + (15;)? +2[al’ (tan™ | —bjjll] —tan”'[-ZL])
=1 J=1

by
/b3 + (1) /b3 + (1)
— by (3a3 + b%;)(tanh ™! it ) nh™![ AV

—ta
aj + by + (lJI) aj + by + (1;)?

I 7
—2a;(tan’l[ Jilal ]—tan’l[ J1lal ]))
bj[ a% + b%l + (l}})z bJ[ Cl% + b%[ + (l;l)z

where N; is the number of surfaces of the polyhedron and N;; the number of edges on the I'* surface.

5
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Fig. 2: Schematic plot of the alternative approach with integral limits of a tetrahedron by observing
points, its projection and the J* edge of the I'" surface

Let Go = [x—X'|~!, the harmonic potential is obtained as,

Nog ay l+ l _
Z 7( 2lay|(tan~"[21] —tan ™! [2L]) + 251 (In[L; + \/ aF + b3, + (1;)2] = In[l;; + \/ aF + b3, + (1;,)?])
=4 by by

] Mg

I [
+2a1(tan_1[ i ] —tan ! i ]))
b/ ai + b3+ (1) bin/ai + b3+ (1)

(4)

Since the Eshelby’s tensor is combination of partial derivatives of the above two potentials, the appli-
cation of Stoke’s theorem [32] or Gauss’ theorem [13] could save the effort taking derivatives of order
1. The original form of ¥ and &, however, are needed to construct quadratic Eshelby’s tensor, thus the

explicit expressions are provided here.

3 Eshelby’s tensor for a linear and quadratic eigenstrain on a polyhedral inclusion

Regarding to the polynomial-form Eshelby’s tensor, which is defined by Moschovidis and Mura [35],
the eigenstrain field could be expanded at the geometric center as, €/;(X') = &) +x&/% + X875, + - -
As a linear elastic problem, the disturbed field is solved through superposing excitation by eigenstrain of

each order. Extended from the uniform Eshelby’s tensor as Eq.(1), the polynomial-form ones involves

6
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different order of source terms as Eq.(5), (i.e, the 3" order eigenstrain term x/, XX, e,d)

1
8ikimpg... = m
1

Sijklmpq... = m

{\Pmpq‘..,ikl - 2V8klcbmpq..‘,i - 2(1 - V) (Silcbmpqu.,k + 8ik(bmpq...,l)}

(9)

where, gijkimpq... @and S;jumpq... are the polynomial Eshelby’s tensor for displacement and strain, respec-

XXXy
[x— X’\

tively; Wipg... = Jo [ X — X', xx dx" and @, . = [o x5etdX'. Following our recent work [15], separate
the source term x;, as the combination of observing term x,, and components of distance vector x), — x,.

Starting from the linear Eshelby’s tensor, the two potentials are expressed as Egs.(6a, 6b),

W, = [ x4, = 1 [ (4 Xl (62

Xp+ X, —xp X, =%y
@, = | ——Lo—dX =x,® / E_——ax’
. /Q — W [ (6b)

Using the Gauss’ theorem, the first order derivatives of ¥, and ®,, are simplified as summation of the

surface integrals,

N Ny

W, =8, W%, - Y Y (&), /A X—X|(x, — x,)dx’ (7a)
I=1J=1 1

N Ny

(I)p,i = 8ipq)+qu),i - Z Z (g(l))l
I1=1J=1

o X=X (70)

where, in the 3DTC, the components of the distance vector is expressed as x/, —x, = a;(&}) , +pcosO(A9,) , +

psin®(nY),. Here p and 6 are defined as Fig.(2) when the source point X’ is in the I'" surface. Rewrite

the second term in Egs.(7a, 7b),

N; Ny Ni Ny
Z Z E;I }[1 alalevlJIvlJl) lP,i = Z Z( E;1) (alathl;}JJ_I) (8)
I=1J=1 I=1J=1

) {lpmpq...,klij - 2V8qu)mpq...,ij - (1 - V) (Silq)mpq....,jk + 8ikq)mpq...,jl + 6jlcbmpq....,ik + 8jkq)mpq...,il)}
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where

Hy(ar, by, Uy, ;) = Falar, by, ly) — Falan,by,ly), n=1,2,3,...,12 (9a)
1 ajle le
R T (@)
\/(al +bjl)(bjl+lez) a[ +b11+l€2
1 /
ﬂ(a[,b][,le) = g[b][le a%+b§1+lez+2|a1|3(—tan’1[li—e]+tan’1[ le|a1| ])
JI b]”/a%-i—b‘%[—i-lez

(9¢c)

b I
a2l (Cl],bj[,le) = Cl[i sin ] — ‘Cl[l tan_l [—e] —f—bntanh_][
|byi| by

+by1(3d? +b2;) tanh™! [’—e]}

\/ai + b3+ 1e?

where [e is the variable representing either /}; or I;;. Rewrite the integral of the third term in Eq.(7a, 7b),

/ ﬁ):iﬁdx/:/ al(g(l))p+pcose(}\’91)l7+pSine<n91)l’pdpde
: : Vi P (10a)

