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Multi-marginal optimal transport and
probabilistic graphical models

Isabel Haasler, Rahul Singh, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen

Abstract—We study multi-marginal optimal transport prob-
lems from a probabilistic graphical model perspective. We point
out an elegant connection between the two when the underlying
cost for optimal transport allows a graph structure. In particular,
an entropy regularized multi-marginal optimal transport is equiv-
alent to a Bayesian marginal inference problem for probabilistic
graphical models with the additional requirement that some of
the marginal distributions are specified. This relation on the one
hand extends the optimal transport as well as the probabilistic
graphical model theories, and on the other hand leads to fast
algorithms for multi-marginal optimal transport by leveraging
the well-developed algorithms in Bayesian inference. Several
numerical examples are provided to highlight the results.

Index Terms—Optimal transport, Probabilistic graphical mod-
els, Belief Propagation, Norm-product, Iterative Scaling, Bayesian
inference.

I. INTRODUCTION

PTIMAL transport (OT) theory [1], [2] is a powerful

tool in the study of probability distributions. The subject
dates back to 1781, when the civil engineer Monge aimed to
find an optimal strategy to move soil to road construction sites.
Over 200 years of development have brought OT far beyond
a civil engineering problem to a compelling mathematical
framework which has found applications in economics, signal
and image processing, systems and control, statistics, and
machine learning [3], [4], [S], [6], [7], [8], [9]. The inherent
properties of OT make it especially suitable for handling high-
dimensional data with low-dimensional structure, which is
the case in most machine learning settings. Thanks to the
discoveries of several efficient algorithms such as iterative
scaling, also called Sinkhorn iterations [10], OT has become a
powerful framework for a range of machine learning problems.
In the 30s this algorithm has also been studied in the statistics
community under the name contingence table [11].

The aim of standard OT problems is to find a joint dis-
tribution of two given marginals that minimizes the total
transportation cost between them. In some applications, such
as incompressible fluid flow modeling, video prediction, to-
mography, and information fusion problems, more than two
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marginal distributions are given. To tackle these problems,
a multi-marginal generalization of OT has been developed,
known as multi-marginal optimal transport (MOT) [12], [13],
[14], [15], [16]. MOT was first proposed in [14] as a theoretical
extension to OT. Since then, the problem has been studied
from a theoretical viewpoint [15] as well as computational
perspective [16]. It has found applications in signal processing
[17], fluid dynamics [18], density functional theory [19], [20],
and estimation and control [21], [22]. Many results for the
standard OT problem have been extended to the multi-marginal
setting. In particular, the iterative scaling method [10] has been
generalized to MOT [23]. However, for the multi-marginal
setting the computational complexity remains high, especially
when the number of marginal distributions is large [16], [24].

On a seemingly different topic, probabilistic graphical mod-
els (PGMs) [25], [26], [27] provide a framework for multi-
dimensional random variables. They have been used for a large
variety of applications including speech recognition, computer
vision, communications, and bioinformatics [28], [29], [25],
[26]. PGMs capture the dependencies of a set of random
variables compactly as a graph, and are an efficient and robust
tool to study the relationship of several probabilistic quantities.
Moreover, prior knowledge can be easily incorporated in the
model. During the last decades, many efficient algorithms have
been developed for inference and learning of PGMs. These
algorithms leverage the underlying graph structure, making it
possible to solve many otherwise extremely difficult problems.
Well-known algorithms for the inference problem include, e.g.,
belief propagation, and the junction tree algorithm [30], [31],
[32], [33], [34].

The purpose of this paper is to point out an elegant
connection between MOT and PGMs. More precisely, the
main contribution of this work is to establish an equivalence
between regularized MOT problems, where the cost function is
structured according to a graph, and the inference problem for
a PGM on the same graph, where some marginal distributions
are fixed. This connection leads to a novel interpretation for
both MOT and PGMs. On the one hand, MOT can be viewed
as an inference problem of a PGM with constraints on some
of the marginals, that is, constrained inference problems, and
on the other hand, the inference problem of a PGM is a MOT
problem, where the available marginals are Dirac distributions.

From a numerical point of view, this connection allows
for adapting existing PGM algorithms to this class of MOT
problems with graphical structured cost. In this work, we
focus on belief propagation (BP) [35], [30] and an extension
of it known as norm-product algorithm [36]. These belong
to the so called message passing algorithms which exploit
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the underlying graphical structure, and rely on exchanging
information between the nodes. Thus, only local updates are
needed, which greatly reduces the computational complexity
of the inference problem. If the graphical model is a tree,
these algorithms converge globally to the exact conditional
marginal distributions in a finite number of iterations. For
general PGMs with cycles, there is no convergence guarantee,
but both methods usually work well in practice and provide
relatively accurate approximations of the marginals. In this
work, we develop algorithms for solving entropy regularized
MOT problems, or equivalently constrained inference prob-
lems, by combining these message passing algorithms with
the iterative scaling method. Moreover, we build on earlier
results and establish global convergence of our algorithms
for tree graphs. Similar constrained inference problems have
previously been studied in [37]. Interestingly, the algorithm
presented therein is comparable to our proposed extension of
the BP algorithm. With the connections to MOT, we provide
a new motivation for studying this problem, which also leads
to a more complete picture of the algorithms.

A promising application of our framework are inference
problems for collective dynamics, for instance, the estimation
of the behavior of large groups from only aggregate measure-
ments. Such types of filtering methods are crucial for collective
dynamics since it is usually impossible to track the trajectories
of each single agent in a large population, due to exploding
computational complexity, lack of sensor data or for privacy
considerations. Related problems have been studied under the
name collective graphical models (CGMs) [38], [39], [40].
These works consider a large collection of identical graphical
models, which are observed simultaneously, and aim to infer
the aggregate distribution over the nodes. Several heuristic
algorithms [40] have been proposed to solve the resulting
inference problems. Our MOT framework suggests a different
observation model [41], [42], which is reasonable in many
scenarios. More importantly, our algorithms, which enjoy
global convergence guarantee, provide a reliable machine to
estimate collective dynamics in these models.

The rest of this paper is structured as follows. In Section II
we review some background knowledge in optimal transport
and probabilistic graphical models. In Section III we provide
the main theoretical result in this paper, which is the equiv-
alence between entropy regularized MOT and the inference
problem for PGMs. We also modify the belief propagation
algorithm to solve MOT problems. Another algorithm based
on the norm-product algorithm is introduced in Section IV. We
test and verify our results through several numerical examples
in Section V. This is followed by a brief concluding remark
in Section VL.

Notation: The notation used throughout is mostly standard.
However, with exp(+), In(+), ®, and ./ we denote the element-
wise exponential, logarithm, multiplication, and division of
vectors, matrices, and tensors, respectively. Moreover, ® de-
notes the outer product. By 1 we denote a vector of ones, the
size of which will be clear from the context. Throughout, we
use bold symbols to represent vectors, e.g., b;, p;, and regular
symbol for the corresponding entries, e.g., b;(z;), f;(x;).

II. PRELIMINARIES

In this section, we provide a quick overview of optimal
transport theory, probabilistic graphical models and belief
propagation algorithm. We only cover material that is most
relevant to this work. The reader is referred to [2], [25], [26]
for more details.

A. Optimal transport

In optimal transport (OT) problems, one seeks an optimal
plan that transports mass from a source distribution to a target
distribution with minimum cost. In its original formulation
[43], OT was studied over Euclidean space. However, in
general, OT problems can be formulated in both continuous
space and discrete space. In this work, we focus on optimal
transport over discrete space.

Let p; € Ril s Mo € Ri"’ be two discrete distributions, viz.,
nonnegative vectors, with equal mass, that is ), wu1(i1) =
> i, 2(i2). Here pq(i) denotes the amount of mass in the
source distribution at location ¢ and p9(7) denotes the amount
of mass in the target distribution at location ¢. Without loss
of generality, we assume that both p; and p, are probability
vectors, that is, the total mass is Zil w1 (i) = Ziz po(iz) =
1. The transport cost of moving a unit mass from point %,
to io is denoted by C(i,i2), and collected in the matrix
C = [C(i1,i2)] € R4*42 In the Kantorovich formulation
[44] of OT, the goal is to find a transport plan between the
two marginal distributions g, and p, that minimizes the total
transport cost. A transport plan is encoded in a joint probability
matrix B = [B(i1,i2)] € RT % of py, py. Then the total
transport cost is 3, ;. C(i1,42)B(i1,42) = trace(CTB) and
therefore the OT problem reads

trace(C’ B)

min
BeR} %2

subject to B1 = p; (1)
BT]— = Mo,

where 1 denotes a vector of ones of proper dimension. The
constraints are to enforce that B is a joint distribution between
pry and puo.

Even though the above OT problem (1) is a linear program,
in many practical applications it is too difficult to be solved
directly using standard solvers due to the large number of
variables [23], [17], especially in the case where the marginal
distributions g, pt, come from discretizations of continuous
measures. Recently, a regularization of OT [10] was proposed
that greatly reduces the computational complexity of (approx-
imately) solving OT problems over discrete space. In this
method, an entropy term

H(B) = — Y Bli1,iz)In B(iy,iz) 2)

is added to regularize the problem, leading to

min  trace(CTB) — ¢H(B)
BeR{1 %2
subject to B1 = 3)

B"1 = K2,
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where € > 0 is a regularization parameter. The entropy regu-
larized OT problem (3) is strictly convex and thus the solution
is unique. More importantly, it can be solved efficiently via
the Sinkhorn algorithm [45], [10], also known as iterative
scaling [11], [46]. Let K = [K (i1,42)] € R%*9 be defined
as K(iy,i2) = exp(—C(i1,i2)/€), then the iterative scaling
updates alternate between the two steps

u — py/Kug, up  py. /K uy,

“4)

where ./ denotes element-wise division. The algorithm con-
verges linearly to a unique pair of vectors u; € R%, u, € R%
up to a normalization [46]. Given the limit point of the
iteration, the solution to (3) has the form

B = diag(u;)K diag(us), %)

that is, B(il,ig) = K(il,ig)ul(il)’UQ(iQ) forall 1 <41 <
dlv 1 é Z.2 g d2~

B. Probabilistic graphical models

A probabilistic graphical model (PGM) is a graph-based
representation of a collection of random vectors that captures
the conditional dependencies between them. It provides a
compact representation of their joint distributions through
factorization: a graphical model consists of a collection of
distributions that factorize according to an underlying graph
structure. In this work we focus on undirected graphs, which
represent Markov random fields [25]. Note that directed graphs
represent Bayesian networks, and can always be transformed
into a Markov random field [26].

