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Abstract. In 1931--1932, Erwin Schr\"odinger studied a hot gas Gedankenexperiment (an instance of
large deviations of the empirical distribution). Schr\"odinger's problem represents an early
example of a fundamental inference method, the so-called maximum entropy method, hav-
ing roots in Boltzmann's work and being developed in subsequent years by Jaynes, Burg,
Dempster, and Csisz\'ar. The problem, known as the Schr\"odinger bridge problem (SBP)
with ``uniform"" prior, was more recently recognized as a regularization of the Monge--
Kantorovich optimal mass transport (OMT) problem, leading to effective computational
schemes for the latter. Specifically, OMT with quadratic cost may be viewed as a zero-
temperature limit of the problem posed by Schr\"odinger in the early 1930s. The latter
amounts to minimization of Helmholtz's free energy over probability distributions that are
constrained to possess two given marginals. The problem features a delicate compromise,
mediated by a temperature parameter, between minimizing the internal energy and max-
imizing the entropy. These concepts are central to a rapidly expanding area of modern
science dealing with the so-called Sinkhorn algorithm, which appears as a special case of an
algorithm first studied in the more challenging continuous space setting by the French ana-
lyst Robert Fortet in 1938--1940 specifically for Schr\"odinger bridges. Due to the constraint
on end-point distributions, dynamic programming is not a suitable tool to attack these
problems. Instead, Fortet's iterative algorithm and its discrete counterpart, the Sinkhorn
iteration, permit computation of the optimal solution by iteratively solving the so-called
Schr\"odinger system. Convergence of the iteration is guaranteed by contraction along the
steps in suitable metrics, such as Hilbert's projective metric.

In both the continuous as well as the discrete time and space settings, stochastic control
provides a reformulation of and a context for the dynamic versions of general Schr\"odinger
bridge problems and of their zero-temperature limit, the OMT problem. These problems,
in turn, naturally lead to steering problems for flows of one-time marginals which rep-
resent a new paradigm for controlling uncertainty. The zero-temperature problem in the
continuous-time and space setting turns out to be the celebrated Benamou--Brenier charac-
terization of theMcCann displacement interpolation flow in OMT. The formalism and tech-
niques behind these control problems on flows of probability distributions have attracted
significant attention in recent years as they lead to a variety of new applications in space-
craft guidance, control of robot or biological swarms, sensing, active cooling, and network
routing as well as in computer and data science. This multifaceted and versatile framework,
intertwining SBP and OMT, provides the substrate for the historical and technical overview
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of the field given in this paper. A key motivation has been to highlight links between the
classical early work in both topics and the more recent stochastic control viewpoint, which
naturally lends itself to efficient computational schemes and interesting generalizations.

Key words. stochastic control, Schr\"odinger bridge problem, optimal mass transport, Sinkhorn algo-
rithm, Hilbert metric
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1. Prelude: Sinkhorn’s Algorithm. In 1962, Richard Sinkhorn completed his
doctoral dissertation entitled On Two Problems Concerning Doubly Stochastic Matri-
ces and submitted [223], which would appear in The Annals of Mathematical Statistics
in 1964. He showed there that the iterative process of alternatively normalizing the
rows and columns of a matrix A with strictly positive elements converges to a dou-
bly stochastic matrix D1AD2. Here, D1 and D2 are diagonal matrices with positive
diagonal elements which are unique up to a scalar factor. By 1970, a survey by Fien-
berg had appeared [94], in which many other contributions to this topic, including
[224, 225, 127], were cited. In contrast to Sinkhorn, Ireland, and Kullback [127], who
studied a more general problem than Sinkhorn, credited Deming and Stephan (1940)
[83] for first introducing the iterative proportional fitting (IPF) procedure.1 Several
other significant contributions on this problem followed, including generalizations to
multidimensional matrices such as [18, 108], and this line of research continues to this
day; see, e.g., [76, 4, 234, 198, 25, 85]. This large body of literature often ignores
two papers by Erwin Schr\"odinger from the early 1930s [215, 216] as well as important
contributions by Robert Fortet (1938--1940) [105, 106] and Arne Beurling (1960) [27].
The same goes for some later contributions on the Schr\"odinger system [130, 103]. But
why should this body of work on Sinkhorn algorithms be related to Schr\"odinger's
quest for the most likely random evolution between two given marginals for a cloud
of diffusive particles?

One of the main goals of this paper is to provide an exhaustive answer to this
question. To do that, we shall have to address several other questions such as, What
is the relationship between Schr\"odinger's problem and Gaspar Monge's 18th century
``M\'emoire sur la th\'eorie des d\'eblais et des remblais"" (1781) [173]? Was Schr\"odinger
interested in regularizing the optimal mass transport (OMT) problem, as some recent
papers seem to hint [23, 66, 161]? And how does the latter regularization relate to von
Helmholtz's free energy of thermodynamics [119]? Is there a relation to Boltzmann's
maximum entropy problem (1877) [34]? Is there a connection to multiplicative func-
tional transformations of Markov processes [128], or to Bernstein's reciprocal processes
[24, 129]? And what about connections to the Fisher information functional [242] and
to positive maps on cones contracting Hilbert's projective metric [28, 42]? Last and
surprisingly, but definitely not least, how is this scientific exploration intertwined with
the Democritus atomic hypothesis?

As it turns out, all of these topics are indeed tightly connected. Therefore, what
we would like to discuss in this paper lies right at the crossroads of major areas of
science, some still in rapid development. Clearly, given the overwhelming spectrum of
ideas and concepts, attempting to sort this all out may result in a fuzzy picture. Given
our limited competence, how can we ever hope to give at least a reasonable/interesting
account of all these intersecting areas (sutor, ne ultra crepidam!)?2 Our choice is to

1Even earlier contributions are [252, 148].
2``Cobbler, not beyond the sandal!"" In other words, don't pass judgment beyond your expertise.

Attributed to the painter Apelles of Kos in Pliny the Elder's Naturalis Historia.
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discuss this junction in science from an angle which is not the most common in the
literature, namely, stochastic control. We shall try to provide evidence that once
Schr\"odinger's problem has been converted to a stochastic control problem, it lends
itself naturally to computational schemes as well as to interesting generalizations. It
leads naturally to a steering problem for probability distributions, namely, a relaxed
version of a most central problem in deterministic optimal control [98].

Our tale is apparently going to be long and complex and in permanent danger
of excessive branching out and continuous flashbacks. The only way to avoid total
chaos, it seems to us, is to start with Erwin Schr\"odinger's drama in the early 1930s.

2. Overture: Science Dramas. We briefly recall two famous dramas from the
history of science.

2.1. Schrödinger’s Drama. Edward Nelson concludes his 1967 jewel of a book
[176] with a 1926 quotation from Erwin Schr\"odinger [214, Paragraph 14]: ``. . . It has
even been doubted whether what goes on in the atom could ever be described within
the scheme of space and time. From the philosophical standpoint, I would consider
a conclusive decision in this sense as equivalent to a complete surrender. For we
cannot really alter our manner of thinking in space and time, and what we cannot
comprehend within it we cannot understand at all.""

Several years later, in 1953, Schr\"odinger writes [217]: ``For it must have given to
de Broglie the same shock and disappointment as it gave to me, when we learnt that
a sort of transcendental, almost psychical interpretation of the wave phenomenon had
been put forward, which was very soon hailed by the majority of leading theorists as
the only one reconcilable with experiments, and which has now become the orthodox
creed, accepted by almost everybody, with a few notable exceptions.""3

Between these two dramatic statements, however, there is a time in the early
1930s when Schr\"odinger has hope again and when he introduces what we now call the
Schr\"odinger bridges in two remarkable papers [215, 216]. He states: ``Merkw\"urdige
Analogien zur Quantenmechanik, die mir sehr des Hindenkens wert erscheinen.""4 In
this respect, the title of [215] is revealing: `` \"Uber die Umkehrung der Naturgesetze,""
namely, ``On the reversal of natural laws."" A few years later in 1937, another sci-
entific giant, Andrey Kolmogorov, publishes a paper [147] with a very similar title,
``Zur Umkehrbarkeit der statistischen Naturgesetze,"" namely, ``On the reversibility of
statistical natural laws."" What had Schr\"odinger glimpsed? Before we discuss this,
let's go back some 120 years to another dramatic moment in the history of science.

2.2. Fourier’s Drama. On December 21, 1807, Joseph B. Fourier submits a
manuscript to the Institute of France in Paris entitled ``Sur la propagation de la
chaleur."" He had been working on this memoir during his stay in Grenoble as Pre-
fect of the Department of Is\`ere, a post to which he had been appointed by Napoleon
himself. The surprising, but not fully justified, results provoke an animated discus-
sion among the examiners. The committee consists of Lagrange, Laplace, Lacroix,
and Monge. Lagrange and Laplace, who criticize Fourier's expansion of functions as
trigonometrical series, and Monge had all been teachers of Fourier at the \'Ecole Nor-
male. Fourier describes Monge [180] as ``having a loud voice and is active, ingenious
and very learned."" In 1785, while teaching at the \'Ecole Militaire in Paris, Monge, the
father of descriptive geometry (see Figure 1), has among his students a sixteen-year-

3According to Nelson, ``a realistic interpretation of quantum mechanics is, in my view, as unre-
solved as it was in the 1920s"" [178, p. 230].

4``Remarkable analogies to quantum mechanics which appear to me very worthy of reflection.""
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Fig. 1 G. Monge, G\'eom\'etrie Descriptive.

old Corsican with a gift for mathematics by the name of Napoleon Bonaparte. The
latter will be examined upon graduation by Pierre-Simon de Laplace. Of the group
of outstanding mathematicians active in France in that time, Fourier and Monge are
those who take on important political positions. Monge is Minister of the Marine
during the French revolution, and in between two assignments in Italy, he directs
the \'Ecole Polytechnique which he had coestablished in 1794 with Lazare Carnot and
Napoleon. Fourier and Monge had also been together in the expedition to Egypt in
1798 and were members of the mathematics division of the Cairo Institute together
with Malus and Napoleon himself. In spite of all of this, the manuscript is eventually
rejected (Fourier's Th\'eorie analytique de la chaleur appears only in 1822).5

Let us zoom in on Gaspard Monge, Comte de P\'eluse. A first version (unfortu-
nately lost) of his M\'emoire sur la th\'eorie des d\'eblais et des remblais [Dissertation
on the theory of earth-moving and embankments] is read at the Acad\'emie des Sci-
ences on January 27 and February 7, 1776. Although the memoir is proposed for
publication by the secretary Condorcet, only on March 28, 1781, does Monge read
a second version of his memoir; cf. Figure 2. A 40-page publication follows in 1784.
Monge, who is of rather humble origins, had worked for military institutions for a
while, taking advantage of his extraordinary drawing skills and geometric intuition.
He had applied descriptive geometry to such problems as designing cannons (Figure
3), cutting stones, planning city walls, and drawing shadows. Now, however, he is
interested in the following problem, which has both civil and military applications:
Suppose you need to build some embankments carrying debris from another location;
how should the transport occur so that the average distance is minimized? Monge

5In 1826, Fourier announces a method for the solution of systems of linear inequalities [107] that
has elements in common with the simplex method of linear programming.
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Fig. 2 Front page of Monge's m\'emoire and Monge's drawing.

discusses two- and three-dimensional problems showing a profound understanding of
the problem and its challenging aspects. In particular, his intuition of the normality
of optimal transport paths to a certain one-parameter family of surfaces was proven
to be correct more than one hundred years later in a 200-page memoire by Appel [8].

2.3. Kantorovich. Not much happens until the 1920s and 1930s, when the trans-
portation problem is first studied mathematically by A. N. Tolstoi [236, 237]. Then, in
1939, the transport problem is briefly mentioned by the Soviet mathematician Leonid
Kantorovich in the booklet [137], where he lays the foundations of linear programming,
including duality theory and a variant of the simplex method. In 1942, Kantorovich
provides in [138] the generalization of linear programming to an abstract setting. He
considers the following problem: Let X be compact metric space with distance func-
tion d. Let \nu 0 and \nu 1 be probability measures on X, and let \Pi (\nu 0, \nu 1) denote all
the probability distributions on X \times X having \nu 0 and \nu 1 as marginal distributions.
Consider the problem

(2.1) K(\nu 0, \nu 1) = inf
\pi \in \Pi (\nu 0,\nu 1)

\int 
X\times X

d(x, y)d\pi (x, y).
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Fig. 3 G. Monge, L'Art de fabriquer les Canons.

Kantorovich establishes the following fundamental duality theorem (see also Theorem
3.1 for the case of a nondistance cost function).

Theorem 2.1.

(2.2) K(\nu 0, \nu 1) = sup
\varphi 

\biggl\{ \int 
\varphi (x)d (\nu 0  - \nu 1) ; \| \varphi \| Lip \leq 1, \varphi \in L1(| \nu 0  - \nu 1| )

\biggr\} 
.

Lipschitz functions with constant 1 relative to the metric d are called potentials
by Kantorovich. The transport plan \pi is called a potential plan if

\varphi (x) - \varphi (y) = d(x, y), \pi a.s.,

for an (optimal) potential function \varphi (this theorem will be complemented in 1958 by
the paper [140] written jointly with his student Rubinstein). In 1947 Kantorovich
[139], seeing the proceedings of a conference held in Leningrad (St. Petersburg) on
the bicentennial of Monge's birth, realizes that the surfaces of Monge are just the
level surfaces of the optimal potentials (dual functions) he had defined in the Doklady
note [138]. Thus, Kantorovich, a functional analyst motivated by economics appli-
cations, provides a more manageable (relaxed) formulation of the transport problem
and major advances, opening up the avenue for the impressive developments of the
past twenty years [202, 203, 92, 242, 5, 243, 185]; see [241] for a full historical account
of Kantorovich's contributions.6

6It would have been possible to call this subsection ``Kantorovich's Drama."" Indeed, to this day it
is little known that he should be credited for linear programming, including the simplex method, and
for duality theory even in an abstract setting. His metric is curiously called Wasserstein (Vasershtein)
due to Dobrushin being aware of the Vasershtein paper [240] (Vasershtein worked in the laboratory
he headed) but not of Kantorovich's publications. In addition, Kantorovich's ideas on mathematical
economics were long considered in official Soviet circles as anti-Marxist. Consequently, they suffered
for many years a sort of ostracism. For more detail on all of this, see [241]. Fortunately, as partial
compensation, in 1975 he was awarded the Nobel prize for economics.
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3. Elements of Optimal Mass Transport Theory. The literature on this prob-
lem is by now so vast that given our degree of competence we shall not even attempt
here to give a reasonable and/or balanced introduction to the various fascinating
aspects of this theory. Fortunately, there exist excellent monographs and survey pa-
pers on this topic; see [202, 203, 92, 242, 5, 243, 185]. The range of applications
has also increased exponentially; we mention quality control, industrial manufac-
turing, vehicle path planning [205, 206], image processing [23], computer graphics
[226, 227, 229, 230, 231, 150], machine learning [228, 9, 174], and econometrics [109],
among others. We shall only briefly review some concepts and results that are relevant
to the topics of this paper.

3.1. The Monge–Kantorovich Static Problem. Let \nu 0 and \nu 1 be probability
measures on the separable, complete metric spaces X and Y , respectively. Let c :
X \times Y \rightarrow [0,+\infty ) be a lower semicontinuous map with c(x, y) representing the cost
of transporting a unit of mass from location x to location y. Let \scrT \nu 0\nu 1 be the family
of measurable maps T : X \rightarrow Y such that T\#\nu 0 = \nu 1, namely, such that \nu 1 is the
push-forward of \nu 0 under T . Any T \in \scrT \nu 0\nu 1 is called a transport map. Then Monge's
OMT problem is

(3.1) inf
T\in \scrT \nu 0\nu 1

\int 
X

c(x, T (x))d\nu 0(x)

for the particular case where c(x, y) = d(x, y), i.e., it is a metric on X and X = Y .
This problem may be unfeasible and the family \scrT \nu 0\nu 1 may be empty.7 This is never
the case for the ``relaxed"" version of the problem studied by Kantorovich in the 1940s,

(3.2) inf
\pi \in \Pi (\nu 0,\nu 1)

\int 
X\times Y

c(x, y)d\pi (x, y).

Here \Pi (\nu 0, \nu 1) are ``couplings"" of \nu 0 and \nu 1, namely, probability distributions on X\times Y
with marginals \nu 0 and \nu 1 called transport plans. Indeed, \Pi (\nu 0, \nu 1) always contain the
product measure \nu 0 \otimes \nu 1. We have Kantorovich's duality theorem given as follows.

Theorem 3.1. Suppose c is lower semicontinuous; then there exists a solution to
problem (3.2). Moreover,

min
\pi \in \Pi (\nu 0,\nu 1)

\int 
X\times Y

c(x, y)d\pi (x, y) = sup
(\varphi ,\psi )\in \Phi c

\biggl[ \int 
X

\varphi d\nu 0 +

\int 
Y

\psi d\nu 1

\biggr] 
,

\Phi c = \{ (\varphi ,\psi )| \varphi \in L1(\nu 0), \psi \in L1(\nu 1), \varphi (x) + \psi (y) \leq c(x, y)\} .

Let us specialize the Monge--Kantorovich problem (3.2) to the case X = Y = Rn
and c(x, y) = \| x  - y\| 2. Then if \nu 1 does not give mass to sets of dimension \leq n  - 1,
by Brenier's theorem [242, p. 66] there exists a unique optimal transport plan \pi 
(Kantorovich) induced by a d\nu 0 a.e. unique (Monge) map T , of the form T = \nabla \varphi 
with \varphi convex, such that

(3.3) \pi = (I \times \nabla \varphi )\#\nu 0, \nabla \varphi \#\nu 0 = \nu 1.

Here I denotes the identity map. Among the extensions of this result, we mention that
to strictly convex, superlinear costs c by Gangbo and McCann [110]. The optimal

7This is the case when, e.g., \nu 0 is a Dirac distribution and \nu 1 is the sum of two Dirac distributions
of half the magnitude. Since \nu 0 needs to be ``split"" so as to be transferred at two separate locations,
a transference plan \scrT does not exist as a map.
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transport problem may be used to introduce a useful distance between probability
measures. Indeed, let \scrP 2(Rn) be the set of probability measures \mu on Rn with finite
second moment. For \nu 0, \nu 1 \in \scrP 2(Rn), the Kantorovich--Wasserstein quadratic distance
is defined by

(3.4) W2(\nu 0, \nu 1) =

\biggl( 
inf

\pi \in \Pi (\nu 0,\nu 1)

\int 
Rn\times Rn

\| x - y\| 2d\pi (x, y)
\biggr) 1/2

.

As is well known [242, Theorem 7.3], W2 is a bona fide distance. Moreover, it provides
a most natural way to ``metrize"" weak convergence8 in \scrP 2(Rn) [242, Theorem 7.12], [5,
Proposition 7.1.5] (the same applies to the case p \geq 1 replacing 2 with p everywhere).
The Kantorovich--Wasserstein space \scrW 2 is defined as the metric space (\scrP 2(Rn),W2).
It is a Polish space, namely, a separable, complete metric space.

