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Abstract— The context of the present paper is stochastic
thermodynamics–an approach to nonequilibrium thermody-
namics rooted within the broader framework of stochastic
control. In contrast to the classical paradigm of Carnot engines,
we herein propose to consider thermodynamic processes with
periodic continuously varying temperature of a heat bath and
study questions of maximal power and efficiency for two ideal-
ized cases, overdamped (first-order) and underdamped (second-
order) stochastic models. We highlight properties of optimal
periodic control, derive and numerically validate approximate
formulae for the optimal performance (power and efficiency).
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I. INTRODUCTION

Harvesting energy is one of the principal characteristics
of living organisms. It rarely conforms to the setting of
Carnot’s cyclic [1] contact with alternating heat baths, or
the physics of the thermocouple with a stationary thermal
gradient. Instead, it is the periodic fluctuations in chemical
concentrations in conjunction with the variability of elec-
trochemical potentials that provide the universal source of
cellular energy [2]. Thus, energy exchange is often mediated
by continuous processes and energy differentials, whereas the
Carnot cycle reflects the switching mechanics of an idealized
engine.

Yet, for more than 200 years, Carnot’s gedanken ex-
periment of quasi-static operation and adiabatic transioning
between heat bath of different temperatures, has been the
cornerstone of equilibrium thermodynamics [3]. It has pro-
vided us with a wealth of ever expanding insights into the
nature of the physical world, from the absolute temperature
scale to the concept of entropy, the irreversibility enshrined
in the second law, and the time arrow that reigns supreme.

Recent attempts to extend the classical theory of thermo-
dynamics beyond equilibrium processes include the subject
of stochastic thermodynamics [4], [5]. This subject has a
strong control theoretic flavor and has already provided
important new insights. These include the Jarzinski equality
[6] and the interpretation of dissipation via Hamilton-Jacobi
theory for underdamped stochastic dynamical models [7].
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The topic of this paper follows along similar lines. It puts
forth stochastic models for non-equilibrium theremodynamic
processes in contact with a heat source having periodically
and continuously varying temperature. It then explores the
question of how to optimize for energy harvesting, both in
terms of power and efficiency. This is a stochastic control
problem of a somewhat non-traditional nature; the coupling
between controlling potential and heat bath renders the mod-
els nonlinear. Expressions in closed form are not possible.
Thus, we resort to approximation and numerical verification
for limiting cases. Conclusions are drawn as to the nature
of optimal operation. Related work treating thermodynamic
systems in the linear response regime can be found in [8].

The main contributions of our paper are to be viewed
within the context of stochastic control. The motivation
and inspiration comes from nonequilibrium thermodynam-
ics processes. That natural processes would somehow self-
organize, to match driving potentials and optimize efficiency
and power, remains speculatory at present. Specific physical
processes need to be modeled, validated, and compared,
before any definitive statement is made.

The paper develops as follows. In Section II we present
certain basic stochastic models of thermodynamic processes.
Sections III and IV detail our results for overdamped and
underdamped models, respectively, and in Section VI we
discuss future directions and open questions.

II. STOCHASTIC THERMODYNAMIC MODELS

We begin by describing the basic model for a thermo-
dynamic ensemble used in this work. This consists of a
large collection of Brownian particles that interact with a
continuous periodic heat bath in the form of a stochastic
excitation and are driven under the influence of an external
(time varying) potential. The dynamics of individual particles
are expressed in the form of stochastic differential equations.
We consider two models in this paper: the under-damped
Langevin equation and over-damped Langevin equation.
Control actuation is in the form of a time-varying potential
that exerts forcing to individual particles.

A. Under-damped and over-damped Langevin equations

The underdamped Langevin equations

dXt = vtdt (1a)

mdvt =−∇xU(t,Xt)dt−γvtdt+
√

2γkBT (t)dBt, (1b)

represent a standard model for molecular systems interacting
with a thermal environment. Throughout, Xt ∈ Rd denotes
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the location of a particle and vt ∈ Rd denotes its velocity at
time t, U(t, x) denotes a (C1 in t and C2 in x) time-varying
potential for x ∈ Rd, m is the mass of the particle, γ is
the viscosity coefficient, kB is the Boltzmann constant, T (t)
denotes the temperature of the heat bath at time t, and Bt
denotes a standard Rd-valued Brownian motion.