Among the many representations for Markov random fields,
the factor graph representation has been widely used due
to its elegance and flexibility [25], and is also used in this
paper. Consider a graphical model with underlying factor
graph G = (V, F, E) where V denotes the set of variable
nodes, F' denotes the set and factor nodes, and E stands for the
edges connecting them (see Figure 1 for an example). In such a
factor graph G, the neighbors of a node j € V consist of factor
nodes, N(j) C F, and the neighbors of a factor node o € F
are variable nodes N(a) C V. Therefore, G is a bipartite
graph [47]. Each variable node j € V is associated with a
random variable x; which can be either discrete or continuous.
Here we consider only the discrete cases and assume that
the random variable x; can take d; possible values. Each
factor node @ € F' corresponds to the dependence between the
variable nodes connected to «, which are compactly denoted
by X, := {z; ; j € N(a)}. In Markov random fields with
underlying factor graph G, the joint probability is assumed to

be of the form
1
7 I @) [] talxa) ©)

jev a€F

p(x) = p(x17x27"~7xJ) =

where ¢; is the node/local potential corresponding to node j,
1, is the factor node potential corresponding to factor node
«, and Z is a normalization constant. A factor node potential
1, describes the dependence between random variables in
{z; ; j € N(a)}. The node potentials normally come from
two sources: prior belief and evidence from measurements.

(b) Standard

Fig. 1: Factor graph representation vs standard graph repre-
sentation.

In the latter, ¢;(x;) is short for ¢;(x;,y;) [33] with y,
being the measurement. In cases where all the local potentials
are induced by evidence, a more precise formula for the
model is p(x) = % [y 5 (25, Yj) [Toec p Ya(Xa)- Since the
measurement is usually specified in inference problems, y; is
often neglected to simplify the notation. In principle, the node
potentials can be fully absorbed into the factor potentials, that
is, the joint distribution becomes p(x) o [ ], ¢z %a(Xa). For
the ease of presentation, we adopt the formulation (6).

Apart from factor graphs, another popular representation of
PGMs is the standard graph where the nodes are all variables.
In the standard graph representation, the dependence between
the variables are fully captured by the edges of the graphs.
The two representations are equivalent and one can transform
one to another easily as the following example illustrates.

Example 1. The factor graph in Figure la models the joint
distribution

1
p(l‘l, ER 7x6) wal (Xa1)’(/)a2 (Xaz waa XOés

||::o>

with Xq, {z1,22,%4,25}, Xa, {3,225}, Xas
{z4,x6}. To convert this into a standard graph representation,
the dependence among variables induced by the three factors
have to be translated to edges. This is straightforward for
factors v, and ... The factor v, involves 4 variables
and is more complicated. Without further assumptions on the
structure of this factor, it may induce dependence among all
of the 4 variables, and thus a complete graph connecting them
is required (see Figure 1D).

The two fundamental problems in PGMs are inference and
learning. Learning refers to estimating the underlying graph-
ical models (often the parametrized factors) using available
data sampled from the models. In inference problems, the
parameters of the models are given. Instead, the goal is to infer
the statistics of the node variables. The two main approaches to
inference problems are maximum a posteriori estimation and
Bayesian marginal inference [25]. Given a set of measurements
{y1,¥2,...,ys}, the aim of maximum a posteriori estimation
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is to find the most likely variable value {1, 22, ..., 2} given
the model and measurements. Instead, Bayesian inference
calculates the posterior marginal distributions of each node.
The focus of this paper is most relevant to Bayesian/marginal
inference.

Formally, given a graphical model (6), the objective of
Bayesian inference is to calculate marginal distributions p(z;)
for j € V. In cases where the nodes variables are discrete, the
marginal p(z;) is defined to be

2.

L1y Tj—15Lj415--,T T

D

T1yeey e 1,T 4150

p(x)

T ¢:@)] ] va(xa)D

g 1eV a€EF

p(z;) =

The Bayesian inference problem can be reformulated as the
optimization problem of minimizing

rngn]:(b) :=U(b) — H(b), (8)
with
U(b) = Z )| D i) + Y mta(xa) | )
JeEV acF
and
== b(x) In b(x (10)

over the space of all the probability distributions on x. By
convention, F,U, H are known as free energy, average energy
and entropy respectively due to their similarity to thermody-
namics [48]. To see this, we note that the Kullback-Leibler
(KL) divergence [49] between b(x) and p(x) is

Zb ;(i) = F(b)+InZ

L(b | p)
N Zx:b( ) 1/Z v ¢5(2)) Haer Ya(xa)

Since the KL divergence is nonnegative and equals O only if
b = p, the unique minimizer of F(b) is p with the associated
minimum being —In Z.

The optimization formulation (8) of Bayesian inference is
the basis for variational inference [25], one of the most popular
approximate inference techniques. In the variational inference
approach, the approximate distribution b is usually assumed
to have some simple structure to ease the optimization, e.g.,
the mean field approximation b(x) = by(z1)---by(xz ) [50].
This work is not concerned with variational inference; (8)
simply serves as a link to connect Bayesian inference with
optimization. In the PGM literature [51], [36], it is common
to introduce a temperature coefficient ¢ > 0 into (8), which
leads to a slightly more general optimization problem

mgn F(b) =U(b) — eH(b). (11)

It corresponds to the Bayesian inference for the model

H¢j Hwa Xa

¢ jev acF

From an optimization point of view, (11) is a regularized
version of the linear program

min U(b).

Interestingly, this linear program in fact corresponds to the
maximum a posteriori problem [36] for the model (6).

C. Belief Propagation

In principle, Bayesian inference is achievable through the
definition (7) by calculating the marginals using brute force
summation. The complexity of this summation however scales
exponentially as the number of variable nodes .J goes up
[33]. Also the normalization factor 7 is extremely difficult
to calculate when J is large due to the same reason.

During the last two decades, many methods have been
developed to solve or approximately solve Bayesian marginal
inference problems. One of the most widely used methods is
a message-passing algorithm called Belief Propagation [35].
It updates the marginal distribution of each node through
communications of beliefs/messages between them. In the
factor graph representation, it reads

Z (1 (Xa)
Xa\"tj
11

o ¢j(z))
BEN(j)\o

I nica(z) 2

iEN()\j

mp—;(T;),

Ma—j(T5) o

nj‘)a(.’bj) (l2b)

where mq—;(x;) denotes the message from factor node «
to variable node j, and nj_.(x;) represents the message
from variable node j to factor node «. The symbol o means
“proportional to” and indicates that often a normalization is
applied in the Belief Propagation algorithm. The messages in
(12) are updated iteratively over the factor graph.

The Belief Propagation algorithm was first invented to solve
Bayesian inference problems over trees, in which case global
convergence is guaranteed [35], [33]. This method was later
generalized to deal with inference problems involving general
graphs under the name Loopy Belief Propagation [30]. Even
though there is no convergence proof and the algorithm does
diverge in some occasions, it works well in practice and
is widely adopted. When the algorithm converges, one can
calculate the beliefs on the variables and factors by

bi(xj) o dj(xy) H Ma—j(2;) (13a)
a€N(j)

bo(Xa) X ¥a(Xa) H Njsal(xj). (13b)
JEN(a)

In cases where the factor graph has no cycles (i.e., it is a tree),
the beliefs in (13) coincide with the true posterior marginals,
that is,

bj(z5),
ba(xa)a

For general graphs with cycles, convergence is not guar-
anteed and even if it does converge, the beliefs in (13) are
only approximations of the true marginals p(z;), p(Xq). A
remarkable discovery [30], [31] related to (Loopy) Belief

VjeV, ij
VYa € F, Vx,.

(14a)
(14b)

p(z;) =
p(xa) =



JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Propagation is that if the updates (12) converge, then the
beliefs in (13) form a fixed point of the Bethe free energy
(301, [31]

]:Bethe(b) = z/{Be‘che (b) - 7'[Bethe(b)y

where Upethe(b) is the Bethe average energy

= ba(xa) Intha(xa) = Y > bi(x;) Ing;(x;) (16)

a€F Xq JeV z;

15)

and Hpethe(b) is the Bethe entropy

=YD ba(Xa) ba(xa)+ Y (N;=1) > bj(w;) Inb,(x)

a€F Xqo JjeV
(17)

with V; denoting the degree of the variable node j, i.e., N; =
IN(j)]- In (15), we define b = {b;, by, : j€V,a¢€ F}.
This is different to b in (8), which is a J-mode tensor. For the
sake of conciseness, by abuse of notation, we use b in both
settings. For a factor tree, the two are connected through the
relation b(x) ~ ([ ecr ba(xa))([T;ev b;(z;)'=Ni) [25]. In
terms of Bethe free energy, the Bayesian inference problem
reads

mgn FBethe(b) (183)

subject t0 > ba(xa) = bj(z;),Vj € V,ar€ N(j)(18b)
*xa\T;

> ba(xa) =1, Va € F. (18¢c)

The constraint (18b) is to ensure that by, b; are compatible
and (18c) is to guarantee that they are in the probability
simplex. It is easy to check that when the factor graph has
no cycles, the Bethe free energy (15) is strictly convex in the
feasible set defined by the constraints (18b)-(18c), and is equal
to the free energy (8), i.e., FBethe = F. Thus, (18) is again
a convex optimization problem. For general graphs, the Bethe
free energy serves as a good approximation of the free energy
[31], but is no longer convex.

