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MULTIMARGINAL OPTIMAL TRANSPORT WITH A
TREE-STRUCTURED COST AND THE SCHRÖDINGER BRIDGE

PROBLEM∗

ISABEL HAASLER† , AXEL RINGH‡ , YONGXIN CHEN§ , AND JOHAN KARLSSON†

Abstract. The optimal transport problem has recently developed into a powerful framework
for various applications in estimation and control. Many of the recent advances in the theory and
application of optimal transport are based on regularizing the problem with an entropy term, which
connects it to the Schrödinger bridge problem and thus to stochastic optimal control. Moreover, the
entropy regularization makes the otherwise computationally demanding optimal transport problem
feasible even for large scale settings. This has led to an accelerated development of optimal transport
based methods in a broad range of fields. Many of these applications have an underlying graph
structure, for instance, information fusion and tracking problems can be described by trees. In this
work we consider multimarginal optimal transport problems with a cost function that decouples
according to a tree structure. The entropy regularized multimarginal optimal transport problem
can be viewed as a generalization of the Schrödinger bridge problem with the same tree-structure,
and by utilizing these connections we extend the computational methods for the classical optimal
transport problem in order to solve structured multimarginal optimal transport problems in an
efficient manner. In particular, the algorithm requires only matrix-vector multiplications of relatively
small dimensions. We show that the multimarginal regularization introduces less diffusion, compared
to the commonly used pairwise regularization, and is therefore more suitable for many applications.
Numerical examples illustrate this, and we finally apply the proposed framework for the tracking of
an ensemble of indistinguishable agents.
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signal processing, ensemble estimation
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1. Introduction. An optimal transport problem is to find a transport plan that
minimizes the cost of moving the mass of one distribution to another distribution [62].
Historically this problem has been important in economics and operations research,
but as a result of recent progress in the area it has become a popular tool in a wide
range of fields such as control theory [1, 6, 15, 35, 51, 64], signal processing [30, 43],
computer vision [27, 59], and machine learning [2, 4, 52].

An extension to the standard optimal transport framework is multimarginal op-
timal transport [53], which seeks a transport plan between not only two, but several
distributions. Early works on multimarginal optimal transport include [33, 55, 56]. In
this work we consider multimarginal optimal transport problems with cost functions
that decouple according to a tree structure. We refer to such a problem as a tree-
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structured multimarginal optimal transport problem. This should not be confused
with optimal transport problems on graphs as in [16, 18, 19], where the distributions
are defined over the nodes of the graphs. Tree-structured cost functions general-
ize many structures that are commonly used in applications of optimal transport.
For example, a path tree naturally appears in tracking and interpolation applica-
tions [9, 17, 59]. Similarly, star trees are used in barycenter problems, which occur,
for instance, in information fusion applications [23, 29].

The optimal transport problem can be formulated as a linear program. How-
ever, in many practical applications the problem is too large to be solved directly.
For the bimarginal case, these computational limitations have recently been allevi-
ated by regularizing the problem with an entropy term [22]. The optimal solution
to the regularized optimal transport problem can then be expressed in terms of dual
variables, which can be efficiently found by an iterative scheme, called Sinkhorn it-
erations [58]. For the multimarginal case, although the Sinkhorn iterations can be
generalized in a straightforward fashion [7], the complexity of the scheme increases
dramatically with the number of marginals [47]. Thus Sinkhorn iterations alone are
not sufficient to address many multimarginal problems. However, in specific settings,
structures in the cost function can be exploited in order to derive computationally
feasible methods, e.g., for Euler flows [7] and in tracking and information fusion ap-
plications [30].

Unregularized multimarginal optimal transport problems with transport cost that
decouples according to a tree structure can be equivalently formulated as a sum of cou-
pled pairwise optimal transport problems, as, for instance, tracking and interpolation
problems [9, 17, 29] and barycenter problems [3, 7, 23, 59]. Typically these problems
are solved using pairwise regularization (see, e.g., [7, section 3.2] and [8, 44, 46]).
However, we have empirically observed in some applications that the multimarginal
formulation yields favorable solutions compared to a corresponding pairwise optimal
transport estimate [30]. One main contribution of this work is to develop a framework
for solving tree-structured optimal transport problems with a multimarginal regular-
ization. For these problems, we show that the Sinkhorn algorithm can be performed
in an efficient way, requiring only successive matrix-vector multiplications of relatively
small size compared to that of the original multimarginal problem. Thus we extend
the computational results from [30] to general trees.

The entropy regularized formulation of optimal transport is connected to another
classical topic, the Schrödinger bridge problem [13, 14, 45, 48, 50]. Schrödinger was
interested in determining the most likely evolution of a particle cloud observed at
two time instances, where the particle dynamics have deviated from the expected
Brownian motion [57]. Schrödinger showed that this particle evolution can be char-
acterized as the one, out of all the theoretically possible ones, that minimizes the
relative entropy to the Wiener measure. This optimal solution may be found by solv-
ing a so-called Schrödinger system, which turns out to be tightly connected to the
Sinkhorn iterations for the entropy regularized optimal transport problem [13, 48].
This framework has been used in robust and stochastic control problems [15, 63]. A
version of the Schrödinger bridge problem that is discrete in both time and space
can be formulated by modeling the evolutions of a number of particles as a Markov
chain [34, 54]. In the infinite particle limit, the maximum likelihood solution of the
Markov process can then be approximated by solving a relative entropy problem [16].
An analogous approach has recently been used to develop a framework for modelling
ensemble flows on hidden Markov chains [37]. Other optimal transport based state
estimation problems for a continuum of agents and in continuous time have been con-
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2430 I. HAASLER, A. RINGH, Y. CHEN, AND J. KARLSSON

sidered in [11, 12, 17]. For further work on ensemble controllability and observability
see, e.g., [10, 67].

Based on [37], we extend the discrete Schrödinger bridge in [54] to trees. In
particular, we derive a maximum likelihood estimate for Markov processes defined on
the edges of a rooted directed tree. This leads to our second main result: Interestingly,
it turns out that the solution to the entropy regularized tree-structured multimarginal
optimal transport problem corresponds to the solution of the generalized Schrödinger
bridge with the same tree-structure. This generalizes the established equivalence
of the classical bimarginal entropy regularized optimal transport problem and the
Schrödinger bridge problem [48]. Moreover, this also gives an additional motivation
for using multimarginal optimal transport instead of the often used pairwise optimal
transport for tree structured problems.

This paper is organized as follows: section 2 is an introduction to the problems of
optimal transport and Schrödinger bridges. The main results are presented in section 3
and 4. In section 3 we define the tree-structured multimarginal optimal transport
problem and provide an algorithm for efficiently solving its entropy regularized version.
In section 4 we generalize the Schrödinger bridge problem to trees and show that it is
equivalent to an entropy regularized multimarginal optimal transport problem on the
same tree. Section 5 is on the discrepancy between the multimarginal and pairwise
optimal transport formulations with tree structure. A larger numerical simulation
is detailed in section 6, where the proposed framework is used to estimate ensemble
flows from aggregate and incomplete measurements. Most of the proofs can be found
in the appendix, but due to space limitations two of the proofs are deferred to the
supplementary material in [38].

2. Background. In this section we summarize some background material on
optimal transport and Schrödinger bridges. This is also used to set up the notation.
To this end, first note that throughout we let exp(·), log(·), �, and ./ denote the
elementwise exponential, logarithm, multiplication, and division of vectors, matrices,
and tensors, respectively. Moreover, ⊗ denotes the outer product. By 1 we denote a
column vector of ones, the size of which will be clear from the context.

2.1. Optimal transport. In this work we consider the discrete optimal trans-
port problem. For its continuous counterpart see, e.g., [62]. Let the vectors µ1, µ2 ∈
Rn+ describe two nonnegative distributions with equal mass. The optimal transport
problem is to find a mapping that moves the mass from µ1 to µ2, while minimizing the
total transport cost. Here the transport cost is defined in terms of a underlying cost
matrix C ∈ Rn×n+ , where Ci1,i2 denotes the cost of moving a unit mass from location
i1 to i2. Analogously, define a transport plan M ∈ Rn×n+ , where Mi1,i2 describes the
amount of mass that is moved from location i1 to i2. An optimal transport plan from
µ1 to µ2 is then a minimizing solution of

(2.1)
T (µ1, µ2) := minimize

M∈Rn×n
+

trace(CTM)

subject to M1 = µ1, MT1 = µ2.