= al(g(l))lﬁq{l (alabﬂaljblﬁ) + (}“91)17}[2(01717-”?[;17[]1) + (n?I)P}é(alﬂleal.;?alﬁ)

| 6= x=xdx = [ (@&, +peos8(hy,), +psind(niy),) (/i +p?) dpdo
! ! (10b)

= a1 (&) p Ha(ar, b1, U 1) + (A9 p 9 (ar, by Ly, 1) + (M9) p Ho(ar, byr, 1y, 1)

where

—azletanhfl[M]
1 1 N ar b3 +le? [
Folar,buryle) = 5| VT 4 (af + by tanh ! [ ]| (11a)
N \/ a3+ b3+ 1e?
2 -1 b2, +1e?
al tanh [2”722]
_‘]»é(al’b.”’le) — %[ a%+b31_|_162+ \aj+by+le ] (11b)

\/ b +1e2
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Fs(ar,byp,le) = ——o [b%,ze\/ (b3, +1€2)(a? + b3, + 1e?) — a}le|ay| sinh~' [ ————]

84/ b3+ le? ar

le
2 2N\2 /12 2 —1
+ + b b + l tanh Y- T —— :|
(al JI) JI e [a% b;] 162]

(12a)

by

24, /a? + b3, +1e?

Felar,byr,le) =

2
az + b3, + le? (&, b”—i—leZ]}

2 2 2 2 2 2 5
a; + by, +1 Say 4 2b5, + 21 +3a
|:( 1 JI € )( 1 JI € ) 1 %(531 162)

(12b)

The original integral expressions of ¥, functions are listed as Tab.(1). With the Gauss’ theorem, the
source terms move on the surfaces,thus the integral limits are adjusted as, (1) p € [0,b,;4/1 +tan?[0]],

(2) 6 € [tan_l[%],tan’l[l%’l]]. The partial differentiation chain rule is proposed in [13], therefore, only

Table 1: Table of the integrand functions listing from 7; to 71,

Integrand functions  Order of y/a? +p> Terms from the distance vector

Fi -1 p

) -1 pZcosO

U2 -1 p?sin@

Fa 1 p

Fs 1 pZcosO

s 1 p?sin®

H -1 p3 cos? 0

I8 -1 p3cosBsin®
T -1 p3sin’0

Fio 1 p3cos?0
Fi 1 p3cosBsin®
Fiz 1 p>sin’ 0

the fourth-derivatives of ¥, and second-derivatives of ®, are listed as follows; whereas the compo-

nents of other derivatives are provided in Appendix A. To simplify the notations, the reduction functions

(0]
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Hy(ar,byr,1};,1;;) are written in concise form #,.

N Ny

Wikt = 8ip¥ ki +8p¥ int + 8y ¥ it + 8, W ik — Y Y (61)i(ED), { — (&) Haga — (E))Ha i
I=1J=1 (13a)
— (&N Ha jx + al%&jkl} +(&D)i(AJ) pHs jra + (87)i(MG1) p Ho jra
Ni Ny
Dy =8ip® ;+8;,0,+x,P,;— ) ) ENED, [ — (&) —|-dl}[1,j] +(&)i(AJ) p o, (13b)
I=1J=1

+(EDiMy)p 25,

Notice that for the Eshelby’s tensor of displacement (third-rank tensor), it involves the original form of ®
in Eq.(4). Following the same fashion, the quadratic term is derived by splitting the source terms into
observing terms and components of distance vector as x),x; = (x}, —x, ) (x;, — x4) — XXy + XX +x,x,. By

substituting into the quadratic domain integrals, the two potentials can be written as,

¥, = /Q|X—X'|((x;,—xp)(x;—xq)—x,,xq+x;,xq+xpx;)dxl

(14a)
= —xpxg ¥+ + 2, W)+ / [X = X[ (x, = xp) (xg = xg)dX’
Q
o (x;, —xp) (%, — Xg) — XpXg +x;,xq ~|—x,,x; X
g = X — x|
@ (14b)

dax’

xfn _xp)(xlq —Xq)
X — X’

= —xpx,P +xpCI>q+xq<I>p+/Q (
where the product of source terms such as x,,x, can be written as x,'¥,. With the closed-form expres-
sions of uniform and linear potentials, the quadratic potentials are obtained once the last integral terms
in Eq.(14) are solved. In Tab.(1), the integrand functions (7 - #12) are named according to the source
terms as Eq.(15). Since the derivation for the two quadratic potentials are similar, only the harmonic

potentials are exhibited for illustration,

/ p—

) e 66+ ()05 + €)%

+ar (&), Mg + EDa()p) 76 + (W), (A%)) o 7 (15)