When the inertial effects in the Langevin equation (1b) are
negligible, specifically, when the temporal resolution ∆t�
m
γ , averaging out the fast variable vt leads to the overdamped
Langevin equation

dXt = − 1

γ
∇xU(t,Xt)dt+

√
2kBT (t)

γ
dBt. (2)

Formally, the overdamped Langevin equation is obtained
from (1b) by setting m = 0 and replacing vtdt = dXt.
For a more detailed explanation see [4, page 20].

In this work we focus on a tractable bilinear model that
consists of a quadratic potential and a sinusoidally varying
temperature of a heat bath, that is,

U(t, x) =
1

2
q(t)x2

T (t) = T0 + T1 cos(ωt), T0 > T1 ≥ 0,

with T0 and T1 specified.
The state of the thermodynamic ensemble is identified

with the the joint probability density of Xt, vt, denoted by
ρ(t, x, v), for the under-damped case, and probability density
of Xt, denoted by ρ(t, x), for the over-damped case. The
corresponding Fokker-Planck equations are

∂ρ

∂t
=−∇ ·

{[
v

− 1
m (γv +∇xU)

]
ρ

}
+
γkBT (t)

m2
∆vρ,

(3a)

and
∂ρ

∂t
=

1

γ
∇x · [(∇xU + kBT∇x log ρ)ρ ] , (3b)

respectively.

B. Internal energy, heat and work

The internal energy of a single particle, governed by the
under-damped Langevin equation (1), is the summation of
the kinetic energy and the potential energy,

Eu
t =

1

2
mv2t + U(t,Xt). (4a)

For the over-damped model (2), the kinetic energy is negli-
gible and hence ignored, and the internal energy is

Eo
t = U(t,Xt). (4b)

The superscript in the notation suggests the case.
Evolution of the thermodynamic ensemble under the influ-

ence of the time-varying thermal environment and the time-
varying potential U(t, x), leads to an exchange of work and
heat. These can be defined at the level of a single particle as
explained below.

The energy exchange between an individual particle and
the external potential represents work. Specifically, the work

transferred to the particle by an infinitesimal change in the
actuating potential is

d̄W =
∂U

∂t
(t,Xt)dt. (5)

Here we use d̄ to emphasize that d̄W is not a perfect
differential, in that

∫
d̄W depends on the path and not just

on the end-point conditions. The same definition for work
holds for both under-damped and over-damped models.

The energy exchange between an individual particle and
the thermal environment represents heat. The heat exchange
is defined in such a way so that the first law of thermodynam-
ics, dEt = d̄Q+ d̄W holds. Because the internal energy in
the over-damped model does not involve the kinetic energy,
the heat is different for the two models. It is

d̄Qu = ∇xU(t,Xt) ◦ dXt

= −γ‖v‖2dt+
kBT (t)γ

m
dt+

√
2kBT (t)γvdBt,

for the under-damped model, and

d̄Qo =∇xU(t,Xt) ◦ dXt

=− 1

γ
‖∇xU(t,Xt)‖2dt+ ∆xU(t,Xt)

kBT (t)

γ
dt

+∇xU(t,Xt)

√
2kBT (t)

γ
dBt,

for the over-damped model. In each case, the first entry on
the right is the expression in the Stratonovich form, whereas
the second entry brings in the correction term for changing
into the Itô form. For details see [4, section 4.1].