IIT. MULTIMARGINAL OPTIMAL TRANSPORT AS BAYESIAN
INFERENCE

Multimarginal optimal transport (MOT) extends the OT
framework (1) to the setting involving multiple distributions.
In particular, in MOT, one aims to find a transport plan among
a set of marginals g, ..., pu; with J > 2. In this setting, the
transport cost is encoded in a tensor C = [C'(i1, i2,...,i5)] €
R xd2x--xds where C(iy,1s,...,4;) denotes the unit trans-
porting cost corresponding to the locations %1, %2, ...,%7, and
the transport plan is in the same way described by a J-mode
tensor B € Ry X2 xds,

For a given transport plan B, the total cost of transportation
is

<C,B> = Z C(’L'l,ig,...,iJ)B(’L'l,iQ,...,iJ).
01 ,82,.y0 g
Thus, similar to (1), MOT has a linear programming formu-
lation )
min

dyx--xdy
BERY,

subject to Pj(B) = p;, for j €T,

(C,B)
19)

where ' C {1,2,...,J} is an index set specifying which
marginal distributions are given, and the projection on the j-
th marginal of B is computed as

Pi(B)(i)= Y  Bli,..

U1yeenslg— 150541507

'7ij—17ijaij+la"'7iJ)'

(20)
Note that the standard bi-marginal OT problem (1) is a special
case of the MOT problem (19) with J =2 and " = {1, 2}.
In the original MOT formulation [12], [15], constraints are
given on all the marginal distributions, viz., the index set ' =
{1,2,...,J}. However, in many applications [15], [16], [52],
only a subset of marginal distributions are explicitly given.
For instance, the Barycenter problem [53] is a MOT where
the target distribution is not given. In this work we consider
the setting where constraints are only imposed on a subset of
marginals, i.e., T C {1,2,...,J}.

A. Entropy regularized MOT

Although MOT (19) is a standard linear program, its com-
plexity grows exponentially as J increases. This computational
burden can be partly alleviated in an analogous manner as for
the classical bi-marginal problem (1), which again yields an
iterative scaling algorithm. In particular, similarly to (3), one
can add an entropy term

HB)=— Y Bli,...

11,00

7iJ)hl B(il,...,’ij> (21)

to (19) to regularize the problem, resulting in the strictly
convex optimization problem

min  (C,B) — ¢H(B)
BeRd1 % xdy

subject to Pj(B) = p;, forj €T

(22)

with € > 0 being a regularization parameter.

For the bi-marginal case, (22) reduces to problem (3). The
iterative scaling algorithm (4) can be generalized to the multi-
marginal setting [46] in order to solve (22). From an opti-
mization perspective, the iterative scaling algorithm amounts
to a coordinate ascent method [54] in the dual problem of
(22). The introduction of the entropy term in (22) allows for
closed-form expressions for the updates of the dual variables
[17]. Utilizing Lagrangian duality theory, one can show that
the optimal solution to (22) is of the form

B=KoU, (23)

where © denotes element-wise multiplication and the tensors
are given by

K = exp(—C/e) (24)
and
U=u0u®- - ®uy, (25)
where the vectors u; ¢ R% are given by
1 Aj ip s
exp(—f—?-’), if jel
u; = J | (26)
exp (77) 1, otherwise,
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and \; € R% is the dual variable corresponding to the
constraint P;j(B) = p; on the j-th marginal. Moreover, the
dual of (22) is

27)

max
{A]‘ ,JEr}

—e(K,U) = > AT p;.
jer
We emphasis that in (27), U is a function of the multipliers
{A;,j € '} as defined in (25)-(26).
The iterative scaling algorithm iteratively updates the vec-
tors u;, for j € I, in (26) according to

llj<—llj®[.l/j./Pj(K®U). (28)

For future reference, we summarize the steps in Algorithm 1.
The Iterative Scaling algorithm (Algorithm 1) is a special case
of the iterative Bregman projection algorithm [55], [23], which
itself is a special case of a dual block coordinate ascent method
[56], [57], and thus enjoys a global convergence guarantee
[55], [571].

Note that the standard Sinkhorn iterations (4) for the two-
marginal case (3) is a special case of Algorithm 1 when J = 2
and T' = {1, 2}. Indeed, in this case, Algorithm 1 boils down
to iterating

u; < U @/,Ll/Pl(K@U),
With

g < UQ@/,LQ/PQ(K@U)

PI(KoU) = diag(u;)Kdiag(usz)l
= diag(uy)(Kug) = u; © (Kus)

and similarly P,(K © U) = up; ® (KTu,), it follows

woe g /Kuy,  wepp /K, (29)

which coincide with (4).

Although Algorithm 1 is easy to implement and consid-
erably faster than general linear programming solvers, its
complexity still scales exponentially as J grows since the
number of elements in B are dids . ..d;. The computational
bottleneck of it lies in the calculation of the projections P;(B),
for 7 € I', in (20). Generally, this computational burden is in-
evitable. However, in some cases it is possible to utilize graph
structures in the cost tensor C to compute the projections
efficiently [23], [17], [52], [58]. In Section III-B we consider
MOT problems with cost tensors that can be decomposed
according to a graph. This graphical structure allows us to
leverage the Bayesian inference tools [26] in PGMs to compute
the projections efficiently. Other than providing a workhorse
for solving MOT problems with graphical structured cost,
this connection between MOT and PGMs also presents new
elements and perspective to Bayesian inference in PGMs,
which is discussed in details in Section III-C.

B. MOT with graphical structures

Consider the cases where the cost tensor C can be decom-
posed according to a factor graph. More specifically, the cost
tensor C has the form

C(x) = Y Calxa).

acl

(30)

where F' denotes the set of factors of a graph. Here, to be
consistent with the notations in PGMs, we write the cost
of associating i1,42,...,95 by C(x) = C(x1,22,...,27)
instead of C(i1,12,...,47), but the two have exactly the same
meaning; both x; and i; take values in a set with d; elements.
Thus, by abuse of notation, we use C(x) and C (i1, 42, ...,17)
interchangeably.

A graph structured cost tensor (30) occurs in various ap-
plications of the OT framework [23], [17]. For instance, in
Barycenter problems [53], the cost C can be decomposed into
the sum of pairwise costs between the target distribution and
each given marginal distribution. For general cost functions,
it might be possible to approximate them using the structured
cost (30). Thus the framework we establish can potentially be
used to approximate the solutions to many MOT problems.

Remark 2. The idea of leveraging the structure in the cost C
to accelerate OT algorithms has been explored before. In [59],
[60], [61], [62], low-rank approximations of the cost matrix
and the corresponding kernel (24) have been utilized to solve
bi-marginal OT problems more efficiently. A key idea used in
these works is that the matrix-vector multiplications Ku, KTu
in (29) can be accelerated if K is a low-rank matrix. This
line of research is fundamentally different to ours which aims
to leverage the existing graphical structures of cost tensor in
MOT problems. In fact, they are complementary to each other.
Our algorithm can be further improved by applying the results
in [61], [62], assuming C,, in (30) are (approximately) low-
rank.

Denote the factor graph associated with the cost (30) by
G = (V, F, E). Then the j-th mode of C corresponds to node
7 € V and the marginal distribution of the j-th mode is the
same as the marginal distribution of x; at node j. In this
paper, we only consider the cases where the factor graph G
is connected but does not have any loop, that is, G is a factor
tree. We associate the cost C with a probabilistic graphical
model

p) = 5 T Kalxa)

ael

where

Ko(xa) = exp(—Cq(x4)/€). (€2))
Clearly, K in (24) has the form

K = [K(i1,i2,...,i5)] = [K(x)] = [H Ka(xa)] :
acl
and
KoU=[K(x)U(x)]= (H Ka(xa)> I w))| 32
a€F JjeEV

From a PGM point of view, the (transformed) Lagrangian
multipliers u;, for j € I', introduced by the Iterative Scal-
ing algorithm are local potentials of the modified graphical
model K (x)U(x). The Lagrangian approach of solving the
constrained optimization problem (22) seeks multipliers u;,
for 7 € I, such that the tensor B = K © U satisfies all the
constraints Pj(B) = p;, for j € I'. Thus, in the language of
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Algorithm 1 Iterative Scaling Algorithm for MOT

Compute K = exp(—C/e)

Initialize uy,uy, ..., u; to exp(—+)1
while not converged do
for j €I do

Compute U=1u; Qu2® ---®@uy
Update u; as u; < u; © p;./P;(K o U)
end for
end while

Fig. 2: Factor graph with some marginal distribution con-
straints on nodes {x1,z2, z3}.

PGMs, to solve the MOT problem (22), one can search for
a proper set of artificial local potentials u;, for j € I', such
that the modified graphical model K (x)U(x) in (32) has the
specified marginal distribution p; on the j-th variable node
for each j € T'. Note that u; = exp(—1/J)1 is a uniform
potential for all j ¢ T" and thus does not affect the graphical
model K © U.

For fixed multipliers uj,us,...,uy, calculating (with
proper normalization) the projection P;(K @ U) is exactly
a Bayesian inference problem of inferring the j-th variable
node over the modified graphical model K (x)U(x). When G
does not have any loops, a condition we assume throughout,
Bayesian inference can be achieved efficiently using the Belief
Propagation algorithm. Generally, the marginal constraints
Pj(B) = p; can be imposed on any variable node j € V.
However, a marginal constraint on a non-leaf node will decom-
pose the MOT problem (22) into several independent MOT
problems with constraints only on leaf nodes, see [52]. Thus,
without loss of generality, we assume marginal constraints on
leaf nodes only, that is, I' C L where L C V denotes the set
of leaf nodes of G.

Example 3. Figure 2 depicts a factor graph with leaf nodes
L = {1,2,3,6}. The shaded nodes in the figure represent
the fixed distribution variables, thus, in this example, T’ =
{1,2,3} C L.

Leveraging the graphical structure (30) of the cost, based on
the discussions above, we obtain a simple strategy to solve the
MOT problem (22): We apply the Iterative Scaling algorithm
and utilize the Belief Propagation algorithm to carry out the

computation of P;(K ® U) with the current multiplier U.
The acceleration is tremendous for MOT problems with a
large number of marginals; the Belief Propagation algorithm
scales well for large problem while the complexity of the brute
force projection using definition (20) grows exponentially as
the dimension increases. It turns out that some more tricks
can be adopted to further improve the speed of the projection
step P;(K © U). The full algorithm, which we call Iterative
Scaling Belief Propagation (ISBP) algorithm will be presented
and discussed in details in Section III-D.

C. MOT and Bayesian inference

In the previous section, we have seen that in cases where the
cost tensor C in MOT problem (22) has a graphical structure,
one can take advantage of PGM methods, in particular the
Belief Propagation algorithm, to accelerate the Iterative Scal-
ing algorithm. In this section, we establish further connections
between MOT and PGMs. These links add novel components
to both the MOT theory and PGM theory. These connections
also bring new insight and interpretation of Iterative Scaling
Belief Propagation.