+ ((A91) p(91)q + (A91)g (MT1)p) He + (MG7) p(MG1) g Ho
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where,
2 [ 212 2
1 rarbuile(|ar| =/ aj + by + le?) . le _ le
,‘F7(a1,bn,le):§[ o + lartan ™[5 + b tanh ™! [
e 3 Vartbn e (qeq)
[
—ajtan”!| are ]]
bJ”/a%ij;ﬁ—lez
Fs(ar,byr,le) = b [—|a,|3 + (a%+b3,+ze2)3/2} (16b)
3(b% +1e2)
11 byl _q.le
Folar,by,le) = € {b2 J41-lee2(_2|al|3 + \/a%+b31+lez(2a%~|—b§,~|—le2)) +2|a;]* tan 1[5]
I
/ / (160)
— by (3a3 + %) tanh~ [——C |23 tan”! are ]
a + b3, +le? byr\/ai + b3+ le?
1 s, byle e ajbyley/a? + b3, +1e*  3b3le\/a + b3+ 1e?
o) =] tan'[-2]) — +
Frolarbur,le) = 73 |lail (b§,+le2+ an” () b2, + e 2 (172)
b3 [ _ l
+l(5a%+3b31)tanh71[—e]—a?tan I arte ]}
2 \/ @+ b} +1e? b/ a} + b3, +1e?
|a P (—b3, +1e?) +2b%;(a} + b3, + 1e2)3/?
by, le) = 17b)
Fii(ar, by, le) 30062, + 1) (
4 2 2 2
1 —byle 1. le 4aibjile\/aj +bj +le s ayle
flz(al,bjl,le):—[4|a1|5 +tan [—])+ —4a1tan [ ]
60 (b31+lez bu by +1e? b/ a}+ b3+ le?
b][le 02+b2 +l€2 b le
Miteiad Al (7a%+3b§,+6le2)—%(15@‘4—10a%b§,+3b§1)tanh’l[_]}
. \/ a3 + b3, +le?
(17¢c)
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In the following, the fourth-derivative of ¥,, and second-derivative of ®,, are provided,

Wogij = —XpXg¥ ijrt — (8pixg + O8q1xp )Y ijk — (Spkdgt + BiOpi )Y ij — (Spixg + Sguxp) ¥ iji
- (5171' qu + qu 8pk)lp,il - (Spj 8ql + Spl qu )lP.,ik - (Bpjxq + quxp)‘y.,ikl - (Spi qu + Spksqi)lpyjl
— (8i8q1 + 84i8p1) ¥ ji — (Bpixg + 8qixp) ¥ ji1 — (88qi +8pidgj)¥ ki +8ipW, jur +8pj¥qim

+ 8,k W qij1 + 0¥ gijk +xp¥qijit + Ok ¥ piji + 0¥ pijk + x4 ¥ pijui

Ni Ny

= L X (DA E)a[2E0) (€D + 2D+ 20 € i (182)
~2ar(E)) Pt - zm(&?)km — 20 (&) H e+ a7 |

Di(4 (S51)a(EN) [~ B 7600 — (&6, — ED 6.5+ ar .
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I=1J=1
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+ (E&0)iA50)p (W31 %+ &) (A7) p(M5)g + (W31 (M51)p) Ha. + (&1)i(MG1) p(M31)g 76
(18b)

Following the same procedure, this method can be extended to higher order Eshelby’s tensor. No-
tice that for inhomogeneity problems, although higher order eigenstrain distribution can provide better
accuracy, it is impossible to approach the exact solution by increase the order of the polynomial eigen-
strain [40, 41] because the eigenstrain changes at the neighborhood of each vertex which makes it
ineffective to use a single polynomial eigenstrain to describe the whole particle with multiple vertices.
However, particle discretization with piecewise continuous polynomial eigenstrain can achieve the goal,
which is shown in the next Section. Therefore, for simplicity, the higher order terms than quadratic

polynomial eigenstrain are not considered in this paper.
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4 Particle discretization and integrals

In Section 3, the components of linear, quadratic Eshelby’s tensor are derived in the 3DTC. The
above integral formulations can be applied to simulate the inhomogeneity problem with Eshelby’s equiv-
alent inclusion method (EIM), whose advantages are computation-resource friendly and simple imple-
mentation. However, although the eigenstrain is continuous in the particle, because of the singularity of
Eshelby’s tensor, the eigenstrain variation in the neighborhood of vertices of a particle is sensitive to the
angle of each vertex and particle’s aspect ratio, a Taylor expansion of polynomial eigenstrain referred to
one point, for example at the centroid for ellipsoid [16], may not approach to the exact solution for poly-
hedral particles. Using piecewise continuous polynomial eigenstrain by particle discretization provides

a practical way to accurately solve for eigenstrain distribution and elastic fields.

4.1 Shape function and domain integral of an element

To address the complicated eigenstrain distribution of due to several microstructural effects, the
inhomogeneity domain is discretized with elements with certain shape functions. For the entire in-
homogeneity, the eigenstrain is represented by eigenstrain at each of the vertex by shape functions.
Thus, one could approximate the elastic solution with ¢° continuity. In this paper, the 10-node tetrahe-
dral element with quadratic shape functions is used for demonstration of the approach, which can be
straightforwardly reduced to the 4-node tetrahedral element with linear shape functions as well. Without
the loss of any generality, consider one tetrahedral element with 10 nodes, say (x},x5,x%),i=1,2,3,4 are
4 corner nodes and i =5, ..., 10 are 6 mid-nodes, the eigenstrain distribution in the element can be

written in terms of eigenstrain on the nodes as,

4 10
g;(X) =Y QL' - 1)L"e;7 + Y AL'L €7 (19)
n=35

n=1
where the superscript n represents the quantity associated with node »n, and no index summation rule
is applied with it; of , B!,y and %! are the components of the volume coordinates (linear shape function)
of the 1" local corner node and the complete form can be written as L' = o + B/x! +vx} +x/x4 (let the

other three local corner nodes be J, K, L, respectively).