3.2. The Dynamic Problem. So far, we have dealt with the static optimal trans-
port problem. Nevertheless, in [22, p. 378] it is observed that ``. . . a continuum me-
chanics formulation was already implicitly contained in the original problem addressed
by Monge. . . Eliminating the time variable was just a clever way of reducing the di-
mension of the problem."" Thus, a dynamic (Eulerian) version of the OMT problem
was already in fieri in Gaspar Monge's 1781 M\'emoire sur la th\'eorie des d\'eblais et des
remblais ! It was elegantly accomplished by Benamou and Brenier in [22] by showing
that

W 2
2 (\nu 0, \nu 1) = inf

(\mu ,v)

\int 1

0

\int 
Rn

\| v(t, x)\| 2\mu t(dx)dt,(3.5a)

\partial \mu 

\partial t
+\nabla \cdot (v\mu ) = 0,(3.5b)

\mu 0 = \nu 0, \mu 1 = \nu 1.(3.5c)

Here the flow \{ \mu t; 0 \leq t \leq 1\} varies over continuous maps from [0, 1] to \scrP 2(Rn)
and v over smooth fields. Benamou and Brenier were motivated by computational
considerations, a topic which had not received much attention in OMT; see [7]. In
[243], Villani states at the beginning of Chapter 7 that two main motivations for the
time-dependent version of OMT are that

\bullet a time-dependent model gives a more complete description of the transport;
\bullet the richer mathematical structure will be useful later on.

We can add three further reasons:
1. It allows us to view the optimal transport problem as an (atypical) optimal

control problem; see section 3.3 below and [50, 51, 52, 53, 54, 55, 56, 57, 58, 59].
2. It opens the way to establish a connection with the Schr\"odinger bridge prob-

lem, where the latter appears as a regularization of the former [168, 169, 170,
157, 156, 52, 54, 46].

3. In some applications such as computer graphics [229, 150], interpolation of
images [55], spectral morphing [134], machine learning [174], and network
routing [64, 64, 65], the interpolating flow is essential!

Let \{ \mu \ast 
t ; 0 \leq t \leq 1\} and \{ v\ast (t, x); (t, x) \in [0, 1]\times Rn\} be optimal for (3.5). Then

\mu \ast 
t = [(1 - t)I + t\nabla \varphi ] \#\nu 0,

8Here, we say that as k \rightarrow \infty , \mu k converges weakly to \mu in \scrP 2(Rn) if
\int 
Rn fd\mu k \rightarrow 

\int 
Rn fd\mu for

any continuous function f satisfying f(x) \leq c
\bigl( 
1 + d(x, x0)2

\bigr) 
for every x0 \in Rn, the latter condition

guaranteeing tightness of the sequence \{ \mu k\} .
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with T = \nabla \varphi solving Monge's problem, provides McCann's displacement interpolation
between \nu 0 and \nu 1 [167]. In fact, \{ \mu \ast 

t ; 0 \leq t \leq 1\} may be seen as a constant-speed
geodesic joining \nu 0 and \nu 1 in \scrW 2 and, moreover, as realized by Otto in [189], \scrW 2 can
be endowed with a Riemannian-like structure9 which is consistent with W2.

McCann discovered [167] that certain functionals are displacement convex, namely,
convex along Wasserstein geodesics. This has led to a variety of applications. Follow-
ing one of Otto's main discoveries [136, 189], it turns out that a large class of PDEs
may be viewed as gradient flows on the Wasserstein space \scrW 2. This interpretation,
because of the displacement convexity of the functionals, is well suited to establishing
uniqueness and to studying energy dissipation and convergence to equilibrium. A
rigorous setting in which to make sense of the Otto calculus has been developed by
Ambrosio, Gigli, and Savar\'e [5] for a suitable class of functionals. Convexity along
geodesics in \scrW 2 also leads to new proofs of various geometric and functional inequali-
ties [167], [242, Chapter 9], [72]. Finally, we mention that, when the space is not flat,
qualitative properties of optimal transport can be quantified in terms of how bounds
on the Ricci--Curbastro curvature affect the displacement convexity of certain specific
functionals [243, Part II].

In passing and for completeness, we note that the tangent space of \scrP 2(Rn) at a
probability measure \mu , denoted by T\mu \scrP 2(Rn) [5], may be identified with the closure
in L2

\mu of the span of vector fields \{ \nabla \varphi : \varphi \in C\infty 
c \} , where C\infty 

c is the family of smooth
functions with compact support. It is naturally equipped with the inner product
of L2

\mu . Several recent papers have contributed to the development of second-order
calculus in Wasserstein's space [245, 69, 70, 71], building on [164, 113, 6].

3.3. Optimal Mass Transport as a Stochastic Control Problem. Optimal con-
trol, deeply rooted in the classical calculus of variations, seeks to modify the natural
(free) evolution of a system so as to minimize a suitable cost. This field received a
boost in the days of the space race, motivated by aeronautical and astronautical prob-
lems such as navigation and the soft moon landing problem [98, p. 21]. Foundational
contributions were provided in the late 1950s and early 1960s by Pontryagin and his
school in the Soviet Union, and by Bellman, Kalman, and others in the United States.
When the system starts from random initial conditions and/or is subject to random
disturbances, the problem becomes one of a stochastic nature where the cost is now
the expectation of a suitable random functional. A crucial aspect of the problem is
the information that is available to design the control action. In this paper, we shall
mainly discuss the case where the state variables constitute a fully observable (vector)
Markov process with values in a Euclidean space or, in the discrete time setting, in a
finite alphabet set. In the continuous time setting, standard references are Lee and
Markus [151] and Fleming and Rishel [98]. For Markov decision processes, standard
references are [200, 26]. As we shall see, both the OMT problem and its regularized
version (Schr\"odinger bridge) can be viewed as stochastic optimal control problems:
It is possible to derive suitable Hamilton--Jacobi--Bellman (HJB) equations. The dif-
ficulty lies in selecting the appropriate solution of the HJB as the boundary term is
missing. Our first step in introducing the optimal control viewpoint on the topics
of this paper consists in rederiving the Benamou--Brenier formulation of OMT using
elementary control considerations.

9More precisely, a weak Riemannian structure (see [6, 2.3.2]), a limitation being that the tangent
space about singular distributions is not ``rich enough,"" leading toward all other nearby distributions.
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Let us start by observing that the square of the Euclidean distance can be ex-
pressed as the infimum of an action integral, namely,

(3.6)
1

2
\| x - y\| 2 = min

x\in \scrX xy

\int 1

0

1

2
\| \.x\| 2dt,

where \scrX xy is the family of C1([0, 1];Rn) paths with x(0) = x and x(1) = y. The
minimum in (3.6) is evidently achieved by

x\ast (t) = (1 - t)x+ ty,

namely, the straight line joining x and y. Since x\ast (t) is a Euclidean geodesic, any
probabilistic average of the lengths of C1 trajectories starting at x at time 0 and
ending at y at time 1 necessarily gives a higher value. Thus, the probability measure
on C1([0, 1];Rn) concentrated on the path \{ x\ast (t); 0 \leq t \leq 1\} solves the problem

(3.7) inf
Pxy\in D1(\delta x,\delta y)

EPxy

\biggl\{ \int 1

0

1

2
\| \.x\| 2dt

\biggr\} 
,

where D1(\delta x, \delta y) are the probability measures on C1([0, 1];Rn) whose initial and final
one-time marginals are Dirac deltas concentrated at x and y, respectively. Since (3.7)
provides us with yet another representation for 1

2\| x  - y\| 2, in view of (3.4), we also
find that

inf
\pi \in \Pi (\nu 0,\nu 1)

\int 
1

2
\| x - y\| 2d\pi (x, y) = inf

\pi \in \Pi (\nu 0,\nu 1)

\int 
inf

Pxy\in D1(\delta x,\delta y)
EPxy

\biggl\{ \int 1

0

1

2
\| \.x\| 2dt

\biggr\} 
d\pi .

Now observe that if Pxy \in D1(\delta x, \delta y) and \pi \in \Pi (\nu 0, \nu 1), then

P =

\int 
Rn\times Rn

Pxyd\pi (x, y)

is a probability measure in D1(\nu 0, \nu 1), namely, a measure on C1([0, 1];Rn) with initial
and final marginals \nu 0 and \nu 1, respectively. On the other hand, the disintegration
of any measure P \in D1(\nu 0, \nu 1) with respect to the initial and final positions10 yields
Pxy \in D1(\delta x, \delta y) and \pi \in \Pi (\nu 0, \nu 1). Thus, we get that the original optimal transport
problem is equivalent to

(3.8) inf
P\in D1(\nu 0,\nu 1)

EP
\biggl\{ \int 1

0

1

2
\| \.x\| 2dt

\biggr\} 
.

So far, we have followed [157, pp. 2--3]. Instead of the ``particle"" picture, we can
also consider the hydrodynamic version of (3.6), namely, the optimal control problem

1

2
\| x - y\| 2 = inf

v\in \scrV y

\int 1

0

1

2
\| v(t, xv(t))\| 2dt,(3.9)

\.xv(t) = v(t, xv(t)), x(0) = x,

10Disintegration can be viewed here as the opposite process to the construction of a product
measure.
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where the admissible feedback control laws v(\cdot , \cdot ) in \scrV y are continuous and such that
xv(1) = y. Following the same steps as before, we get that the optimal transport prob-
lem is equivalent to the following stochastic control problem with atypical boundary
constraints:

inf
v\in \scrV 

E
\biggl\{ \int 1

0

1

2
\| v(t, xv(t))\| 2dt

\biggr\} 
,(3.10a)

\.xv(t) = v(t, xv(t)) a.s., x(0) \sim \nu 0, x(1) \sim \nu 1.(3.10b)

Finally, suppose d\nu 0(x) = \rho 0(x)dx, d\nu 1(y) = \rho 1(y)dy, and xv(t) \sim \rho (t, x)dx.
Then, necessarily, \rho satisfies (weakly) the continuity equation

(3.11)
\partial \rho 

\partial t
+\nabla \cdot (v\rho ) = 0,

expressing the conservation of probability mass. Moreover,

E
\biggl\{ \int 1

0

1

2
\| v(t, xv(t))\| 2dt

\biggr\} 
=

\int 
Rn

\int 1

0

1

2
\| v(t, x)\| 2\rho (t, x)dtdx.

Hence (3.10) turns into the Benamou--Brenier problem (3.5),

inf
(\rho ,v)

\int 
Rn

\int 1

0

1

2
\| v(t, x)\| 2\rho (t, x)dtdx,(3.12a)

\partial \rho 

\partial t
+\nabla \cdot (v\rho ) = 0,(3.12b)

\rho (0, x) = \rho 0(x), \rho (1, y) = \rho 1(y).(3.12c)

The variational analysis for (3.10) or, equivalently, for (3.12) can be carried out
in many different ways. For instance, let \scrP \rho 0\rho 1 be the family of flows of probability
densities \rho = \{ \rho (t, \cdot ); 0 \leq t \leq 1\} satisfying (3.12c) and let \scrV be the family of con-
tinuous feedback control laws v(\cdot , \cdot ). Consider the unconstrained minimization of the
Lagrangian over \scrP \rho 0\rho 1 \times \scrV ,

(3.13) \scrL (\rho , v) =
\int 
Rn

\int 1

0

\biggl[ 
1

2
\| v(t, x)\| 2\rho (t, x) + \lambda (t, x)

\biggl( 
\partial \rho 

\partial t
+\nabla \cdot (v\rho )

\biggr) \biggr] 
dtdx,

where \lambda is a C1 Lagrange multiplier. Integrating by parts, assuming that limits for
\| x\| \rightarrow \infty are zero, we get\int 

Rn

\int 1

0

\biggl[ 
1

2
\| v(t, x)\| 2 +

\biggl( 
 - \partial \lambda 
\partial t

 - \nabla \lambda \cdot v
\biggr) \biggr] 

\rho (t, x)dtdx(3.14)

+

\int 
Rn

[\lambda (1, x)\rho 1(x) - \lambda (0, x)\rho 0(x)] dx.

The last integral is constant over \scrP \rho 0\rho 1 for a fixed \lambda and can therefore be discarded.
We are left to minimize

(3.15)

\int 
Rn

\int 1

0

\biggl[ 
1

2
\| v(t, x)\| 2 +

\biggl( 
 - \partial \lambda 
\partial t

 - \nabla \lambda \cdot v
\biggr) \biggr] 

\rho (t, x)dtdx

over \scrP \rho 0\rho 1 \times \scrV . We consider doing this in two stages, starting from minimization with
respect to v for a fixed flow of probability densities \rho = \{ \rho (t, \cdot ); 0 \leq t \leq 1\} in \scrP \rho 0\rho 1 .
Pointwise minimization of the integrand at each time t \in [0, 1] gives that

(3.16) v\ast \rho (t, x) = \nabla \lambda (t, x),
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which is continuous. Substituting this expression for the optimal control into (3.15),
we obtain

(3.17) J(\rho ) =  - 
\int 
Rn

\int 1

0

\biggl[ 
\partial \lambda 

\partial t
+

1

2
\| \nabla \lambda \| 2

\biggr] 
\rho (t, x)dtdx.

In view of this, if \lambda satisfies the Hamilton--Jacobi equation

(3.18)
\partial \lambda 

\partial t
+

1

2
\| \nabla \lambda \| 2 = 0,

then J(\rho ) is identically zero over \scrP \rho 0\rho 1 and any \rho \in \scrP \rho 0\rho 1 minimizes the Lagrangian
(3.13) together with the feedback control (3.16). We have therefore established the
following proposition [22].

Proposition 3.2. Let \rho \ast (t, x) with t \in [0, 1] and x \in Rn satisfy

(3.19)
\partial \rho \ast 

\partial t
+\nabla \cdot (\rho \ast \nabla \lambda ) = 0, \rho \ast (0, x) = \rho 0(x),

where \lambda is a solution of the Hamilton--Jacobi equation

(3.20)
\partial \lambda 

\partial t
+

1

2
\| \nabla \lambda \| 2 = 0

for some boundary condition \lambda (1, x) = \lambda 1(x). If \rho \ast (1, x) = \rho 1(x), then the pair
(\rho \ast , v\ast ) with v\ast (t, x) = \nabla \lambda (t, x) is a solution of (3.5).

The stochastic nature of the Benamou--Brenier formulation (3.12) stems from the
fact that the initial and final densities are specified. Accordingly, the above requires
solving a two-point boundary value problem and the resulting control dictates the
local velocity field. In general, one cannot expect to have a classical solution of (3.20)
and has to be content with a viscosity solution [104]. See [232] for a recent contribution
in the case when only samples of \rho 0 and \rho 1 are known.

3.4. Optimal Mass Transport with a “Prior.” The stochastic control formula-
tion (3.10) of OMT casts this as a problem to steer the dynamical system \.x = u,
where u is the control input, between specified marginal distributions for the state.
The generalization to nontrivial underlying dynamics of the form \.x = f(t, x)+u leads
in a similar manner to

inf
u\in \scrV 

E
\biggl\{ \int 1

0

1

2
\| u(t, xu(t))\| 2dt

\biggr\} 
,(3.21a)

\.xu(t) = f(t, xu(t)) + u(t, xu(t)) a.s., x(0) \sim \nu 0, x(1) \sim \nu 1.(3.21b)

Once again, this is a nonstandard minimum energy control-effort problem due to
the constraint on the final state distribution. A fluid dynamic reformulation proceeds
as follows. Suppose we are given two end-point marginal probability densities \rho 0 and
\rho 1, and suppose we are also given a model

(3.22)
\partial \rho 

\partial t
+\nabla \cdot (f\rho ) = 0

for the flow of probability densities \{ \rho (t, x); 0 \leq t \leq 1\} , for a continuous vector field
f(\cdot , \cdot ), which, however, is not consistent with the given end-point marginals. Then
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(3.22) represents a ``prior"" evolution to serve as a reference when seeking an update
in the vector field to minimize the quadratic cost,

inf
(\rho ,v)

\int 
Rn

\int 1

0

1

2
\| v(t, x) - f(t, x)\| 2\rho (t, x)dtdx,(3.23a)

\partial \rho 

\partial t
+\nabla \cdot (v\rho ) = 0,(3.23b)

\rho (0, x) = \rho 0(x), \rho (1, y) = \rho 1(y).(3.23c)

Clearly, if the prior flow satisfies \rho (0, x) = \rho 0(x) and \rho (1, y) = \rho 1(y), then it solves
the problem and v\ast = f . Moreover, the standard OMT problem is recovered when
the prior evolution is constant, i.e., f \equiv 0.

Remark 3.3. From a different angle, problem (3.23) can be motivated as follows.
It seeks a correction v to a transportation plan f that has already been computed from
obsolete data (e.g., marginal distributions for transportation of resources in \rho 0,old to
meet demands in \rho 1,old) as this data is being updated to a new set of marginals \rho 0
and \rho 1, respectively.

The particle version of (3.23) takes the form of a more familiar OMT problem,
namely,

(3.24) inf
\pi \in \Pi (\nu 0,\nu 1)

\int 
Rn\times Rn

c(x, y)d\pi (x, y),

where d\nu 0(x) = \rho 0(x)dx, d\nu 1(y) = \rho 1(y)dy, and

(3.25) c(x, y) = inf
x\in \scrX xy

\int 1

0

L(t, x(t), \.x(t))dt, L(t, x, \.x) = \| \.x - f(t, x)\| 2.

The explicit calculation of the function c(x, y) when f \not \equiv 0 is nontrivial. Moreover,
the zero-noise limit results of [156, section 3], based on a large deviations principle
[81], although very general in other ways, seem to cover here only the case where
c(x, y) = c(x  - y) is strictly convex originating from a Lagrangian L(t, x, \.x) = c( \.x).
We mention that [55] deals with OMT problems where the Lagrangian is not strictly
convex with respect to \.x. Finally, we feel that the present formulation is a most
natural one in which to study zero-noise limits of Schr\"odinger bridges with a general
Markovian prior evolution. References [54, 55] discuss this same problem in the case
of a Gaussian prior and show directly the convergence of the solution to the HJB
equation to the solution of a Hamilton--Jacobi equation.

The variational analysis for (3.23) can be carried out as in section 3.3, leading to
the following result.

Proposition 3.4. If \lambda satisfies the Hamilton--Jacobi equation

(3.26)
\partial \lambda 

\partial t
+ f \cdot \nabla \lambda +

1

2
\| \nabla \lambda \| 2 = 0,

and is such that the solution \rho \ast to

(3.27)
\partial \rho \ast 

\partial t
+\nabla \cdot [(f +\nabla \lambda )\rho \ast ] = 0, \rho \ast (0, x) = \rho 0(x),

satisfies the end-point condition \rho \ast (1, x) = \rho 1(x) as well, then the pair (\rho \ast (t, x), v\ast (t, x)),
with

v\ast (t, x) = f(t, x) +\nabla \lambda (t, x),
solves (3.23), provided \lambda (t, x)\rho \ast (t, x) vanishes as \| x\| \rightarrow \infty for each fixed t.
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4. Schrödinger’s Bridges. Two excellent surveys on this topic are [247, 157]. See
also [62] for an exposition of the Schr\"odinger bridge problem in the context of control
engineering.

4.1. The Hot Gas Gedankenexperiment. In 1931--1932, Erwin Schr\"odinger
considered the following Gedankenexperiment [215, 216]: We have a cloud of N in-
dependent Brownian particles evolving in time.11 This cloud of particles has been
observed having at the initial time t = 0 an empirical distribution approximately
equal to \rho 0(x)dx. At time t = 1, an empirical distribution approximately equal to
\rho 1(x)dx is observed, which differs considerably from what it should be according to
the law of large numbers (N is large, say, of the order of Avogadro's number), namely,

\rho 1(y) \not =
\int 
Rn

p(0, x, 1, y)\rho 0(x)dx,

where

(4.1) p(s, x, t, y) = [2\pi (t - s)]
 - n

2 exp

\biggl[ 
 - \| x - y\| 2

2(t - s)

\biggr] 
, s < t,

is the transition density of the Wiener process (heat kernel). It is apparent that the
particles have been transported in an unlikely way. But of the many unlikely ways in
which this could have happened, which one is the most likely? In modern probabilistic
terms, this is a problem of large deviations of the empirical distribution as observed
by F\"ollmer [103]. Thus, at the outset, Schr\"odinger's motivation and the context of his
question had no connection to OMT that we have just discussed---the confluence of
the two that we highlight in what follows may be seen as a deep and lucky coincidence.