Clearly, the objective function of the entropy regularized
MOT problem (22) is exactly the free energy F in (11) with

Ya(Xa) = exp(—Cy(Xa)), Va € F,Vx,  (33)
(bj(a:j) =1, Vj c ‘/,ij
Thus, the MOT problem (22) can be written as
min F(B)
BeRileXdJ (34)

subject to Pj(B) = p;, VjeT.

Therefore, the entropic regularized MOT problem (22) with
cost function that decouples according to a graph structure
as in (30) is equivalent to a Bayesian inference problem in a
PGM with additional constraints on the marginal distributions
of a set of variable nodes. In other words, (34) is a constrained
version of a Bayesian inference problem.

On the other hand, any Bayesian inference problem in a
PGM can be rewritten in the constrained form (34). More
specifically, consider the problem of inferring the posterior
distribution of [ier ¢5(25,95) [aer Ya(xa), where y; is
the observation associated with the variable node potential
¢;. When the observations are fixed, say y; = §;, then the
standard Bayesian inference method replaces ¢,(x;,y;) by a
local potential ¢;(z;) and infers the marginal distributions of
the resulting graphical model with only the nodes {z;, x}.
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(b) Constrained

Fig. 3: Equivalence between standard Bayesian inference and
constrained Bayesian inference: (a) The local potentials of
variables x1, 2, x3 are induced by measurements y; =
71, Y2 = Y2, ys = U3 respectively, namely, ¢1(x1) =
d1(x1, 1), P2(x2) = ¢2(x2,92), P3(x3) = ¢3(x3,93);
(b) The graph is augmented by the nodes y;, y2, ys and
factors o, = ¢1(r1,91), Yo = P2(22,92), and Yo, =
¢3(x3,ys3). The measurements become marginal constraints
p(y1) = 6(y1 —91), p(y2) = 0(y2 —92), p(ys) = 0(ys — J3).

Alternatively, the measurement y; = §j; can be viewed as con-
straints on the node y; of an augmented graphical model which
includes also the observation variable node y;. In particular,
the constraint is of the form p(y,;) = d(y; — y;), where §
denotes Dirac distribution. Thus, the posterior distribution can
also be obtained by solving the constrained Bayesian inference
problem (34) over the augmented graphical models under the
constraints that p(y;) = 6(y;—9;), for j € I'. This equivalence
is illustrated in Figure 3. Therefore, from this point of view,
the constrained Bayesian inference problem (34) can also be
viewed as a generalization of standard Bayesian inference.

When the underlying factor graph associated with the cost
function (30) is in fact a factor tree, the free energy F(B) is
equal to the Bethe free energy (see Section II-C)

Fietne(B) = =Y Y Ba(xa)Intha(xa) (39)
aEF Xq
+ €Y > Ba(xa)nBa(xa)
aEF xq
— e Y (N;=1)> Bj(x;)In Bj(x;),
JEV zj

where B, is the marginal distribution on factor node «

and B; denotes the marginal on variable node j, namely,
Bo(xa) = Y, B). and Bj(z;) = Yy, B(x). In
(35), B is the collection of marginal distributions, that is,
B = {B;,B, j € V,a € F}. This is different from
the J-mode tensor B in (34). However, with slight abuse of
notation, we use the same symbol B in both contexts. Again,
due to tree structure, the two have a one-to-one correspondence
with each other.

The marginals B, and B; capture only local information
around a factor variable or node variable and they have to
satisfy certain conditions in order to be feasible marginal
distributions of some joint distribution. In particular, they have
to be compatible in the sense

> Ba(xa) = Bj(z;), Vj€V,Va,.
X \T;

In terms of local marginals, the constraints in (34) read

Bj(zj) = pj(xj), VjeT,Vay.

Therefore, the MOT problem (34) can be reformulated as

szIl fBethe(B) (36a)
Bj(.’L’j) = /Jj((Ej), VJ S P, Vl’j (36b)
Y Ba(xa)=Bj(z;),Vj € V,a € N(j),Va;(36c)

X \T;

subject to

> Ba(xa) = 1,Va € F, (36d)

Xo

where the last constraint (36d) is to ensure that the opti-
mization variables {B;, B, j € V,a € F} are in the
probability simplex. Since the Bethe free energy is convex for
factor trees, and the constraints are linear, Problem (36) is a
convex optimization problem. One advantage of (36) over (34)
is that the size of optimization variables in (36) is considerably
smaller than that in (34). More specifically, the optimization
variables of (36) are local marginals which are either vectors
B; or low-dimensional tensors B, which is in contrast to the
high-dimensional J-mode tensor B in (34).

D. Iterative Scaling Belief Propagation algorithm

In this section, we present the full Iterative Scaling Be-
lief Propagation algorithm for the entropy regularized MOT
problem (22) (or equivalently (34) and (36)). We start with a
characterization of the solution to (36).

Theorem 4. The solution to the MOT problem (36) is given

by
Ba(xa) < Kuo(X4q) H Njsa(z;), Yo € F(37a)
JEN(a)
Bj(z;) o [ masjla;), Vi¢T (37b)
aEN(j)
Bj(z;) = pj(z;), VjeT (37¢)
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where mq_, j, Nj_sq are fixed points of the following iterations

Ma—j(25) ZK (Xa) H Nisal(2i); Vo€ N(5)(38a)
xﬂ/\z_] ZGN(O‘)\]
Nisa(z;) o< [[ masi(;);Vi ¢ T,VaeN(j),(38b)

BEN ()\

njsa(y) o py(a;)(Masj(z;)) Vi € T, ae N(5)(38¢)

Here o indicates that a normalization step is needed.

Proof. In order to solve the constrained optimization problem
(36), we introduce Lagrange multipliers 7, for the simplex
constraints (36d), A; . for the marginalization compatibility
constraints (36¢), and v; for the fixed-marginal constraints
(36b), yielding the Lagrangian

L = %fBethe(B) + Zna <Z Bo(%a) — 1) (39
=+ Z Z )\77 .%'7) Z B on - (7)
J:x; a€N(j) Xao \Z;
+ ZZVJ' (z;) (Bj(z;) — pj(z5)) -
Jer z;

Note that we have used a scaled version %J-"Bethe of the
objective function. In view of (33), (35) and (31),

%]:Bethe(B) = _Z( i — 1 ZB X IDB(.’L‘])

jev
—i—ZZB Xeo) In By (Xq) ZZB Xo) In Ko (Xq).
acF xq

acF xq

Setting the derivatives of the Lagrangian with respect to the
local marginals B, and B; to zero, we get that the minimizer
satisfies

B, (xa) = Ku(x4)exp|—1— Z Aj.al(Z;) — na | (40a)

JEN (o)

Bj(z;) = exp|—1— 37 Nalzy) |if Nj > 1(40b)

77 aeN())

0= Y Nal)if N;=1,j¢T (40c)

aEN(j)
0= > Nalz)—v(z;) ifjel (40d)

a€N(j)

Denote
njsal(zj) = exp(—=XAja(z;)) (41a)
Masj(@)) = Y Ka(xa) [[ misalw:).@1b)
o\ iEN(a)\j

The relation (37a) follows immediately from (40a) and (41a).
This together with the constraint (36¢) and (41b) leads to

> Ba(Xa) X 1ja(@))mas; (7).

Xa\T;j

Bj(z;) = (42)

By (40c), we obtain
njsal(z;) =1if Nj=1,5¢T.
It follows that
Bj(zj) < ma—j(z;) if Nj=1,7¢T,

which is (37b) for leaf nodes. We next show (37b) when N; >
1. To this end, we plug (40a) and (40b) into the constraint (36¢)

and arrive at
Y Bix)

xy\x;

sy (T5) 10y 5 ()

11—

> Nsla))

I 77 BeN()

= Bj(z;) xexp

N, -1
0.8 H TLJ_>[3 33] .

BEN(5)

For fixed j, the above holds for all v € N(j). Multiplying the
above equation for all v € N(j)\« yields

H nj-p(2;),

ﬁGN(J)

H (s ()M (25)
YEN(H)\a

which is (38b) after canceling out equal terms. Thus, in view

of (42), if N; > 1,
H Ma—j(T5).

aeN(j)

Bj(z5) o< njsal()ma—;(x;)

Finally, (37c¢) is clearly true due to constraints. This together
with (42) leads to (38c), which completes the proof. O]

The updates in (38) resemble the standard Belief Propaga-
tion algorithm (12). In particular, the updates (38a) and (38b)
are exactly the same as (12). The update (38c) is new and
is due to the constraints (36b) on the marginal distributions.
Pictorially the message m,_,; sent to a constrained node j
from node o bounces back to «, in form of n;_,,. This is
illustrated in Figure 4. The update (38c) in fact corresponds
to the scaling step (28) of the Iterative Scaling algorithm
(Algorithm 1). In particular, the multipliers {u; : j € I'} in
(26) relate to the messages as u; = n;_,q, for j € I'. To see
this, we note that the projection P;(K ® U) requires solving
a Bayesian inference problem with respect to the modified
graphical model

%)= 7 [T Kaolxa) [T wi(a)

ack jer

(43)

Upon convergence of the Belief Propagation algorithm (12),
it holds P;(K ® U) = u;m,,;, where « is the only factor
node in N(j) since j € I' is a leaf node. Thus, the projection
step (28) reads

u; © p;./Pi(KOU) (44)

= pj. /My = Nj 0.