Multimarginal optimal transport extends the concept of the classical optimal
transport problem (2.1) to the setting with a set of marginals µ1, . . . , µJ , where J ≥ 2
[7, 30, 53]. In this setting, the transport cost and transport plan in (2.1) are described
by J-mode tensors C,M ∈ Rn×n···×n+ . For a tuple (i1, . . . , iJ), the value Ci1,...,iJ

denotes the transport cost for a unit mass corresponding to the tuple, and similarly
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Mi1,...,iJ represents the amount of transported mass associated with this tuple. The
multimarginal optimal transport problem then reads

(2.2)
minimize
M∈Rn×···×n

+

〈C,M〉

subject to Pj(M) = µj for j ∈ Γ,

where 〈C,M〉 =
∑
i1,...,iJ

Ci1,...,iJMi1,...,iJ is the standard inner product, the projec-
tion on the jth marginal of M, denoted by Pj(M), is defined as

(2.3) Pj(M)ij =
∑

i1,...,ij−1,ij+1,...,iJ

Mi1,...,ij−1,ij ,ij+1,...,iJ ,

and Γ denotes an index set corresponding to the given marginals. In the original
multimarginal optimal transport formulation, constraints are typically given on all
marginals, i.e., for the index set Γ = {1, 2, . . . , J}. However, in this work we consider
the case where constraints typically are only imposed on a subset of marginals, i.e.,
Γ ⊂ {1, 2, . . . , J}. Note that the standard bimarginal optimal transport problem (2.1)
is a special case of the multimarginal optimal transport problem (2.2), where J = 2
and Γ = {1, 2}.

2.2. Entropy regularized optimal transport. Although linear, the number
of variables in the multimarginal optimal transport problem (2.2) is often too large
to be solved directly. A popular approach for the bimarginal setting to bypass the
size of the problem has been to add a regularizing entropy term to the objective. In
theory the same approach can be used also for the multimarginal case.

Definition 2.1 ( [36, Chapter 4]). Let p and q be two nonnegative vectors,
matrices, or tensors of the same dimension. The normalized Kullback–Leibler (KL)
divergence of p from q is defined as H(p|q) :=

∑
i (pi log (pi/qi)− pi + qi), where

0 log 0 is defined to be 0. Similarly, define H(p) := H(p|1) =
∑
i (pi log(pi)− pi + 1),

which is effectively the negative of the entropy of p.

Note that H(p|q) is jointly convex over p, q. For a detailed description of the KL
divergence see, e.g., [20, 21]. The entropy regularized multimarginal optimal transport
problem is the convex problem

(2.4)
minimize
M∈Rn×···×n

+

〈C,M〉+ εH(M)

subject to Pj(M) = µj for j ∈ Γ,

where ε > 0 is a regularization parameter. For the bimarginal case (2.1), where the
cost and mass transport tensors are matrices, the entropy regularized problem reads

(2.5)
Tε(µ1, µ2) := minimize

M∈Rn×n
+

trace(CTM) + εH(M)

subject to M1 = µ1, MT1 = µ2.

It is well established that the entropy regularized bimarginal optimal transport prob-
lem is connected to the Schrödinger bridge problem [13, 14, 48, 50], which is introduced
in section 2.3. More importantly, from a computational perspective, the introduction
of the entropy term in problem (2.5) allows for expressing the optimal solution M
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in terms of the Lagrange dual variables, which may be computed by Sinkhorn itera-
tions [22]. This procedure can be generalized to the setting of multimarginal optimal
transport [7].

In particular, for the multimarginal entropy regularized optimal transport prob-
lem (2.4) it can be shown that the optimal solution is of the form [30]

(2.6) M = K�U,

where K = exp(−C/ε) and where U can be decomposed as

(2.7) U = u1 ⊗ u2 ⊗ · · · ⊗ uJ with uj =

{
exp(λj/ε) if j ∈ Γ,

1 else.

Here λj ∈ Rn for j ∈ Γ are optimal dual variables in the dual problem of (2.4):

(2.8) maximize
λj∈Rn, j∈Γ

− ε〈K,U〉+
∑
j∈Γ

λTj µj ,

where U depends on the variables λj as specified by (2.7). Note that the dual variable
λj corresponds to the constraint on the jth marginal. For details the reader is referred
to, e.g., [7, 30].

The Sinkhorn scheme for finding U in (2.7) is to iteratively update uj as

(2.9) uj ← uj � µj ./Pj(K�U)

for all j ∈ Γ. This scheme may, for instance, be derived as Bregman projections [7] or
a block coordinate ascent in the dual (2.8) [30, 42, 61]. As a result, global convergence
of the Sinkhorn scheme (2.9) is guaranteed [5]. For the sake of completeness, we also
provide a result on the linear convergence rate in our presentation (see Theorem 3.5).
We also note that (2.9) reduces to standard Sinkhorn iterations,

(2.10) u1 ← µ1./(Ku2), u2 ← µ1./(K
Tu1)

for the two-marginal case (2.5). The iterations (2.10) converge linearly to an optimal
solution u1, u2, which is unique up to multiplication/division with a constant [13, 32].

The computational bottleneck of the Sinkhorn iterations (2.9) is computing the
projections Pj(M) for j ∈ Γ, which in general scales exponentially in J . In fact,
even storing the tensor M is a challenge as it consists of nJ elements. However, in
many cases of interest, structures in the cost tensors can be exploited to make the
computation of the projections feasible. In [30] this is shown on the example of cost
functions that decouple sequentially, centrally, or a combination of both. Computing
the projections requires then only repeated matrix vector multiplications. In this
work, we show that these efficient methods can be generalized to the setting where
the cost tensor decouples according to a tree structure, that is, when the marginals
of the optimal transport problem are associated with the nodes of a tree, and cost
matrices are defined on its edges (see section 3).

2.3. Schrödinger bridge problem. The Schrödinger bridge problem is to
determine the most likely evolution of a particle cloud observed at two time in-
stances [57]. In the case that the second observation cannot be explained as a Brown-
ian motion of the initially observed particle cloud, Schrödinger aimed to find the most
likely particle evolution connecting, hence bridging, the two distributions.
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A useful mathematical framework to solve this problem, however not yet devel-
oped in Schrödinger’s time, is the theory of large deviations, which studies so-called
rare events, meaning deviations from the law of large numbers [24, 25]. The probabil-
ity of these rare events approaches zero, as the number of trials goes to infinity, and
large deviation theory analyzes the rate of this decay, which can often be expressed
as the exponential of a so-called rate function [25, 28].

For a large deviation interpretation of the Schrödinger bridge [31, section II.1.3],
the particle evolutions are modelled as independent identically distributed random
variables on path space, and the Schrödinger bridge is the probability measure P on
path space that is most likely to describe the rare event of observing the two particle
distributions. Let W be the Wiener measure, which corresponds to the probability
law of the Brownian motion. Then the Schrödinger bridge P is found by minimizing
the corresponding rate function

∫
log(dP/dW)dP over all probability measures that

are absolutely continuous with respect to W and have the given particle cloud dis-
tributions as marginals. A space and time discrete Schrödinger bridge problem for
Markov chains is treated in [34, 54].

We follow the exposition in [37], where the space and time discrete Schrödinger
bridge has been derived as a maximum likelihood approximation for Markov chains.
Consider a cloud of N particles and assume that each particle evolves according to a
Markov chain. Denote the states of the Markov chain by X = {X1, X2, . . . , Xn} and
let the transition probability matrix be Aj ∈ Rn×n+ with elements Ajk` = P (qj+1 =
X`|qj = Xk), where qj denotes the state at time j. Let the vector µj describe the
particle distribution over the discrete state space X at time j for j = 1, . . . , J . As
in the optimal transport framework we define the mass transport matrix M j where
element M j

k` describes the number of particles transitioning from state k at time j to
state ` at time j + 1.

Given the distribution µj and transition probability matrix Aj , a large deviation
argument similar to the continuous setting can be used to approximate the most likely
transfer matrix M j by the minimizer of the rate function H( · | diag(µj)A

j). Assuming
that the initial and final marginal, µ1 and µJ , are given, these large deviation theoretic
considerations motivate the formulation of an optimization problem to find the most
likely mass transfer matrices M j for j = 1, . . . , J − 1 and intermediate distributions
µj for j = 2, . . . , J − 1, as

(2.11)
minimize

M[1:J−1],µ[2:J−1]

J−1∑
j=1

H(M j | diag(µj)A
j)

subject to M j1 = µj , (M j)T1 = µj+1 for j = 1, . . . , J − 1.

Indeed, this problem is equivalent to the discrete time and space Schrödinger bridge
problem in [54] (for details see [37] or section 5.1).

An extension to a hidden Markov model formulation with aggregate indirect ob-
servations of the distributions was described in [37]. In this article the framework is
extended to general tree structures, where each vertex is associated with a distribu-
tion, and each edge with a Markov process.