4.2. Large Deviations and Maximum Entropy. The area of large deviations is
concerned with the probabilities of rare events. In light of Sanov's theorem [211],
Schr\"odinger's problem can be seen as a large deviations (maximum entropy) problem
for distributions on trajectories, as we proceed to explain.

Let \Omega = C([0, 1];Rn) be the space of Rn-valued continuous functions, let \scrD be
the space of probability measures on \Omega , and let Wx \in \scrD denote the Wiener measure
starting at x at t = 0. If, instead assuming a Dirac marginal concentrated at x, we
enlarge Wx to subsume the volume measure at t = 0, we obtain

W :=

\int 
Wx dx.

This is an unbounded nonnegative measure on the path space \Omega , called the stationary
Wiener measure (or sometimes reversible Brownian motion); W has marginals at
each point in time that coincide with the Lebesgue measure and therefore, while still
nonnegative, it is not a probability measure. In fact, it serves as a convenient analogue
of the Lebesgue measure on paths that ``symmetrizes"" and ``uniformizes"" the Wiener
measure with respect to the time arrow.

Alternatively, we can enlarge Wx to

W\rho :=

\int 
Wx \rho (x)dx

11To put Schr\"odinger's 1931 work into perspective, one has to recall what science had accomplished
on the atomic hypothesis and physical Brownian motion up to that time, besides Boltzmann's work
[34]. For this, see [176] and section 6.
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so that instead the Dirac marginal at t = 0 now has a marginal probability measure
\rho dx. Clearly, W\rho is a probability measure on \Omega which is absolutely continuous with
respect to W . Indeed, if

D(P\| Q) =

\Biggl\{ 
EP
\Bigl\{ 
log dP

dQ

\Bigr\} 
if P \ll Q,

+\infty otherwise

denotes the relative entropy functional (divergence, Kullback--Leibler index) between
nonnegative measures, it can be seen that

D(W\rho \| W ) =

\int 
\rho log(\rho )dx =  - S(\rho ),

where S(\rho ) is the differential entropy of the measure \rho (x)dx. Moreover,

D(W\rho \| W\rho 0) =

\int 
\rho log

\Bigl( \rho 
\rho 0

\Bigr) 
dx =: D(\rho \| \rho 0).

Now let X1, X2, . . . be i.i.d. Wiener evolutions on [0, 1] with values in Rn and
let starting value xi be distributed according to \rho . The empirical distribution \mu N
associated to X1, X2, . . . , XN is defined by

(4.2) \mu N (X1, X2, . . . , XN ) :=
1

N

N\sum 
i=1

\delta Xi .

The expression in (4.2) defines a map from \Omega N to the space \scrD of probability distri-
butions on C([0, 1];Rn). Hence, for E \subset \scrD , we may consider the probability of

\{ (\omega 1, . . . , \omega N )| \mu N (\cdot ) \in E\} 

in the product measure WN
\rho on \Omega N . By the ergodic theorem (see, e.g., [90, Theorem

A.9.3]), as N tends to infinity, the sequence of distributions \mu N converges weakly to
W\rho . Hence, if W\rho \not \in E, it follows that

WN
\rho (\{ (\omega 1, . . . , \omega N )| \mu N (\cdot ) \in E\} ) \searrow 0.

In this, large deviations theory provides us with the much finer result that the decay
is exponential and the exponent may be characterized as solving a maximum entropy
problem [81].

Specifically, in our setting we let E = \scrD (\rho 0, \rho 1), namely, the set of distributions on
C([0, 1];Rn) having marginal densities \rho 0 and \rho 1 at times t = 0 and t = 1, respectively.
Then Sanov's theorem [211], [81, Theorem 6.2.10] asserts that, assuming the ``prior""
W\rho does not have the required marginals, the probability of observing an empirical
distribution \mu N in a neighborhood of \scrD (\rho 0, \rho 1) in the weak topology decays as

e - N inf\{ D(P\| W\rho )| P\in \scrD (\rho 0,\rho 1)\} 

as N \rightarrow \infty . This large deviations statement can be turned around in the spirit of the
Gibbs conditioning principle (cf. [81, section 7.3]) to deduce that, given as data the
marginal distributions \rho 0, \rho 1, the most likely distribution is the closest to W\rho in the
sense of relative entropy. But, in our setting, \rho is unspecified, and in light of the fact
that

D(P\| W\rho ) = D(P\| W ) - D(\rho 0\| \rho ),
the most likely random evolution between two given marginals is in fact the solution
of the Schr\"odinger bridge problem that follows.
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Problem 4.1.

(4.3) PSBP := argmin\{ D(P\| W ) | P \in \scrD (\rho 0, \rho 1)\} .

The optimal solution is referred to as the Schr\"odinger bridge between \rho 0 and \rho 1
over W , since its marginal flow \{ \rho (t, \cdot ); 0 \leq t \leq 1\} , which is the entropic interpolation
between \rho 0 and \rho 1, is seen as a ``bridge"" between the two marginals.

Next we discuss the structure of the solution of the above and its reduction to a
static problem.

Let P \in \scrD be a finite-energy diffusion [102]; that is, under P , the canonical
coordinate process Xt(\omega ) = \omega (t) has a (forward) It\^o differential

(4.4) dXt = \beta tdt+ dWt,

where \beta t is adapted to \{ \scrF  - 
t \} (\scrF  - 

t is the \sigma -algebra of events up to time t) and

(4.5) EP
\biggl[ \int 1

0

\| \beta t\| 2dt
\biggr] 
<\infty .

Conditioning the process on starting at X0 = x and ending at X1 = y gives

Pxy = P [ \cdot | X0 = x,X1 = y] , Wxy =W [ \cdot | X0 = x,X1 = y] .

These laws are referred to as the disintegrations of P andW with respect to the initial
and final positions [48]. Let \rho P01 and \rho W01 be the joint initial-final time distributions
under P and W , respectively. Then we have the following decomposition of relative
entropy [103]:

D(P\| W ) = EP
\biggl[ 
log

dP

dW

\biggr] 
=

\int \int \biggl[ 
log

\rho P01(x, y)

\rho W01(x, y)

\biggr] 
\rho P01(x, y)dxdy

+

\int \int \int \biggl( 
log

dP yx
dW y

x

\biggr) 
dP yx \rho 

P
01(x, y)dxdy.(4.6)

Clearly, since \rho P01(x, y) and dP yx can be chosen independently, the choice P yx = W y
x ,

which actually makes the second summand equal to zero, is optimal. Thus, Problem
4.1 reduces to the following ``static"" problem.

Problem 4.2. Minimize

(4.7) D(\rho 01\| \rho W01) =
\int \int \biggl[ 

log
\rho 01(x, y)

\rho W01(x, y)

\biggr] 
\rho 01(x, y)dxdy

over the set of densities

\Pi (\rho 0, \rho 1) :=

\biggl\{ 
\rho 01 on Rn \times Rn

\bigm| \bigm| \bigm| \bigm| \int \rho 01(x, y)dy = \rho 0(x),

\int 
\rho 01(x, y)dx = \rho 1(y)

\biggr\} 
.

One should note that the conditions defining \Pi are linear; the elements of \Pi (\rho 0, \rho 1)
are referred to as couplings between \rho 0 and \rho 1. If \rho 

\ast 
01 is the solution to Problem 4.2,

i.e., the optimal coupling, then, evidently,

(4.8) P \ast (\cdot ) =
\int 
Rn\times Rn

Wxy(\cdot )\rho \ast 01(dxdy)
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solves12 Problem 4.1. The structure of the problem further endows P \ast with the same
three-point transition density

p\ast (s, x, t, y, u, z) =
p(s, x, t, y)p(t, y, u, z)

p(s, x, u, z)
, s < t < u,

as the prior---a property that is referred to by saying that it belongs to the same
reciprocal class as the prior measure [24, 129].

It is natural to consider the case when the prior is a Wiener measure with variance
\epsilon , denoted by W\epsilon and with transition kernel

p\epsilon (0, x, 1, y) = [2\pi \epsilon ]
 - n

2 exp

\biggl[ 
 - \| x - y\| 2

2\epsilon 

\biggr] 
,

and to contemplate the limiting process when \epsilon \rightarrow 0. Indeed, using \rho W\epsilon 
01 (x, y) =

\rho W\epsilon 
0 (x)p\epsilon (0, x; 1, y) and the fact that\int \int \Bigl[ 

log \rho W\epsilon 
0 (x)

\Bigr] 
\rho 01(x, y)dxdy =

\int \Bigl[ 
log \rho W\epsilon 

0 (x)
\Bigr] 
\rho 0(x)dx

is independent of \rho 01, we obtain

D(\rho 01\| \rho W\epsilon 
01 ) =  - 

\int \int \Bigl[ 
log \rho W\epsilon 

01 (x, y)
\Bigr] 
\rho 01(x, y)dxdy +

\int \int 
[log \rho 01(x, y)] \rho 01(x, y)dxdy

(4.9)

=

\int \int 
\| x - y\| 2

2\epsilon 
\rho 01(x, y)dxdy  - S(\rho 01) + constant,

where S is the differential entropy. Thus, Problem 4.2 that considers minimizing
D(\rho 01\| \rho W\epsilon 

01 ) over the couplings \Pi (\rho 0, \rho 1) is equivalent to

(4.10) min
\rho 01\in \Pi (\rho 0,\rho 1)

\int 
\| x - y\| 2

2
\rho 01(x, y)dxdy + \epsilon 

\int 
\rho 01(x, y) log \rho 01(x, y)dxdy.

It is seen that in the limit as \epsilon \rightarrow 0, the cost reduces to 1
2\| x  - y\| 2, which is in the

form of the Kantorovich functional in (2.1). Thus, the Schr\"odinger bridge problem
represents a regularization of OMT obtained by subtracting from the cost functional a
term proportional to the entropy.

We have already seen that the Schr\"odinger bridge problem can be motivated in
three different ways: First via the original statistical mechanical thought experiment
of Schr\"odinger (a large deviations problem), and second via Sanov's theorem and
Gibbs conditioning principle, as a maximum entropy problem. It is an early and
important instance of an inference method that prescribes how to choose a posterior
distribution while making the fewest number of assumptions beyond the available
information. This approach has been considerably developed over many years by
Jaynes, Burg, Dempster, and Csisz\'ar [131, 132, 133, 39, 40, 84, 73, 74, 75]. Both
forms of the problem have their roots in Boltzmann's work [34]. The more recent
third motivation comes from regularized OMT [168, 169, 170, 156, 157, 46], which
mitigates the computational challenges [7, 22, 198].

12Note that decomposition (4.6) and the resulting argument remain valid even when the prior
measure is induced by any, possibly non-Markovian, finite-energy diffusion \=P ; see (4.27).
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4.3. Derivation of the Schrödinger System. The Lagrangian function of Prob-
lem 4.2 has the form

\scrL (\rho 01, \lambda , \mu ) =
\int \int \biggl[ 

log
\rho 01(x, y)

\rho W01(x, y)

\biggr] 
\rho 01(x, y)dxdy

+

\int 
\lambda (x)

\biggl[ \int 
\rho 01(x, y)dy  - \rho 0(x)

\biggr] 
+

\int 
\mu (y)

\biggl[ \int 
\rho 01(x, y) - \rho 1(y)

\biggr] 
.

Setting the first variation equal to zero, we obtain the (sufficient) optimality condition

1 + log \rho \ast 01(x, y) - log p(0, x, 1, y) - log \rho W0 (x) + \lambda (x) + \mu (y) = 0,

where we have used the expression \rho W01(x, y) = \rho W0 (x)p(0, x, 1, y) with p as in (4.1).
We get

\rho \ast 01(x, y)

p(0, x, 1, y)
= exp

\bigl[ 
log \rho W0 (x) - 1 - \lambda (x) - \mu (y)

\bigr] 
= exp

\bigl[ 
log \rho W0 (x) - 1 - \lambda (x)

\bigr] 
exp [ - \mu (y)] .

Thus, the ratio \rho \ast 01(x, y)/p(0, x, 1, y) factors into a function of x times a function of
y. Let us denote them by \^\varphi (x) and \varphi (y), respectively. The optimal \rho \ast 01(\cdot , \cdot ) then has
the form

(4.11) \rho \ast 01(x, y) = \^\varphi (x)p(0, x, 1, y)\varphi (y),

with \varphi and \^\varphi satisfying

\^\varphi (x)

\int 
p(0, x, 1, y)\varphi (y)dy = \rho 0(x),(4.12)

\varphi (y)

\int 
p(0, x, 1, y) \^\varphi (x)dx = \rho 1(y).(4.13)

Let \^\varphi (0, x) = \^\varphi (x), \varphi (1, y) = \varphi (y), and

\^\varphi (1, y) :=

\int 
p(0, x, 1, y) \^\varphi (0, x)dx, \varphi (0, x) :=

\int 
p(0, x, 1, y)\varphi (1, y).

Then (4.12)--(4.13) is equivalent to the system

\^\varphi (1, y) =

\int 
p(0, x, 1, y) \^\varphi (0, x)dx,(4.14a)

\varphi (0, x) =

\int 
p(0, x, 1, y)\varphi (1, y)dy(4.14b)

with the boundary conditions

(4.14c) \varphi (0, x) \cdot \^\varphi (0, x) = \rho 0(x), \varphi (1, y) \cdot \^\varphi (1, y) = \rho 1(y).

The question of existence and uniqueness of positive functions \^\varphi , \varphi satisfying (4.14a)--
(4.14c), left open by Schr\"odinger, is highly nontrivial and has been settled in various
degrees of generality by Fortet, Beurling, Jamison, and F\"ollmer [106, 27, 130, 103]; see
also [157, 68]. Note that both Fortet and Beurling predate Sinkhorn's work [223, 224]
on a problem in statistics that turned out to be closely related.
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There are basically two ways to deal with the existence of solutions to the Schr\"o-
dinger system of equations (4.14a)--(4.14c). One is to prove existence for the dual
problem of the original convex optimization problem. This was first accomplished by
Beurling [27], leading to [130]; see also the recent paper [68]. Alternatively, one can
try to prove convergence of a suitable successive approximation scheme. This was
first accomplished by Fortet [106]; see also [58]. We outline Fortet's results in section
8.1 and remark that, in the special case where the marginals \rho 0, \rho 1 are Gaussian,
the Schr\"odinger system has a closed-form solution. This was only recently discovered
in [50]. The discrete counterpart of Fortet's algorithm is the so-called IPF-Sinkhorn
algorithm discussed in section 8.2. Note that in the recent paper [91] (see also [159]),
the bulk of Fortet's paper has been rewritten, filling in all the missing steps and
explaining the rationale behind his complex approximation scheme.

The pair (\varphi , \^\varphi ) satisfying (4.14a)--(4.14c) is unique up to multiplication of \varphi by
a positive constant c and division of \^\varphi by the same constant. At each time t, the
marginal \rho (t, \cdot ) factors as

(4.15) \rho (t, x) = \varphi (t, x) \cdot \^\varphi (t, x).

The factorization (4.15) resembles Born's relation (in quantum theory)

\rho (t, x) = \psi (t, x) \cdot \=\psi (t, x),

with \psi and \=\psi satisfying two adjoint equations like \varphi and \^\varphi . Moreover, the solution
of Problem 4.1 exhibits the following remarkable reversibility property: Swapping the
two marginal densities \rho 0 and \rho 1, the new solution is simply the time reversal of
the previous one; cf. the title On the reversal of natural laws of [215]. These are
the remarkable analogies to quantum mechanics which appeared to Schr\"odinger to
be very worthy of reflection. But wait a minute: When Schr\"odinger posed his ques-
tion, the very foundations of probability theory were still missing, and the notion of
stochastic process had not yet been introduced. Although Wiener had given a rigor-
ous construction of Wiener measure in 1923 [248], hardly any theory of continuous
parameter stochastic processes had been developed in the early 1930s. Many rele-
vant results such as Sanov's theorem and multiplicative functional transformations of
Markov processes [128] were not available. How could Schr\"odinger formulate and, to
a large extent, solve such an abstract problem in the early 1930s? Schr\"odinger, in
his countryman Boltzmann's style, discretized space to be able to compute by the De
Moivre--Stirling formula the most likely joint initial-final distribution, very much like
Boltzmann had done in 1877 [34].

In [196], the Schr\"odinger bridge problem was considered in the case when only
samples of the boundary marginals are available. A numerical method was developed
which has potential to work in high-dimensional settings employing constrained maxi-
mum likelihood in place of the nonlinear boundary coupling and importance sampling
to propagate \varphi and \^\varphi . Another paper dealing with a similar problem is [25].

4.4. Stochastic Control Formulation. In 1975 Jamison [130] showed that the
solution of the Schr\"odinger bridge problem is an h-path process in the sense of Doob
[87], [88, p. 566]. Indeed, dividing both sides of (4.11) by \rho 0(x) (assumed everywhere
positive), we get

(4.16) p\ast (0, x, 1, y) =
1

\varphi (x)
p(0, x, 1, y)\varphi (y),
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where \varphi , in Doob's language, is space time harmonic satisfying

(4.17)
\partial \varphi 

\partial t
+

1

2
\Delta \varphi = 0.

The solution is obtained from the prior distribution via a multiplicative functional
transformation of Markov processes [128]. It is worthwhile to mention that Francesco
Guerra has connected such a function to the importance function of neutron transport
theory [117].

The connection between Schr\"odinger bridges and stochastic control, clearly estab-
lished in [77], was prepared for by work in the latter field on the so-called logarithmic
transformation of parabolic differential equations [99, 100, 101, 122, 142, 172, 30] as
well as by work in mathematical physics [117, 253]. The Schr\"odinger bridge problem
can be turned, thanks to Girsanov's theorem, into a stochastic calculus of varia-
tions problem [175, 246, 79, 1] that, in turn, can be reformulated in the language
of stochastic control [77, 78, 192, 96]. Let P \in \scrD be a finite-energy diffusion with
forward differential (4.4). Then, by Girsanov's theorem [143],

log
dP

dW
= log

\rho P0 (X0)

\rho W0 (X0)
+

\int 1

0

\beta tdXt  - 
\int 1

0

1

2
\| \beta t\| 2dt, P a.s.,

= log
\rho P0 (X0)

\rho W0 (X0)
+

\int 1

0

\beta tdWt +

\int 1

0

1

2
\| \beta t\| 2dt, P a.s..

(4.18)

By the finite-energy condition (4.5),

Yt :=

\int t

0

\beta \tau dW\tau 

is a martingale and has therefore constant expectation. Since Y0 = 0, we have

EP
\biggl[ \int 1

0

\beta tdWt

\biggr] 
= 0.

Then (4.18) yields

(4.19) D(P\| W ) = EP
\biggl[ 
log

dP

dW

\biggr] 
= D(\rho 0\| \rho W0 ) + EP

\biggl[ \int 1

0

1

2
\| \beta t\| 2dt

\biggr] 
.

Note that D(\rho 0\| \rho W0 ) is constant over \scrD (\rho 0, \rho 1). We then obtain a stochastic control
formulation. Problem 4.1 (when the prior has variance \epsilon ) is equivalent to the following
problem.

Problem 4.3.

Minimizeu\in \scrU J(u) = E
\biggl[ \int 1

0

1

2\epsilon 
\| ut\| 2dt

\biggr] 
subject to dXt = utdt+

\surd 
\epsilon dWt, X0 \sim \rho 0(x), X1 \sim \rho 1(y),

(4.20)

where the family \scrU consists of adapted, finite-energy control functions.

