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Abstract. Deep Neural Networks (or DNNs) must constantly cope with
distribution changes in the input data when the task of interest or the
data collection protocol changes. Retraining a network from scratch
to combat this issue poses a significant cost. Meta-learning aims to
deliver an adaptive model that is sensitive to these underlying distri-
bution changes, but requires many tasks during the meta-training pro-
cess. In this paper, we propose a tAsk-auGmented actIve meta-LEarning
(AGILE) method to efficiently adapt DNNs to new tasks by using a small
number of training examples. AGILE combines a meta-learning algo-
rithm with a novel task augmentation technique which we use to gener-
ate an initial adaptive model. It then uses Bayesian dropout uncertainty
estimates to actively select the most difficult samples when updating the
model to a new task. This allows AGILE to learn with fewer tasks and
a few informative samples, achieving high performance with a limited
dataset. We perform our experiments using the brain cell classification
task and compare the results to a plain meta-learning model trained
from scratch. We show that the proposed task-augmented meta-learning
framework can learn to classify new cell types after a single gradient step
with a limited number of training samples. We show that active learning
with Bayesian uncertainty can further improve the performance when
the number of training samples is extremely small. Using only 1% of the
training data and a single update step, we achieved 90% accuracy on
the new cell type classification task, a 50% points improvement over a
state-of-the-art meta-learning algorithm.
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1 Introduction

The ability of Deep Neural Networks (or DNNs) to generalize to a given tar-
get concept is dependent on the amount of training data used to generate the
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model. This is a significant limitation, as many real-world classification tasks
depend on a limited number of training samples for accurate classification. Var-
ious research groups have developed techniques that utilize different underlying
principles to address this issue. These techniques include data augmentation [30]
and generative models [12,17,38], which try to directly increase the number of
training samples. Active learning is another technique which aims to select the
most valuable samples to include in the training set [28,29]. Finally, transfer
learning allows the model to adapt to new and unseen tasks by using its own
previous knowledge, often reducing the amount of data needed for generalization
[4,13,25,25].

Medical data is characterized by significant distribution shifts and small sam-
ples sets that negatively affect the quality of the generated model. In the cell
classification task [37], there are several contributing factors for poor generaliza-
tion; different biomarkers, unique cell morphologies, variations in stain intensity
and image quality all contribute to the variability of the data. Each of these
factors could be considered a unique parameter with which to create unique
classification tasks. Traditional transfer learning methods pre-trained on various
source tasks may not perform well; poor model initialization parameters coupled
with unadjusted hyperparameters may cause the model to fall into a bad local
minima. Mainstream transfer learning methods also require a time-consuming
model retraining process [23]. In recent years, a more advanced model archi-
tecture called meta-learning has been developed to address these adaptability
issues [34]. Meta-learning approaches try to generate a more robust model that
can learn to quickly adapt to new tasks with minimal labeled samples. Although
meta-learning does not require many labeled samples for each task, it requires
many different tasks to effectively learn how to adapt; this may be a problem
when the number of tasks is limited. This technique also selects training samples
randomly for each new task, which may negatively impact the strength of the
model if it is trained on easier samples.

In this paper, we utilize various strategies to create an adaptive framework
called tAsk-auGmented actIve meta-LEarning (or AGILE) which allows the clas-
sifier to achieve high performance with few training samples and gradient updates
for each new task. The experiments we perform on the brain cell type classifica-
tion task show that the AGILE classifier can quickly adapt to new cell types by
utilizing very few labeled training samples.

2 Related Works

Brain Cell Type Classification. The brain is a highly complex organ made
up of myriad different cell types, each with their own unique properties [7].
Gene expression experiments have highlighted cell type composition based on
the expression value of markers for five major cell types: neurons, astrocytes,
oligodendrocytes, microglia, and endothelial cells [6,22]. Besides that, there are
around 50–250 neuronal sub-cell types purported exist [2]. Different cell types
may express different biomarkers or unique combinations of biomarkers, with
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some of then shared with other cell types. Correctly identifying the cell type using
these biomarkers is essential for many medical researches such as schizophrenia
[31] and brain cell type specific gene expression [22]. It is easy to train a deep
neural network to identify one cell type but it is not easy to scale the network
for hundreds of new cell types. Our meta-learning framework aims to provide an
adaptive model that can rapidly adjust itself to new classification tasks.