3. Tree-structured multimarginal optimal transport. In this section we
introduce tree-structured multimarginal optimal transport problems. For the entropy
regularized version of these problems, the projections (2.3) can be computed by only
matrix-vector multiplications. This yields an efficient Sinkhorn algorithm, which we
present in this section. Moreover, some properties of tree-structured multimarginal
optimal transport problems are discussed.
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Definition 3.1. A graph T = (V , E), with vertices V and edges E, is a tree if
it is acyclic and connected [26]. The vertices with degree 1 are called leaves, and we
denote the set of leaves by L. For a vertex j ∈ V, the set of neighbors Nj is defined as
the set of vertices that have a common edge with j. The path between two vertices j1
and jL is a sequence of edges that connect j1 and jL, such that all edges are distinct.
We also denote a path by the set of intermediate vertices.

Let T = (V , E) be a tree. In this section we consider a multimarginal optimal
transport problem where the marginals correspond to the nodes of the tree, i.e.,
V = {1, 2, . . . , J}. Assume that the cost tensor decouples as

(3.1) Ci1,...,iJ =
∑

(j1,j2)∈E

C
(j1,j2)
ij1 ,ij2

,

where C(j1,j2) ∈ Rn×n+ is a cost matrix characterizing the cost of transportation be-
tween marginal j1 and j2 for all (j1, j2) ∈ E . Since we consider an undirected tree, the
expression (3.1) should not depend on the ordering of the indices (j1, j2) in the edges.
This is achieved by simply letting C(j2,j1) = (C(j1,j2))T for (j1, j2) ∈ E . We refer
to problem (2.2) with a cost of the form (3.1) as a multimarginal optimal transport
problem on the tree T .

In the following, we consider discretized and entropy regularized multimarginal
optimal transport with tree structure. The transport plan can then be expressed as
M = K�U, where K = exp(−C/ε) (cf. (2.6)). Due to the structured cost (3.1), this
tensor decouples as

(3.2) Ki1,...,iJ =
∏

(j1,j2)∈E

K
(j1,j2)
ij1 ,ij2

with the matrices defined as K
(j1,j2)
ij1 ,ij2

= exp(−C(j1,j2)
ij1 ,ij2

/ε) for (j1, j2) ∈ E . Thus, it

holds that K(j2,j1) = (K(j1,j2))T for (j1, j2) ∈ E . We show that for these problems
the projections (2.3) can therefore be computed by successive matrix vector mul-
tiplications. As the computation of the projections accounts for the bottleneck of
the Sinkhorn iterations (2.9), this yields an efficient algorithm for solving entropy
regularized multimarginal optimal transport problems with tree structure.

We first illustrate the computation of the projections on a small example.

Example 1. Consider the tree T = (V , E) with vertices V = {1, 2, 3, 4} and edges
E = {(1, 2), (2, 3), (1, 4)} as depicted in Figure 1. Assume that the cost in problem

(2.4) decouples as Ci1,i2,i3,i4 = C
(1,2)
i1,i2

+C
(2,3)
i2,i3

+C
(1,4)
i1,i4

, where C(j1,j2), for (j1, j2) ∈ E ,
are cost matrices defined on the respective edges. The transport tensor is then of the
form M = K�U, where K = exp(−C/ε) and U = u1⊗u2⊗u3⊗u4. Thus, denoting

1

4

2 3α(1,2)

α(2,1)

α(2,3)

α(1,4)

Fig. 1. Illustration of the tree in Example 1.
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K(j1,j2) = exp(−C(j1,j2)/ε) it holds that Ki1,i2,i3,i4 = K
(1,2)
i1,i2

K
(2,3)
i2,i3

K
(1,4)
i1,i4

. Hence, the
projection on the first marginal of K�U can be computed as

P1(K�U)i1=
∑
i2,i3,i4

Ki1,i2,i3,i4Ui1,i2,i3,i4 = (u1)i1
∑
i2,i3,i4

K
(1,2)
i1,i2

K
(2,3)
i2,i3

K
(1,4)
i1,i4

(u2)i2(u3)i3(u4)i4 .

The sum can be computed as successive matrix-vector multiplications, starting from
the leaves of the tree. In particular, denote the products starting in the two leaves∑
i3

K
(2,3)
i2,i3

(u3)i3 =
(
K(2,3)u3

)
i2
=:(α(2,3))i2,

∑
i4

K
(1,4)
i1,i4

(u4)i4 =
(
K(1,4)u4

)
i1
=:
(
α(1,4)

)
i1
.

On the lower branch of the tree, we have thereby brought the expression to a vector
indexed by i1. On the upper branch, another multiplication, corresponding to the
edge (1, 2), is required. This leads to defining∑

i2

K
(1,2)
i1,i2

(
u2 � α(2,3)

)
i2

=
(
K(1,2)(u2 � α(2,3))

)
i1

=:
(
α(1,2)

)
i1
.

The full expression for the projection thus reads

P1(K�U) = u1 �K(1,2)(u2 �K(2,3)u3)�K(1,4)u4 = u1 � α(1,2) � α(1,4).

This thus allows for decomposing the computation of P1(K�U) into the three parts
u1, α(1,2), α(1,4), which represent the contributions from node 1; from nodes 2 and 3;
and from node 4, respectively. Analogously, the projection on the second marginal is
computed as P2(K�U) = u2 � α(2,3) � α(2,1), where α(2,1) := K(2,1)(u1 � α(1,4)). In
particular, note here that the tuple (j, k) in α(j,k) is ordered. For instance, it holds
that α(1,2) 6= α(2,1). The other marginals can be computed similarly by performing
the corresponding matrix vector products, starting from the leaves of the tree.

Illustratively, the procedure in Example 1 for projecting the information of the
full tensor down to one marginal can be understood as passing down the information
from all branches of the tree to the desired vertex, where we interpret the vectors uj
as local information in each node. Starting from the leaves of the tree, this is done
according to the following rules:

1. Information is passed down the edge (j1, j2) ∈ E by multiplication with the
matrix K(j1,j2).

2. Information is collected in the node j ∈ V by elementwise multiplication of
the vector uj , which contains local information, with information passed down
from the connected branches.

In this interpretation the vector α(j,k) can be understood as the collected information
that is sent from node k to node j. The following theorem shows that these rules hold
for any tensor of the form K�U with U = u1⊗ · · ·⊗uj and K decoupling according
to an arbitrary tree.

Theorem 3.2. Let K = exp(−C/ε) with C as in (3.1) for the tree T = (V , E),
and let U = u1 ⊗ u2 ⊗ · · · ⊗ uJ . Define K(j1,j2) = exp(−C(j1,j2)/ε) for (j1, j2) ∈ E.
Then the projection on the jth marginal of K�U is of the form

Pj(K�U) = uj �
⊙
k∈Nj

α(j,k).

The vectors α(j,k), for all ordered tuples (j, k) ∈ E, can be computed recursively starting
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2436 I. HAASLER, A. RINGH, Y. CHEN, AND J. KARLSSON

in the leaves of the tree according to

(3.3)

α(j,k) = K(j,k)uk for k ∈ L,

α(j,k) = K(j,k)
(
uk �

⊙
`∈Nk\{j}

α(k,`)

)
for k /∈ L.

Proof. See the appendix.

Analogously to the marginal projections (2.3), let Pj1,j2(M) denote the bimarginal
projections on marginals j1 and j2 as Pj1,j2(M)ij1 ,ij2 =

∑
i1,...,iJ\{ij1 ,ij2}

Mi1,...,iJ .

These pairwise projections can be expressed similarly to the marginal projections in
Theorem 3.2.

Proposition 3.3. Let the assumptions in Theorem 3.2 hold, let j1, jL ∈ V, and
let j1, j2, . . . , jL denote the path between j1 and jL. Then the pairwise projection of
K�U on the marginals j1 and jL, denoted by Pj1,jL(K�U), is

(3.4)

(
L−1∏
`=1

diag

(
uj` �

⊙
k∈Nj`

k/∈{j1,...,jL}

α(j`,k)

)
K(j`,j`+1)

)
diag

(
ujL �

⊙
k∈NjL\{jL−1}

α(jL,k)

)
,

where α(j1,j2), for (j1, j2) ∈ E, are defined as in Theorem 3.2.

Proof. See the supplementary material [38].

Multimarginal optimal transport problems on some specific trees have previously
been introduced in [30]. It is worth noting that the expressions for the projections of
the mass tensor M for the examples in [30] are special cases of the results in Theo-
rem 3.2 and Proposition 3.3. For instance, in tracking problems each marginal in the
optimal transport problem is associated with a time instance, and the corresponding
graph is a path graph, as in [30, sections 3.1 and 5.1]. Sensor fusion applications
can be cast as barycenter problems, which are described by star-shaped graphs, as
in [30, sections 3.2 and 5.2]. Moreover, a combination of these two applications is the
tracking of barycenters over time, which is described by a graph as in Figure 6(a)
(see [30, sections 3.3 and 5.3]).