The optimal control is of the feedback type

(4.21) u\ast (t, x) = \epsilon \nabla log\varphi (t, x),
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where (\varphi , \^\varphi ) solve the Schr\"odinger system

\partial \varphi 

\partial t
+
\epsilon 

2
\Delta \varphi = 0,(4.22a)

\partial \^\varphi 

\partial t
 - \epsilon 

2
\Delta \^\varphi = 0,(4.22b)

\varphi (0, x) \cdot \^\varphi (0, x) = \rho 0(x),(4.22c)

\varphi (1, y) \cdot \^\varphi (1, y) = \rho 1(y).(4.22d)

4.5. Fluid-Dynamic Formulation. Problem 4.3 leads immediately to the follow-
ing fluid-dynamic problem.

Problem 4.4.

inf
(\rho ,u)

\int 
Rn

\int 1

0

1

2
\| u(t, x)\| 2\rho (t, x)dtdx,(4.23a)

\partial \rho 

\partial t
+\nabla \cdot (u\rho ) - \epsilon 

2
\Delta \rho = 0,(4.23b)

\rho (0, x) = \rho 0(x), \rho (1, y) = \rho 1(y),(4.23c)

where u(\cdot , \cdot ) varies over continuous functions on [0, 1]\times Rn.

Remark 4.5. Contrary to what is often stated in the literature (see, e.g., [153]),13

Problem 4.4 is not equivalent to Problems 4.1, 4.2, and 4.3 in that it only reproduces
the optimal entropic interpolating flow \{ \rho \ast (t, \cdot ); 0 \leq t \leq 1\} . Information about cor-
relations at different times and smoothness of the trajectories in the support of the
measure P \ast is lost here. Indeed, let (\rho \ast , u\ast ) be optimal for Problem 4.4 and define
the current velocity field [176]

(4.24) v\ast (t, x) := u\ast (t, x) - \epsilon 

2
\nabla log \rho \ast (t, x).

Assume that v\ast guarantees existence and uniqueness of the following initial value
problem on [0, 1] for any deterministic initial condition:

\.Xt = v\ast (t,Xt), X0 \sim \rho 0dx.

Then the probability density \rho (t, x) of Xt satisfies the continuity equation

\partial \rho 

\partial t
+\nabla \cdot (v\ast \rho ) = 0

as well as (4.23b) with the same initial condition and therefore coincides with \rho \ast (t, x).

It appears that as \epsilon \searrow 0, the solution to this problem converges to the solution of
the Benamou--Brenier OMT problem [22]. This is indeed the case [168, 169, 170, 157,
156]. The analysis in Remark 4.5, however, suggests that an alternative fluid-dynamic
problem characterization of the entropic interpolation flow \{ \rho \ast (t, \cdot ); 0 \leq t \leq 1\} may
be possible. Indeed, such an alternative time-symmetric problem was derived in [54];
see also [111].

13We contributed to this confusion ourselves in [54, section 5].
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Problem 4.6.

inf
(\rho ,v)

\int 
Rn

\int 1

0

\biggl[ 
1

2
\| v(t, x)\| 2 + \epsilon 2

8
\| \nabla log \rho \| 2

\biggr] 
\rho (t, x)dtdx,(4.25a)

\partial \rho 

\partial t
+\nabla \cdot (v\rho ) = 0,(4.25b)

\rho (0, x) = \rho 0(x), \rho (1, y) = \rho 1(y).(4.25c)

The two criteria differ by a (scaled) Fisher information functional

\scrI (\rho ) =
\int 

\| \nabla log \rho (t, x)\| 2\rho (t, x)dx,

while the Fokker--Planck equation has been replaced by the continuity equation. Both
Problem 4.4 and Problem 4.6 can be thought of as regularizations of the Benamou--
Brenier problem [22] and as dynamic counterparts of (4.10) [168, 169, 170, 157, 156,
52, 54].

Remark 4.7. The problem of minimizing the Yasue [250] action (4.25a) under the
continuity equation (4.25b) and boundary conditions (4.25c) was formulated by Carlen
in [45, p. 131]. He was investigating possible connections between OMT and Nelson's
stochastic mechanics. He wrote that ``. . .the Euler-Lagrange equations for it are not
easy to understand."" The solution to Carlen's problem was provided in [54, section
5] through the fluid-dynamic problem associated to the Schr\"odinger bridge. Carlen's
statement has caused several authors (see, e.g., [152]) to believe that Yasue in [250] had
already discussed this problem. This is not true, since what Yasue developed there,
using Nelson's integration-by-parts formula for semimartingales [176, Theorem 11.12],
was a stochastic calculus of variations that may be viewed as the ``particle"" form of
the Hamilton principle in stochastic mechanics. The fluid dynamic counterpart of
this principle was developed in [116] (see also [177]), but with a different action (there
is a minus in front of the Fisher information functional)! For a clarification of the
connection between Schr\"odinger bridges, Nelson's stochastic mechanics, and Bohm's
stochastic mechanics [31, 33, 32] through calculus of variations in the Wasserstein
space, see [71, section VI].

4.6. General Prior. All we have seen in this section can be generalized to a
general Markovian prior measure. Indeed, suppose that \=P is a Markov finite energy
diffusion [102]. Under \=P , the canonical coordinate process has a forward It\^o differen-
tial

dXt = f(t,Xt)dt+
\surd 
\epsilon dWt.

Let \=p(s, x, t, y) be the corresponding transition density. Consider the Schr\"odinger
bridge problem with prior \=P as follows.

Problem 4.8.

(4.26) Minimize D(P\| \=P ) over P \in \scrD (\rho 0, \rho 1).

A decomposition like (4.6) then turns the problem into Problem 4.2. In particular,
(4.8) is replaced by

(4.27) P \ast (\cdot ) =
\int 
Rn\times Rn

\=Pxy(\cdot )\rho \ast 01(dxdy).

The various dynamic formulations are modified accordingly. Problem 4.3 becomes the
following problem.
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Problem 4.9.

min
u\in \scrU 

J(u) = E
\biggl[ \int 1

0

1

2\epsilon 
\| ut\| 2dt

\biggr] 
,

dXt = [f(t,Xt) + ut] dt+
\surd 
\epsilon dWt, X0 \sim \rho 0(x)dx, X1 \sim \rho 1(y)dy,

(4.28)

where the family \scrU consists of adapted, finite-energy control functions.

Then (4.21) is replaced by

(4.29) u\ast t = \epsilon \nabla log\varphi (t,Xt),

where (\varphi , \^\varphi ) now solve the Schr\"odinger system

\partial \varphi 

\partial t
+ f \cdot \nabla \varphi +

\epsilon 

2
\Delta \varphi = 0,(4.30a)

\partial \^\varphi 

\partial t
+\nabla \cdot (f \^\varphi ) - \epsilon 

2
\Delta \^\varphi = 0,(4.30b)

with the same boundary conditions. The fluid dynamic formulations also change
accordingly. Let

\=v(t, x) := f(t, x) - \epsilon 

2
\nabla log \=\rho (t, x)

be the current velocity of the prior process. Then Problem 4.6 becomes

inf
(\rho ,v)

\int 
Rn

\int 1

0

\Biggl[ 
1

2
\| v(t, x) - \=v(t, x)\| 2 + \epsilon 2

8

\bigm\| \bigm\| \bigm\| \bigm\| \nabla log
\rho (t, x)

\=\rho (t, (x)

\bigm\| \bigm\| \bigm\| \bigm\| 2
\Biggr] 
\rho (t, x)dxdt,(4.31a)

\partial \rho 

\partial t
+\nabla \cdot (v\rho ) = 0,(4.31b)

\rho 0 = \nu 0, \rho 1 = \nu 1,(4.31c)

where the two criteria differ by a relative Fisher information term.
The theory can be further extended to the case of a general diffusion coefficient

(anisotropic diffusion) and to the situation where the prior Markovian measure fea-
tures creation and/or killing, so that the probability mass is not preserved at each
time [79, 1, 247, 51]. Both cases are treated in section 5.

Remark 4.10. We like to stress here one aspect of (4.8), namely, that this is just a
representation of the solution P \ast even if we have been able to solve Problem 4.2. This
representation needs to be supplemented with the multiplicative functional relation
between transition densities,

(4.32) p\ast (s, x, t, y) =
1

\varphi (s, x)
\=p(s, x, t, y)\varphi (t, y), 0 \leq s < t \leq 1,

and the associated relationship between drifts (4.29). We shall come back to this
point when discussing the discrete state space case.

5. Stochastic Control and General Bridge Problems. The classical probabilis-
tic literature on the Schr\"odinger bridge problem only considers the case in which the
noise and control matrices are constant, diagonal, and nonsingular (often the identity
matrix); see Problem 4.9. This permits us, in particular, to employ the Girsanov
transformation (4.18). In many applications, however, such a requirement represents
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a serious limitation. Noise may not affect all components of the state vector like in the
controlled oscillator (6.5) and/or the control channel may be dictated by technological
constraints such as in some engineering applications. Central in such applications are
problems for controlled Gauss--Markov models.14 Find an adapted control u minimiz-
ing

J(u) = E
\biggl\{ \int 1

0

\| u(t)\| 2 dt
\biggr\} 

among those which achieve the transfer

dx(t) = A(t)x(t)dt+B(t)u(t)dt+B1(t)dWt,

x(0) \sim \scrN (m0,\Sigma 0), x(1) \sim \scrN (m1,\Sigma 1).

It is therefore important to pose the minimum energy steering problem for probability
distributions in a more general setting where the original large deviations/maximum
entropy motivation might be lost. This will make salient the advantage of the control
formulation, which always makes perfect sense and in which the free (uncontrolled)
evolution plays the role of the prior model. We proceed in this section to see how
much of the fluid-dynamic formulation can be extended to the general case [51].

We consider a cloud of particles with density \rho (t, x), x \in Rn, which evolves
according to the transport-diffusion equation

(5.1)
\partial \rho 

\partial t
+\nabla \cdot (f(t, x)\rho ) + V (t, x)\rho =

1

2

n\sum 
i,j=1

\partial 2(aij(t, x)\rho )

\partial xi\partial xj
,

with \rho (0, \cdot ) = \rho 0(\cdot ) a probability density. Unlike in previous literature on connections
to Feynman--Kac [247, 192, 78], and following our desire to be able to model inertial
particles as in the previous section, we assume that the matrix a(t, x) = [aij(t, x)]

m
i,j=1

is only positive semidefinite of constant rank on [0, 1]\times Rn with

aij(t, x) =
\sum 
k

\sigma ik(t, x)\sigma kj(t, x)

for a matrix \sigma (t, x) = [\sigma ik(t, x)] \in Rn\times m of constant rank m \leq n. Notice that the
presence of V (t, x) \geq 0 allows for the possibility of loss of mass, so that the integral
of \rho (t, x) over Rn is not necessarily constant. This flexibility permits us to model
particles satisfying

(5.2) dXt = f(t,Xt)dt+ \sigma (t,Xt)dWt,

which are absorbed at some rate by the medium in which they travel or, if the sign
of V is negative, are created out of this same medium [144, p. 272]. We assume that
f and \sigma are smooth and that the operator

L =
n\sum 

i,j=1

aij(t, x)\partial xi
\partial xj

+
n\sum 
j=1

fj(t, x)\partial xj
 - \partial t

14In a twin paper [61], we review the by now vast literature [125, 126, 222, 115, 254, 50, 52, 55,
56, 57, 60, 118, 13, 14, 15, 16, 17, 114, 205, 206, 181, 182, 208, 183, 3, 67] on optimal steering of
probability distributions for Gauss--Markov models in continuous and discrete time, over a finite or
infinite time horizon, with or without state and/or control constraints and applications.
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is hypoelliptic, satisfying H\"ormander's condition [123, 184]. Hypoelliptic diffusions
model important processes in many branches of science: Ornstein--Uhlenbeck stochas-
tic oscillators, Nyquist--Johnson circuits with noisy resistors, image reconstruction
based on Petitot's model of neurogeometry of vision [37], etc. The ``reweighing"" of
the original measure of the Markov process (5.2) when V is unbounded is a delicate
issue and can be accomplished via the Nagasawa transformation; see [247, section 8B]
for details.

Let us now suppose that (5.1) represents a prior evolution and that at time
t = 1 we measure an empirical probability density \rho 1(\cdot ) \not = \rho (1, \cdot ) as dictated by (5.1).
Thus, the model (5.1) is thought not to be consistent with the estimated end-point
empirical distribution. However, suppose that one has reasons to believe15 that the
actual evolution is close to the nominal one and that only the actual drift field is
different, perturbed by an additive term \sigma (t, x)u(t, x), i.e.,

v(t, x) = f(t, x) + \sigma (t, x)u(t, x).

Notice that the control variables, of which there may be fewer than n, act through
the same channels of the diffusive part. The assumption that stochastic excitation
and control enter through the same ``channels"" is natural in certain applications, as
is explained and treated in [50] for linear diffusions. The case where these channels
may differ is considered in [52].

Taking (5.1) as a reference evolution and given the terminal probability density
\rho 1, we are led to consider the following generalization of Problem 4.4:

inf
(\rho ,u)

\int 
Rn

\int 1

0

\biggl[ 
1

2
\| u\| 2 + V (t, x)

\biggr] 
\rho (t, x)dtdx,(5.3a)

\partial \rho 

\partial t
+\nabla \cdot ((f + \sigma u)\rho ) =

1

2

n\sum 
i,j=1

\partial 2 (aij\rho )

\partial xi\partial xj
,(5.3b)

\rho (0, x) = \rho 0(x), \rho (1, x) = \rho 1(x).(5.3c)

When [aij ] does depend on x, the connection to a relative entropy problem on path
space is apparently available only under rather restrictive assumptions such as uniform
boundedness of a [97, section 5]. Problem (5.3) thus appears as a generalization of
Problem 4.4 that is not necessarily connected to a large deviations problem. In [43],
a special case of Problem 5.3 was considered (V \equiv 0, \sigma (t, x) = B(t)). For certain
classes of drifts f , a Wasserstein proximal algorithm was used to numerically solve
a pair of initial value problems equivalent to (5.10) below. This result has been
generalized to the situation in which there are hard state constraints (the diffusion
paths have to remain in a bounded domain) in [44]. We mention here that chance state
constraints were considered for the covariance control problem in [181]. Moreover,
input constraints for discrete and continuous time models have been considered in [14,
183]. In [207, 251], a nonlinear covariance control problem was studied by iteratively
solving an approximate linearized problem and by differential dynamic programming,
respectively.

In what follows we provide in some detail the variational analysis for (5.3) which
can be viewed as a generalization of that of section 3.3. Let \scrP \rho 0\rho 1 be the family of flows
of probability densities satisfying (5.3c). Let \scrU be a family of continuous feedback

15Alternative reasoning based on the Gibbs conditioning principle, as before, may be possible.
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control laws u(\cdot , \cdot ). Consider the unconstrained minimization of the Lagrangian over
\scrP \rho 0\rho T \times \scrU ,

\scrL (\rho , u, \lambda ) =
\int 
Rn

\int 1

0

\biggl[ \biggl( 
1

2
\| u(t, x)\| 2 + V (t, x)

\biggr) 
\rho + \lambda (t, x)

\biggl( 
\partial \rho 

\partial t
+\nabla \cdot ((f + \sigma u)\rho )

 - 1

2

n\sum 
i,j=1

\partial 2

\partial xi\partial xj
(aij(t, x)\rho )

\right)  \right]  dtdx,
where \lambda is a C1 Lagrange multiplier. After integration by parts, assuming that limits
for x\rightarrow \infty are zero, and observing that the boundary values are constant over \scrP \rho 0\rho 1 ,
we get the problem
(5.4)

inf
(\rho ,u)\in \scrX \rho 0\rho 1

\times \scrU 

\int 
Rn

\int 1

0

\left[  1
2
\| u\| 2 + V  - 

\left(  \partial \lambda 
\partial t

+ (f + \sigma u) \cdot \nabla \lambda +
1

2

n\sum 
i,j=1

aij
\partial 2\lambda 

\partial xi\partial xj

\right)  \right]  \rho dtdx.
Pointwise minimization of the integrand with respect to u for each fixed flow of prob-
ability densities \rho gives

(5.5) u\ast \rho (t, x) = \sigma \prime \nabla \lambda (t, x).

Plugging this form of the optimal control into (5.4), we get the functional of \rho \in \scrP \rho 0\rho 1
(5.6)

J(\rho , \lambda ) =

\int 
Rn

\int 1

0

\left[  \partial \lambda 
\partial t

+ f \cdot \nabla \lambda +
1

2
\nabla \lambda \cdot a\nabla \lambda  - V +

1

2

n\sum 
i,j=1

aij
\partial 2\lambda 

\partial xi\partial xj

\right]  \rho dtdx.
We then have the following result.

Proposition 5.1. If \rho \ast satisfies

(5.7)
\partial \rho 

\partial t
+\nabla \cdot ((f + a\nabla \lambda )\rho ) = 1

2

n\sum 
i,j=1

\partial 2 (aij\rho )

\partial xi\partial xj
,

with \lambda a solution of the HJB-like equation

(5.8)
\partial \lambda 

\partial t
+ f \cdot \nabla \lambda +

1

2

n\sum 
i,j=1

aij(t, x)
\partial 2\lambda 

\partial xi\partial xj
+

1

2
\nabla \lambda \cdot a\nabla \lambda  - V = 0

and \rho \ast (1, \cdot ) = \rho 1(\cdot ), then the pair (\rho \ast , u\ast ) with u\ast = \sigma \prime \nabla \lambda is a solution of (5.3).

Of course, the difficulty lies with the nonlinear equation (5.8), for which no bound-
ary value is available. Together, \rho (t, x) and \lambda (t, x) satisfy the coupled equations
(5.7)--(5.8) and the split boundary conditions for \rho (t, x) in (5.3c). Let us, however,
define

\varphi (t, x) = exp [\lambda (t, x)], (t, x) \in [0, 1]\times Rn.

If \lambda satisfies (5.8), we find that \varphi satisfies the linear equation

(5.9)
\partial \varphi 

\partial t
+ f \cdot \nabla \varphi +

1

2

n\sum 
i,j=1

aij(t, x)
\partial 2\varphi 

\partial xi\partial xj
= V \varphi .
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Moreover, for \rho satisfying (5.7) and \varphi satisfying (5.9), let us define

\^\varphi (t, x) =
\rho (t, x)

\varphi (t, x)
, (t, x) \in [0, 1]\times Rn.

Then a long but straightforward calculation shows that \^\varphi satisfies the original equation
(5.1). Thus, we have the system of linear PDEs

\partial \varphi 

\partial t
+ f \cdot \nabla \varphi +

1

2

n\sum 
i,j=1

aij
\partial 2\varphi 

\partial xi\partial xj
= V \varphi ,(5.10a)

\partial \^\varphi 

\partial t
+\nabla \cdot (f \^\varphi ) - 1

2

n\sum 
i,j=1

\partial 2 (aij \^\varphi )

\partial xi\partial xj
=  - V \^\varphi ,(5.10b)

nonlinearly coupled through their boundary values as

(5.10c) \varphi (0, \cdot ) \^\varphi (0, \cdot ) = \rho 0(\cdot ), \varphi (1, \cdot ) \^\varphi (1, \cdot ) = \rho 1(\cdot ).

Equations (5.10a)--(5.10c) constitute a generalized Schr\"odinger system. We have
therefore established the following result.

Theorem 5.2. Let (\varphi (t, x), \^\varphi (t, x)) be nonnegative functions satisfying (5.10a)--
(5.10c) for (t, x) \in ([0, 1]\times Rn). Suppose \varphi is everywhere positive. Then the pair
(\rho \ast , u\ast ) with

u\ast (t, x) = \sigma \prime \nabla log\varphi (t, x),(5.11a)

\partial \rho 

\partial t
+\nabla \cdot ((f + a\nabla log\varphi )\rho ) =

1

2

n\sum 
i,j=1

\partial 2 (aij\rho )

\partial xi\partial xj
(5.11b)

is a solution of (5.3).