Therefore, the updates (38) contain all the components
of our ISBP algorithm with (38a)-(38b) being the Belief
Propagation part and (38c) being the Iterative Scaling part.
ISBP is a scheduling of these updates in a certain order.
As discussed in Section III-B, the key idea of ISBP is to
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Fig. 4: Messages in ISBP

implement the projection P;(K ® U) in the iterative scaling
step (28) using Belief Propagation. In the contexts of the
updates (38), it is equivalent to run (38a)-(38b) sufficiently
many iterations to obtain the precise projection P;(K © U)
and then run (38c), which is essentially (28). How many
iterations of (38a)-(38b) are enough? One option is to run
Belief Propagation over the whole graph G with the most
recent modified model K ® U to compute P;(K ® U) for
all 7 € V. This is clearly sufficient but it is not necessary. Let
J1,Je,... be a sequence taking values in I' in some specific
order and suppose the Iterative Scaling algorithm is carried
out in this order. Then after the k-th step, u;, is updated, and
the only projection required in the next step is P;,,, (K®U).
It turns out that to evaluate P;, , , (K®U), it suffices to update
all the messages on the path from j; to jr4;. Compared
to the naive Belief Propagation over the whole graph, this
local updating strategy is considerably faster. The steps of
the ISBP algorithm are summarized in Algorithm 2. When
{j1,J2,...} is a cyclic order of T, the ISBP corresponds to
the standard iterative scaling algorithm (Algorithm 1). The
order also can be chosen more aggressively according to the
Gaussian-Southwell Rule [63] which updates the coordinates
that leads to maximum improvement. Either way, the ISBP
algorithm enjoys global linear convergence as described below.

Theorem 5. Let {n;kj)a}jep be the set of messages' from
the constraint set ' after the k-th iteration in Algorithm 2.
Then the sequence {n;]ia }jer converges at least linearly as
k — oo. Upon convergence, the solution to Problem (36) can
be obtained through (37). The belief tensor B (the solution to
(22)) can also be obtained through B = K © U with U =
u; QU ®...Quy, where uj =nj;_,, for j €I, and u; =

exp(—+)1 otherwise.

Proof. We identify the messages n;_,, with the updates
in the multi-marginal iterative scaling algorithm as in (44).
According to [52, Theorem 3.5] (see also [63]) the sequence
of these updates {n;k_)m}jep converges linearly as k — oo.
The limit point of Algorithm 2 coincides with the limit point of
(38), and thus in the limit the solution to Problem (36) is given

I'Note that since T is a subset of the leaf nodes, each element in I connects
to a single factor node, that is, « € N(j) is unique for each j € T.

by (37). Finally, since we identify the free energy (11) with the
entropy regularized MOT problem (22) as in (33), the optimal
B is of the form B = KO®U, where U = u; ®us®...®uy as
in (25). The components of U are given by u; = exp(f%)l
for j € V\T, and from (44) it follows that in the limit point
it holds u; = n;_,, for j € I O

Remark 6. The ISBP algorithm is based on the iterative
scaling/Sinkhorn algorithm and the belief propagation algo-
rithm. Over years, many accelerated versions of the Sinkhorn
algorithm have been developed, including the Greenkhorn
algorithm [64], [65] and accelerated primal-dual gradient
descent algorithm [66]. Combining these accelerations with
belief propagation can be done in a similar way as in ISBP by
realizing the marginal projections through belief propagation,
and will lead to accelerated versions of ISBP.

Remark 7. ISBP can be used to find approximate solutions to
the unregularized MOT problem (19) by choosing a sufficiently
small € as in [24]. An extra rounding step is needed in
the end to recover a solution that is compatible with the
marginals. Let M* be an optimal solution to (19), then a
feasible solution M is called a §-approximate solution for
(19), if (C,M) < (C,M*) + 0. It is shown in [24, Algorithm
1] that it takes 9] (6‘2J3) iterative scaling iterations (cf. [24,
Appendix A.2]) to find a d-approximate solution for unregu-
larized MOT problems. Note that in order to decide the next
greedy scaling step, the projections on all marginals need to be
recomputed, which in general requires (’j(d‘] ) operations with
d=dy =dy =---=dj. In contrast, utilizing tree-structures
in the cost tensor, we can compute all projections in @(J d?).
Thus, the computational complexity of using ISBP to solve the
unregularized MOT with tree-structured cost to accuracy 0 is
&) (6‘2J4d2). In the special case of Wasserstein barycenter
problems, the complexity of ISBP is worse than existing state-
of-the-art bounds 0 (574/3Jd7/3) in [67] and O (672Jd2) in
[68]. However, O (5’2J4d2) is a conservative bound which
is a direct application of the results in [24]. We believe a
tighter bound can be established by further leveraging the
tree-structure of the cost and adopting accelerated Sinkhorn
algorithms [64], [65], [66].

IV. CONSTRAINED NORM-PRODUCT ALGORITHM

One potential drawback of the ISBP algorithm lies in the
fact that it is a two-loop algorithm with the outer loop being
iterative scaling and inner loop being belief propagation. Such
a two-loop structure might slow down the convergence rate,
especially when the underlying graph is large. Moreover, the
two loops have to coordinate closely to guarantee convergence.
Such coordination is even more difficult, or impossible if
a distributed implementation is needed. Thus, we seek to
develop a single loop algorithm for the entropy regularized
MOT problems. A natural question to ask is whether we can
borrow ideas from the Bayesian inference literature. After all,
the Belief Propagation algorithm is not the only algorithm for
Bayesian inference.

The answer is affirmative. In this section, we examine
the Norm-product algorithm [36], another powerful Bayesian
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Algorithm 2 Iterative Scaling Belief Propagation (ISBP) Algorithm for MOT

Initialize the messages mq—,;(x;) and nj_q(z;)

Update mq—;(x;) and nj_,.(z;) using (38a)-(38b) until convergence

while not converged do
Update nj, . (xj,) using (38¢c)

Update all the messages on the path from node ji to node j;y; according to (38a) and (38b)

end while

inference method, and extend it to a single loop algorithm
for our MOT problems. Below we first review the Norm-
product algorithm for standard Bayesian inference problems
in Section IV-A. The extensions to entropy regularized MOT,
or equivalently, constrained Bayesian inference problems are
presented in Section IV-B.

A. The Norm-product algorithm

Consider the Bayesian inference problem (8). The Norm-
product algorithm [36] for Bayesian inference is based on the
so called fractional entropy approximation

an JrZEjH(bj)a

acF JEV

Hfrac (45)

of the entropy H(b) in (10). The coefficients ¢,, for a € F,
and ¢;, for j € V are defined as

Co = Co + E Cjas

JEN (o)

Cj = Cj — E Cja,

a€N(F)

(46)

for a set of real numbers c,, ¢j, and cjq, for j € V and
a € F, which are known as counting numbers [69]. Clearly,
an equivalent formulation of the fractional entropy (45) is

Hirac(b) = > caM(ba)+ Y c;jH(by) (47)
acF jev
+Z Z Cja b, —H(b]))

JEV aeN(j)

The fractional entropy resembles the Bethe entropy (17). In
fact, for the choice of counting numbers c; = 1—Nj, ¢jo = 0,
and c, = 1, the fractional entropy (47) reduces to the Bethe
entropy. Moreover, just like the Bethe entropy, the fractional
entropy approximation can be made exact when the underlying
graph is a tree (see Section IV-D).
With the fractional entropy representation (47), the total free
energy (11) is modified to the fractional free energy
JT'.frac(b) = ufrac(b) -

€ Hfrac(b)a (48)

where

ufrac (b)— -

Zzba (Xa) In9q (Xa)_zz bj(z;)Ing;(z;)

a€Fxq JeEV xj

is the average energy defined as in (9). Thus, in terms of
fractional free energy, the Bayesian inference problem (8)
reads

mbin Frrac(b) (49a)

subject to Y ba(Xa) =b;(z;),Vj € V,ar€ N(j)(49b)
X \Z;

> ba(xa) =1,Ya €F (49¢c)

The constraints (49b)-(49¢c) are to ensure that b,,b; are
indeed marginal distributions of some certain joint distribution.
For a given graphical model, there are infinitely many differ-
ent fractional free energy approximations determined by the
counting numbers c¢;, cq, Cjo; some of them are convex and
some of them are not. A sufficient condition for the convexity
of the fractional free energy is as follows.

Lemma 8 ([36]). When the counting numbers satisfy c¢; >
0, ¢ja =2 0, and co, > 0, for j € V and o € F, then
the fractional free energy Fiwac IS Strictly convex over the set
defined by the constraints (49b)-(49c).

Denote the two sets corresponding to the constraints (49b)
and (49c) by

M= {b; 3 ba(xa):bj(xj),wev,aeN(j)} (50)

xa\wj
and
- {b ;> ba(xa) =1, Vae F} (51)
respectively, and define
ZZb X ) In o (x4) Zeca ) (52)
acF X acF
and
hi(b) = = bj(x;)Ine;(x;) —ecH(b;) (53)
— > ecja(H(ba) = H(b))).
a€N(H)

Further denote f(b) = f(b) + 6p(b) and h;(b) = h;(b) +
drm(b) where ¢ is the indicator function. Then the Bayesian
inference problem (49) can be reformulated as

+Zh

In cases where c¢; > Q, Cja 2> 0, and ¢, > 01 for j € V and
a € F, by Lemma (8), f is strictly convex and h; is convex for

mln f(b

(54)
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each 1 < j < J for b € MNP. The Norm-product algorithm
relies on the reformulation (54). In particular, it leverages a
powerful primal-dual ascent algorithm (stated below in Lemma
9) that is well studied in the convex optimization community
to solve problem with the special structure of (54). The primal-
dual ascent in Lemma 9 is derived from a more general
algorithm known as dual block ascent [57] and thus inherits
the nice convergence property of the latter. We refer the reader
to [36] for more details on these algorithms.