The expressions for the projections in Theorem 3.2 can be used to solve a multi-
marginal optimal transport problem, with cost structure according to the tree T =
(V , E), by a Sinkhorn method as in (2.9). To this end, without loss of generality,
we consider tree-structured multimarginal optimal transport problems (2.2), where
the constraints are given on the set of leaves, i.e., Γ = L. The following proposition
shows that if a marginal is given for a node that is not a leaf, then the problem can
be decomposed into smaller problems on subtrees, where the marginals are known
exactly on the set of leaves of the subtrees.

Proposition 3.4. Consider problem (2.4) with constraint set Γ and cost struc-
tured according to the tree T with leaves L. The following holds:

1. If there is a marginal k ∈ Γ, but k /∈ L, then the solution to (2.4) can be found
by solving problems of form (2.4) on the subtrees of T , which are obtained by
cutting T in node k.

2. If there is a marginal ` ∈ L, but ` /∈ Γ, then the solution to (2.4) can be found
by solving the problem on the subtree of T that is obtained by removing the
node ` and its adjoining edge from T .

Proof. See the appendix.
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Algorithm 3.1 Sinkhorn method for the tree-structured multimarginal optimal
transport problem.

Given: Tree T = (V, E) with leaves L = {1, 2, . . . , |L|};
Initial guess uj for j ∈ L
for all ordered tuples (j1, j2) ∈ E do

Initialize α(j1,j2) according to (3.3)
end for
Initialize j ∈ L
while Sinkhorn not converged do
uj ← µj ./

⊙
k∈Nj α(j,k)

for (j1, j2) ∈ E on the path from j to (j + 1 mod |L|) do
Update α(j1,j2) according to (3.3)

end for
j ← j + 1 mod |L|

end while
return uj for j ∈ L

Note that since Γ = L, the factors uj , for j ∈ V \ L, can be neglected in Theo-
rem 3.2 and Proposition 3.3. Moreover, when applying the iterative scheme (2.9), in
each iteration step some of the factors α(j1,j2) do not change. Specifically, between the
update of uj1 and uj2 only the factors on all edges that lie on the path between nodes
j1 and j2 need to be updated. The full method for solving tree-structured multi-
marginal optimal transport problems is summarized in Algorithm 3.1. Moreover, the
algorithm has in fact linear convergence speed.

Theorem 3.5. Let {ukj }j∈L be the set of vectors after the kth iteration in the

while-loop in Algorithm 3.1. Then the sequence {ukj }j∈L converges at least linearly to
an optimal solution of (2.8), as k →∞.

Proof. Algorithm 3.1 implements the Sinkhorn iterations (2.9), which are a block
coordinate ascent in the dual multimarginal optimal transport problem (2.8) [30].
Thus, the result follows from [49, Application 5.3 and Theorem 2.1].

It should be noted that computing the marginals Pj(K �U) by summing over
the indices as defined in (2.3) scales exponentially in the number of marginals J of
the tensor K�U. Thus, the complexity of one Sinkhorn update in (2.9) is in general
of the order O(nJ). Algorithm 3.1 utilizes the result in Theorem 3.2 in order to
exploit the graph-structure in the tensor K � U to compute the projections. This
decreases the computational complexity of the Sinkhorn iterations substantially. In
particular, if the direct path between node j − 1 and node j is of length p, then
the update of the vector uj requires p matrix-vector multiplications. The complexity
of one update is thus of the order O(pn2). As a rule of thumb the leaves in the
underlying tree T should thus be labeled such that the paths between any two nodes
that are updated successively are short. In case there are additional structures in
the cost matrices C(j1,j2), for (j1, j2) ∈ E , e.g., they describe the squared Euclidean
distance, the cost of the matrix-vector multiplications can be decreased further (see,
e.g., [30, Remark 4], [42, Remark 3.11]).

Note that Proposition 3.4.1 implies that if the tensor K is normalized to be a dis-
crete probability distribution, it defines a Markov random field (see also [39]). Every
Markov process is also a reciprocal process [40], which were first introduced in the con-
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text of studying Schrödinger bridges [41]. Recall that the maximum likelihood estima-
tion problem for a Markov chain in section 2.3 is equivalent to a discrete Schrödinger
bridge. This suggests a connection between the multimarginal optimal transport prob-
lem and the maximum likelihood estimation problem in section 2.3. In fact, under
certain conditions a generalization of the Markov chain problem (2.11) to trees, which
is introduced in section 4.1, yields the same solution as the regularized multimarginal
optimal transport problem (2.4) on the same tree, as we will see in section 4.2.

4. Multimarginal optimal transport vs. Schrödinger bridge with tree-
structure. In this section, we extend the Schrödinger bridge problem, which is de-
fined on a path tree, to a formulation valid on an arbitrary tree graph. We then show
that under certain conditions this problem yields a solution which is equivalent to the
solution of the entropy regularized multimarginal optimal transport problem (2.4) on
the same tree, thus extending the well-known equivalence from the optimal transport
problem and the Schrödinger bridge problem on a path tree [13, 14, 48, 50].

4.1. Tree-structured Schrödinger bridges. The notion of time of the Markov
chain introduces a direction to the Schrödinger bridge problem, which can be seen
directly in the optimization problem (2.11). This directionality needs to be taken into
account when extending the problem to a general tree. To this end, we introduce the
following notation: Consider a tree Tr = (V, Er) that is rooted in a vertex r ∈ L, i.e.,
one of the leaves is defined to be the root of the tree. This defines a partial ordering
on the tree, and we write k < j if node k lies on the path between r and node j.
To formulate the following results, we assume that all edges are directed according to
this partial ordering, i.e., j1 < j2 for all (j1, j2) ∈ Er. For a vertex j ∈ V \r, its parent
is then defined as the (unique) vertex p(j) such that (p(j), j) ∈ Er. In the following,
without loss of generality we denote the root vertex by r = 1.

Let A(j1,j2) be the probability transition matrix on edge (j1, j2) ∈ Er. Then, the
Schrödinger bridge problem in (2.11) may be naturally extended to the tree structure
as

(4.1)

minimize
M(j1,j2), (j1,j2)∈Er,

µj , j∈V\Γ

∑
(j1,j2)∈Er

H
(
M (j1,j2) | diag(µj1)A(j1,j2)

)
subject to M (j1,j2)1 = µj1 , (M (j1,j2))T1 = µj2 for (j1, j2) ∈ Er.

Moreover, we can assume without loss of generality that Γ = L, by similar reasoning
as in section 3. The extension of (2.11) to (4.1) builds on the large deviation principle
in [37, Proposition 1], which requires that an initial distribution is known. This is why
we restrict our analysis to the case when the directed tree Tr(V , Er) is rooted in a leaf.

Similarly to the multimarginal optimal transport problem, the optimal solution
to (4.1) can be expressed in terms of its dual variables. In fact this is a natural
generalization of the forward and backward propagation factors in the Schrödinger
system [34, 54] to tree graphs.

Theorem 4.1. Let A(j1,j2) be probability transition matrices for (j1, j2) ∈ Er with
strictly positive elements and assume that 1Tµj1 = 1Tµj2 for all leaves j1, j2 ∈ L.
Then an optimal solution to (4.1) can be written as

µj = ϕj � ϕ̂j ,
M (j1,j2) = diag

(
ϕ̂j1 � ϕj1\j2

)
A(j1,j2)diag (ϕj2)

for a set of vectors ϕj, ϕ̂j, for j ∈ V, and ϕj1\j2 for (j1, j2) ∈ Er.
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Moreover, there exists a set of vectors vj for j ∈ Γ such that the vectors ϕj, ϕ̂j,
and ϕj1\j2 can be written as

ϕj =


vj if j ∈ L \ {1}⊙
k:(j,k)∈Er

A(j,k)ϕk else,(4.2)

ϕ̂j =

{
1./v1 if j = 1

(A(p(j),j))T (ϕ̂p(j) � ϕp(j)\j) else,
(4.3)

and ϕj1\j2 = ϕj1 ./(A
(j1,j2)ϕj2).

Proof. See the appendix.

Note that the vectors vj for j ∈ L in Theorem 4.1 satisfy the nonlinear equations
ϕ1./v1 = µ1 and vj � ϕ̂j = µj for j ∈ L \ {1}. When considering the Schrödinger
bridge, which is the special case with two leaves, these equations correspond to the
boundary conditions in the Schrödinger system [54, Theorem 4.1]. The factors ϕj and
ϕ̂j can be seen as propagating information from the leaves to the other nodes in a
similar manner as α(j,k) in Theorem 3.2.

Next, we show that the tree-structured Schrödinger bridge problem (4.1) is inde-
pendent of the choice of root r ∈ L. This follows as a corollary to the next proposition.

Proposition 4.2. Let Tr = (V , Er) be a rooted directed tree with root r ∈ L.
Then problem (4.1) is equivalent to the problem

(4.4)

minimize
M(j1,j2),(j1,j2)∈Er,

µj ,j∈V\Γ

∑
(j1,j2)∈Er

H
(
M (j1,j2) |A(j1,j2)

)
−
∑
j∈V\L

(deg(j)− 1)H(µj)

subject to M (j1,j2)1 = µj1 , (M (j1,j2))T1 = µj2 for (j1, j2) ∈ Er.