( _ bl okl bl — b et 4 dakak
6V

13

o (20a)
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o - (20b)
O R R R (200)
X,:x{(xé—x%xé—x{xéf;%x%x{x%—xfx% (20d)

where V is the volume of the element. For corner node 1, the shape function is constructed as (2L —
1)L!, whereas the one for mid-node between I'" and J* corner nodes can be written as 4L’L’. Obviously,
the products of two shape functions contains uniform, linear and quadratic source terms, which can be
treated in the same fashion as we derived the linear, quadratic potentials by separating the source
terms into field and distance vector components. Since the shape functions includes the products of
two corner nodes, in the following, we list the domain integral of L and L'L’ with |[x — x’| as an example

to rearrange the terms of same order,

A’:/L’|x—x’|dx’:oc"P+[3"P1+v"P2+x’lP3 (21a)
Q

A — / I x=X|dX = ol o/ ¥ + (B’ + o/ B, + (oY + /v ) s + (oo’ + oy )W
@ (21b)
+(B'Y + B )W+ (B + B ) Wis + (B + Bx ) Was +2B"B Wi + 27"y W +2X %" Ws

Similarly, the domain integral of L’ and Z'L’ with [x —x|~! can be expressed by I'' and I'”, respectively.
Then, using the technique of Green’s function, the disturbed displacement field «;(x) is analytically

formulated as Eq.(4.1),

1

0 * o
_ /D Gij.m (x’x/)cmjklekl (x’)dxl = m [/qkl,kli — 2Vkak7j — 4(1 - V) $ik,k] (22)
where,

El 4 10
A=Y Y A" — AN (e)" = Y AN (g),)" (23a)

w=1n=1 n=5

El 4 10
B=Y Y @r' 1) (e,)" - ) 4 (g)" (23b)

w=1n=1 n=>5
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Notice that in Eq.(21), the domain integral with quadratic shape function interpolation is rearranged
into uniform, linear and quadratic potential components, which can be obtained in Section 3. With the
implementation of the above expressions, the eigenstrain’s effect can be taken into account analytically,
which maintains the advantage of the Green’s function. If the readers would use the linear shape
function interpolated domain integral, Eq.(23) can downgrade by removing the 6 mid-nodes and apply
Al'and T formulations. Different from the finite element method (FEM) that uses the shape function
to interpolate the displacement field, this approach uses the same shape function to interpolate the
eigenstrain field on the particle instead, which leads to a higher order of continuity. Moreover, because

the stress singularity is evaluated by Eshelby’s tensor, the computation is robust and stable.

4.2 Strong singularities and implementation

The domain discretization method proposed in Section 4.1 is a subdomain collocation method with
the stress equivalent equations established on the particle domain. Because of the stress field has
been represented by the eigenstrain on all nodes in the particle discretization, which includes 6 x N4,
unknowns with N,,4. indicating the number of nodes, if one can establish the same number of linearly
independent equations, the eigenstrain field can be solved and the elastic field can be illustrated. A nat-
ural way to establish the equation system is to set up the stress equivalence on all the node themselves.
However, because the singularity and discontinuity of Eshelby’s tensor on the edge points, vertices and
surface points, the numerical issue requires to be well addressed to obtain practical solution.

In the conventional boundary element method (BEM), there exist strong singularities of the poten-
tial / displacement kernel functions when the source coincides with field points, which are recognized
as Cauchy Principal Value (CPV). Besides the well established rigid body motion (creating a uniform
potential / displacement) method, in the literature, Li et al. [42] proposed a triangle-polar coordinate,
which maps the 4-node linear tetrahedral element into a cubic element. Nakasone et al. [39] later ex-
tended the treatment to approximate the singularity of polygonal vertices. Although using the triangle
polar coordinate could approximately solve the 2D problem, it downgrades the merit of analytical do-
main integrals of the Eshelby’s tensor and is challenging to be extended to 3D problems. Therefore, in
this paper, an alternative scheme is proposed to set up interior stress equivalent equations instead of
exactly on the nodes itself, which avoids the singularity issue.

Notice that the choice of interior stress equivalent points is not arbitrary, close attention should be
paid to the numerical instability as follows:

(1) Avoid choosing points close to its original boundary nodes. Since the domain integral tends to infin-
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ity at the boundary nodes on the edges, if the distance of interior points to the original node is close, a
small change could results in significance increase, leading to the numerical instability.

(2) A number of points close to the original boundary nodes must be included to consider the geometry
effect. Because the effect of Green’s function decays rapidly with the distance, if all stress equivalent
points are selected far from the boundary, less contribution from the boundary nodes may lead to inac-
curacy results.

(3) Avoid choosing the stress equivalent points close to each other, which leads to an ill-conditioned
matrix as well by reducing the linear independence of the equations.