Establishing existence and uniqueness (up to multiplication/division of the two
functions by a positive constant) of the solution of the Schr\"odinger system is extremely
challenging even when the diffusion coefficient matrix a is constant and nonsingular.
Particular care is required in the case when V is unbounded or singular [1]. Never-
theless, if the fundamental solution p of (5.1) is everywhere positive on ([0, 1]\times Rn),
which is to be expected in the hypoelliptic case [123, 146], existence and uniqueness
follow from a deep result of Beurling [27] suitably extended by Jamison [129, Theorem
3.2], [247, section 10].

Remark 5.3. It is interesting to note that although (5.3) is not convex in (\rho , u), it
can be turned into a convex problem in a new set of coordinates (\rho ,m) where m = \rho u,
in which case it becomes

inf
(\rho ,m)

\int 
Rn

\int 1

0

\biggl[ 
1

2

\| m\| 2

\rho (t, x)
+ V (t, x)\rho (t, x)

\biggr] 
dtdx,(5.12a)

\partial \rho 

\partial t
+\nabla \cdot (f\rho + \sigma m) =

1

2

n\sum 
i,j=1

\partial 2 (aij\rho )

\partial xi\partial xj
,(5.12b)

\rho (0, \cdot ) = \rho 0(\cdot ), \rho (1, \cdot ) = \rho 1(\cdot ).(5.12c)

This type of coordinate transformation has been effectively used in [22] in the context
of OMT.
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6. The Atomic Hypothesis, Microscopes, and Stochastic Oscillators. Richard
Feynman, in his first lecture of the famous Caltech series, stated, ``If, in some cata-
clysm, all of scientific knowledge were to be destroyed, and only one sentence passed
on to the next generation of creatures, what statement would contain the most in-
formation in the fewest words? I believe it is the atomic hypothesis that all things
are made of atoms---little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being squeezed
into one another.""

The atomic hypothesis apparently originated with Democritus of Abdera (a colony
of Miletus in what is now Greek Thrace) and his mentor Leucippus. Democritus,
according to the Greek historian Diogenes La\"ertius (Democritus, Vol. IX, 44), states:

\alpha \rho \chi \'\alpha \varsigma \epsilon \iota \nu \alpha \iota \tau \omega \nu \'o\lambda \omega \nu \alpha \tau \'o\mu o\upsilon \varsigma \kappa \alpha \'\iota \kappa \epsilon \nu \'o\nu , \tau \alpha \delta \prime \'\alpha \lambda \lambda \alpha \pi \'\alpha \nu \tau \alpha \nu \epsilon \nu o\mu \'\iota \sigma \theta \alpha \iota 

which (Robert Drew Hicks (1925)) can be translated as, ``The first principles of the
universe are atoms and empty space; everything else is merely thought to exist.""

Democritus had (correctly) imagined that the wearing down of a wheel and the
drying of clothes were due to small particles of wood and water, respectively, flying out
of them. Then he made the following philosophical argument (according to Aristotle's
report): If matter were infinitely divisible, only points with no extension would remain.
But putting together an arbitrary number of them, we would still get things without
extension.16 Democritus was largely ignored in ancient Athens. He is said to have
been disliked so much by Plato that the latter wished all of his books burned. It
should also be stressed that, unlike the subsequent Plato and Aristotle, the atomists
Leucippus and Democritus, following the scientific rationalist philosophy associated
with the Miletus school, wanted to investigate in the 5th century BCE the causes of
natural phenomena rather than their significance !

The long history of the atomic hypothesis intersects twice with the history of
the microscope. The first intersection simply occurred because the invention of this
instrument at the beginning of the 17th century made it possible to observe the very
irregular motion of particles immersed in a fluid. These observations of ``animated""
or ``irritable"" particles were made by, among others, van Leeuwenhoek, Buffon, and
Spallanzani long before the British botanist Robert Brown.17 Many other important
contributions to the atomistic theory were made before Brown from, among others,
Dalton and Avogadro. By 1877 the kinetic theory asserting that Brownian motion
of particles is caused by bombardment by the molecules of the fluid was rather well
established.

In 1877 [34], Boltzmann posed and solved the first large deviation and rela-
tive maximum entropy problem in history, in which his ``loaded dice"" were actually
molecules! Nevertheless, the theory was still not open to experimental verification as
the velocity of Brownian particles could not be measured accurately. At the begin-
ning of the 20th century, there were still prominent scientists such as Ostwald and
Mach who were not convinced of the existence of atoms and molecules due to their

16This kind of subtle argument has its roots in the Elean philosophical school of Parmenides and
Zeno (he of the turtle-Achilles paradox). According to Diogenes La\"ertius, Leucippus was a pupil
of Zeno. Elea, nowadays called Velia, located approximatively 90 miles southeast of Naples, was a
Greek colony flourishing in the 5th century BCE.

17In [176, Chapter 2], Edward Nelson writes about Robert Brown, ``His contribution was to
establish Brownian motion as an important phenomenon, to demonstrate clearly its presence in
inorganic as well as organic matter, and to refute by experiment facile mechanical explanations of
the phenomenon.""
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``positivistic philosophical attitude"" (Albert Einstein [213, p. 49]). In 1905 Einstein
(and independently in 1906 Smoluchowski) proposed a PDE model open to the exper-
imental check of measuring the diffusion coefficient, thereby circumventing the need
to measure the velocity of Brownian particles. This was accomplished in 1908 by
Perrin [197, section 3], some 2,350 years after Democritus' argument! Meanwhile, in
1908, a fundamental step in the direction of a large body of modern science was taken
by Paul Langevin in [149]. He argued that the equation of motion has the form

(6.1) m
d2x

dt2
=  - \gamma dx

dt
+ F, \gamma > 0,

where F is a complementary force which sustains the agitation of the particle in the
presence of viscous resistance. This is the first stochastic differential equation in his-
tory, written down long before the relative probabilistic foundations and concepts
(Wiener process) were introduced! After important contributions by a number of the-
oretical physicists and engineers such as Fokker and Planck, and the Nyquist--Johnson
model for RLC networks with noisy resistors in 1928 [135, 179], we come in 1930--
1931 to the accepted model for physical Brownian motion in a conservative force field
[239, 141, 47],18 [176, Chapter 10] given by the stochastic oscillator

dx(t) = v(t) dt,(6.2a)

dv(t) =  - \beta v(t) dt - 1

m
\nabla V (x(t))dt+ \sigma dWt,(6.2b)

with x(t0) = x0 and v(t0) = v0 a.s., where w(t) is a standard three-dimensional
Wiener process and Einstein's fluctuation-dissipation relation holds:

(6.3) \sigma 2 = 2kT\beta .

Here k is Boltzmann's constant and T is the absolute temperature of the fluid. The
original Einstein--Smoluchowski theory is the high-friction limit of this model [176,
Theorem 10.1].19 Condition (6.3) guarantees the existence and the Boltzmann--Gibbs
nature of an invariant measure for (6.2) with density

(6.4) \rho BG(x, v) = Z - 1exp

\biggl[ 
 - H(x, v)

kT

\biggr] 
for H(x, v) =

1

2
m\| v\| 2 + V (x),

and Z is a suitable normalizing constant (partition function); see [120, 53] for a gen-
eralization of this result.

These models have since played a central role in many areas of science beside
microphysics, such as electric circuits [179], astronomy [47], mathematical finance
since [11], biology, chemistry, etc. In more recent times, stochastic oscillators have
played a central role in cold damping feedback, where (6.2) is replaced by

dx(t) = v(t) dt,(6.5a)

dv(t) =  - \beta v(t) dt+ u(x(t), v(t))dt - 1

m
\nabla V (x(t))dt+ \sigma dWt,(6.5b)

18Ornstein and Uhlenbeck only considered the case of a quadratic potential leading to a Gauss--
Markov model in phase space.

19Like the Aristotelian F = mv, often observed in nature, is the high friction limit of the Newto-
nian F = ma.
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Fig. 4 Surface topography: Velocity-dependent feedback control used to reduce thermal noise of a
cantilever in atomic force microscopy.

The purpose of this feedback control action is to reduce the effect of thermal noise
on the motion of an oscillator by applying a viscous-like force, which was the very
first feedback control action mathematically analyzed [166]. James Clerk Maxwell
writes in that reference: ``In one class of regulators of machinery, which we may call
moderators, the resistance is increased by a quantity depending on the velocity."" The
first implementation on electrometers [171] dates back to the 1950s. Since then, it
has been successfully employed in a variety of areas such as atomic force microscopy
(AFM) [162] (second intersection!) (see20 Figure 4), polymer dynamics [86, 38], and
nano- to meter-sized resonators [93, 165, 218, 244, 199]. For (6.5), the feedback control
action u(t) =  - \alpha v(t), \alpha > 0, asymptotically steers the phase space distribution to
the steady state

(6.6) \=\rho (x, v) = \=Z - 1exp

\biggl[ 
 - H(x, v)

kTeff

\biggr] 
,

where the effective temperature Teff satisfies

Teff =
\beta 

\beta + \alpha 
T < T.

These new applications also pose new physics questions as the system is driven to
a nonequilibrium steady state [201, 145, 35, 193]. In [95], a suitable efficiency measure
for these diffusion-mediated devices was introduced which involves a class of stochastic
control problems. Stochastic oscillators also play an important role in accelerating
convergence of stochastic gradient descent for neural networks [191, Chapter 6], [49].

In [53], the problem of asymptotically driving system (6.5) to a desired steady state
corresponding to reduced thermal noise was considered. Among the feedback controls
achieving the desired asymptotic transfer, it was found that the one with the least
energy is characterized by time-reversibility. This problem has its roots in the classical
covariance control of Skelton, Grigoriadis, and collaborators [125, 126, 222, 115, 254].

The problem of steering such a system in finite time with minimum effort to a
target steady state distribution was also solved in [53] as a generalized Schr\"odinger
bridge problem. The system can then be maintained in the desired state through

20Notice that the experimental apparatus here is partially inspired by that of Kappler [141], with
a light being shone onto a small mirror and the angle being measured through the position of the
reflected spot a large distance away.

D
ow

nl
oa

de
d 

08
/0

1/
21

 to
 7

3.
23

7.
65

.1
90

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

280 YONGXIN CHEN, TRYPHON T. GEORGIOU, AND MICHELE PAVON

Fig. 5 Inertial particles: trajectories in phase space.

the optimal steady state feedback control. The solution, in the finite-horizon case,
involves a space-time harmonic function \varphi satisfying

(6.7)
\partial \varphi 

\partial t
+ v \cdot \nabla x\varphi +

\biggl( 
 - \beta v  - 1

m
\nabla xV

\biggr) 
\cdot \nabla v\varphi +

\sigma 2

2
\Delta v\varphi = 0.

Here  - log\varphi plays the role of an artificial, time-varying potential under which the
desired evolution takes place. This two-step control strategy is effectively illustrated
by the following simple Gaussian example. The system

dx(t) = v(t)dt,

dv(t) =  - v(t)dt+ u(t)dt - x(t)dt+ dWt

is first optimally steered from time t = 0 to time t = 1 between the initial and
final Gaussian marginals \scrN (0, (1/2)I) and \scrN (0, (1/24)I), respectively. The latter
distribution is then maintained through constant feedback in this terminal desired
state; see Figure 5, where the transparent tube represents the 3-standard deviation
region of the state distribution.

7. Minimizing the Free Energy. We now proceed to clarify how the problems
considered by Sinkhorn [223, 224] are connected to Schr\"odinger bridges and to ther-
modynamic free energy. To achieve this in the most transparent way, we turn to the
discrete setting.

7.1. Regularized Transport Problems. Let us first recall the notion of the sim-
plex of probability distributions on a finite set. Let V be a vector space and A \subseteq V .
The convex hull [209] of A, written conA, is the intersection of all convex subsets of
V containing A. The convex hull of n+1 affinely independent21 points of a Euclidean
space is called an n-simplex. For example, a 1-simplex is a line segment, a 2-simplex
is a triangle, a 3-simplex is a tetrahedron, and so on. Let \scrD (\scrX ) denote the family

21The points x1, x2, . . . , xn+1 are called affinely independent if every point x in their convex hull
admits a unique representation as a convex combination of the points.
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of all probability distributions on the sample space \scrX = \{ 1, 2, . . . , n\} . Then \scrD (\scrX ) is
an (n  - 1)-simplex whose vertices are the distributions pi(j) = \delta ij , where \delta ij is the
Kronecker delta.

The discrete OMT problem [202] has been popularized in the following form. Sup-
pose there are n mines with mine i producing the fraction pi of the total production.
There are also n factories which need the raw material from the mines. To operate,
factory j needs the fraction qj of the total available supply. Let C = (cij)

n
i,j=1 be

a matrix of ``transportation costs""22 with nonnegative elements. On \scrD (\scrX ), we can
then define a metric in the following way: Given the two probability distributions
p, q \in \scrD (\scrX ), let \Pi (p, q) be the family of probability distributions on \scrX \times \scrX that are
``couplings"" of p and q, namely, \pi \in \Pi (p, q) has marginals p and q, respectively. Any
\pi \in \Pi (p, q) represents a feasible transport plan, the quantity \pi ij representing the
amount of the demand of factory j which is satisfied by mine i. Then the discrete
OMT problem of minimizing the total cost of transportation while respecting the
constraints leads to the optimal transport distance between p and q defined by

(7.1) dC(p, q) := min
\pi \in \Pi (p,q)

\sum 
i,j

cij\pi ij .

When cij = d(i, j)2, where d(\cdot , \cdot ) is a distance on \scrX \times \scrX ,

W2(p, q) := (dC(p, q))
1/2

is called the earth mover distance (Wasserstein 2-distance). It can be shown [198,
Proposition 2.2] that W2 is a bona fide distance on \scrD (\scrX ). This distance has recently
found important applications in many diverse fields of science such as economics,
physics, engineering, probability, and, in particular, in information engineering for
problems of imaging (DTI, multimodal, color, etc.), robust-efficient transport over
networks, spectral analysis, collective dynamics, etc. A regularized version of (7.1),
which features important algorithmic and computational advantages [76, 198], is ob-
tained by subtracting a term proportional to the entropy,

(7.2) inf
\pi \in \Pi (p,q)

\left[  \sum 
i,j

cij\pi ij  - \epsilon S(\pi )

\right]  , S(\pi ) =  - 
\sum 
ij

\pi ij log(\pi ij),

for \epsilon > 0. Notice, in particular, that the resulting functional

(7.3) J(\pi ) =
\sum 
i,j

cij\pi ij + \epsilon 
\sum 
ij

\pi ij log(\pi ij)

is strictly convex in \pi .

7.2. Thermodynamic Systems: Statics. We consider a physical system with
state space \scrX = \{ 1, 2, . . . ,M\} . We can think of this mesoscopic description as orig-
inating from a microscopic description where the phase space, in Boltzmann's style,
has undergone a ``coarse graining"" through subdivision into small cells, which is what
we typically observe. Each of the cells represents a mesoscopic state. While the mi-
croscopic states are equally likely, this is no longer true for the macroscopic states,
which correspond to different numbers of microstates.

22cij is the cost of transporting one unit of material from mine i to factory j.
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For each macroscopic state x we consider its energy Ex \geq 0. The function H :
x \mapsto \rightarrow Ex is referred to as the Hamiltonian. The thermodynamic states of the system
are given by probability distributions on \scrZ reflecting how many microscopic states
correspond to the macroscopic states, namely, by \scrD (\scrX ). On \scrD (\scrX ), we define the
internal energy as the expected value of the energy observable in state \pi , namely,

(7.4) U(\pi ) = E\pi \{ H\} =
\sum 
x

Ex\pi x = \langle E, \pi \rangle ,

where E denotes the n-dimensional vector with components Ex. Let us also introduce
the Gibbs entropy

(7.5) SG(\pi ) = kS(\pi ) =  - k
\sum 
x

\pi x log \pi x,

where k is Boltzmann's constant. As is well known, SG is nonnegative and strictly
concave on \scrD (\scrX ). Let \=E be a constant satisfying

(7.6) min
x
Ex \leq \=E \leq 1

n

\sum 
x

Ex.

We can think of \=E as the energy of the underlying conservative microscopic system
(the upper bound 1

n

\sum 
lEl in (7.6) guarantees existence of a positive multiplier; see

below). We now consider the following maximum entropy problem:

max \{ SG(\pi ) | \pi \in \scrD (\scrX )\} (7.7a)

subject to U(\pi ) = \=E.(7.7b)

This is an (important) instance of a class of maximum entropy problems originat-
ing with Boltzmann [34] (see [195] for a survey), where entropy is maximized over
probability distributions that give the correct expectation of certain observables in
accordance with known macroscopic quantities. The Lagrangian function is then given
by

(7.8) \scrL (\pi , \lambda ) := SG(\pi ) + \lambda ( \=E  - U(\pi )),

where the Lagrange multiplier \lambda is positive, corresponding to positive ``absolute tem-
peratures"" T = \lambda  - 1. The problem is then equivalent to minimizing over \scrD (\scrX ) the
Helmholtz free energy functional

(7.9) F (\pi , T ) = U(\pi ) - TSG(\pi ) =
\sum 
x

Ex\pi x + kT
\sum 
x

\pi x log \pi x.

Since F is strictly convex on \scrD (\scrX ), the first-order optimality conditions are suffi-
cient and determine the unique minimizer in the form of the Boltzmann distribution23

(7.10) \pi B(x) = Z(T ) - 1exp

\biggl[ 
 - Ex
kT

\biggr] 
, where Z(T ) =

\sum 
x

exp

\biggl[ 
 - Ex
kT

\biggr] 
;

see, e.g., [210]. Alternatively, it suffices to observe that

(7.11) F (\pi , T ) = TD(\pi \| \pi B) - T logZ(T )

23The letter Z for the partition function was chosen by Boltzmann to indicate ``zust\"andige Summe""
(relevant sum).
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and invoke the properties of relative entropy. As is well known, the Boltzmann dis-
tribution (7.10) tends to the uniform (maximum entropy) distribution as T \nearrow +\infty 
and tends to concentrate on the set of minimal energy states as T \searrow 0. Hence, for
0 < T < +\infty , the Boltzmann distribution represents in a precise way a compromise
between minimizing energy and maximizing entropy.

7.3. Schrödinger and Sinkhorn, Redux. The fact that the Boltzmann distribu-
tion minimizes the free energy may be viewed as an elementary version of what is
often called Gibbs' variational principle. Notice that the minimization of F in (7.9)
is unconstrained. Nevertheless, we are often interested in minimizing the free energy
under additional constraints. This is usually the case with natural evolutions which
tend to maximal entropy configurations24 while respecting certain constraints. In
particular, we now consider a constrained version of the minimization of (7.9). In the
notation of section 7.1, let \scrZ = \scrX \times \scrX and consider the problem

(7.12) inf
\pi \in \Pi (p,q)

F (\pi , T ).

Then, letting \epsilon = kT , comparing (7.9) with (7.3) shows that (7.12) coincides with
the regularized optimal transport problem (7.2). In particular, up to constants, the
negative Lagrangian (7.8) for problem (7.7a)--(7.7b) coincides with the functional (7.3)
to be minimized in regularized optimal transport. On the other hand, because of (7.11),
problem (7.2) is equivalent to

(7.13) min
\pi \in \Pi (p,q)

D(\pi \| \pi B),

where

(7.14) \pi B(i, j) = Z(T ) - 1exp
\Bigl[ 
 - cij
kT

\Bigr] 
, Z(T ) =

\sum 
ij

exp
\Bigl[ 
 - cij
kT

\Bigr] 
,

which is a discrete counterpart of Problem 4.2. Naturally, this and the other maximum
entropy problems of this section also admit the large deviations interpretation of
section 4.2.