Meta-learning. Meta-learning aims to study how meta-learning algorithms can
acquire fast adaptation capability from a collection of tasks [3,5,26,34]. Meta-
learning often consists of a meta-learner and a learner that learn at two levels of
different time scales [14,27]. Santoro et al. Koch et al. [18], Vinyals et al. [35] and
Snell et al. [33] proposed to learn a robust kernel function of feature embeddings
to illustrate the similarities between different samples. Another popular approach
is to directly optimize the meta-learner through the gradient descent [1,9,15,24].
Model agnostic meta-learning (MAML) [9] is proven to be one of the state-of-the-
art approaches in the meta-learning field. These methods demonstrated human-
level accuracy on many classification tasks. However most of them require a lot
of tasks to train the meta-learner and it can not actively select training samples
which might not be the optimal case in practice.
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Fig. 1. Multi-task brain cell classification. Each task is a binary classification problem
for a specific brain cell type. Cell to be classified is located in the center of the image.
The model needs to be adapted to the unseen real task with few training samples.

Active Learning. Active learning has been used to interactively and efficiently
query information to achieve optimal performance for the task of interest. These
methods select training samples based on information theory [20], ensemble
approaches [21], and uncertainty measurements [16,19]. However, these meth-
ods may not be effective for deep networks. Gal et al. [10,11], Sener et al. [28]
and Fang et al. [8] did a lot of studies in finding heuristics of annotating new
samples for deep networks. However, few of them have been applied to domain
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adaptation or meta-learning problems. Woodward et al. [36] added an active
part in one-shot learning but did not utilize the best meta-learning structure. In
this paper, we combine the advantages of both meta-learning and active-learning
to get a fast adaptive model which can use the fewest data to achieve a good
performance.

(a) (b) Pre-training
Adaptation
Random Init
Meta task
Real task
Augmented
Meta task

Fig. 2. Comparison of (a) transfer learning and (b) task-augmented meta-learning. (a)
After pre-training on very few number of meta tasks, the model is pulled closer to the
meta tasks and may be far from the real task. (b) By creating pseudo meta tasks to
pre-train the meta-learning model, it gains the ability of adapting to the new tasks
with only one gradient step updating.

3 Methodology

Consider a dataset consisting Q samples: D = {(xq,yq)}Q
q=1, where (xq,yq) is

an input-output pair sampled from the joint distribution P (X ,Y). A task can be
specifically defined by learning a model fφ(x) : X → Y which is parameterized
by φ to maximize the conditional probability Pφ(Y|X ). Thus whenever there is
a change in the conditional distribution which is mainly caused by distribution
shifts in X or Y, it can be viewed as a new task. When dealing with mutiple tasks
drawn from P (T ), each task Ti is associated with a unique dataset Di. We split
these tasks into two parts: meta tasks Tmeta and real tasks Treal. Real tasks mean
the model performance on these tasks is what we really care about and Meta
tasks are what we used to pre-train the model. If there is no model adaptation,
then the meta tasks are not needed. For each task Ti, we have a train/test split
Dtrain

i /Dtest
i ⊂ Di. The goal for task Ti is to learn a set of parameters φi from

the Dtrain
i to get the minimal loss on the test data, i.e. L(φi,D

test
i ).