Proof. See the appendix.

Corollary 4.3. Let Tr = (V, Er) be a directed tree with root r ∈ L and Tr̂ =
(V , Er̂) be a directed tree with root r̂ ∈ L with the same strucure as Tr and the edges
on the path between r and r̂ reversed. Then, the solution to (4.1) on Tr and on Tr̂
are equivalent in the sense that the marginal distributions µj for j ∈ V and transport
plans M (j1,j2) for (j1, j2) ∈ Er ∩ Er̂ are the same, and on the reversed edges it holds
that M (j2,j1) = (M (j1,j2))T .

Proof. See the supplementary material [38].

4.2. Equivalence of problems (2.4) and (4.1) for tree-structures. We
will now verify that the generalized Schrödinger bridge (4.1) on a rooted tree Tr is
equivalent to an entropy regularized multimarginal optimal transport problem (2.4)
on an undirected tree T with the same structure as Tr. In particular, given positive
transition probability matrices A(j1,j2) for (j1, j2) ∈ Er and a regularization parameter
ε, there is a natural choice of cost matrices C(j1,j2) for (j1, j2) ∈ E , so that the
minimizers to both problems represent the same solution. For the original bimarginal
optimal transport problem (2.1) the equivalence between entropy regularized optimal
transport and the Schrödinger bridge problem has been studied extensively [13, 14,
48, 50].

Remark 1 (cf. [37, Remark 1]). In the discrete setting, it is easy to see that with
a cost matrix defined as C = −ε log(A), the entropy regularized optimal transport
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problem (2.5) is equivalent to the bimarginal Schrödinger bridge (2.11), by noting
that the objective can then be written as

trace(CTM) + εH(M) =
n∑

i,j=1

ε

(
Mij log

(
Mij

Aij

)
−Mij + 1

)
= εH (M |A) .

Both bimarginal problems thus yield the same optimal solution M .

We will show that this equivalence holds true even for the multimarginal case
with tree-structured cost.

Theorem 4.4. Let Tr = (V, Er) be a rooted directed tree with root r = 1 ∈ L, let
T = (V, E) be its undirected counterpart, and let µj for j ∈ L be given marginals. Let
ε > 0 and C(j1,j2) be such that

K(j1,j2) = A(j1,j2) for (j1, j2) ∈ Er.

Let M = K � U be the solution to the entropy regularized multimarginal optimal
transport problem (2.4) on T , where K and U are defined as in Theorem 3.2. More-
over, let µj for j ∈ V, and M (j1,j2) for (j1, j2) ∈ Er, be the solution to the generalized
Schrödinger bridge (4.1) on Tr. Then,

Pj(M) = µj for j ∈ V ,
P(j1,j2)(M) = M (j1,j2) for (j1, j2) ∈ Er.

Furthermore, if vj for j ∈ L are the corresponding vectors in Theorem 4.1, then it
holds that

uj =

{
1./v1 if j = 1,

vj otherwise.

Proof. See the appendix.

In particular, given a maximum likelihood problem (4.1) structured according
to the tree Tr = (V, Er), a corresponding multimarginal optimal transport problem
can be formulated by definining the cost matrices as C(j1,j2) = −ε log(A(j1,j2)) for
all (j1, j2) ∈ Er. Vice versa, given an entropy regularized multimarginal optimal
transport problem (2.4) with cost structured according to the tree T = (V , E), a
corresponding maximum likelihood problem can be formulated by transforming the
undirected tree into a rooted tree Tr = (V, Er), where r ∈ L, and defining the matrices
A(j1,j2) = exp(−C(j1,j2)/ε) for all (j1, j2) ∈ Er. However, if these matrices are not row-
stochastic, they cannot be interpreted as transition probability matrices of a Markov
process.

Remark 2. For a nonnegative matrix A with at least one positive element in each
row, define the vector b = 1./A1. Then the matrix Â = diag(b)A is row stochastic.
Note that we can write H(M | diag(µ)A) = H(M | Â) + H(µ | b). For a given rooted
tree Tr = (V, Er) assume that there is a set of matrices A(j1,j2) for (j1, j2) ∈ Er,
which are not necessarily row-stochastic, but are such that for every j1 ∈ Er there is
a vector bj1 such that it holds that bj1 = 1./A(j1,j2)1 for all j2 such that (j1, j2) ∈ Er.
Then, according to Proposition 4.2, the objective function of the maximum likelihood
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estimation problem of a Markov process on Tr in (4.1) may be written as

(4.5)
∑

(j1,j2)∈Er

H
(
M (j1,j2) | Â(j1,j2)

)
−
∑
j∈V\L

(deg(j)− 1)H(µj | bj).

The Sinkhorn scheme (2.9) can equivalently be formulated in terms of the notation
from the maximum likelihood estimation problem in Theorem 4.1. Given an initial
set of positive vectors vj for j ∈ L, the updates are then expressed as

(4.6)
v1 =ϕ1./µ1,

vj =µj ./ϕ̂j for j ∈ L \ 1,

where ϕ1 is computed as in (4.2) before each update of v1, and ϕ̂j is computed as
in (4.3) before updating vj for each j ∈ L \ 1. This can be done efficiently, and by
storing and reusing intermediate results appropriately, this algorithm is equivalent
to Algorithm 3.1. It was shown that the classical Sinkhorn iterations are a block
coordinate ascent in a Lagrange dual problem [42, 61]. In this sense, the scheme (4.6)
can be understood as Sinkhorn iterations even for the problem (4.1).

Proposition 4.5. Let vj, for j ∈ L, be an initial set of positive vectors. It-
eratively performing the updates (4.6) corresponds to a block coordinate ascent in a
Lagrange dual problem to (4.1).

In the light of Proposition 4.5 it is not surprising that the algorithm presented
in [37], for the special case where the tree represents a hidden Markov chain, is of the
form (4.6), where the vectors ϕj and ϕ̂j are constructed according to the special tree
structure.

Remark 3. The tree-structured optimal transport problem, i.e., problem (2.2)
where the cost is of the form (3.1) for a tree-graph G = (V , E), can be formulated as
a sum of pairwise optimal transport costs

(4.7) minimize
µj ,j∈V\Γ

∑
(j1,j2)∈E

T (j1,j2)(µj1 , µj2),

where T (j1,j2)(·, ·) is the optimal transport problem (2.1) with cost matrix C(j1,j2) for
(j1, j2) ∈ E . In particular, both problems have common optimal solutions which are
identical in the sense that the projections of an optimal tensor M in (2.2) coincide
with a set of optimal transport plans in (4.7) in the sense that P(j1,j2)(M) = M (j1,j2)

for (j1, j2) ∈ E .
This, however, cannot be generalized to graphs G = (V, E) that contain cycles. A

counterexample can be found for a complete graph with three nodes (Figure 2). Let
the cost matrices be

C(1,2) = C(2,3) = J =

[
0 1
1 0

]
, C(1,3) = I =

[
1 0
0 1

]
,

µ1

µ2

µ3

M (1,2) M (2,3)

M (1,3)

Fig. 2. Illustration of the cyclic graph in Remark 3.
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where µ1 = [1, 1]T and Γ = {1}. The unique optimal solution to (4.7) with these

parameters is µ2 = µ3 =
[
1 1

]T
, M (1,2) = M (2,3) = I, M (1,3) = J, and the

objective value is 0. However, note that the corresponding multimarginal cost tensor

given by Ci1,i2,i3 = C
(1,2)
i1,i2

+ C
(1,3)
i1,i3

+ C
(2,3)
i2,i3

is elementwise strictly positive, and thus
the multimarginal problem cannot attain the value 0. In fact, there is no tensor
M ∈ R2×2×2

+ that is consistent with these projections P1,2(M) = P2,3(M) = I and
P1,3(M) = J .

Here we have illustrated a fundamental difficulty that must be handled when ex-
tending tree-graphs to graphs with cycles. Thus, naively extending the Schrödinger
bridge from trees to general graphs by defining transition probability matrices
A(j1,j2) = exp(−C(j1,j2)/ε) for all (j1, j2) ∈ E and solving (4.1) does not yield an
equivalence result with a multimarginal optimal transport problem as in Theorem 4.4.