There are several methods to set up the linear equation system to solve for eigenstrain as follows:

(1) Set up the stress equivalent equation on the Gauss integral points within the element with the weight
of volume, and combine the weighted equations to the corresponding nodes to form the closed system
of linear equations.

(2) Use the continuity of eigenstrain distribution, express the eigenstrain of the interior points in terms
of 10 nodes by shape function interpolation, so as to avoid the equation on the boundary nodes.

(3) Set up the stress equivalent equation on a new set of control points instead of the original nodes.

For the first option, because the number of elements can be higher or lower than the number of
nodes, extra cautions should be taken to balance the accuracy and computational cost by using more
Gauss integral points. For the second option, the results may vary with the interpolation methods, i.e
the rational range of shape functions. Particularly a small error of eigenstrain on the edge may lead to
a large change of stress in its neighborhood, which results in the stability of its solution. The third one
can be simplest and robust, but there exist many ways to construct the system of linear equations. The
uniqueness and convergence of the numerical solution are questionable.

In this paper, we focus on the first option. The same number of Gauss integral points as the
number of nodes in an element will be employed to establish the stress equivalent equation with the
corresponding integral weight. Each integral point is associated with a node in the element. Because
one node can be shared with multiple elements, the number of stress equivalent equations will be higher
than the unknowns. The weighted stress equivalent equations associated with a node from all elements
are summed to make the total stress equivalent. Therefore the number of the equations will remain the
same as the number of unknowns, so that the eigenstrain on each node can be solved. Notice that
the integral weight on the stress equivalent equation is trivial for the vertices when only one element is
associated with the node but it is necessary for other nodes that are located at multiple elements as the
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element’s volumes (3D) or areas (2D) can be different.

4.3 Evaluation of domain integral at interior nodes

The Eshelby’s tensor is singular at the edge points and vertices and discontinuous on the other
boundary surface points, which can be illustrated numerically by the stress in the neighborhood. For
the interior nodes, the Eshelby’s tensor is supposed to be continuous and bounded, but for one single
element, its domain integral on each node is not well defined. To treat this problem, the singularity
isolation method can be used by creating a infinitesimal spherical region around the interior nodes
[43,44]. The domain integral of the infinitesimal sphere is considered as the free term, which is also
recognized as the interior uniform spherical Eshelby’s tensor. Since the singular terms cancels out with
a spherical shell, the singularity of 1/r is reduced to Inr with the application of Gauss’ theorem, which
could be numerically evaluated.

In this paper, with the obtained uniform and polynomial components of potentials that are derived
the corresponding order of eigenstrains, a simple technique is proposed here to avoid any unnecessary
numerical integral. Firstly, as Eqg.(10) and Eq.(15) indicate, the linear and quadratic potentials are
obtained by dividing into field point related and distance vector related components. There exists no
singularity issues at edges and vertices for linear and quadratic potential parts with distance vector
components, which implies that the singularity is caused by the uniform eigenstrain only. Secondly, in
Eqg.(21), when the field point coincides with a vertex, the shape functions for other nodes yield zero,
including the field point related components introduced by linear and quadratic potentials, thus the
coefficients for uniform potentials become 1, which means handling ¥ and & together on the coinciding
vertex. When it mentions the uniform potentials, or uniform Eshelby’s tensors, such potentials can be
directly written in term of the eigenstrain on the boundary node without a volume integral. Therefore, no
numerical integral is necessary and the analytical integrals can exactly evaluate the stresses at interior

nodes when the eigenstrains on all the nodes are given.

5 Results and Discussion

In Section 3, the closed-form potential serves as a tool to predict disturbed elastic field caused
by a continuously inelastic strain in the polynomial form over a polyhedral inclusion. In the following,
the above potentials is implemented to converge the analytical classic solution of a spherical problem
by Eshelby [1]. Subsequently, with the polynomial form potentials, EIM is applied to investigate the
elastic field of inhomogeneity embedded in the infinite space with four different accuracy, uniform, linear,
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quadratic terms and domain discretization method. In the following, we demonstrate some interesting

results of inclusion and inhomogeneity problems with closed-form formulations.

5.1 Reproduction of the classic spherical inclusion problem

The following considers a centrally symmetric polyhedral subdomain with the center at the origin O
containing N, triangular surfaces with N;; = 3 embedded in the infinite elastic medium. For an inclusion
problem, the subdomain contains the exact same material as the matrix but exhibits an eigenstrain.
With the increase of Nj, the polyhedron gradually approaches a spherical subdomain (radius = 1m),
which should reproduce the Eshelby’s classic solution. It is noted that the original analytical solution
of the potentials is based on Dyson’s [17] formula for ellipsoidal with various densities and this section
serves as both verification and tribute.