Our proposed framework AGILE has two phases, a task-augmented meta-
learning method which learns to generate a strong model initialization which
is sensitive to data distribution changes by using Tmeta, and an active learn-
ing process which selects the most informative samples using Bayesian dropout
uncertainties when apply the adaptive model on Treal.
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3.1 Task-Augmented Meta-learning

The phase I of our AGILE framework is the task-augmented meta-learning mod-
ule. For the meta-learning setting, we have a learner which operates at fast time-
scale and parameterized by φ ∈ Φ, and a meta-learner at a slower time-scale
parameterized by θ ∈ Θ. The goal of meta-learning is to learn meta-parameters
θ that can produce good task-specific parameters φ for all M tasks after the fast
adaptation:

θ∗ = argmin
θ∈Θ

1
M

M∑

i=1

L
(
Adapt(θ,Dtrain

i ),Dtest
i

)
(1)

where Adapt() function is an adaptation step completed by the learner. We
employ model agnostic meta-learning (MAML)[9] which initializes the model at
θ then updates it using training data for each task Dtrain

i as follows:

φi ≡ Adapt(θ,Dtrain
i ) = θ

Z
− α∇θL(θ, {(xk,yk)}K

k=1)), (x,y) ∼ Dtrain
i (2)

where L is the loss function, α the learning rate for the learner, and
Z
− a short-

hand notation for running a Z-step gradient descent which is relatively fast. A
fixed number of K class-balanced samples {(xk,yk)}K

k=1 randomly sampled from
Dtrain

i are used to update the learner for every iteration.

Task Transformation. Meta-learner is trained on the meta tasks. Our exper-
iments show that when the number of meta tasks is not big enough, it can not
obtain the general fast adaptation ability on Treal ∼ P (T ). Similar as data aug-
mentation, we applied a set of task-augmentation functions {Gl}L

l=1 : T → T ′

on existing tasks to create new tasks. Because the task is specifically determined
by the conditional probability P (Y|X ), either change X or Y will lead to a new
task. The task-augmentation functions we applied are (1) Flipping the label (2)
Shuffling the order of input channels (3) Rotating the images. Considering the
input image with c biomarkers x ∈ R

w×h×c and the binary label y ∈ R, flipping
labels is achieved by:

y′ = z(1 − y) + (1 − z)y, where z ∼ Bernoulli(pf ) (3)

where pf is the probability of flipping the label. Shuffling the input channels is
selected with a probability of ps. By Constructing c different one-by-one ker-
nels {sij}c

i=1 ∈ R
1×1×c where sij = 1 only if the jth bio-marker is placed at

ith channel after the random shuffling, the shuffled images are obtained by the
convolution:

x′ = x ∗ sij , i, j = 1, 2, 3 . . . c (4)

The third task augmentation method we used is to rotate the images
for 90◦, 180◦ or 270◦ with the probability of pr. In the experiment, we set
pf = ps = pr. Theoretically any data augmentation techniques can be applied
here to slightly change the distribution of X . By increasing the diversity of the
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meta tasks, the meta-learner can be well trained to extract useful features after
adapting to training data in any tasks. The comparison between task augmented
meta-learning and plain transfer learning is illustrated in Fig. 2.

3.2 Active Learning with Bayesian Uncertainty

The phase II of AGILE is to apply the pre-trained model with active learning.
Previous meta-learning methods consider training and testing the meta-learning
algorithm in the exactly same manner, which might not be practical. They fixed
the number of training samples for each task. But for the real task {Treal}N

j=1,
this number may vary, especially when users want to annotate some new samples
to improve the performance of the model. When the number of training samples
is extremely small, how to unsupervisedly select the most informative samples to
annotate is an important question. First, we use a random number of samples to
update the learner during the meta-learning training process, so that the model
is forced to learn with a different training size.