5. Multimarginal vs. pairwise regularization. Another natural way to de-
fine an optimal transport problem on the tree T is to minimize the sum of all bi-
marginal transport costs on the edges of T , as in (4.7). In fact, the unregularized
multimarginal optimal transport problem (2.2) structured according to T = (V, E) is
equivalent to this pairwise problem. An alternative computational approach to the
one taken in this paper is thus to regularize each term in the sum of (4.7) by an entropy
term. The entropy regularized pairwise optimal transport problem on T is then

(5.1) minimize
µj ,j∈V\Γ

∑
(j1,j2)∈E

T (j1,j2)
ε (µj1 , µj2),

where T
(j1,j2)
ε (·, ·) is defined as the regularized bimarginal optimal transport problem

(2.5) with cost matrix C(j1,j2). In particular, it is common to formulate barycenter
problems in this pairwise regularized manner [7, 8, 23, 44, 46, 59]. Recently, we have
empirically observed that in some applications the barycenter problem with multi-
marginal regularization as in (2.4) gives better results compared to the pairwise reg-
ularization in (5.1) (see [30, section 6.3]). Therein solutions using the multimarginal
regularization are less smoothed out compared to the pairwise regularization. In the
following we investigate the difference between the two problems. In particular, we
show that the latter is not equivalent to the generalized Schrödinger bridge (4.1).

Consider a rooted version of the tree, denoted Tr = (V , Er), where r ∈ L. In the
case that A(j1,j2) = K(j1,j2) for all (j1, j2) ∈ Er, the multimarginal optimal transport
problem has the same solution as problem (4.4). Now note that using Proposition 4.2
this problem can be written as

(5.2) minimize
µj ,j∈V\Γ

∑
(j1,j2)∈E

T (j1,j2)
ε (µj1 , µj2)−

∑
j∈V\L

(deg(j)− 1)H(µj).

Thus, the generalized Schrödinger bridge problem (4.1), or equivalently (5.2), is not
equivalent to the pairwise regularized optimal transport problem (5.1), unless for the
trivial case of a tree with only two vertices. Moreover, we can see from (5.2) that the
multimarginal optimal transport problem penalizes not only the transport cost be-
tween the marginals, but in addition favors marginal distributions with low entropy.1

One can thus expect less smoothed out distributions when solving the multimarginal
optimal transport problem, which is desirable in many applications, such as local-
ization problems [30] and computer vision applications [59]. Solving tree-structured

1Recall that the definition of H(µj) essentially corresponds to the negative of the entropy of µj .
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µ1 µ2 µJ
M (1,2)

A1

M (2,3)

A2

M (J−1,J)

AJ−1

Fig. 3. Illustration of the linear path tree in section 5.1.

problems by using multimarginal regularization thus has some advantages as com-
pared to pairwise regularization. First, it yields less smoothed out solutions, and
second it preserves the connections to the Schrödinger bridge problem. Finally, em-
pirical study suggests that the multimarginal problem is better conditioned compared
to the pairwise problem, which allows for smaller values of the regularization param-
eter ε, while still yielding a numerically stable algorithm. We give empirical evidence
for this behavior in section 5.2.

The solution of the pairwise optimal transport problem (5.1) is compared to the
solution of the two equivalent problems (2.4) and (4.1) on the example of a path graph
in section 5.1 and on a more complex tree in section 5.2.

5.1. The discrete time Schrödinger bridge problem. Consider a path tree
Tr = (V, Er), where V = {1, 2, . . . , J} and Er = {(j, j+1)|j = 1, . . . , J−1}, as sketched
in Figure 3. Let Aj denote the probability transition matrix on (j, j + 1) ∈ Er. This
model corresponds to a Markov chain of length J . Assume that the distributions on
the leaves j = 1 and j = J are known. The most likely particle evolutions between
them are then found by solving (2.11). Following [37], we see that this problem is
equivalent to the discrete time and discrete space Schrödinger bridge in [54]. Assume
that the distributions µj , for j = 1, . . . , J , are strictly positive, and define the row
stochastic matrices Āj = diag(µj)

−1M j for j = 1, . . . , J . In terms of these matrices
problem (2.11) reads

(5.3)
minimize

Ā[1:J−1],µ[2:J−1]

J−1∑
j=1

n∑
i=1

(µj)iH
(
Āji· | A

j
i·

)
subject to Āj1 = 1, µj+1 = (Āj)Tµj for j = 1, . . . , J − 1.

Here Ai· denotes the ith row of A. Problem (5.3) is exactly the formulation of a
Schrödinger bridge over a Markov chain from [54, equation (24)]. In [54] it is shown
that a unique solution to a corresponding Schrödinger system exists if µJ is a strictly
positive distribution and the matrix

∏J−1
j=1 A

j has only positive elements. The solution
to the Schrödinger system may be obtained as a fixed point iteration [34], which is
linked to the Sinkhorn iterations for entropy regularized optimal transport problems.
We recall from [37] that the optimization problem (5.3) is nonconvex, whereas the
equivalent formulation (2.11) is convex.

We note that with cost matrices defined as Cj = −ε log(Aj) for j = 1, . . . , J − 1,
the discrete Schrödinger bridge problem may be written as

minimize
µ2,...,µJ−1

J−1∑
j=1

T (j,j+1)
ε (µj , µj+1)−

J−1∑
j=2

H(µj).

In comparison to the pairwise optimal transport problem on the path graph T , the
Schrödinger bridge thus favors intermediate distributions with lower entropy, resulting
in less smoothed out solutions. We illustrate this behavior for a path tree Tr =
(V , Er) with vertices V = {1, 2, . . . , 6}, and where the initial and final distribution
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(a) ε = 10−2 (b) ε = 5 · 10−3 (c) ε = 10−3 (d) ε = 5 · 10−4

Fig. 4. Solutions to the multimarginal and pairwise entropy regularized optimal transport prob-
lem on a path graph for varying regularization parameter ε.

(a) Tree for the exam-
ple in section 5.2.

(b) Pairwise optimal
transport, ε = 2 · 10−3

(c) Multimarginal opti-
mal transport, ε = 2 ·
10−3

(d) Multimarginal opti-
mal transport, ε = 4 ·
10−4

Fig. 5. Estimated marginals of the pairwise (b) and multimarginal (c), (d) optimal transport
solutions on the tree in (a).

are given as µ1(x) = exp(−(x−0.2
10 )2) and µJ(x) = exp(−(x−0.8

10 )2), and the cost
function is defined as the Euclidean distance. The results for problem (5.3) and
problem (5.1) are compared for different values of the regularization parameter ε in
Figure 4. Both optimal transport solutions describe a smooth way of shifting the
mass from distribution µ1 to µJ . The larger the regularization parameter ε is chosen,
the more smoothed out are the intermediate solutions to both problems. However,
for each value of ε the multimarginal optimal transport solution is substantially less
smoothed than the corresponding pairwise optimal transport solution.

5.2. Optimal transport with tree-structure. In this section we compare the
entropy regularized multimarginal and pairwise optimal transport solutions on a more
general tree. Consider the tree T = (V , E) illustrated in Figure 5(a) with 15 nodes,
each representing a 50×50 pixel image. The marginal images on the 8 leaves, colored
in gray, are known. Each edge on the tree T is associated with a cost function defined
by the Euclidean distance between any two pixels. Using this choice of cost function
in the corresponding optimal transport problems yields smooth translations in power
for the intermediate marginals.

We solve the entropy regularized pairwise optimal transport problem (5.1) with
regularization parameter ε = 2 · 10−3 on T . The solution can be seen in Figure 5(b).
Compared to the pairwise optimal transport estimate, the solution to the entropy
regularized multimarginal optimal transport problem (2.4) on the same tree T and
with the same regularization parameter ε is significantly sharper and less smoothed
out (see Figure 5(c)). For the pairwise optimal transport problem, the method di-
verges with a smaller regularization parameter, e.g., ε = 10−3. In contrast, for the
multimarginal formulation the regularization parameter can be decreased further, still
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µ1 µ2 µτ

Φ1,1 Φ1,S Φ2,1 Φ2,S Φτ,1 Φτ,S

M1 M2 Mτ−1

D1,1 D1,SD2,1 D2,S Dτ,1 Dτ,S

(a) Illustration of the Markov model. (b) Network and sensors.

Fig. 6. Ensemble flow estimation example in section 6.

yielding a numerically stable algorithm. We have found that the method is still stable
for a regularization parameter of ε = 4 · 10−4, which results in very clear estimates on
the intermediate nodes.

6. Estimating ensemble flows on a hidden Markov chain. We consider
the problem of tracking an ensemble of agents on a network based on aggregate
measurements from sensors distributed around the network. This is similar to [37],
where ensemble flows of indistinguishable agents have been estimated as the maximum
likelihood solution on a hidden Markov chain. The present work generalizes this
method and provides an algorithm for solving the problem introduced therein. In
particular, the framework in [37] is a special case of the method in Theorem 4.1 and
can therefore be solved with Algorithm 3.1. Herein, we study different observation
models and robustness of the estimates with respect to the number of agents.