Lemma 9 ([36]). Consider the convex optimization problem
min f + ijl hj with f(b) = f(b) + ép(b) where B =
{b: Ab = c}. The primal-dual ascent algorithm initializes

A1 = 0,...,A; = 0 and repeatedly iterates the following
steps for j = 1,...,J until convergence:
RIS (55a)
i#]
b* + argmlnbedom (f)Ndom(h {f )+bTVJ }(SSb)
A v, Vb A where o is a vector. (55¢)
Suppose f is strictly convex and smooth, and hj, j =1,...,J

are convex and continuous over their domains, then b* in the
above iteration converges to the unique global minimizer of

f+ Z}]ﬂ h;

The Norm-product algorithm [36] (Algorithm 3) is a direct
application of the primal-dual ascent algorithm to the formula-
tion (54) of the Bayesian inference problem (49). It can be seen
as a message-passing type algorithm for problem (49), where
the dual variables A; in the primal-dual ascent algorithm work
as “messages” between neighboring nodes. To see this, note
that h;(b) depends only on b, where o« € N (j), and thus the
corresponding dual variable A; depends only on x,, where
a € N(j). This sparsity is encoded by the representation
A; = {\ja(xq)}. The relation between the dual variables
A; in Lemma 9 and messages in Algorithm 3 is given by
Nj—a(Xa) = exp(—Aja(Xa))-

For more details on the derivation of the Norm-product
algorithm as a primal-dual ascent method, see [36]. Moreover,
our development of the constrained Norm-product algorithm
(Algorithm 4) is similar to this, and is provided in the
appendix. Upon convergence of Algorithm 3, the solution to
(49) has the form

1/6(’};‘
bi(z;) o | i) [ mamila;) , (562)
a€N(j)
1/eca
ba(xa) o [Ya(xa) [ mimalxa) ,(56b)
JEN(a)

where again o indicates that a normalization step might be
needed. Finally, note that for the special choice of counting
numbers ¢; = 1 — Nj, ¢jo = 0, and ¢, = 1, the Norm-
product algorithm reduces to the Belief Propagation algorithm
(12). However, note that this choice of counting number
does not satisfy the conditions in Lemma 8§ for convergence
of the algorithm, although it is well known that the Belief

Propagation algorithm is guaranteed to converge for trees [50].
Therefore, even though formally the Norm-product algorithm
can be viewed as a unifying framework for many message-
passing algorithms, its convergence proof is restricted in some
sense due to the strong requirement on the counting numbers.

B. Constrained Norm-product algorithm

In this section, we develop a Norm-product type algorithm
for the entropy regularized MOT problem (22), or equivalently
the constrained Bayesian inference problem (34). Consider
a modification of problem (49) with constrained marginal
distributions, which reads

]:frac (b> (578.)

bj(z;) = pj(z;), VjeT, (57b)

> ba(xa)=b;(x;),¥j € V,a € N(4)(57¢)
X \Z;

D ba(xa) =1 VYacF.

X

min
b

subject to

(57d)

Problem (57) can be seen in the light of the entropy
regularized MOT problem formulated as a free energy mini-
mization problem (34). In particular, if the free energy F is
approximated by the fractional free energy Ffac, then (34)
becomes (57). Recall that in the MOT problem the factor and
node potentials are 1, = exp(—C,) and ¢; =1 (cf. (33)).
However, the constrained Norm-product algorithm, which we
develop in the following solves the Bayesian inference prob-
lem (57) for any potentials 1, and ¢;.

Note that compared to (49), the modified problem (57) is
only augmented by one linear constraint (57b). Thus, problem
(57) can E)e formulated as in (54) by changing the set M in
hj(b) = h;(b) + dr(b) to

M={b: Y bal(xa) = bj(x;),¥j € V,a € N(j),
X\

bj(z;) = pj(z;), vj € I'},

instead of (50), and defining all other components of (54) as
in (51)-(53). The primal-dual ascent algorithm in Lemma 9
can then be applied to (57). The resulting Constrained Norm-
product (CNP) algorithm is presented in Algorithm 4. For
a detailed derivation of the method see Appendix A. Upon
convergence of Algorithm 4, the solution to (57) is of the form
(56), as in the standard Norm-product algorithm. Moreover,
the optimal marginal calculated through (56) satisfies the
constraint b; = p; for all j € T'. Algorithm 4 is presented
for general constrained Bayesian inference problems (57).
Recall that the entropy regularized MOT problem (34) is
recovered as the special case, where the potentials are given
by ¥, = exp(—C,) and ¢; =1, as in (33).

Compared with the standard Norm-product algorithm, the
messages from variable nodes with marginal constraint to the
neighboring factor nodes, i.e., nj_,, for j € ', a € N(j),
depend not only on the incoming messages to j and «, but
also the given marginal p;. Moreover, in the case when
the marginal constraint (57b) is absent, namely, I' = (),
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Algorithm 3 The Norm-product Algorithm

A €C;
1/€etjn Jex

, Ya € N(j),Vz;

—Cja/ja

Initialize n;_,qo(xq) =1forall j=1,---,J, « € N(j) and x,
while not converged do
for j=1,2,...,J do
Ma—j (xj) = Z wa (xa) H ni%a(xa)
Xo\T; iEN ()\j
1/¢; 1/¢;
?; (z5) HﬁeN(j) mﬁ_m-(xj)

Njsa(Xe) o

1/¢;a
myl e (x5)

end for
end while

Ya (Xa)

II nisa(xa)

iEN(a)\j

, Yo € N(j),Vxq

Algorithm 4 Constrained Norm-product (CNP) algorithm

Set nja(xq) =1forall j=1,---,J, a € N(j) and x,
while not converged do

for j=1,2,...,J do
I/Eéja €Cja
Ma—j (l‘]) = Z wa(xa) H ni—nx(xa) , Ya € N(]),VIJ
xa\T; iEN(a)\j
if 7 ¢ T then
d)l./éi (x) 11 . ml/éj_(ln) o ~¢ia/éa
T R e Ya(xa) [ mimsa(xa) , Va € N(j),Vxa
Mo—sj (I]) iEN(a)\j

else if ;7 € T" then

Njsa(Xa) (

a—j (

end if
end for
end while

pite) \"
et I 00

—Cja/Cja

, Yo € N(j),Vxq

H Ni—a (Xa)

i€N (a)\j

Algorithm 4 reduces to the standard Norm-product belief
algorithm 3.

Remark 10. The message updates in Algorithm 4 can be
problematic when the denominators become zero. This sce-
nario can occur when either the factor or node potentials
Ya(Xa) or ¢;(x;) contain zero elements. Note that zero entries
in the potential let the average energy (9) be unbounded if
bj(x;) or by (xq) are nonzero on the corresponding entries. In
implementations, this can be avoided by ignoring the updates
involving zero denominators. See [36, Appendix F] for a more
detailed discussions of this issue.

C. Relations to Iterative Scaling Belief Propagation algorithm

Compared to the ISBP algorithm, the CNP algorithm is a
single loop algorithm. Each iteration of Algorithm 4 requires

visiting every variable node only once. In contrast, since
Algorithm 2 has a double-loop structure and each inner-loop
iteration requires updating throughout an entire path between
two leaf nodes, the messages associated with most variable
nodes will be updated multiple times in one iteration of
the algorithm. Thus, the iteration complexity of the ISBP
algorithm is higher than that of the CNP algorithm. This
difference becomes more significant as the diameter/size of
the underlying graph increases; for larger graphs, the inner-
loop iteration of ISBP algorithm takes more updates. Apart
from the iteration complexity, another potential advantage of
the CNP algorithm is that its single loop structure allows for
more flexible scheduling of the message passing/updating. In
particular, it does not require any communication between
inner and outer loop updates. Thus, it is easier to parallelize the
Constrained Norm-product algorithm or develop a distributed
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version of it.

Recall from Section IV-A that the standard Norm-product
method with counting numbers chosen as ¢, = 1, ¢; = 1—-N;
and cj, = 0 reduces to the standard Belief propagation
method as given in (12). It turns out that similar results can be
established to relate the Iterative Scaling Belief Propagation
algorithm and the Constrained Norm-product algorithm. In
particular, with this set of counting numbers, the constrained
Norm-Product algorithm reads

Mamsi (@) = > Va(xa) [] nisalz;)]. Yae N(j)(58)

Xa \T; €N (a)\j

| (x;) [] mo—i(x;)| Vi ¢ T.Vae N(jX58b)
BEN (i)\a

M@)o g1y () (massy(2;)) 1) € T, Vae N(j).(580)

Nj—a(T5)

Note that in general the messages n;_,, in the Constrained
Norm-product algorithm depend on x,, but for this special
choice of counting numbers, they depend only on x;. The
messages (58) are exactly the same as the messages (38) in
the ISBP algorithm. If the messages in (58) are scheduled in
a specific way, then this becomes the Iterative Scaling Belief
Propagation Algorithm 2. In particular, this is achieved by
cycling through the nodes in I', where for two successive nodes
J1,J2 € I, one schedules the messages (58a) and (58b) on
the path from j; to j», and finally the message n;,_,, as in
(58c). In this light, Algorithm 2 may not only be understood
as Iterative scaling Belief propagation, but also as constrained
Belief propagation, i.e., an extension of the standard Belief
propagation method, where the marginals on some nodes are
fixed.

What if we update the messages (58) following the schedul-
ing of Algorithm 4? In fact, this is a single-loop version of
the ISBP algorithm, and we have empirically observed good
convergence properties of it. However, the choice of counting
numbers ¢, = 1, ¢j = 1 — N; and ¢j, = 0 does not
yield a strictly convex objective function decomposition in
the associated fractional variational inference problem (57)
as discussed in Lemma 8. Thus, the convergence result for
Algorithm 4 does not apply to this setting, and a global
convergence proof remains an open problem.

D. Counting numbers of fractional entropy

One way to guarantee the convergence of the Constrained
Norm-product algorithm is to choose the counting numbers for
the fractional entropy Hac such that they satisfy the convexity
conditions in Lemma 8. Thus, a crucial question is whether,
given a graphical model, such a choice of counting numbers
exists, and how to find them. This question has been discussed
in [36, Appendix E] where several optimization based methods
have been proposed. In this section, we present a structured
method to construct a feasible set of counting numbers that
satisfy the assumptions in Lemma 8, viz., ¢; > 0, ¢jo >
0, cq > 0, for factor graphs, which are trees. In particular, we
provide a closed form expression for the choice of counting

numbers, which makes parameter tuning for the Constrained-
norm product algorithm simple and intuitive.

The fractional entropy decomposition requires the fractional
entropy Hrac(b) to be equal to the entropy #H(b), that is

H(b) = Herac(b Z caM(by) + Z CjH(b )
acF jev
+ ) cja(H(ba) — H(by)).
JEV,a€EN(j)

On the other hand, for a factor tree, the entropy equals the

Bethe entropy, namely,
=D H(ba) = > (N,

H(b) = HBethe
aEF jev

— 1)H(b;).