To illustrate the inclusion problem, consider an infinite homogeneous domain of aluminum alloy,
whose mechanical properties are as follows: (1) Young’s modulus E, = 70GPa; (2) Poisson’s ratio
v, = 0.33; (3) Thermal expansion coefficient o, = 1.2 x 107°C~!. In the polyhedral subdomain, an artifi-
cial temperature of 20 degree is introduced to induce an eigenstrain of A = o, Ar = 2.4 x 10~4. For the pur-
pose of the comparison, the uniform Ag;;, linear Ag;;x; and quadratic Ag;;x3 thermal strain are prescribed
to the polyhedral inclusion, respectively. Instead of directly setting the number of surfaces, we assign
the global element size as 0.4,0.3,0.2,0.1 and 0.07 (m), which leads to N; equal to 136,284,622,2562 and
5328, accordingly. In Eq.(6) and Eq.(14), the linear and quadratic potentials contain the components of
uniform potentials. Therefore, the singularity issues exist in both linear and quadratic Eshelby’s tensor
as well. Notice that, unlike the polygonal problem, the singularity on the vertices (a; = b;; =0, le — 0) is
the combination of Inr and r—!, which can be justified in Eq.(25b); whereas for the edges (a; = b;; =0,
le #0), the order is Inr, which is similar to the vertices of the polygons. Shown in Figs.(3-5), the variation
of normal stresses 6, and ¢33 are predicted along the x3 axis in the range of [—3,3] (m). The following
features of stress distributions can be observed: 1) As the N; gradually increases from 136 to 5328, the
predicted results approaches the analytical solution for the spherical inclusion with uniform, linear and
quadratic eigenstrains, which indirectly shows the accuracy of the proposed formulation for polyhedral
inclusions.

2) The disturbed stress field, introduced by the thermal strain in the inclusion, exhibits concentration
within the subdomain and rapid fluctuation in the neighborhood of vertices. With the distance from the
inclusion increases, the stress field approaches 0 quickly, which agrees with the features of the Green’s

function.
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Fig. 3: Variation of stresses (a) 61, and (b) o33 along x3 for different N;-surface polyhedron and spherical
inclusions subjected to a uniform thermal strain 2.4 x 10~*
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Fig. 4: Variation of stresses (a) 61, and (b) 633 along x3 for different N;-surface polyhedron and spherical
inclusions subjected to a linear distributed thermal strain 2.4 x 10~%x3

3) The interior stress distribution is similar to the thermal strains applied. Comparing the cases of
N; = 136 and the analytical solution, it is observed that the stress is highly concentrated around the
vertices in only 33 direction, though the singularity issue is expected in 11 direction as well. This phe-
nomenon can be interpreted that because the horizontal components for the surfaces around vertex
(0,0,1) and (0,0,—1) is symmetric, thus the singularities are cancelled out.

Based on the numerical verification, the proposed closed-form provides the exact solution of the elastic
disturbed field caused by a continuous eigenstrain with polynomial distributions over a polyhedral sub-
domain. In the following section, the solution will be extended to a tetrahedral inhomogeneity problem

solved by the EIM using uniform, linear and quadratic eigenstrains.

5.2 A tetrahedral inhomogeneity problem
Following Mura’s work [16], the eigenstrain is expanded at the centroid of the inhomogeneity with
uniform, linear and quadratic order terms. For the polygonal problem [15], the similar process was
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Fig. 5: Variation of stresses (a) 61; and (b) o33 along x3 for different N;-surface polyhedron and spherical
inclusions subjected to a quadratic distributed thermal strain 2.4 x 107%x3

conducted on the triangular cylindrical fiber, and the quadratic order improves the overall accuracy of
the predicted elastic fields. In Section 5.1, the singularity order for polyhedral vertices is higher than
polygonal vertices, hence, a more rapid fluctuation is expected in the neighborhood of the vertices. To

demonstrate the above singularity effects, this subsection will use the tetrahedral inhomogeneity.

Consider a structural steel (E; = 200GPa,v, = 0.3) tetrahedron with height 2 = 1m (along x3 axis) and
equilateral (edge ! = v/3m) triangular bottom surface embedded in the infinite aluminum alloy (E,,v,)
under the uniform far-field load 63; = —1MPa. For the polynomial-form EIM, the stress equivalence is
satisfied at the centroid (0,0,0) of the tetrahedron, and the accuracy decreases with the distance from
the centroid. As demonstrated in the polygonal case [15], the usage of just uniform and even linear
terms leads to compromised accuracy, since the Eshelby’s tensor in a tetrahedron is non-uniform. The
finite element (FEM) is applied to provide reference of a accurate solution of normal stresses along
x3 axis. Due to effect of the singular vertex, the size of elements for the tetrahedron is 0.03m and
the number of nodes and elements are 4309991 and 3184212, respectively. Regarding to the domain
discretization (DD), the mesh is conducted with uniform global element size, and the number of nodes
and elements are given as 4 cases: (i) 10 & 1; (ii) 42 & 13; (iii) 190 & 79; (iv) 468 & 235, respectively.

To compare and illustrate the stress distributions, the 1201 observing points are evenly distributed
in range [—3,3]m. Notice that when the observing points are on the surface and vertex, the Eshelby’s
tensor cannot be evaluated due to the jump condition and strong singularity. Thus, to exhibit the two
phenomenons, observing points are placed close to them as £10~*m.