φi = θ
Z
− α∇θL(θ, {(xk,yk)} ˜K

k=1)), (x,y) ∼ Dtrain
i (5)

where K̃ is varied between 1 sample from each class to the maximum number
of samples K allowed by the label budget. Second, we applied Bayesian dropout
[10,32] to get the uncertainties of the predictions over all unlabeled samples,
which represents the current belief of the learner on the predictions:

H
(
y|x,Dtrain

j

)
= −

∑

y∈Y
pMC (y|x) log pMC (y|x) , where (x,y) ∈ Dtest

j (6)

PMC (y|x) is the approximation of Bayesian inference with Monte Carlo integra-
tion 1

T

∑T
t=1 pφj

(y|x), where pφj
(y|x) is the conditional probability of predicted

class for input x in task j and T is the number of Monte-Carlo experiments. The
higher entropy H is, the higher uncertainty is in this prediction. For this Bayesian
deep learning network, dropout is turned on both for the training and test time
on Treal with a drop rate of 0.1. Based on the uncertainties, the model will only
select hard samples for training which significantly improves the performance.

4 Experiments and Results

For this brain cell type classification problem, we collected 4000 cells from 5
major cell types imaged from rat brain tissue sections: neurons, astrocytes, oligo-
dendrocytes, microglia, and endothelial cells. There are 800 cells for each cell
type. 7 biomarkers are used as the feature channels: DAPI, Histones, NeuN,
S100, Olig 2, Iba1 and RECA1. DAPI and Histones are used to indicate the
location of the cells while others are biomarkers for classification of specific cell
types. Each cell is located in the center of a patch with a size of 100 × 100 pix-
els. As shown in Fig. 1, for each cell type, we have a binary classification task,
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800 cells from this cell type and 800 from others. The model needs to correctly
identify whether the given cell is this cell type. And it has no prior knowledge
about the usage of each biomarker. Out of 1600 cells, 60% of them are used as
potential training samples and the rest are used for the test. Binary classification
for neurons, oligodendrocytes and microglia are considered as the meta tasks.
And the real tasks are to identify the remaining two cell types.

Table 1. Methods configuration comparison which differ mainly in the data they use
and the training framework. Meta-learning methods are supposed to perform well with
few training samples and little training time. (# means the number of)

Methods Use data in Real-train # Meta tasks

Meta-train Meta-test Real-train # samples # gradient updates

Vanilla limit – – � 16 (1%) 100 0

Vanilla full – – � 960 (60%) 100 0

Transfer � – � 16 (1%) 100 3

MAML � � � 16 (1%) 1 3

AGILE(phase I) � � � 16 (1%) 1 Many

AGILE(phase II) � � � 16 (1%) 1 Many

AGILE(phase II) � � � 160 (10%) 1 Many

Table 2. Quantitative results of different methods. Original method use all available
training data (60%) and act as the upper bound while task-augmented MAML method
get the highest accuracy using very few training data (1%).

Methods (Size %) Precision Recall F1-score Accuracy(± Std) CI95

Vanilla limit (1%) 0.642 0.622 0.632 0.637(±0.062) 0.632–0.642

Vanilla full (60%) 0.937 0.965 0.951 0.950(±0.021) 0.948–0.952

Transfer (1%) 0.447 0.433 0.440 0.449(±0.085) 0.449–0.456

MAML (1%) 0.408 0.402 0.405 0.409(±0.030) 0.406–0.412

AGILE(phase I) (1%) 0.791 0.790 0.791 0.791(±0.054) 0.786–0.796

AGILE(phase II) (1%) 0.883 0.926 0.904 0.902(±0.048) 0.898– 0.906

AGILE(phase II) (10%) 0.950 0.951 0.951 0.950(±0.044) 0.946–0.954

We used three other methods for comparison. The first is the Vanilla method
which is to train a network from scratch without any adaptation. We further
split it into Vanilla limit and Vanilla full methods which use limited and all
available training data respectively. They are acting like the lower bound and
the upper bound of the performances. The second is the transfer learning model,
which means the model is pre-trained on 3 meta tasks and then fine-tuned on
2 real takes. Both of these are trained with 100 gradient updates to ensure the
model convergence. The third method is the plain MAML model [9] with limited
data and only 1 gradient update for the purpose of fast adaptation with few
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training data. We chose MAML as our meta-learning baseline because it achieved
highly competitive performances compared to other meta-learning methods [9].
All configuration differences are shown in Table 1. Note that all methods share
the same neural network structure which has 4 convolution blocks. Each block
consists of a convolutional layer with 32 filters of size 3 * 3, a batch normalization
layer, and a max-pooling layer. Relu activation is used after each convolutional
layer. After the last convolution block, a dense layer is added to project the 32
feature maps to only two classes. And all methods have the same learning rate
α = 0.01 for the classifier. The learning rate for meta-learner is 0.001. Adam
optimizer is used for all optimization. Training iterations are set as 12000 for
all methods. 12 replaced tasks are used in one iteration during the training on
meta-tasks. The only differences between these methods are the data and the
training/adaptation framework they use.