Consider a graph G = (VG , EG) with vertices VG and edges EG . Let the set of
nodes VG be the set of states of a Markov model with transition probability matrix
At ∈ Rn×n, where n = |VG |, for t = 1, . . . , τ−1. We simulate a finite number of agents
to evolve according to this Markov model for a number of time steps t = 1, . . . , τ .
Let µt ∈ Rn denote the distribution of agents over the set of states for the times t =
1, . . . , τ . An observation model is represented by the detection probability matrices
Bs ∈ Rn×m for s = 1, . . . , S, where m is the size of the observation space and S
denotes the number of uncoupled observations at each time point. We then estimate
the ensemble evolution as the solution of

minimize
M[1:τ−1],D[1:τ],[1:S],µ[1:τ]

τ−1∑
t=1

H(M t | diag(µt)A
t) +

τ∑
t=1

S∑
s=1

H(Ds,t | diag(µt)B
s)

subject to M t1 = µt−1, (M t)T1 = µt, Dt,s1 = µt, (Dt,s)T1 = Φt,s

for t = 1, . . . , τ, and s = 1, . . . , S.

The tree corresponding to the Markov model (6.1) is sketched in Figure 6(a). This
optimization problem is similar to the one in [37], but therein the initial distribution
of agents, i.e., the marginal µ1, is assumed to be known.

In the following we consider a number of N agents evolving on the network dis-
played in Figure 6(b) with n = 100 nodes and 180 edges. Figure 6(b) also shows the
location of the NS = 15 sensors. In a first step, we compute the discrete Schrödinger
bridge (2.11) between the distribution µ1, where all agents are in node 1, and the
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(a) N = 10 agents. (b) N = 100 agents. (c) N = 1000 agents.

Fig. 7. True ensemble flow and estimates with the two observation models for a varying number
of agents.

distribution µτ , where all agents are in node 100, with the random walk on G as a
prior. The resulting particle evolutions M t, for t = 1, . . . , τ − 1, in (2.11) define the
transition probability matrices Āt = diag(µt)

−1M t, for t = 1, . . . , τ − 1, as in (5.3),
used to simulate a number of N agents with initial distribution µ1. By construction,
the final distribution is then µτ .

We consider two observation models, one where the sensors make uncoupled mea-
surements, similar to the example in [37], and one where the sensors are coupled
and form a joint measurement. In the uncoupled setting, we consider an observation
space of two states for each sensor, where one state denotes that an agent is detected
and the other one that the agent is undetected by the sensor. Hence, we define an
observation probability matrix Bs ∈ Rn×2 for each sensor s = 1, . . . , S = NS , where
the probability for an agent on node i to be detected by the sensor s is defined as
Bsi1 = min(0.99, 2e−ds,i), where ds,i denotes the Euclidean distance between the loca-
tion of sensor s and the node i. Consequently the probability of not being detected
is Bsi2 = 1 − Bsi1. For the coupled observation model, the observation space consists
of all possible sets of sensors that detect a given agent, i.e., all subsets of the set
{1, . . . , NS}. The size of the observation space is thus 2NS , and there is only one
observation at each time instance, i.e., S = 1. Hence, we define an observation prob-

ability matrix Bjoint ∈ Rn×2S , where the probability for an agent in node i to be
detected by exactly the set S of sensors is given by (

∏
s∈SB

s
i1)(
∏
s/∈SB

s
i2).

We solve the multimarginal optimal transport problem corresponding to (6.1)
with assumed probability transition matrix A describing a random walk on G and
observation probability matrices Bs for the two described observation models. The
results for both observation models are compared for N ∈ {10, 100, 1000} agents in
Figure 7, where the estimated number of agents in each node is plotted as a circle
with size corresponding to the log-scaled weigthed number of agents in that node.
In Figure 7(a), one can see that for N = 10 agents the coupled estimate localizes
the position of the agents slightly better than the uncoupled estimate. However, this
effect decreases with an increasing number of agents, as the evolution of a single agent
has less influence on the empirical distribution of agents. Already from a number of
N = 100 agents the uncoupled estimate is competitive with the coupled estimate,
albeit relying on significantly less information (cf. Figure 7(b)). For an ensemble of
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N = 1000 agents one can hardly see any difference between the two estimates, as
shown in Figure 7(c).

Note that the number of observations at each time instance for the uncoupled
estimate is only of the size 2NS = 30, whereas the number of coupled observations is
2NS = 32768. The improved observation model thus comes at an increased computa-
tional cost, which is exponential in the number of sensors, and becomes infeasible for
larger numbers of sensors.

7. Conclusion. In this work we consider multimarginal optimal transport prob-
lems with cost functions that decouple according to a tree, and we show that the en-
tropy regularized formulation of this problem is equivalent to a generalization of a time
and space discrete Schrödinger bridge defined on the same tree. Moreover, we derive
an efficient algorithm for solving this problem. We also compare the multimarginally
regularized optimal transport problem to a commonly used pairwise regularized op-
timal transport problem and illustrate the benefits in theory and practice. Finally,
we describe how to apply the framework to the problem of tracking an ensemble of
indistinguishable agents.

Interestingly, the construction of the marginals in Theorem 3.2 is of the same
form as the belief propagation algorithm [60, 65] for inference in graphical models.
In this interpretation, the vectors uj correspond to the local evidence in node j ∈ V
and α(j1,j2) is the message passed from node j2 to node j1. Moreover, the objective
function in (4.5) can be interpreted as the Bethe free energy [66], which is connected
to belief propagation [65]. These similarities of our framework to belief propagation
algorithms are investigated in [39] and could be a stepping stone to extending our
framework to graphs with cycles. Another direction of interest is the extension to
continuous state models.

Appendix A. Proofs. For an index set Γ, we denote the double sum
∑
j∈Γ

∑
ij

by
∑
ij :j∈Γ. For simplicity of notation, we let M denote the set of matrices M (j1,j2)

for (j1, j2) ∈ E and similarly write µ and λ for the respective sets of optimization
variables. The proof of Theorem 3.2 is based on the following lemma.

Lemma A.1 ( [30, Lemmas 1 and 2]). Let U = u1 ⊗ u2 ⊗ · · · ⊗ uJ for a set
of vectors u1, u2, . . . , uJ and K be a tensor of the same size. If 〈K,U〉 = wTuj for
a vector w that does not depend on uj, then it holds that Pj(K � U) = w � uj.
Similarly, if 〈K,U〉 = wTdiag(uj1)Wdiag(uj2)ŵ for two vectors w, ŵ, and a matrix
W that does not depend on uj1 and uj2 , then it holds that Pj1,j2(K�U) = diag(w �
uj1)Wdiag(uj2 � ŵ).

Proof of Theorem 3.2. Due to the decoupling of the cost tensor C as in (3.1),
the tensor K = exp(−C/ε) decouples according to (3.2) with the matrices K(j1,j2) =
exp(C(j1,j2)/ε) for (j1, j2) ∈ E . We can therefore write

〈K,U〉 =
∑
ij :j∈V

( ∏
(j1,j2)∈E

K
(j1,j2)
ij1 ,ij2

)(∏
k∈V

(uk)ik

)
=
∑
ij

(uj)ij (wj)ij ,

where the vector wj is of the form

(wj)i` =
∑

ik:k∈V\j

( ∏
(j1,j2)∈E

K
(j1,j2)
ij1 ,ij2

)( ∏
j∈V,j 6=`

(uj)ij

)
.

Consider the underlying tree to be rooted in node j. Then this can be written as
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(wj)i` =
∏
k:k∈Nj (α(j,k))ij , where α(p(k),k) ∈ Rn is defined by(

α(p(k),k)

)
ip(k)

=
∑
i`:`≥k

∏
m>k

K
(p(m),m)
ip(m),im

(um)im .

If k ∈ L, then (
α(p(k),k)

)
ip(k)

=
∑
ik

K
(p(k),k)
ip(k),ik

(uk)ik =
(
K(p(k),k)uk

)
ip(k)

.

Otherwise, it holds that

(
α(p(k),k)

)
ip(k)

=
∑
ik

(
K

(p(k),k)
ip(k),ik

(uk)ik
∏
`∈Nk
`6=p(k)

( ∑
im:m≥`

∏
j>`

K
(p(j),j)
ip(j),ij

(uj)ij

))

=
∑
ik

(
K

(p(k),k)
ip(k),ik

(uk)ik
∏
`∈Nk
`6=p(k)

(
α(p(`,`)

)
ip(`)

)
.

This inductively defines the vectors α(j,k) as in (3.3). The expression for the projection
follows from Lemma A.1 with wj =

⊙
k∈Nj α(j,k).

Proof of Proposition 3.4. Note that the optimal solution to (2.4) with cost struc-
tured according to the tree T = (V, E) is of the form M = K�U, where K is defined
by (3.2) and U is defined by (2.7). To prove the first claim, let k ∈ V lie on the direct
path between j ∈ V and ` ∈ V . Then straightforward computation implies that

(Pjk`(K�U))ij ,ik,i` (Pk(K�U))ik = (Pjk(K�U))ijik (Pk`(K�U))ik,i` .