Let us now write the joint probability \pi B(i, j) as

\pi B(i, j) = pB(i)pB(i, j),

where pB(i, j) is the conditional probability. Introducing Lagrange multipliers for the
linear constraints, \sum 

j

\pi ij = pi, i = 1, 2, . . . , n,(7.15)

\sum 
i

\pi ij = qj , j = 1, 2, . . . , n,(7.16)

and proceeding precisely as in section 4.3, we readily get the following expression for
the optimal \pi :

(7.17) \pi \ast 
ij = \^\varphi (i)pB(i, j)\varphi (j),

24According to Planck, nature seems to favor high entropy states.
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where the nonnegative functions \^\varphi and \varphi satisfy the system

\^\varphi (i)

\left[  \sum 
j

pB(i, j)\varphi (j)

\right]  = pi,(7.18)

\varphi (j)

\Biggl[ \sum 
i

pB(i, j) \^\varphi (i)

\Biggr] 
= qj .(7.19)

Defining \^\varphi (0, i) = \^\varphi (i), \varphi (1, j) = \varphi (j), we see that (7.18)--(7.19) can be replaced by
the system

\varphi (0, i) =
\sum 
j

pB(i, j)\varphi (1, j),(7.20a)

\^\varphi (1, j) =
\sum 
i

pB(i, j) \^\varphi (0, i),(7.20b)

\varphi (0, i) \cdot \^\varphi (0, i) = pi,(7.20c)

\varphi (1, j) \cdot \^\varphi (1, j) = qj .(7.20d)

Let us write
\pi \ast 
ij = pi \cdot p\ast (i, j)

and assume pi > 0 for all i. Dividing both sides of (7.17) by pi we get, in view of
(7.20c),

(7.21) p\ast (i, j) =
1

\varphi (0, i)
pB(i, j)\varphi (1, j),

which should be compared to (4.16). It is interesting to write (7.21) in matricial form.
Let P \ast = (p\ast (i, j)) and PB = (pB(i, j)). Then (7.21) gives

(7.22) P \ast = diag

\biggl( 
1

\varphi (0, 1)
, . . . ,

1

\varphi (0, n)

\biggr) 
PB diag (\varphi (1, 1), . . . , \varphi (1, n)) .

System (7.20) represents a discrete counterpart of the Schr\"odinger system (4.14a)--
(4.14c). Existence for the latter, as previously observed after (4.14c), is extremely
challenging, with the first solution being provided by Robert Fortet in 1940 [106]
through a complex iterative scheme. The same problem is much simpler in the discrete
setting with the first convergence proof for the classical IPF procedure being provided
in a special case by Sinkhorn in 1964 [223]. Indeed, consider the special case where
both marginals are uniform distributions so that pi = qi = 1/n, i = 1, 2, . . . , n. Let
C = (cij) be the matrix of transportation costs. Then \pi \in \scrD (\scrX \times \scrX ) belongs to
\Pi (p, q) if and only if it satisfies the constraints\sum 

j

\pi ij =
1

n
, i = 1, 2, . . . , n,(7.23)

\sum 
i

\pi ij =
1

n
, j = 1, 2, . . . , n.(7.24)

Thus, the matrix n\pi must be doubly stochastic, which was the original Sinkhorn
problem.25

25Sinkhorn [223]: ``It is not the intent of this paper to obtain properties of this estimate."" Sinkhorn
appears only concerned with establishing convergence of the iterative method to a doubly stochastic
matrix without clearly connecting the latter to an optimization problem.
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8. The Fortet-IPF-Sinkhorn Algorithm.

8.1. Continuous Case. In 1938--1940 Robert Fortet, a fine French analyst and
former student of Maurice Fr\'echet, set out to solve the problem of existence and
uniqueness for the Schr\"odinger system (4.14a)--(4.14c), left open by Schr\"odinger26 as
well as by Bernstein in [24]. Fortet's proof in [105, 106] is, to this day, the only
algorithmic one and, in a rather general setting, establishes convergence of successive
approximations. More explicitly, let g(x, y) be a nonnegative, continuous function on
R \times R bounded from above. Suppose g(x, y) > 0 except possibly for a zero measure
set for each fixed value of x or of y. Suppose that \rho 0(x) and \rho 1(y) are continuous,
nonnegative functions such that\int 

\rho 0(x)dx =

\int 
\rho 1(y)dy.

Suppose, moreover, that the integral\int 
\rho 1(y)\int 

g(z, y)\rho 0(z)dz
dy

is finite (this is Fortet's crucial hypothesis). Then the system [106, Theorem 1]

\^\varphi (x)

\int 
g(x, y)\varphi (y)dy = \rho 0(x),(8.1)

\varphi (y)

\int 
g(x, y) \^\varphi (x)dx = \rho 1(y)(8.2)

admits a solution (\varphi (x), \^\varphi (y)) with \varphi \geq 0 continuous and \^\varphi \geq 0 measurable. More-
over, \^\varphi (x) = 0 only where \rho 0(x) = 0 and \varphi (y) = 0 only where \rho 1(y) = 0.

The result is proven by setting up a complex approximation scheme to show that
\scrC (h) = h with

(8.3) \scrC (h)(\cdot ) :=
\int 
g(\cdot , y) \rho 1(y)dy\int 

g(z, y)\rho 0(z)h(z) dz

has a fixed point. The map \scrC is considered on functions of class (K), namely, functions
h : R \rightarrow (R \cup +\infty ) which satisfy the following properties:

(i) h is measurable;
(ii) there exists \alpha > 0 such that h(x) \geq \alpha \forall x \in R;
(iii) for almost every x \in R, h(x) < +\infty .

If h0 and h1 are of class (K) and h0 \leq h1 a.e., then \scrC (h0) \leq \scrC (h1). Moreover, on class
(K) functions, \scrC is positively homogeneous of degree one. Unfortunately, the map
\scrC does not map class (K) functions into class (K) functions as it does not preserve
the property of being bounded away from zero. This is a fundamental difficulty
of the continuous case which Fortet circumvents through his brilliant but complex
approximation scheme involving three sequences of functions. This difficulty can be
avoided altogether in the discrete case through a suitable positivity assumption; see
Theorem 8.1 below. Notice that the one-dimensional heat kernel

g(x, y) = p(0, x, 1, y) =
1\surd 
2\pi \gamma 

exp

\biggl[ 
 - | x - y| 2

2\gamma 

\biggr] 
26Schr\"odinger thought existence and uniqueness should hold since the problem looked to him so

natural except, possibly, in the case of very nasty marginals.
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satisfies all assumptions of Fortet's theorem. Uniqueness, in the sense described after
(4.14c), namely, uniqueness of rays, is much easier to establish. In [91], most of
Fortet's paper has been revisited, filling in all the gaps and explaining the meaning
of the various steps of his elaborate approach. Another recent paper in this direction
is [159].

8.2. Discrete Case. In 1940, an iterative proportional fitting (IPF) procedure
was proposed in the statistical literature on contingency tables [83]. Convergence for
the IPF algorithm was first established (in a special case) by Richard Sinkhorn in
1964 [223]. The iterates were shortly afterwards shown to converge to a ``minimum
discrimination information"" [127, 94, 73], namely, to a minimum entropy distance.
This line of research, usually called Sinkhorn algorithms, continues to this day; see,
e.g., [76, 4, 234].

We now state and, later on, establish the following fundamental result.

Theorem 8.1. Let \scrX = \{ 1, 2, . . . , n\} and p, q \in \scrD (\scrX ). Assume that the n \times n
matrix G = (gij) has all positive elements. Then there exist vectors \varphi (0, \cdot ), \^\varphi (1, \cdot )
with positive entries such that

\varphi (0, i) =
\sum 
j

gij\varphi (1, j),(8.4a)

\^\varphi (1, j) =
\sum 
i

gij \^\varphi (0, i),(8.4b)

\varphi (0, i) \cdot \^\varphi (0, i) = pi,(8.4c)

\varphi (1, j) \cdot \^\varphi (1, j) = qj .(8.4d)

The pair \varphi (0, \cdot ), \^\varphi (1, \cdot ) is unique up to multiplication of \varphi (0, \cdot ) by a positive constant
\alpha and division of \^\varphi (1, \cdot ) by the same constant \alpha .

We first set up a natural iterative scheme (Fortet-IPF-Sinkhorn) for system (8.4).
We introduce the following linear maps on Rn+ = \{ x \in Rn : xi \geq 0\} , the positive
orthant of Rn:

\scrE : x \mapsto \rightarrow y=
\sum 
j

gijxj ,

\scrE \dagger : x \mapsto \rightarrow y=
\sum 
i

gijxi.

Here and in what follows \dagger denotes adjoint.27 We also define the following nonlinear
maps on the interior of the positive orthant int Rn+ = \{ x \in Rn : xi > 0\} :

\scrD 0 : x \mapsto \rightarrow y=
p

x
,

\scrD 1 : x \mapsto \rightarrow y=
q

x
,

where division of vectors is componentwise. On Rn+, also consider the composition of
the four maps

(8.5) \scrC := \scrE \circ \scrD 1 \circ \scrE \dagger \circ \scrD 0.

27Our use of the adjoint for the map \scrE is consistent with the standard notation in diffusion pro-
cesses, where the Fokker--Planck (forward) equation involves the adjoint of the generator appearing
in the backward Kolmogorov equation.
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This is just the discrete counterpart of map (8.3). Consider the vector iteration

(8.6) \varphi k+1(0) = \scrC (\varphi k(0)), \varphi 0(0) = 1,

where 1\dagger = (1, 1, . . . , 1). Observe first that (8.6) stays in the interior of Rn+ even when
the marginals p and/or q have some zero components. Indeed, since gij > 0 \forall (i, j),
maps \scrE and \scrE \dagger map Rn+ into int Rn+. It follows that the componentwise divisions of
\scrD 0 and \scrD 1 are well defined and \scrC : int Rn+ \mapsto \rightarrow int Rn+. Next, we want to show that the
sequence generated by (8.6) converges to a fixed point of \scrC , thereby proving Theorem
8.1. Theorem 8.1 asserts, in particular, that uniqueness for the Schr\"odinger system
(8.4) concerns rays in the positive orthant. This suggests that contractivity of the
map (8.5) should be established on the set of rays endowed with a projective metric.
This was accomplished in [112, Theorem 3], which extends the approach of Franklin
and Lorenz [108] dealing with the scaling of nonnegative matrices. We devote the
next subsection to some key results on Hilbert's projective metric in which the rays'
convergence can be proved.

8.3. Hilbert’s Projective Metric. This metric was introduced by Hilbert in 1895
[121]. In 1957 [28], Garrett Birkhoff proved a crucial contractivity result in this metric
that enabled the establishment of existence of solutions of linear equations on cones
(such as the Perron--Frobenius theorem (see Theorem 9.6 below)). This result was
extended to certain nonlinear maps by Bushell [41, 42]. Besides the ergodic theory
for Markov chains, the Birkhoff--Bushell results have been applied to positive integral
operators and to positive definite matrices [42, 155]. In recent times, this geometry
has been proven useful in problems concerning communication and computations over
networks (see [238]). Other significant applications have been developed by Sepulchre
and collaborators [219, 36, 12] that concern consensus in noncommutative spaces and
metrics for spectral densities. We also mention applications to quantum information
theory [204]. On the more mathematical side, a survey on the applications in analysis
is [155]. The use of the Hilbert metric is crucial in the nonlinear Frobenius--Perron the-
ory [154]. A further extension of the Perron--Frobenius theory beyond linear positive
systems and monotone systems has been recently proposed in [104].

Applications of the Birkhoff--Bushell contractivity results to the topics of this
paper were apparently initiated in 1989 with the paper [108], which deals with scal-
ing of nonnegative matrices. In [112], we showed that the Schr\"odinger bridge for
Markov chains and quantum channels can be obtained efficiently from the fixed point
of a map that contracts the Hilbert metric. In [58], a similar approach was taken
in the context of diffusion processes leading to a new proof of a classical result of
Jamison on existence and uniqueness for the Schr\"odinger bridge and also providing
an efficient computational scheme for both Schr\"odinger bridges and OMT. This new
computational approach can be effectively employed, for instance, in image interpo-
lation. There are, however, some fundamental difficulties in using this approach in
Schr\"odinger's original setting. These are outlined in Remark 8.7 below.

Following [42], we recall some basic concepts and results of this theory.
Let \scrS be a real Banach space and let \scrK be a closed solid cone in \scrS , i.e., \scrK is

closed with nonempty interior int\scrK and is such that \scrK + \scrK \subseteq \scrK , \scrK \cap  - \scrK = \{ 0\} as
well as \lambda \scrK \subseteq \scrK for all \lambda \geq 0. Define the partial order

x \preceq y \leftrightarrow y  - x \in \scrK , x < y \leftrightarrow y  - x \in int\scrK ,
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and for x, y \in \scrK 0 := \scrK \setminus \{ 0\} , define

M(x, y) := inf \{ \lambda | x \preceq \lambda y\} ,
m(x, y) := sup\{ \lambda | \lambda y \preceq x\} .

Then the Hilbert metric is defined on \scrK 0 by

dH(x, y) := log

\biggl( 
M(x, y)

m(x, y)

\biggr) 
.

Strictly speaking, it is a projective metric since it is invariant under scaling by positive
constants, i.e., dH(x, y) = dH(\lambda x, \mu y) for any \lambda > 0, \mu > 0, and x, y \in int\scrK . Thus, it
is actually a distance between rays. If U denotes the unit sphere in \scrS , (int\scrK \cap U, dH)
is a metric space.

Example 8.2. Let \scrK = Rn+ = \{ x \in Rn : xi \geq 0\} be the positive orthant of Rn.
Then, for x, y \in intRn+, i.e., with all positive components,

dH(x, y) = logmax\{ xiyj/yixj\} .

Another very important example for applications in many diverse areas of statis-
tics, information theory, control, etc., is the cone of Hermitian, positive semidefinite
matrices.

Example 8.3. Let \scrS = \{ X = X\dagger \in Cn\times n\} , where here \dagger denotes transposition
plus conjugation and, more generally, adjoint. Let \scrK = \{ X \in \scrS : X \geq 0\} be the
positive semidefinite matrices. Then, for X,Y \in int\scrK , namely, positive definite, we
have

dH(X,Y ) = log
\lambda max

\bigl( 
XY  - 1

\bigr) 
\lambda min (XY  - 1)

= log
\lambda max

\bigl( 
Y  - 1/2XY  - 1/2

\bigr) 
\lambda min

\bigl( 
Y  - 1/2XY  - 1/2

\bigr) ,
which is closely connected to the Riemannian (Fisher-information) metric

dR(X,Y ) =
\bigm\| \bigm\| \bigm\| log \Bigl( Y  - 1/2XY  - 1/2

\Bigr) \bigm\| \bigm\| \bigm\| 
F
=

\sqrt{}    n\sum 
i=1

[log \lambda i
\bigl( 
Y  - 1/2XY  - 1/2

\bigr) 
]2.

Notice that, in the two examples above, Hilbert's pseudometric puts the boundary
of the cone at infinite distance from any interior point.

A map \scrE : \scrK \rightarrow \scrK is called nonnegative. It is called positive if \scrE : int\scrK \rightarrow int\scrK .
If \scrE is positive and \scrE (\lambda x) = \lambda p\scrE (x) for all x \in int\scrK and positive \lambda , then \scrE is called
positively homogeneous of degree p in int\scrK . For a positive map \scrE , the projective
diameter is defined by

\Delta (\scrE ) := sup\{ dH(\scrE (x), \scrE (y)) | x, y \in int\scrK \} 

and the contraction ratio by

\kappa (\scrE ) := inf\{ \lambda | dH(\scrE (x), \scrE (y)) \leq \lambda dH(x, y) \forall x, y \in int\scrK \} .

Finally, a map \scrE : \scrS \rightarrow \scrS is called monotone increasing if x \leq y implies \scrE (x) \leq \scrE (y).
Theorem 8.4 ([42]). Let \scrE be a monotone increasing positive mapping which is

positive homogeneous of degree p in int\scrK . Then the contraction \kappa (\scrE ) does not exceed
p. In particular, if \scrE is a positive linear mapping, \kappa (\scrE ) \leq 1.
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Theorem 8.5 ([28, 42]). Let \scrE be a positive linear map. Then

(8.7) \kappa (\scrE ) = tanh

\biggl( 
1

4
\Delta (\scrE )

\biggr) 
.

Theorem 8.6 ([42]). Let \scrE be either
(a) a monotone increasing positive mapping which is positive homogeneous of

degree p(0 < p < 1) in int\scrK , or
(b) a positive linear mapping with finite projective diameter.

Suppose the metric space Y = (int\scrK \cap U, dH) is complete. Then in case (a), there
exists a unique x \in int\scrK such that \scrE (x) = x; in case (b), there exists a unique positive
eigenvector of \scrE in Y .

This result provides a far-reaching generalization of the celebrated Perron--Fro-
benius theorem [29] (see Theorem 9.6, below). Notice that in both Examples 8.2 and
8.3, the space Y = (int\scrK \cap U, dH) is indeed complete [42]. We also note that there are
other metrics as well that are contracted by positive monotone maps, for instance, the
closely related Thompson metric [235] dT (x, y) = logmax\{ M(x, y),m - 1(x, y)\} . The
Thompson metric is a bona fide metric on \scrK and has been, for example, employed in
[163, 66, 12].

Remark 8.7. If we try to use a similar approach to prove existence for the Schr\"o-
dinger system (8.1)--(8.2), we may expect that in an infinite-dimensional setting ques-
tions of boundedness or integrability might become delicate. The main difficulty,
however, lies in two other issues. To introduce them, let us observe that in the
Birkhoff--Bushell theory we have linear or nonlinear iterations that remain in the in-
terior of a cone. For example, in the application of the Perron--Frobenius theorem to
the ergodic theory of Markov chains, the assumption that there exists a power of the
transition matrix with all strictly positive entries ensures that the evolution of the
probability distribution occurs in the interior of the positive orthant (intersected with
the simplex). The first difficulty is that the natural function space cones such as L1

+

(L2
+), namely, integrable (square integrable) nonnegative functions on Rd, have empty

interior ! The second difficulty is that even if we manage to somehow define a suitable
function space cone with nonempty interior,28 the nonlinear map \Omega defined in (8.3)
cannot map the interior of the cone into itself. To overcome precisely this difficulty,
in [58] the two marginals were assumed to have compact support. We see here once
more, from a slightly different angle, how much more challenging the continuous case
is.

8.4. Proof of Theorem 8.1. We begin with three preliminary results.

Lemma 8.8. Consider the maps \scrE and \scrE \dagger . We have the following bounds on their
contraction ratios:

(8.8) \kappa (\scrE ) = \kappa (\scrE \dagger ) = tanh

\biggl( 
1

4
\Delta (\scrE )

\biggr) 
< 1.

Proof. Observe that \scrE is a positive linear map and its projective diameter is

\Delta (\scrE ) = sup\{ dH(\scrE (x), \scrE (y)) | xi > 0, yi > 0\} 

= sup\{ log
\biggl( 
gijgk\ell 
gi\ell gkj

\biggr) 
| 1 \leq i, j, k, \ell \leq n\} .

28This was indeed accomplished in [58].
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It is finite, since all entries gij are positive. It now follows from Theorem 8.5 that its
contraction ratio satisfies (8.8). A similar result holds for the adjoint map \scrE \dagger .

Lemma 8.9.

\kappa (\scrD 0) \leq 1, \kappa (\scrD 1) \leq 1.

Proof. Observe that when p and q have positive entries, both \scrD 0 and \scrD 1 are
isometries in the Hilbert metric. Indeed, for vectors x, y in the interior of Rn+, inversion
and elementwise scaling are both isometries for the Hilbert metric as can be shown
by the calculations

dH(x, y) = log

\biggl( 
(max

i
(xi/yi))

1

mini(xi/yi)

\biggr) 
= log

\biggl( 
1

mini((xi) - 1/(yi) - 1)
max
i

((xi)
 - 1/(yi)

 - 1)

\biggr) 
= dH(x - 1, y - 1),

where x - 1 and y - 1 are obtained from x and y, respectively, through componentwise
inversion. Moreover, let px and py be the vectors with components pixi and piyi,
respectively. Then

dH(px, py) = log
maxi((pixi)/(piyi))

mini((pixi)/(piyi))

= log
maxi(xi/yi)

mini(xi/yi)
= dH(x, y).