It follows that

> (L= N)HDB)+ Y H(ba)=> (c;— Y cia)H(b;)
)

JEV acF JeEV a€N(j
+> (cat+ > cja)H(ba).
a€F i€EN(J)

Hence, by identifying the coefficients, we see that finding a
set of feasible convex counting numbers is achieved by finding
ca > 0,¢; > 0,cjo > 0 that satisfy the following equations

- Y ca=1- (59a)
a€N(j)
Cat Y Ca=1 (59b)
JEN ()
A direct consequence of (59) is
e+ > ca=1 (60)

jeVv a€cF
To see this, sum up (59a) and (59b) over all variable nodes and
factor nodes. The left hand side becomes >,y ¢;+>_,cr Ca

as all the terms c;,, get canceled. The right hand side becomes

DU=N)+D 1== Y N+> 1+ > 1

Jjev ack jev jev ackF
=—|E|+|V|=1

The last equality is due to the fact that the factor graph is a
tree (acyclic).

The property (60) can be generalized to subgraphs of G.
Let (j., x) be any edge of G. If we cut this edge, then the
tree GG is split into two trees G; and Ga, where Gy contains
the variable node j, and G5 contains the factor node . This
is illustrated in Figure 5. Let G = (V4, Fy, F1), then

= Z cj + Z Ca-

jeV: aclF;
This relation (61) can be established similarly to (60). It
determines values for cj, given ¢;,7 € V and co, a0 € F.
Moreover, it guarantees that c;, is non-negative, as long as
c; and ¢, are non-negative. Hence, based on (60) and (61),
we obtain a remarkably simple strategy to get a set of convex
counting numbers ¢, > 0,¢; > 0,c¢j, > 0.

(61)

Cjra
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CORS

Fig. 5: Subgraphs GG; and G of G by cutting edge (2, as).

Proposition 1. The following procedures lead to a feasible
set of counting numbers c, > 0,¢; > 0,¢jo > 0 that solves
(59):
1) Choose co > 0,c; > 0 for j € V,a € I such that (60)
is satisfied;
il) [terate over each edge in the graph, split the graph along
the edge and calculate the corresponding cjo through
(61).

Proof. Obviously, by construction, ¢, > 0,¢; > 0,¢jo > 0
for all 5 € V,a € F. We next show that they satisfy (59).
To this end, denote the two subgraphs GG; and G2 discussed
earlier by cutting edge (7, @) by G1 jo = (Vi jas F1 jas E1ja)
and G2 jo = (Vo ja, F2 ja, E2 ja), respectively. It follows, for
any j €V,

G— > Ga=c¢— > (> et Y cs)

a€N(j) a€EN(5) i€V1 ja BEF jao
== >, (0= > a— > )
a€N(j) 1€V2 ja BEF: ja
=> e+ Y g—N;x1=1-Nj,
eV BEF

where the second last equality is due to the fact that V =
{¢j} U (Uaen)Ve,ja) and F' = Uysen(j)F2,ja. This estab-
lishes (59a). The proof of (59b) is similar. O]

Proposition 1 makes constructing a feasible set of count-
ing numbers that induces convex fractional free energy (see
Lemma 8) as easy as finding ¢, > 0,¢; > 0,5 € V,a € F
that satisfy (60). One choice we found effective is

B 1
V| +|F|
for all j € V,a € F. For the specific example in Figure 5,

this choice leads to ¢; = ¢, = ﬁ The value of cy,, is 1—71 by
61).

Cj = Cq

V. NUMERICAL EXAMPLES

In this section, we present three sets of experiments to
highlight our framework. The first set of experiments is to
validate the correctness of the Constrained Norm-Product
and the Iterative Scaling Belief Propagation algorithms, and
compare their performance. The second experiment illustrates

(c) Star

(d) Long Star
Fig. 6: Testing graphical models

potential applications of our framework in nonlinear filtering
problems for collective dynamics with aggregate observations.
Finally in the third experiment, we present an application of
our algorithm for the task of color transfer across several
images via color palette averaging.

A. Performance evaluation

We implement three algorithms: Constrained Norm-Product
(CNP) (Algorithm 4), Iterative Scaling Belief Propagation
(ISBP) (Algorithm 2) and Vanilla Iterative Scaling (Vanilla
IS) (Algorithm 1) on four different type of graphs: line graphs,
hidden Markov models (HMMs), and two star shape graphs
(see Figure 6). For the line graph (Figure 6a), the constraints
of marginal distribution are on the head and tail nodes. This
corresponds to a standard OT problem with two marginals.
HMMs (Figure 6b) are widely used in many real-world appli-
cations. In the standard HMM framework, the measurements
are deterministic values, which can be equivalently viewed as
Dirac distributions on the observation/measurement nodes. In
our MOT framework, these observation nodes are associated
with marginal distribution constraints, which can be viewed
as a relaxation of the standard HMM where the deterministic
measurements are replaced with “soft” stochastic measure-
ments. The star graph (Figure 6c) structure has marginal
constraints on all the leaf nodes. This corresponds to the
Barycenter problem over the Wasserstein space [53], which
has found applications in information fusion [17].

We test the algorithms with several different configurations.
In particular, we vary the number of discrete states at each
variable node dq = dy = -+ = dj = d as well as the number
of nodes J in the tests. Throughout, we let € = 1. The factor
potentials and the counting numbers are set consistently for all
the experiments. In particular, the factor potentials are chosen
in a way such that the variable nodes connecting to a common
factor node are strongly correlated. In our examples, all the
factors are connected to only two variable nodes. This choice
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Fig. 7: Comparison among CNP, ISBP and Vanilla IS. The
three rows, from top to bottom, correspond to examples with
line graph, HMM, and star graph, respectively. The subplots
in the same column have the same value of d.
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of factor potentials amounts to taking diagonally dominant
matrices as potentials. The counting numbers are selected
using the strategy in Proposition 1 by setting ¢; =0, Vj € V
and ¢, = cg, Va, f € F. In all our experiments, we observe
that the three algorithms converge to the same solutions.
To fairly compare the computation complexity of the three
algorithms, we use a unified stopping criteria; the algorithms
stop when the relative error with respect to the “ground truth”
b* in terms of the 1-norm is less than 10~*. The “ground
truth” b* is obtained by running one of the algorithms (e.g.,
Vanilla IS) for sufficiently many iterations so that the duality
gap is less than 10~8. Figure 7 depicts the evaluation results
of the three algorithms under different configurations. The
y-axis shows the total time consumption of the algorithms
before they stop. The x-axis represents the size of the graphs,
more specifically, the number of nodes J of the graphs being
used. Thus, each subplot showcases the relation between
computational complexity and the number of nodes of the
graphs. The dependence of the computational complexity on
the number d of discrete states at each node can be understood
by comparing the subplots along each rows. Each row of
subplots corresponds to a type of graph. Thus, the effect of
the graph topology on the computational complexity can be
captured by comparing the subplots in the same column. From
the results it can be seen that, for all types of graphs, and all
values of d, the complexity of the Vanilla Iterative Scaling
grows exponentially as the number of nodes J increases. In

contrast, both CNP and ISBP scale much better than Vanilla
IS when J increases. Moreover, CNP and ISBP seem to be
less sensitive to the number of discrete states d at each node,
compared with Vanilla IS.

To comprehensively compare the performances of ISBP and
CNP, we conduct several more experiments on graphs of larger
sizes where the Vanilla Iterative Scaling is no longer applica-
ble. Besides the three graphs used in the previous experiment,
we study an additional star shape graph with more nodes on
each branch (Figure 6d). The stopping criteria is the same as
before; the algorithms stop when the relative error with respect
to a “ground truth” b* in terms of I-norm is less than 1074,
Since Vanilla IS is computationally forbidden for large .J,
we run the ISBP algorithm for sufficiently many iterations to
obtain b*. The experiments results are summarized in Figure
8. The presentation of the results in Figure 8 is similar to
that in Figure 7, so that we can understand the dependence
of the computational complexity over the number of discrete
states d, number of nodes J and graph topology. From the
figures we can see that the two algorithms CNP and ISBP,
have comparable performances. Both of them scale well when
J and d increase. ISBP behaves better on line graphs and
HMMs, while CNP is faster on star shaped graphs.

B. Filtering for collective dynamics

In this section, we present an example that is applicable to
various applications such as human mobility analysis and bird
migration analysis that involve aggregate inference tasks with
population level observations. The geographical area is divided
into a grid such that each individual can be in one of the grid
points. The individuals move along trajectories that are not
directly observed, instead, population-level data is recorded
using sensors such as cell phone stations or Wi-Fi hotspots
that count the number of individuals connected to them at
different times. This observation model can be depicted by an
HMM (Figure 6(b)) with aggregate counts as observations as
illustrated in Figure 9. Our goal is to estimate the movement
of the whole population using this limited sensor information.

For illustration purposes, consider a particle ensemble with
10000 agents moving over a 20 x 20 grid, aiming from bottom-
left corner to top-right corner as shown in Figure 10. The
dynamics of the agents follow a log-linear distribution gov-
erned by four factors: the distance between two locations, the
angle between the movements direction and an external force
(e.g., wind), the angle between the direction of movement and
the direction to the goal, and the preference to stay in the
original cell. More specifically, denote the four factors by a
single vector

b—a,v)
F(a,b) = b—a7cos_1(<’),
@) = (1=l b—allvl
(b—a,xgon — a)

COS_1< >7—Ha:b>,
o~ al g —al ) - 10 =

where a,b represent any two locations, v represents the
external force, xg0q1 is the goal position, and I[-] denotes the
indicator function, then the transition probability from a to
b is proportional to exp(—(w, F'(a,b))). In our experiments,
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Fig. 8: Performance evaluation of CNP and ISBP. The four rows, from top to bottom, are associated with line graph, HMM,
star graph and long star graph respectively. The subplots in the same column share the same value of d.

the weights w for the log-linear model associated with these
four factors are set to be (5,3,3,1). This model has been
used to model the migration of birds [40], [42]. There are 16
sensors placed over the grid as shown in Figure 10a. These
sensors can not measure the exact locations of the agents.
Instead, the measurement of each sensor is a count of agents
it currently observes. An agent can only be captured by one
sensor at every time instance. The probability of an observation
decreases exponentially as the distance between the sensor and
the agent increases.