Shown in Figs.(6a) and (6b), the stress variation mainly concentrates in the neighborhood of the
vertices of the tetrahedron and it rapidly decreases with the distance. Though the uniform and linear
terms could asymptotically predict the stress distribution, the quadratic term provides best compari-
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Fig. 6: Variation of stresses (a) 61; and (b) o33 along x; in range [—3,3] m under far-field stress 63, =
—1Mpa through uniform, linear and quadratic order EIM
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Fig. 7: Variation of stresses (a) 61, and (b) o33 along x; in range [—3,3] m under far-field stress ¢3; =
—1Mpa through domain discretization method with number of elements 1, 13,79 and 235

son among them. However, in 33 direction, apparent difference between FEM is observed. In such
case, higher order eigenstrains could provide better but not accurate results, which is caused by the
assumption of distribution of the eigenstrain field. Shown in Figs.(7a) and (7b), in comparison to the
polynomial-form EIM, the quadratic domain discretization (DD) method provides same accurate results
as the quadratic EIM in the 11 direction, which agrees well with the FEM. However, in the 33 direction,
DD accurately captures the stress variation except the stress at the top vertex. As demonstrated in
Section 4.1, 10 Gauss integral points of each element are applied for stress equivalent equations, and
the shape functions and weights can be found in [45]. Notice that for the case of 6;; direction, except
the 1 element case, all other cases agree well with FEM, which implies the good convergence of the
method. In 33 direction, with more elements, it could provide better prediction of stress singularity.
Shown in Figs.(8a) and (8b), the eigenstrain distributions along the x; axis is plotted within the
tetrahedron x3 € [-0.25,0.75]m. For uniform, linear and quadratic EIM, since the stress equivalence

is conducted at the centroid x3 = 0, the linear and quadratic components (e}j* and eizj*) vanishes at the
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Fig. 8: Variation of eigenstrain (a) €}; and (b) €3; along x3 in the tetrahedron under far-field stress
6%; = —1Mpa of uniform, linear, quadratic and domain discretization method (1,13,79 and 235 elements)

centroid. Comparing the eigenstrain at centroid, it is observed that the uniform components of the
eigenstrain are influenced by other components. Regarding to the DD method, due to the application of
quadratic shape function interpolation, the eigenstrain maintains the feature of a quadratic polynomial,
which is continuous in the first-order derivatives. Similar to other domain discretization method, there
exists ¢V of continuity at nodes. In linear, quadratic EIM and the DD method, the eigenstrain increases
when it is closer to the top vertex, which explains the stress concentration effect of vertex in an alterna-
tive way. Comparing the 3 cases of DD with 13, 79 and 235 elements, the eigenstrain €}, does not vary
much with the mesh, which explains why the stress o;; are close for the 3 cases. With more elements,
the eigenstrain €3, increases in the neighborhood of the vertex at x3 = 0.75. Because of the singularity
of the Eshelby’s tensor at this subdomain, a small difference of the eigenstrain will produce a consid-
erable variation of the stress in this subdomain. However, because of the attribute of Green’s function,
the effect to other domain with a larger distance to the vertex will be rapidly reduced. Therefore, the
small difference of the eigenstrain at the vertex exhibits very minor effect on the comparison of stress
distributions in Fig. (7).

Overall, because the stress singularity for the angular particles is evaluated Eshelby’s tensor, the
present method to solve the elastic field of inhomogeneity problems by eigenstrain field on the particle
domain exhibit the following advantages:

(1) Because the eigenstrain variation is much smoother than stress and the domain integral from eigen-
strain to stress is exact, very few elements can provide high accuracy of the solution.

(2) Because the basic unknow is eigenstrain and the displacement fields are derived per the integral of
modified Green’s function with the eigenstrain, the smoothness of the displacement field is one order
higher than eigenstrain that exhibits a C continuity in domain discretization of the particle.
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(3) Because the influence of a point source per the Green’s function rapidly reduces with the distance,

a small error in a local point exhibits very minor effect to the accuracy of the overall solution.

The extension of this work to a finite domain containing inhomogeneities per boundary integral

method is underway.

6 Conclusions

In this paper, the integral scheme of the linear, quadratic and higher order terms of eigenstrain for
the isotropic elastic arbitrary-shaped polyhedral inclusion has been presented. Therefore an inclusion
problem with a polynomial eigenstrain can be analytically solved. The closed-form formulations of the
linear and quadratic potentials on a polyhedral inclusion are derived as an extension of the existing
result for the uniform potential. Using Eshelby’s equivalent inclusion method (EIM), we applied the
formulation to inhomogeneity problems. However, a single polynomial eigenstrain function cannot ef-
fectively describe the eigenstrain distribution on a complex polyhedral particle. To accurately predict an
elastic field, a strong-form domain discretization method is introduced, which maintains the continuity of
eigenstrain field. The numerical results show that the combination of many small tetrahedral inclusions
into a larger spherical inclusion can reproduce Eshelby’s solution. Using the formulation in the EIM, the
single polynomial function of eigenstrain may not provide accurate solution due to the singularity effect
of the vertex; while the domain discretization method could provide acceptable prediction of the stress

field with 13 elements.
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Appendix A: Partial derivatives of the integrand functions 7;,... %
Derivatives of harmonic potentials

The implementation of Eshelby’s tensor for displacement and strain only require the original and

first order derivative of harmonic potentials.
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Derivatives of biharmonic potentials