The quantitative results on the real tasks are summarized in Table 2. The
upper bound we can get by using all training data is 95% classification accu-
racy while the lower bound is 63.7%. Plain transfer learning method and MAML
methods are even worse than the lower bound because they were stuck in the
local minimum after pre-trained on only 3 meta tasks. Our proposed task-
augmented meta-learning is able to quickly adapt with few training samples and
gradient updates. With only 16 training samples, the AGILE method can reach
90% accuracy. With 160 training samples, AGILE reaches the upper bound. The
95% confidence interval are presented in the Table 2.

The adaptation processes are shown in Fig. 3 (a). The solid line is the mean
value and the shaded area shows the variance. Without any prior knowledge, the
original model starts with the classification accuracy around 50%. Transferring
an existing model has the lowest starting point because images labeled as “1” in
one task should be labeled as “0” in other tasks. The original MAML method also
does not help for this brain cell type binary classification problem. Our results
show that MAML is unable to adapt effectively due to the small number of
training tasks. In contrast, AGILE model has a sharp increase in accuracy after
1 gradient update. Note that although AGILE model is trained for maximal
performance after one gradient step, it continues to improve with additional
gradient steps.

Figure 3 (b) illustrate the relationship between the training size and the
performances of AGILE method and the baseline methods. AGILE performs
extremely well when the training size is small. Since AGILE selects samples
based on their uncertainties, the newly added training samples might not be
class-balanced. This is more practical because difficult classes require more exam-
ples for training. Our strategy contrasts against current meta-learning setting
where all the training set is class-balanced by default. AGILE method reachs
validation accuracy of 95% with 160 samples. Meantime, the vanilla model with
100 gradient updates get the accuracy around 84% and the vanilla model with
only 1 update basically cannot learn anything.
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Fig. 3. (a) Comparison of different methods when adapting to new real task with only
1% labeled training data, AGILE method shows its fast adapting ability. Upper bound
is obtained by training on all 60% training data with Vanilla method. (b) The impact
of the training size on the AGILE method and the vanilla method.

5 Conclusion

In this paper, we proposed a fast adaptation framework AGILE combining data
augmentation, meta learning and active learning to deliver a model which is
sensitive to the data distribution/task changes and able to adjust itself with few
training samples and few updating steps. The results show that only 10% of
training data and 1 gradient update are enough to get the best performance on
identifying unseen brain cell type. AGILE can be used in many diagnose systems
or detection algorithms which have to deal with various input data.

Acknowledgments. This work was supported by the National Science Foundation
(NSF-IIS 1910973), and the Intramural Research Program of the National Institute
of Neurological Disorders and Stroke, National Institutes of Health (1R01NS109118-
01A1).

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

2. Ascoli, G.A., Donohue, D.E., Halavi, M.: Neuromorpho org: a central resource for
neuronal morphologies. J. Neurosci. 27(35), 9247–9251 (2007)

3. Bengio, S., Bengio, Y., Cloutier, J., Gecsei, J.: On the optimization of a synap-
tic learning rule. In: Preprints Conference Optimality in Artificial and Biological
Neural Networks, vol. 2. University of Texas (1992)

4. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp.
17–36 (2012)



376 P. Yuan et al.

5. Bengio, Y., Bengio, S., Cloutier, J.: Learning a synaptic learning rule. Université
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