In particular, for any fixed ik, the matrix (Pjk`(K�U))·,ik,· is of rank 1. Hence,

given Pk(K�U), the marginals Pj(K�U) and P`(K�U) have no influence on each
other. Thus, the optimal transport problem (2.4) on T can be decoupled into smaller
problems, by cutting T in k ∈ V , and solving an optimal transport problem (2.4) on
each of the resulting subtrees, where k ∈ Γ and k ∈ L for each of the subtrees.

To prove the second claim, recall from the definition of the tensor U in (2.7) that
uj = 1 for all j ∈ V \ Γ. Thus, for k such that (k, `) ∈ E , the corresponding vector
(3.3) is α(k,`) = K(k,`)1, which is constant and does not need to be updated when
recomputing the projections (3.4). It thus suffices to solve (2.4) on the subtree of T
that is obtained by removing ` ∈ V and (k, `) ∈ E from T .

Proof of Theorem 4.1. Assume that the only edge with node j = 1 is denoted
(1, 2). We add the trivial constraints M (j1,j2)1 = (M (p(j1),j1))T1 for (j1, j2) ∈ Er \
(1, 2). We relax this constraint, together with the constraint on µ1, and let λ(j1,j2),
for (j1, j2) ∈ Er, denote the corresponding dual variables. Furthermore, we relax
the constraints (M (jp,j))T1 = µj with dual variables λj for the leaves j ∈ L \ 1. A
Lagrangian for (4.1) is then

L(M,µ,λ) =
∑

(j1,j2)∈E

H
(
M (j1,j2)|diag(µj1)A(j1,j2)

)
+ λT(1,2)(M

(1,2)1− µ1)

+
∑
j2∈L

λTj2(µj2 − (M (j1,j2))T1)

+
∑

(j1,j2)∈E
j1 6=1

λT(j1,j2)(M
(j1,j2)1− (M (j1p ,j1))T1).
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When j2 is an inner node on the tree, i.e., j2 /∈ L, the derivative with respect to the

entries M
(j1,j2)
i1i2

, for all i1, i2 = 1, . . . , n, and (j1, j2) ∈ Er is

(A.1) log

(
M

(j1,j2)
i1i2

(µj1)i1A
(j1,j2)
i1i2

)
+ (λ(j1,j2))i2 −

∑
k:(j2,k)∈E

(λ(j2,k))i2 .

Since (4.1) is convex, a mass transport plan is optimal if this gradient vanishes,
yielding the expression in terms of the other variables,

(A.2) M (j1,j2) = diag(µj1 ./v(j1,j2))A
(j1,j2)diag

( ⊙
k:(j2,k)∈E

v(j2,k)

)
,

where v(j1,j2) = exp(λ(j1,j2)) for all (j1, j2) ∈ Er. In the case j2 ∈ L, the last sum in
the derivative (A.1) is replaced by (λj2)l. Defining vj2 = exp(λj2), the optimal mass
transport plan is thus of the form

(A.3) M (j1,j2) = diag(µj1 ./v(j1,j2))A
(j1,j2)diag(vj2).

Next, note that the marginal of the optimal transport plan satisfies

µj2 = MT
(j1,j2)1 = ϕ̂j2 � ϕj2(A.4)

with ϕj2 =
⊙

k:(j2,k)∈E

v(j2,k) and ϕ̂j2 = (A(j1,j2))T
(
µj1 ./v(j1,j2)

)
.(A.5)

Since for all k such that (j2, k) ∈ Er it holds that M(j2,k)1 = µj2 , we get

v(j2,k) = A(j2,k)

( ⊙
`:(k,`)∈E

v(k,`)

)
= A(j2,k)ϕk,

which completes the definition of the vectors (ϕj)j∈V . Similarly to (A.4) it holds that

(A.6) µj1 =

( ⊙
k:(j1,k)∈E

v(j1,k)

)
�A

(
µjp(1)

./v(jp(1),j1)

)
.

Plugging (A.6) into ϕ̂j2 in (A.5) yields the recursive definition of the vectors (ϕ̂j)j∈V .
The expression for the mass transport plans M (j1,j2), for (j1, j2) ∈ E , in terms of
the vectors ϕ̂j1 , ϕj2 and ϕj1\j2 follows by identifying them in expressions (A.2) and
(A.3).

Proof of Proposition 4.2. For any matrices M,A ∈ Rn×n+ and µ ∈ Rn+ one can
write the term H (M | diag(µ)A) as

(A.7)
n∑

i,j=1

(
Mij log

(
Mij

Aij

)
−Mij

)
+

n∑
i,j=1

(µiAij −Mij log(µi)) .

SinceM1 = µ and A1 = 1, the second sum can be simplified to
∑n
i=1 (µi − µi log(µi)).

Furthermore, adding the term
∑n
i,j=1Aij −

∑n
i=1 1 = 0 to (A.7), the expression can

be written as H (M |A) − H(µ). Due to the underlying tree structure of problem
(4.1), the number of outgoing edges from the root node jr is deg(jr), and for all other
vertices j ∈ V \ {jr} the number of outgoing edges is deg(j) − 1. In the case that
jr ∈ L, since the marginal µjr is known, the term H(µjr ) is constant and can be
removed from the objective without changing the optimal solution.
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Proof of Theorem 4.4. Note that for a rooted directed tree, in each node j ∈ V\L,
there is one incoming edge and the rest of the connected edges are outgoing. Its
neighboring nodes are therefore given by the set Nj = p(j) ∪ {k : (j, k) ∈ Er}. Thus,

(A.8)
⊙
k∈Nj

α(j,k) = (K(p(j),j))Tα(j,p(j)) �
⊙

k:(j,k)∈Er

K(j,k)α(j,k).

For any edge (j, k) ∈ E and for the reverse edge (j, jp) it holds that

α(j,k) =
⊙

`∈Nk\{j}

K(k,`)α(k,`) =
⊙

`:(k,`)∈E

K(k,`)α(k,`),

α(j,p(j)) =
⊙

`∈Np(j)\{j}

K(p(j),`)α(j,`) =(K(p(p(j)),p(j)))Tα(p(j),p(p(j)) �
⊙

`:(p(j),`)∈E,
`6=j

K(p(j),`)α(p(j),`).

By associating the first term in (A.8) with ϕ̂j and the second term with ϕj , we see that
the tensor structure of K gives rise to the construction of ϕj and ϕ̂j as in Theorem 4.1.
Hence, we can define a tensor in analogy to U of the form V = (1./v1)⊗v2⊗· · ·⊗vJ ,
where vj are the vectors from Theorem 4.1 if j ∈ L, and vj = 1 if j ∈ V \ L. Then,
the tensor K�V has the same marginals as the tensor K�U. Due to an extension
of Sinkhorn’s theorem to tensors [32], it follows that U = V (up to scaling with a
factor and its inverse in the vectors u1, . . . , uJ) and Pj(M) = µj for all j ∈ V .

Proof of Proposition 4.5. Based on the proof to Theorem 4.1, a Lagrange dual to
problem (4.1) can be formulated as to maximize

(A.9)

−
∑

(j1,j2)∈E

(
µj1 � exp(−λ(j1,j2))

)
A(j1,j2)

( ⊙
k:(j2,k)∈E

exp(λ(j2,k))
)

−
∑
j∈L

(
µjp � exp(−λ(jp,j))

)
A(j1,j2) (exp(λj))− λT(1,2)µ1 +

∑
j∈L

λTj µj

with respect to µj for all inner nodes j, and the dual variables λ(j1,j2) for (j1, j2) ∈ E ,
and λj for j ∈ L. A block coordinate ascent in the dual is then to iteratively maximize
(A.9) with respect to one of the dual variable vectors, while keeping the others fixed.
Denote v(j1,j2) = exp(λ(j1,j2)) for (j1, j2) ∈ E , and vj = exp(λj) for j ∈ L. The
gradient of (A.9) with respect to λ(1,2) vanishes if it holds that

v(1,2) = A(j1,j2)

( ⊙
k:(2,k)∈E

v(2,k)

)
,

and the gradient with respect to λj vanishes if vj = µj ./((A
(jp,j))T (µjp ./v(jp,j))) for

j ∈ L, and where jp ∈ V is the parent of node j. Finally, the gradient of (A.9) with
respect to λ(j1,j2), where j1 6= 1, vanishes if M(j1,j2)1 = MT

(jp,j1)1, where jp is the

parent of node j1, which leads to the recursive definition of ϕj and ϕ̂j for j ∈ V , as
in Theorem 4.1. Hence, given an initial set of positive vectors v(1,2) and vj for j ∈ L,
the scheme (4.6) is a block coordinate ascent in a Lagrange dual of problem (4.1).
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