The implementation of Eshelby’s tensor for displacement and strain only require the second and

third order derivative of biharmonic potentials.
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(1) Second order partial derivatives:
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.. b3, +1e?
PEy 2 +3b31e> + 16t +ad(4b% + %) 3arlay|le? sinh~ [V

5 = 2 213/2
dajobyr 2(b3 +1e?)\ )@ + b2, + le? by 1)

PF 1
aalabnale 2([7314—162)3 a%+b3]+le2

\/ b +1e2
— a%|a1|le(—2b3, + lez) \/(lﬁ[ + lez)(a% + b%, +1e?) sinh ™! [4]>

a

(ale(b%, +1e%)(=2alb3; + (a? + b3y)1e? +1eb)

3
F
FFs _ arbyr ((b§,+162)(a%(b§,—21e2)+b3,(b3,+le2))

-
0ole® (12 41623, [ad + b2, + 1€

\/b%]“‘leZ
— aray|(bj; — 216’2)\/(1731 +1e?)(aj + b3, +1e?)sinh ™! [7])

aj

PFs 1

o
g1 (b2, +1e2)*\[a? + b?y + e?

+2(b3, + 1e*)* (8b], + 12b3,1e* + 31e*))

\/ b+ 1e?
+3a; |aj|le* (—4b% + lez)\/(lﬁ, +1e2)(a} + b3, +1e?) sinh ! [LD

a

((b}, +162) (3atie? (—4b%, + 1e?)

OF, byile
o _ n (63, +1¢*)(a (603, —91¢?)

6
bj0le  g(p2, 4 162yt [a? + b2, + L€

+ a2 (2b3; — 31e?) (b3, +1e*) +2(b3, + 1e*)? (27, + 31e?))

\/ b7+ 1e?
+3aar|\/ (B3 +162) (@ + b, +1e2) (—263 + 31e?) sinh ! [¥—"——1)

ap

3

a

\/b3,+le2 ar
[A]W

(32a)

(32b)

(32¢)

(32d)

(32¢)

(32f)
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9>F 1 2 W/ Argp2 2
s = (63 +16%)(af (663 — 91?)
JIOLET (b3, +1e?)4 [ aF + b3, + Le?
+a3(2b3; — 31e?) (b3 + 1e*) +2(b3, + 1) (2b%, + 31e?)) (329)
\/ b3+ 1e?
3a3 |ay| \/ (b3, +1e?)(a? + b3y + 1e2) (—2b7, + 3le*) sinh ™' [+})
1
F byl
T~ e (83 + 1e®) (0% +162)2(305 + 21e?)
8(b7;+le?)*\/as + b7, + L€
+af (=93, + 6le*) — a2 (3b}; + b3le* —2le*)) (32h)

\/ b3 +1e?
+3alar|\ /(0 +102) (@} + b+ 1e2)sinh [V ))

aj

Appendix B: Numerical differentiation with center difference scheme for higher order derivatives

in quadratic Eshelby’s tensor

To save the computational efforts of the quadratic terms, the numerical differentiation is applied to

obtain Wy ijkis, ¥ pgijiists @pg.ije and @,4:5. With center difference (accuracy order 0(A?)), (i.e, s=1 &

t=2)
Wi (X1 + A x2,x3) — P g ikt (X1 — A, X2, X3
Wikt (x1,20,x3) = —22 ( ) — Wpg.ijii( ) )
2A
and
¥ Wik (X1 A, X2 +A,x3) +W g i (X1 — A, xa — A, x3) — Wi (X1 + A, X2 — A, x3) — Vg i (X1 — A, xp + A, xZ
pq,ijki12 =

4A2
(34)

For other partial derivatives of potentials, such as ¥, ;«;, readers could also apply the same scheme to

obtain high fidelity results.

Appendix C: Partial differentiation chain rules in 3DTC

(1) First derivative:

oF (ar,byr,le) . .o\ 0F 0, 9F 0, 9F
o (—‘21)1871 + (_7“”)’1)7, + (—nn)% (35)

4
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(2) Second order derivative:

*F 0’ F
fab,,

2 02
+ (D315 + (€D (nGi)) aai + (i) + () 00)) 3= gle

2 a e 2
W = (&9)1'(‘:9)% 7+ (an)iCa)

(3) Third order derivative:

3 a e 3 ?
TN lE) — (e NG~ (505 05k S ) s
3
— (&), <>»9,>k+ EDEDR )+ (B ED ) s
ayooyy
3
~ (EHED e+ EED )+ (D))
3
(D, 050+ EUADL 05+ G0N 50
3
- (O09) )+ Do)+ O, 0900 55
3
— (EDiMD; Mk + EDiMmDeMI); + &) ;MDe(MI):)) %
PF

= (D)0 O D)+ (), (D)) 5575

(@1) (7‘11) M9+ (&) (7‘11) (1191) (&1) (7"91) (nu)k+(§1) O"JI) (M9y)i

3F

+ (&I (Fr)j + ED (RG] )i)m

5

+ (7)) iz + (&D)iChan) + (&) (an)i) 55—

0’ F
aalab”

(36)
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