This filtering problem for collective dynamics can be mod-
eled as a MOT problem, or equivalently a constrained marginal
inference problem in our framework. In particular, the agents
form a HMM and the sensor measurements correspond to
constraints on marginal distributions over the observation
nodes. The number of discrete states at each node is d =
2020 = 400 and the number of nodes depends on the number
of time steps. We simulate the model for 15 time steps and
run both ISBP and CNP to infer the marginal distributions
of the free nodes in order to estimate the group behavior of
the 10000 agents. The agents start in two clusters: one in the

bottom-left corner and one in the bottom-middle area; both
aim to reach the top-right corner of the grid in 15 time steps.
The results are depicted in Figure 10b. Both CNP and ISBP
give the same estimation result and thus we only display one
of them in the figures. As can be seen from the plots, even
though the sensor data (center column) is hard to interpret
visually, our constrained marginal inference framework can
still infer the population movements to a satisfying accuracy.

C. Image Pixel Style Transfer via Color Palette Averaging

Finally, we present an experiment on color transfer among
images via color palette averaging. An image with N number
of pixels is stored as a matrix of size N x 3 with R, G, and B
color channels. The color palette of such image is represented
by a distribution over the 3-dimensional RGB space. Given
multiple color images, we average the color palettes with our
proposed algorithm with underlying graph being a star graph;
it is a Wasserstein barycenter problem.

A graphical representation of the problem with three images
is depicted in Figure 11, wherein each image corresponds to
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Fig. 9: Illustration of aggregate observations and collective filtering of three individuals. The first three rows depict the true
trajectories of the three individuals, their locations, and the corresponding individual (noisy) observations at different time
steps. The bottom row shows the aggregate observations in terms of individual counts recorded by each sensor at different
time steps. For time steps ¢ = 1,...,4, the observation at each time step is an aggregation of three individuals. The goal of
aggregate inference (collective filtering) is to estimate the individual trajectories, which is shown in the first column, from
aggregate observations. The locations and observations at different time steps are marked in different colors. The black lines
connecting marks and sensors represent the corresponding individual observations.

a leaf-node and is represented by its RGB distribution. We
discretize each of the three color channels [0,255] into 50
different states such that the fixed nodes of the underlying
star graph represent fixed color palette distributions p; €
RP0x50x50 5 — 1 2 3. The factor potentials of the underlying
star graph are constructed based on the (square) Euclidean
distance over the 3-dimensional RGB space.

We deploy the ISBP algorithm to estimate the averaged
color palette as well as the joint distributions between the
center node and the leaf nodes. The joint distribution between
the center node and a leaf node forms a mapping between
pixel distributions which is then utilized to color transform the
corresponding fixed image. We present color transfer results
in Figure 12, wherein the top row shows the original images
and bottom row depicts the corresponding color transferred

images.

VI. CONCLUSION

We studied multi-marginal optimal transport problems and
pointed out an unexpected connection to probabilistic graph-
ical models. This relation between MOT on graphs and
constrained PGMs provides a completely new perspective of
both MOT and PGMs, which may have far-reaching impact
in the future development of both subjects, in both theory
and applications. This connection also enables us to adapt
the rich class of algorithms in PGMs to tackle difficult MOT
problems. In this work, to highlight the key ideas of this
line of research, we focused on MOT on trees with discrete
states. The next step is to generalize the results to more
general graphs with cycles as well as continuous state spaces.
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Fig. 10: Movement estimation of 10000 agents over a 20 x 20 grid for 15 time steps: (a) displays the grid and the locations
of the sensors; (b) shows the estimation results. The three columns, from left to right, represents the simulated movement of
agents at three time steps ¢t = 2,9, 15, the sensor measurements, and the estimated agent distributions respectively. The size
of the blue dots is proportional to the number of agents at that location.

Estimated average
color palette

Fig. 11: Color palette averaging of three images. The under-
lying graph is a star graph with three given images and their ,
corresponding color palettes at the leaf nodes. ey

These are more challenging problems in PGMs, for which Fig. 12: Image style transformation and color palette aver-
exact Bayesian inference is usually too expensive, and one aging. The first two rows show the original images and its
needs to turn to approximate inference such as variational corresponding color palettes. The last two rows display the
inference or sampling based methods [26]. Other interesting transferred images and the averaged palette (distribution of x4
research directions include developing approximation schemes in Figure 11).

for general cost tensors based on graphical structures, as well

as the acceleration of the proposed algorithms.

sake of convenience, we introduce the following notation

APPENDIX A Vj,0(Xa) = Ya(Xa) exp(—Vj,a(Xa)), (62)
DERIVATION OF CONSTRAINED NORM-PRODUCT Cja = Cq + Cja,
ALGORITHM (ALGORITHM 4) & i=cj + Z Car-
aEN(J)

We follow the primal-dual ascent algorithm stated in Lemma
9. Denote A\; = {\;o(Xa)} and v; = {v;(xq)}. For the For a fixed 1 < j < J, the step (55b) in the primal-dual
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ascent algorithm requires solving

f(b) + h;(b) + bTv,.

min
bedom(f)Ndom(h;)

Recall that f(b) = f(b) + dp(b), h;(b) = h;(b) + du(b)

where
M= {b: 3 balxa) = bi(w;),¥j € Va € N(j),
X\
bj(z;) = pj(z;), Vj € F},
P = {b:Zba(xa)zl, VozEF},
f(b) = Z ba(Xa) INta(Xa) = > ecaM(b
Xq,xEF aEF
hj(b) = = bij(z;)Ing;(x;) — ec;H(by)
— Y ecja(H(ba) - H(by)).
aEN())

Thus, for any fixed 1 < 5 < J, step (55b) of the primal-dual
ascent algorithm can be reformulated as

bJ,ba,aEN( ){Zb (z;)In¢;(x;) ZZb (Xa ln@bja(xa)

a Xq

(b))~ Y etja(H(ba) H(bj))} (63a)
a€N(F)
subject to Zba(xa) :1,Zba(xa) =b;(
X X \Tj

bj(z;) = pj(z)),

Note that when j € I', the above problem has an extra
constraint (63c) compared to the cases where j ¢ T'.

We next derive a closed form solution b7, b7, to (63). The
constraint (63b) implies that b; is a marginal distribution
of b,, thus, b, can be rewritten in terms of conditional
distribution b, ; as

ba(Xa) = bj(25)ba);(Xa | 25).

The entropy H(b

xj)va € N(j) (63b)

Va;, if jeT. (63¢)

(64)

«) can be rewritten as [70]

+Zb z;)H aIJ

H(ba)

where

H(bqyj) = Z balj(Xa | 25) by j(Xa | 5).

xa\ﬂJ

Thus, in terms of new variables b;, b, ;,a € N(j), the
optimization problem (63) reads
b;) + Y bi(x;)

IItl’lIl {—Z bJ(Z‘J) In d)j (l‘]) - 663'7’[
> ejo[min = " bg(xa | z;)In D09 (30 )H (bay;)]}

a€N(j) ali Xa \T;j

(65)

20

together with the extra constraint b; = p; if j € I'. One
advantage of this reformulation is that the problem now can
be optimized over b, ; first and then over b;.

Minimizing (65) over b, ; is a standard exercise, and the
minimizer is
:qzjj’a(xa)l/eéja/ Z 1ﬁj,a(xa)l/dm-

Xa \T;j

beyj (Xa | )

Thus, the value for block (%) is

—In > thja(xa)t/ e
X\
Denote
Mami(@i) = | 2 dhalxa) /e | (66)
Xa \Z;
then (65) with optimal b, ; can be simplified as
mm - Zb xT; lnrb/“’ (z; Hml/&’
J ] a—>]
a€N(5)
(67)

When j € T, b; = p; is the only feasible point; b} = p;.
When j ¢ T, (67) is again a standard exercise with the unique
minimizer being

1/eé;
bi(xj) o< | ¢j(z5) H Ma—j(25) (68)
a€eN(j)
Combining b’ and bzl , We obtain
* * bsﬁ (Jf ) I €6
b5, (Xa) = 0j(x;)bg;(Xalz;) = #wﬂa(xa)l/ e
moz%j (mJ)

(69)

Next, we move to step (55¢) of the primal-dual ascent
algorithm (Lemma 9), which reads
Aj &~V — Vf(b*) + Ao
with o being an arbitrary vector. The vector A” o spans the
orthogonal space to the domain 5 (see Lemma 9) of f. In our
problem, B = P is the probability simplex, thus A7 is in
alignment with 1, the vector with all 1 entries. It follows that

Na(Xa) = ~Vja(Xa) = V(U (xa)) + 001, (70)
The value of Vf(b%(x4)) is
V(b (xa)) = = Inta(xa) + eca (N5 (xa) + 1) .
Define 7 ,0(Xq) as
Nja(Xa) = exp(—=Aja(Xa)); (71
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then, in view of (69),

— Ina (Xa)) (b, (%a))

Nja(Xa) X exp(Vj,a(Xa)

€Cq
b* (z; a a
_ 71 i) ca/Cja
- .7 O‘ l/ec]a wj,o& (Xa)
Ma—sj )
€Cq
b* x]) "ca/tja—1
1/6('9a qizjj,a (Xa)
a—>] (‘r])
€Cq
bi(z) 5
J —Cja/Cja
l/ecja j’aj ’ (Xa)’ (72)
Ma—sj )
where the last equation is due to ¢, = co + Cjo. By

step (55a) of the primal-dual ascent algorithm, v;, =
ZieN(Q)\j Ai,a(Xq). Combining it with (62) and (71) yields

bia%a) = Yalxa) ] exp(-Nialxa))
1EN (a)\j

Yo (Xa) H Nissa(Xa).

€N (a)\j

(73)

Finally, plugging (73) into (66) leads to
1/eé;a\ e

>

a\zj

Ya (xa) H Ni—a (Xa)

iEN(a)\j

Ma—sj(T5)=

Plugging (73) into (72), in view of the different forms of b;f
for j €T and j ¢ T, we obtain

1/C7 1/6.7'
é; () HﬁeN )mﬁaj(l‘j)
V@)

Ca

Njsa(Xa) X

a—j
—Cja/Cja
wa(xa) H ni—)a(xa)
1€N (a)\j
for j ¢ T, and
cc —Cja/Cja

(.

nj—>a(xa)0( % ¢a(xa)H ni—mc(xa)
a—j (XOé) 1EN(a)\Jj

for 7 € I'. This concludes the derivation.
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