If p has zero entries, then the second equality above needs to be replaced by the
inequality ``\leq "".

Lemma 8.10. The composition

(8.9) \scrC = \scrE \circ \scrD 1 \circ \scrE \dagger \circ \scrD 0

contracts the Hilbert metric with contraction ratio \kappa (\scrC ) < 1, namely,

dH(\scrC (x), \scrC (y)) < dH(x, y) \forall x, y \in intRn+.

Proof. The result follows at once from Lemmas 8.8 and 8.9.

We now complete the proof of Theorem 8.1. The set of rays in intRn+ with the
Hilbert metric is complete (this can be proven by intersecting intRn+ with the unit
sphere; see [42, section 4]). By Lemma 8.10, \scrC contracts the Hilbert metric. By
the Banach--Caccioppoli Contraction Mapping Theorem, there exists a unique ray
in intRn+ to which the iteration (8.6) (starting from any vector in intRn+) converges.
Next, we prove that, due to (8.4a)--(8.4d), the iteration (8.6) actually converges to
a fixed vector. Since the iteration has a fixed ray, we have that for some positive
constant \alpha ,

\alpha \cdot \varphi (0) = \scrC (\varphi (0)),

where the composed map is \scrC := \scrE \circ \scrD 1 \circ \scrE \dagger \circ \scrD 0. From this we can obtain

\^\varphi (1) = \scrE \dagger ( \^\varphi (0)),

\varphi (0) = \scrE (\varphi (1)),
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while

\^\varphi (1)\varphi (1) = q and

\alpha \^\varphi (0)\varphi (0) = p,

where, as usual, multiplication is componentwise. Let \langle \cdot , \cdot \rangle denote the scalar product
in Rn. Since p and q are probability distributions, we have

1 = \alpha \langle \^\varphi (0), \varphi (0)\rangle 
= \alpha \langle \^\varphi (0), \scrE (\varphi (1))\rangle 
= \alpha \langle \scrE \dagger ( \^\varphi (0)), \varphi (1)\rangle 
= \alpha \langle \^\varphi (1), \varphi (1)\rangle 
= \alpha .

Thus \alpha = 1, the iteration (8.6) converges to a fixed point (vector in Rn+), and the
four vectors (\varphi (0), \^\varphi (0), \varphi (1), \^\varphi (1)) satisfy the Schr\"odinger system (8.4). The vectors
\varphi (0) and \^\varphi (1) have all positive components.

9. Efficient vs. Robust Routing for Network Flows. While problem (7.13), and
the corresponding equivalent regularized OMT (7.2), are the discrete counterparts of
Problem 4.2, it is apparent that the discrete counterpart of the ``dynamic"" Schr\"odinger
bridge problem, Problem 4.1, is still missing. Before we turn to dynamic problems
with discrete state space, let us mention that work has also been done on discrete time
and continuous state space [249, 21, 13, 114, 14, 17]. This literature mostly deals with
Gaussian distributions, in the finite and infinite horizon cases, with and without noise
in the dynamics, and with and without constraints. The case of regularized transport
on discrete metric graphs was studied by L\'eonard in [158].

9.1. Generalized Bridge Problems. Consider a directed, strongly connected
(i.e., with at least one path joining each pair of vertices), aperiodic graph G = (\scrX , \scrE )
with vertex set \scrX = \{ 1, 2, . . . , n\} and edge set \scrE \subseteq \scrX \times \scrX . Time is discrete and taken
in \scrT = \{ 0, 1, . . . , N\} .

Let \scrF PN0 \subseteq \scrX N+1 denote the family of feasible paths x = (x0, . . . , xN ) of length
N , namely, paths such that xixi+1 \in \scrE for i = 0, 1, . . . , N  - 1. We seek a probability
distribution P on \scrF \scrP N0 with prescribed initial and final marginal probability distri-
butions \nu 0(\cdot ) and \nu N (\cdot ), respectively, and such that the resulting random evolution is
closest to a ``prior"" measure M on \scrF \scrP N0 in a suitable sense.

The prior law for our problem is induced by the Markovian evolution

(9.1) \mu t+1(xt+1) =
\sum 
xt\in \scrX 

\mu t(xt)mxtxt+1
(t)

with nonnegative distributions \mu t(\cdot ) over \scrX , t \in \scrT , and weights mij(t) \geq 0 for
all indices i, j \in \scrX and all times. Moreover, to respect the topology of the graph,
mij(t) = 0 for all t whenever ij \not \in \scrE . Often, but not always, the matrix

(9.2) M(t) = [mij(t)]
n
i,j=1

may not depend on t. The rows of the transition matrix M(t) do not necessarily
sum up to one, so that the ``total transported mass"" is not necessarily preserved. It
occurs, for instance, when M simply encodes the topological structure of the network
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with mij being zero or one, depending on whether a certain link exists (i.e., when
M represents the adjacency matrix of the graph). The evolution (9.1), together with
measure \mu 0(\cdot ), which we assume positive on \scrX , i.e.,

(9.3) \mu 0(x) > 0 for all x \in \scrX ,

induces a measure M on \scrF \scrP N0 as follows. It assigns to a path x = (x0, x1, . . . , xN ) \in 
\scrF \scrP N0 the value

(9.4) M(x0, x1, . . . , xN ) = \mu 0(x0)mx0x1 \cdot \cdot \cdot mxN - 1xN

and gives rise to a flow of one-time marginals

\mu t(xt) =
\sum 
x\ell \not =t

M(x0, x1, . . . , xN ), t \in \scrT .

Definition 9.1. We denote by \scrP (\nu 0, \nu N ) the family of probability distributions
on \scrF \scrP N0 having the prescribed marginals \nu 0(\cdot ) and \nu N (\cdot ).

We seek a distribution in this set which is closest to the prior M in relative
entropy where, for P and Q measures on \scrX N+1, the relative entropy (divergence,
Kullback--Leibler index) D(P\| Q) is

D(P\| Q) :=

\Biggl\{ \sum 
x P (x) log

P (x)
Q(x) , Supp(P ) \subseteq Supp(Q),

+\infty , Supp(P ) \not \subseteq Supp(Q).

Here, by definition, 0 \cdot log 0 = 0. Naturally, while the value of D(P\| Q) may turn
out to be negative due to a mismatch in the scaling (in the case Q = M is not a
probability measure), the relative entropy is always jointly convex. Thus, we are led
to the Schr\"odinger bridge problem.

Problem 9.2. Determine

M\ast [\nu 0, \nu N ] := argmin\{ D(P\| M) | P \in \scrP (\nu 0, \nu N )\} .(9.5)

The following result may be proven in the usual way; cf. section 7.3 and [194, 63, 64].

Theorem 9.3. Assume that the entries of the matrix product

G :=M(0)M(1) \cdot \cdot \cdot M(N  - 2)M(N  - 1)

are all positive. Then there exist nonnegative functions \varphi (\cdot ) and \^\varphi (\cdot ) on \scrT \times \scrX 
satisfying

\varphi (t, i) =
\sum 
j

mij(t)\varphi (t+ 1, j),(9.6a)

\^\varphi (t+ 1, j) =
\sum 
i

mij(t) \^\varphi (t, i)(9.6b)

for t \in \{ 0, 1, . . . , N  - 1\} , along with the (nonlinear) boundary conditions

\varphi (0, x0) \^\varphi (0, x0) = \nu 0(x0),(9.6c)

\varphi (N, xN ) \^\varphi (N, xN ) = \nu N (xN )(9.6d)
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for x0, xN \in \scrX . Moreover, the solution M\ast [\nu 0, \nu N ] to Problem 9.2 is unique and
obtained by

M\ast (x0, . . . , xN ) = \nu 0(x0)\pi x0x1
(0) \cdot \cdot \cdot \pi xN - 1xN

(N  - 1),

where the one-step transition probabilities

(9.7) \pi ij(t) := mij(t)
\varphi (t+ 1, j)

\varphi (t, i)

are well defined.

As usual, factors \varphi and \^\varphi are unique up to multiplication of \varphi by a positive
constant and division of \^\varphi by the same constant. Let \varphi (t) and \^\varphi (t) denote the
column vectors with components \varphi (t, i) and \^\varphi (t, i), respectively, with i \in \scrX . In
matricial form, (9.6a), (9.6b), and (9.7) read

(9.8) \varphi (t) =M(t)\varphi (t+ 1), \^\varphi (t+ 1) =M(t)T \^\varphi (t),

and

(9.9) \Pi (t) := [\pi ij(t)] = diag(\varphi (t)) - 1M(t) diag(\varphi (t+ 1)).

We see that the scheduling of the transport plan amounts to modifying the prior
transition mechanism. Therefore, this brings us to an alternative interpretation of
the Schr\"odinger problem, as a special Markov decision process problem [200, 26].
This can be accomplished, once more, through a generalized multiplicative functional
transformation (4.16) even when the prior is not a probability measure.

9.2. Invariance of Most Probable Paths. In [77, section 5], Dai Pra established
an interesting path space property of the Schr\"odinger bridge for diffusion processes,
namely, that the ``most probable path"" [89, 233] of the prior and the solution are the
same. Loosely speaking, a most probable path is similar to a mode for the path space
measure P . More precisely, if both the drift b(\cdot , \cdot ) and the diffusion coefficient \sigma (\cdot , \cdot )
of the Markov diffusion process

dXt = b(t,Xt)dt+ \sigma (t,Xt)dWt

are smooth and bounded, with \sigma (t, x)\sigma (t, x)\prime > \eta I, \eta > 0, and x(t) is a path of class
C2, then there exists an asymptotic estimate of the probability P of a small tube
around x(t) of radius \epsilon . It follows from this estimate that the most probable path is
the minimizer in a deterministic calculus of variations problem where the Lagrangian
is an Onsager--Machlup functional; see [128, p. 532] for the full story.29

The concept of most probable path is, of course, much simpler in our discrete
setting. We now define this for general positive measures on paths.

Given a positive measure M as in section 9.1 on the feasible paths of our graph
G, we say that x = (x0, . . . , xN ) \in \scrF \scrP N0 is of maximal mass if for all other feasible
paths y \in \scrF \scrP N0 we have M(y) \leq M(x). Likewise, we consider paths of maximal mass
connecting particular nodes. It is apparent that paths of maximal mass always exist
but are, in general, not unique. If M is a probability measure, then the maximal mass

29The Onsager--Machlup functional was introduced in [187, 188] to develop a theory of fluctuations
in equilibrium and nonequilibrium thermodynamics.
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paths---most probable paths---are simply the modes of the distribution. We establish
below that the maximal mass paths joining two given nodes under the solution of the
Schr\"odinger bridge problem as in the previous section are the same as for the prior
measure.

Proposition 9.4. Consider marginals \nu 0 and \nu N in Problem 9.2. Assume that
\nu 0(x) > 0 on all nodes x \in \scrX and that the productM(0)M(1) \cdot \cdot \cdot M(N - 2)M(N - 1) of
transition matrices of the prior has all positive elements (cf. with M as in (9.2)). Let
x0 and xN be any two nodes. Then, under the solution M\ast [\nu 0, \nu N ] of the Schr\"odinger
bridge problem, the family of maximal mass paths joining x0 and xN in N steps is
the same as under the prior measure M.

Proof. Suppose path y = (y0 = x0, y1, . . . , yN - 1, yN = xN ) has maximal mass
under the prior M. In view of (9.4) and (9.7) and assumption (9.3), we have

M\ast [\nu 0, \nu N ](y) = \nu 0(y0)\pi y0y1(0) \cdot \cdot \cdot \pi yN - 1yN (N  - 1)

=
\nu 0(x0)

\mu 0(x0)

\varphi (N, xN )

\varphi (0, x0)
M(y0, y1, . . . , yN ).

Since the quantity
\nu 0(x0)

\mu 0(x0)

\varphi (N, xN )

\varphi (0, x0)

is positive and does not depend on the particular path joining x0 and xN , the con-
clusion follows.

The above calculation in fact establishes the following stronger result.

Proposition 9.5. Let x0 and xN be any two nodes in \scrX . Then, under the as-
sumptions of Proposition 9.4, the measures M and M\ast [\nu 0, \nu N ], restricted on the set
of paths that begin at x0 at time 0 and end at xN at time N , are identical.

9.3. Robust Network Routing. We now discuss yet another possible usage and
interpretation of Schr\"odinger bridges, motivated by a concept of robustness of a trans-
portation plan for a given network.

Network robustness is typically understood as the ability of a network to maintain
connectivity, or to be insensitive (observables), in the event of node or link failures,
or a disturbance. Maintaining connectivity may be seen as an inverse percolation
problem [2, 19]. There exist several other notions of robustness such the one defined
through a fluctuation-dissipation relation involving the topological entropy rate. This
notion captures the behavior while relaxing back to equilibrium after a perturbation;
see [10, 82, 220, 221]. Also, robust network design to meet demands in a given
uncertainty set was studied in [186]. Finally, a concept of resilience of a routing policy
in the presence of cascading failures was introduced and studied in [212]. Following
the latter rationale, linking robustness to resilience, equilibrium considerations play
no role. Indeed, this rationale motivates maximal utilization of all available options
equally, as much as possible, so as to preempt failures.

Thus, we are led to formulate the following problem: Given times t = 0, 1, . . . , N
and a directed, strongly connected graph, find a transportation plan from a source
node to a sink node30 such that most of the mass arrives by time N even in the

30We always have a loop on the sink node to allow part of the mass to arrive there earlier than
the planned time horizon.
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Fig. 6 Transportation network.

presence of failures (of course, more general initial and final distributions can also be
similarly treated). For instance, consider the graph of Figure 6, with the total mass
residing at node 1 at time t = 0, and a requirement to transport the total mass to
node 9 in N = 3, or N = 4, time steps. A natural idea is to spread the mass as
far as the topology of the graph permits, before reassembling the mass at the target
end-point distribution (here at node 9). The property of ``spreading"" of distributions
along interpolation between end-point marginals, whether in OMT or Schr\"odinger
bridge problems, is often referred to as ``lazy gas"" [242, 243]. Thus, it is natural to
consider transportation plans that share such a property via utilizing the framework
of Schr\"odinger bridges!

However, the current task to transport provides no ``prior"" measure: It is simply
a problem in transportation. Can we select a suitable measure? Perhaps select as
prior a prespecified plan that no longer meets desired transportation requirements?
Or modify a transportation plan by adding costs to mediate congestion? All of these
directions are possible and can be profitably pursued as engineering problems. Yet,
herein we motivate a different prior, one that maximally spreads mass utilizing avail-
able options. Indeed, such a prior must be a sort of uniform distribution on paths;
but what exactly does that mean in this setting? Fortunately, such a notion already
exists, as we find in the interesting paper [80]. Let us first recall a most famous result
in linear algebra [124].

Theorem 9.6 (Perron--Frobenius). Let A = (aij) be an n \times n matrix with non-
negative entries. Let \lambda A = max\{ | \lambda 1| , | \lambda 2| , . . . , | \lambda n| \} be its spectral radius. Suppose
there exists N such that AN has only positive entries. Then the following hold:

(i) \lambda A > 0 is an eigenvalue of A.
(ii) \lambda A is a simple eigenvalue.
(iii) There exists an eigenvector v corresponding to \lambda A with strictly positive en-

tries.
(iv) v is the only nonnegative eigenvector of A.
(v) Let B = [bij ] be an n \times n matrix with nonnegative entries. If aij \leq bij

\forall i, j \leq n and A \not = B, then \lambda A < \lambda B.

Returning to graphs we discuss first the notion of topological entropy, namely,
the rate by which the cardinality of the set of paths of length N increases as N \rightarrow \infty .
To this end, we consider a strongly connected directed graph G = (\scrX , \scrE ) as before.
The topological entropy rate is

HG = lim sup
N\rightarrow \infty 

[log | \{ paths of length N\} | /N ].
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If A denotes the adjacency matrix of the graph, it is easy to show31 that

HG = log(\lambda A).

Since the graph is strongly connected, AN has only positive entries. Let \^\varphi and \varphi be
its left and right eigenvectors with positive entries corresponding to \lambda A (see Theorem
9.6), so that

AT \^\varphi = \lambda A \^\varphi , A\varphi = \lambda A\varphi ,

and select/scale them such that

\langle \^\varphi ,\varphi \rangle :=
\sum 
i

\^\varphi i\varphi i = 1.

Then

(9.10) \nu RB(i) = \^\varphi i\varphi i

defines a probability distribution on \scrX which is invariant under the transition matrix

(9.11) R = [rij ], rij =
1

\lambda A

\varphi j
\varphi i
aij ,

that is,
RT \nu RB = \nu RB .

The transition matrix R in (9.11), together with stationary measure \nu RB in (9.10),
defines the Ruelle--Bowen (Markovian) path measure

MRB(x0, x1, . . . , xN ) := \nu RB(x0)rx0x1
\cdot \cdot \cdot rxN - 1xN

.

Equation (9.11) brings up the unmistakable links to the structure of Schr\"odinger
bridges that maximize entropy. But here a deeper fact is at play, in that the Ruelle--
Bowen distribution [190, 210] represents a uniform distribution on paths, made precise
by the following remarkable proposition.

Proposition 9.7. The measure MRB assigns probability \lambda  - tA \^\varphi i\varphi j to any path of
length t from node i to node j.

Proof. Starting from the stationary distribution (9.10), and in view of (9.11), the
probability of a path ij is

\^\varphi i\varphi i

\biggl( 
1

\lambda A
\varphi  - 1
i \varphi j

\biggr) 
=

1

\lambda A
\^\varphi i\varphi j ,

assuming that node j is accessible from node i in one step. Likewise, if node k is
accessible from j, the probability of the path ijk is

\^\varphi i\varphi i

\biggl( 
1

\lambda A
\varphi  - 1
i \varphi j

\biggr) \biggl( 
1

\lambda A
\varphi  - 1
j \varphi k

\biggr) 
=

1

\lambda 2A
\^\varphi i\varphi k,

independent of the intermediate state j, and so on.

31This follows from the fact that the ijth entry of AN (a positive integer) enumerates the number
of distinct paths from vertex i to vertex j in N steps.
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Shannon entropy of paths of length N grows likeN log \lambda A. Thus, since the entropy
rate of this particular distribution is log \lambda A = HG, it is indeed the maximum possible!

We note that the stationary measure \nu RB of this law was used in [80] in order to
obtain a centrality measure (entropy ranking) similar to the Google Page ranking but
more robust and discriminating. In what follows, instead, MRB is a natural choice as
a prior distribution in the Schr\"odinger bridge problem to achieve the spreading of the
mass. Moreover, as noted earlier, the Ruelle--Bowen measure MRB on paths may itself
be seen as the solution of a Schr\"odinger bridge problem where the ``prior"" transition
matrix is the adjacency matrix A and the two marginals are \nu 0 = \nu N = \nu RB ; see [63,
section 4].

Returning to the transportation problem, we seek

M\ast [\delta 1, \delta n] = argmin\{ D(P\| MRB) | P \in \scrP (\delta 1, \delta n)\} .

By Theorem 9.3, the solution is the Markovian evolution starting at t = 0 with the
distribution \delta 1 and with transition matrix

\Pi \ast (t) = diag(\varphi (t)) - 1R diag(\varphi (t+ 1)),

where
\varphi (t) = R\varphi (t+ 1), \^\varphi (t+ 1) = RT \^\varphi (t),

with the boundary conditions

\varphi (0, x) \^\varphi (0, x) = \delta 1(x), \varphi (N, x) \^\varphi (N, x) = \delta n(x) \forall x \in \scrX .

Thus, the solution M\ast [\delta 1, \delta n] is a bridge over MRB, which is itself a bridge. In other
words, the solution is a bridge over a bridge.

We conclude with a remarkable iterated bridge property of the Schr\"odinger bridges
(not to be confused with an iterated I-projection property [73, 74]). Suppose first
that the prior is a probability distribution; this defines a reciprocal class [129, 160] of
distributions. The solution to the Schr\"odinger bridge problem is in fact the unique
Markovian evolution in the same reciprocal class as the prior (the same three times
transition probabilities). In other words, if we take the solution as a prior for a new
bridge problem, the reciprocal class stays the same. Notice that this is the case even
when there is loss/creation of mass in the prior evolution; see [64, section IIA] for the
details. Hence, the new distribution on paths M\ast [\delta 1, \delta n] can be obtained by solving a
unique bridge problem with prior transition the adjacency matrix A and marginals \delta 1
and \delta n; see [63]. The solution may be computed through an iterative algorithm like
the one described in section 8.2, where G = AN . We illustrate the steps and rationale
above with the following academic exercise.

Example 9.8. Consider Figure 6 and let \nu 0 = \delta 1, \nu N = \delta 9. First take N = 3.
The shortest path from node 1 to 9 is of length 3 and there are three such paths:
1 - 2 - 7 - 9, 1 - 3 - 8 - 9, and 1 - 4 - 8 - 9. Using MRB as the prior, we then obtain a
transport plan with equal probabilities for all three paths. The evolution of the mass
distribution is given by the rows of the following matrix, where row i represents the
distribution on the nodes at time t = i, i = 0, 1, 2, 3:\left[    

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1
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For N = 4, the mass spreads even more before reassembling at node 9:\left[      
1 0 0 0 0 0 0 0 0
0 4/7 2/7 1/7 0 0 0 0 0
0 0 1/7 1/7 2/7 0 1/7 2/7 0
0 0 0 0 0 1/7 1/7 2/7 3/7
0 0 0 0 0 0 0 0 1

\right]      .
9.4. Optimal Flows on Weighted Graphs. With the same notation as in section

9.1, we now suppose that to each edge ij is associated a length lij \geq 0. If ij \not \in \scrE ,
we set lij = +\infty . The length may represent distance, cost of transport, cost of
communication, inverse capacity of the link, and so on. As an example, suppose a
relief organization, operating in an area where a natural disaster or an epidemic has
occurred or in a war zone, needs to transport resources. At the initial time t = 0,
there is a distribution \nu 0(x) of available relief goods in sites x \in \scrX . Using the available
road network, the goods must reach certain other locations after N units of time to
be distributed according to a desired distribution \nu N (x). On the one hand, since the
feasibility of the various possible routes is uncertain, it is desirable that the goods
spread as much as the road network allows before reaching the target nodes. But
at the same time, it is also important that shorter paths are used to keep the fuel
consumption within the available budget. In such a scenario it is possible to repeat
the construction of section 9.3, replacing the adjacency matrix A with a weighted
adjacency matrix B

B = [bij ] = [exp ( - lij)] ,
again assuming that BN has positive entries representing cost, thereby allowing us to
employ the Perron--Frobenius theorem.

The measure ML that replaces the Ruelle--Bowen measure is, of course, no longer
``uniform."" Given the development of section 7.2, we already know what we can expect.
Rather than maximizing entropy, it is natural to seek a compromise between the latter
goal and that of minimizing length/energy/cost. Indeed, let \^\varphi and \varphi be left and right
eigenvectors with positive entries of the matrix B corresponding to the spectral radius
\lambda B of B, so that

BT \^\varphi = \lambda B \^\varphi , B\varphi = \lambda B\varphi .

Suppose once again that \^\varphi and \varphi are chosen so that \langle \^\varphi ,\varphi \rangle =
\sum 
i \^\varphi i\varphi i = 1. Then \mu L

given by

(9.12) \mu L(i) = \^\varphi i\varphi i

is a probability distribution which is invariant for the transition matrix

(9.13) RL = \lambda  - 1
B diag( \^\varphi i\varphi i)

 - 1B diag( \^\varphi i\varphi i),

namely,

(9.14) RTL\mu L = \mu L.

As expected, the corresponding path measure ML is no longer uniform on paths of
equal length joining two specific nodes. Indeed, the probability of the path (i =
x0, x1, . . . , xt - 1, j = xt) is

\lambda  - tB exp

\biggl( 
 - 

t - 1\sum 
k=0

lxkxk+1

\biggr) 
\^\varphi i\varphi j .
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It is, in other words, the minimum free energy rate distribution (topological pressure
in thermodynamics) attaining the minimum value,  - log \lambda B , and has therefore the
form of a Boltzmann distribution (7.10); see [80, section IV] for details. Indeed, for a
path x = (x0, . . . , xN ) \in \scrX N+1, define the length of x to be

l(x) =
N - 1\sum 
t=0

lxtxt+1
,

and for any distribution P on \scrX N+1, define the average path length to be

(9.15) L(P ) =
\sum 

x\in \scrX N+1

l(x)P (x).

This plays the same role as the internal energy in the state P of section 7.2, corre-
sponding to the length l(x) of x with the energy Ex. Clearly, L(P ) is finite if and
only if P is supported on actual, existing paths of G. The Boltzmann distribution
(7.10) on XN+1 is then

(9.16) pB(x) = ML(x) = Z(T ) - 1exp

\biggl[ 
 - l(x)
kT

\biggr] 
for Z(T ) =

\sum 
x\in \scrX 

exp

\biggl[ 
 - l(x)
kT

\biggr] 
.

Note that the the support of the Boltzmann distribution Supp(pB) is contained in
\scrF \scrP N0 . By statement (v) in Theorem 9.6, we then have that log \lambda A < log \lambda B , namely,
the topological entropy increases in a way that is consistent with intuition.

We can take ML as the prior distribution in a maximum entropy problem as in
section 9.3, obtaining again through the solution M\ast 

L[\delta 1, \delta n] a robust-efficient trans-
portation plan from node 1 to node n. We are now ready to prove a striking result
that generalizes Proposition 9.7.

Theorem 9.9. M\ast 
L[\delta 1, \delta n](x) assigns equal probability to paths x \in \scrX N+1 of equal

cost. In particular, it assigns maximum and equal probability to minimum length paths.

Proof. For a path x = (x0, x1, . . . , xN ), we have

M\ast 
L[\delta 1, \delta n](x) = \delta 1(x0)

\varphi v(N, xN )

\varphi v(0, x0)

N - 1\prod 
t=0

bxtxt+1

= \delta 1(x0)
\varphi v(N, xN )

\varphi v(0, x0)
exp

\biggl[ 
 - 
N - 1\sum 
t=0

lxtxt+1

\biggr] 
.(9.17)

Observe once more that \delta 1(x0)
\varphi v(N,xN )
\varphi v(0,x0)

does not depend on the particular path joining

x0 and xN . Since
\sum N - 1
t=1 lxtxt+1

= l(x) is the total length of the path, the conclusion
now follows.

Remark 9.10. In the discrete (OMT) problem [202] introduced in section 7.1, one
first seeks to identify the shortest path(s) (x0, x

\ast 
1, . . . , x

\ast 
N - 1, xN ) from any starting

node x0 \in \scrX to any ending node xN ,

(9.18) lmin(x0xN ) = min
x\ast 
1 ,...,x

\ast 
N - 1

N - 1\sum 
t=0

lx\ast 
t x

\ast 
t+1
.

This is a combinatorial problem but can also be cast as a linear program [20]. It
is apparent that the computational complexity of such a problem becomes rapidly
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unbearable as the number of nodes n and the length of the path N increase. Having
a solution to this first problem, the OMT problem can then be recast as the linear
program in (7.1), where the cost of a path is its length. Alternatively, the OMT
problem can be cast directly as a linear program in as many variables as there are
edges [20]. The transport provided by Theorem 9.9, which readily generalizes to any
two marginals \nu 0 and \nu N , provides an attractive alternative to the OMT approach:
Minimum length paths all have maximum probability, but some of the mass is also
transported on alternative paths, thereby ensuring a certain amount of robustness
of the transportation plan. Also notice that Theorem 9.9 provides an alternative
paradigm to find the minimum length paths through simulation!

We conclude this subsection with a few observations on the role of the temperature
parameter, referring the reader to [64, section V] for the proofs.

Remark 9.11. Consider the solution M\ast 
L,T [\delta x0 , \delta xN

] =: M\ast 
T to the maximum en-

tropy problem

M\ast 
L,T [\delta 1, \delta n] = argmin\{ D(P\| pB(x;T )) | P \in \scrP (\delta 1, \delta n)\} 

with prior (9.16), where we have emphasized the dependence on the parameter T . Let
lmin(x0xN ) be as in (9.18).

(i) For T \searrow 0, M\ast 
T tends to concentrate itself on the set of feasible, mini-

mum length paths joining x0 and xN in N steps. Namely, if y = (y0 =
x0, y1, . . . , yN - 1, yN = xN ) is such that l(y) > lmin(x0xN ), then M\ast 

T (y) \searrow 0
as T \searrow 0.

(ii) For T \nearrow +\infty , M\ast 
T tends to the uniform distribution on all feasible paths

joining x0 and xN in N steps.
We notice that, as in the diffusion case [168, 169, 170, 157, 156, 52, 54, 46], when
the ``heat bath"" temperature T is close to 0, the solution of the Schr\"odinger bridge
problem is close to the solution of the discrete OMT problem. Since for the former an
efficient iterative algorithm is available (8.6), we see that also in this discrete setting
the Schr\"odinger bridge problem provides a valuable computational approach to solving
OMT problems. We illustrate this, as well as Theorem 9.9 and the invariance of the
most probable paths, in a simple example.

Example 9.12. Consider again Figure 6 and let \nu 0 = \delta 1 and \nu N = \delta 9. Let the
time horizon for the transport be N = 3 or N = 4. We first set the lengths of all
edges equal to 1 except l99 = 0. The shortest path from node 1 to 9 is of length 3,
and there are three such paths: 1 - 2 - 7 - 9, 1 - 3 - 8 - 9, and 1 - 4 - 8 - 9. If we
want to transport the mass with a minimum number of steps, we may end up using
one of these three paths. We use the results of section 9.3 to compute a robust routing
policy. Since all three feasible paths have equal length, we obtain a transport plan with
equal probabilities using all three paths, regardless of the choice of temperature T . The
evolution of mass distribution is given by\left[    

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1

\right]    ,
where the four rows of the matrix show the mass distribution at time step t = 0, 1, 2, 3,
respectively, while columns correspond to vertices. As we can see, the mass spreads
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out first and then goes to node 9. When we allow for more steps N = 4, we get, for
``temperature"" T = 1,\left[      

1 0 0 0 0 0 0 0 0
0 0.4705 0.3059 0.2236 0 0 0 0 0
0 0 0.0823 0.0823 0.1645 0 0.2236 0.4473 0
0 0 0 0 0 0.0823 0.0823 0.1645 0.6709
0 0 0 0 0 0 0 0 1

\right]      .
There are seven feasible paths of length 4: 1  - 2  - 7  - 9  - 9, 1  - 3  - 8  - 9  - 9,
1  - 4  - 8  - 9  - 9, 1  - 2  - 5  - 6  - 9, 1  - 2  - 5  - 7  - 9, 1  - 3  - 4  - 8  - 9, and
1 - 2 - 3 - 8 - 9. The amounts of mass traveling along these paths are

0.2236, 0.2236, 0.2236, 0.0823, 0.0823, 0.0823, 0.0823,

respectively. The first three are the most probable paths. This is consistent with
Proposition 9.4, since they are the paths with minimum length. If we change the
temperature T , the flow changes. The set of most probable paths, however, remains
invariant. In particular, when T = 0.1, the flow concentrates on the most probable
set (effecting OMT-like transport):\left[      

1 0 0 0 0 0 0 0 0
0 0.3334 0.3333 0.3333 0 0 0 0 0
0 0 0 0 0 0 0.3334 0.6666 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

\right]      .
Now we change the graph by setting the length of edge (7, 9) as 2, that is, l79 = 2.

When N = 3 steps are allowed to transport a unit mass from node 1 to node 9, the
evolution of mass distribution for the optimal transport plan, for T = 1, is given by\left[    

1 0 0 0 0 0 0 0 0
0 0.1554 0.4223 0.4223 0 0 0 0 0
0 0 0 0 0 0 0.1554 0.8446 0
0 0 0 0 0 0 0 0 1

\right]    .
The mass is transported through paths 1 - 2 - 7 - 9, 1 - 3 - 8 - 9, and 1 - 4 - 8 - 9,
but unlike the first case, the transport plan doesn't equalize probability for these three
paths. Since the length of the edge (7, 9) is larger, the probability that the mass takes
this path becomes smaller. The plan does, however, assign equal probability to the two
paths 1 - 3 - 8 - 9 and 1 - 4 - 8 - 9 with minimum length; that is, these are the most
probable paths. The evolutions of mass for T = 0.1 and T = 100 are\left[    

1 0 0 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

\right]    
and \left[    

1 0 0 0 0 0 0 0 0
0 0.3311 0.3344 0.3344 0 0 0 0 0
0 0 0 0 0 0 0.3311 0.6689 0
0 0 0 0 0 0 0 0 1

\right]    ,D
ow

nl
oa

de
d 

08
/0

1/
21

 to
 7

3.
23

7.
65

.1
90

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

302 YONGXIN CHEN, TRYPHON T. GEORGIOU, AND MICHELE PAVON

respectively. We observe that when T = 100, the flow assigns almost equal mass to the
three available paths, while when T = 0.1 (OMT-like transport), the flow concentrates
on the most probable paths 1 - 3 - 8 - 9 and 1 - 4 - 8 - 9. This is clearly a consequence
of the properties seen in Remark 9.11.

Remark 9.13. As in the continuous case, it is possible to transform the dynamic
problems considered in this section into static problems using a decomposition for
the relative entropy similar to (4.6). Indeed, let P and Q be two probability dis-
tributions on \scrX N+1. For x = (x0, x1, . . . , xN ) \in \scrX N+1, consider the multiplicative
decomposition

P (x) = Px0,xN
(x)p0N (x0, xN ),

where
P\=x0,\=xN

(x) = P (x| x0 = \=x0, xn = \=xN )

and we have assumed that the joint initial-final distribution p0N is everywhere positive
on \scrX \times \scrX , and similarly for Q. We get

D(P\| Q) =
\sum 
x0xN

p0N (x0, xN ) log
p0N (x0, xN )

q0N (x0, xN )

+
\sum 

x\in \scrX N+1

Px0,xN
(x) log

Px0,xN
(x)

Qx0,xN
(x)

p0N (x0, xN ).

This is the sum of two nonnegative quantities. The second becomes zero if and only
if Px0,xN

(x) = Qx0,xN
(x) for all x \in \scrX N+1.

Thus, expanding on the above remark, the problem

(9.19) min\{ D(P\| pB(x;T )) | P \in \scrP (\nu 0, \nu N )\} ,
for instance, can be reduced to the following one.

Problem 9.14. Minimize

(9.20) J(p0N ) := D(p0N\| pB;0N )

over
(9.21)\biggl\{ 
p0N probability distribution on \scrX \times \scrX :

\sum 
xN

p0N (\cdot , xN ) = \nu 0(\cdot ),
\sum 
x0

p0N (x0\cdot ) = \nu N (\cdot )
\biggr\} 
.

If p\ast 0N solves the above problem, then

(9.22) P \ast (x) = pB;x0,xN
(x)p\ast 0N (x0, xN )

solves problem (9.19). As in the continuous setting, the solution lies in the same recip-
rocal class of the prior. Observe, however, that contrary to (9.7), the solution in the
form (9.22) does not yield immediate information on the new transition probabilities
and on what paths the optimal mass flow selects (cf. Remark 4.10 in the continuous
setting). It is therefore less suited for many network routing applications.

10. Closing Comments. We have reviewed some of the essential theoretical fea-
tures of the Kantorovich relaxed formulation of OMT with quadratic cost and of the
theory of the Schr\"odinger bridge problem. We have tried to do this from a some-
what unusual angle, namely, that of stochastic control. We have explained that such
a viewpoint opens the way to natural generalizations and important applications,
particularly in physics (such as cooling), aerospace engineering (such as guidance for
spacecrafts), robotics (such as controlling swarms), and many other areas. Both prob-
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lems, OMT and the Schr\"odinger bridge problem, in their Eulerian formulations, lead
to stochastic control steering problems for probability distributions. In this respect,
we have highlighted the nonequivalence between Schr\"odinger's original problem and
the related problems of steering for one-time densities; cf. Remark 4.5. We have also
attempted to clarify the relationship between Yasue's action, Carlen's problem, and
the fluid-dynamic Problem 4.6 introduced in [54] that involves a Fisher information
functional; see Remark 4.7.

In order to keep the paper within a reasonable length, we have avoided touching
on a large number of related topics such as noncommutative OMT, gradient flows
on Wasserstein spaces, geometry of displacement and entropic interpolation, multi-
marginal transport, functional inequalities, mismatched transport, barycenters, and
connections to mean-field games, information theory, stochastic mechanics, and dif-
ferential games, to name but a few.

In the discrete setting, we have shown in some detail the connection between
the relaxed OMT, Schr\"odinger bridges, and the statistical mechanical free energy. It
turns out (section 7) that the regularized OMT is just a discrete Schr\"odinger bridge
problem equivalent to a constrained minimization of the free energy for distributions
on path space. The latter may be viewed as a constrained Gibbs variational principle
recovering Schr\"odinger's original large deviations motivation. Moreover, the IPF-
Sinkhorn algorithm is just a discrete counterpart of Fortet's algorithm (section 8),
for which Fortet had already proven convergence under rather general assumptions in
the much more challenging continuous case in 1940. In section 8, we have also proven
convergence of the algorithm as a consequence of convergence in a projective metric
of rays in the positive orthant of Rn.

This paper also has the ambition to act as a navigation chart for the topics it
discusses. We felt that this was needed since, on the one hand, probabilists considered
the theory of Schr\"odinger bridges to be pretty much complete by the early 1990s (see
Wakolbinger's survey [247] that was published in 1992), but as we argued at the
beginning of section 5, this is far from being true. On the other hand, some very fine
analysts who contributed to the fantastic development of OMT of the past twenty
or so years have very little interest in the probabilistic motivation and the statistical
physics underlying the Schr\"odinger bridge theory in spite of the fine work of Mikami,
Thieullen, and L\'eonard [168, 169, 170, 157, 156]. Moreover, many first-class scientists
working in the field have a more computational background and interests, having been
driven to these problems by the effectiveness of the earth mover distance in several
modern applications such as those (we quote from [198]) ``in imaging sciences (such as
color or texture processing), computer vision and graphics (for shape manipulation)
or machine learning (for regression, classification and density fitting)."" Finally, control
engineers have been interested since 1985 in a special bridge problem on an infinite
horizon problem, called covariance control, starting from the seminal work of Skelton
and collaborators [125, 126, 222, 115, 254]. The field was considered exhausted more
than twenty years ago, but this turned out to be far from the truth; it is currently
experiencing another phase of fast development.

On top of all of these reasons for incomprehension and difficult communication,
there is, of course, a Babelian confusion of tongues as scientists working in this field
have had a plethora of backgrounds in various areas such as pure and applied math-
ematics, statistical physics, statistics, computer graphics, control, mechanical and
aerospace engineering, numerical analysis, machine learning, etc. Nevertheless, con-
sidering the spectacular flourishing of OMT, Schr\"odinger bridges, and relative ap-
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plications, one feels tempted to end the paper with a Chinese quote: ``Great is the
confusion under the sky. The situation is therefore excellent.""
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