Accordingly, for a thermodynamic ensemble at a state
ρ(t, x, v) or ρ(t, x), the work and heat differentials are
obtained by averaging over the ensemble,

d̄Wu =

[∫ ∫
∂U

∂t
(t, x)ρ(t, x, v) dxdv

]
dt, (7a)

d̄Qu =

[∫ ∫ (
−γ‖v‖2+

kBT (t)γ

m

)
ρ(t, x, v) dxdv

]
dt,

(7b)

and

d̄Wo =

[∫
∂U

∂t
(t, x)ρ(t, x) dx

]
dt, (7c)

d̄Qo =

[∫ (
−1

γ
‖∇xU‖2+∆xU

kBT (t)

γ

)
ρ(t, x) dx

]
dt,

(7d)

for the under-damped and over-damped models, respectively.
The expressions satisfy the first law of thermodynamics for
the ensemble dE(ρ, U) = d̄Q + d̄W, where the internal
energy is given by

Eu(ρ, U) =

∫ ∫ (
1

2
m‖v‖2 + U(t, x)

)
ρ(t, x, v) dxdv,

(8a)

and

Eo(ρ, U) =

∫
Rd
U(t, x)ρ(t, x) dx, (8b)

for the two models, respectively.
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C. Work and heat exchange with periodic temperature

We now consider a cyclic process of period 2π
ω in which

energy is extracted and heat exchanged from a heat bath with
varying temperature. Without loss of generality, we restrict
to the scalar case, i.e., d = 1. Under the quadratic potential
U(t, x) = 1

2q(t)x
2, the work extracted over a cycle, W =

−
∫ 2π

ω

0
d̄W , can be expressed as (using (7c) or (7a))

W = −E

{∫ 2π
ω

0

d̄W

}
= −1

2

∫ 2π
ω

0

q̇(t)E{X2
t }dt. (9)

In contrast to the classical Carnot cycle, where the engine
switches contact adiabatically between two heat baths of
differing temperatures, such a delineation of phases in the
cycle is no longer rigid. It is now the sign of the heat flux
differential d̄Q that determines the phase of the cycle when
heat flows in, or out of the ensemble, respectively. Thus,
accordingly,

Qh =

∫ 2π
ω

0

(d̄Q)+, Qc = −
∫ 2π

ω

0

(−d̄Q)+, (10)

specify the heat flowing in and out of the ensemble, in the
respective portion of the cycle. Here, (x)+ = max{0, x} for
all x ∈ R. We note that alternative definitions of heat have
been used, see, e.g., [8].

Our goal is to determine the average power

power =
ω

2π
W,

that can be made available by suitable choice of the linear
control gain q(t). Moreover, we are interested in assessing
the efficiency η of the heat engine while operating at maxi-
mum power, namely

η =
Qh −Qc
Qh

=
W
Qh

.

Those two problems lead us to consider different versions of
the control problem to maximize the performance index

max
q
{− ω

4π

∫ 2π
ω

0

q̇(t)E{X2
t }dt}, (11)

over choice of the control gain q(t). This problem, in the
context of a Carnot-like cycle, has already been tackled both
within the overdamped [9], [10] and the underdamped [11],
[12] framework.

III. PERFORMANCE FOR OVERDAMPED DYNAMICS

A. Analysis for maximal power

Consider the over-damped Langevin dynamics (2). With-
out loss of generality, assume the mean of Xt is zero. Let
Σ(t) , E[X2

t ] denote the variance of Xt. The evolution
of the variance is governed by the differential Lyapunov
equation

Σ̇(t) = − 2

γ
q(t)Σ(t) +

2

γ
kBT (t). (12)

We consider sinusoidal temperature fluctuation

T (t) = T0 + εT1 cos(ωt) (13)

about the mean value T0, and study the potential for drawing
power by applying periodic control

q(t) = q0 + εu(t), (14)

where εu(t) is the deviation of the control input from the
nominal value q0. We study the limit case when perturba-
tions, and thus ε, are small.

We seek to determine a control input that maximizes
power, that is,

max
u

− ω

4π

∫ 2π
ω

0

εu̇(t)Σ(t)dt,

subject to Σ̇(t) = − 2

γ
(q0 + εu(t))Σ(t) +

2

γ
kBT (t),

u(0) = u(
2π

ω
). (15)

To this end, we carry out a perturbation analysis about ε = 0.
The variance Σ(t) is expressed as

Σ(t) =
∞∑
k=0

εkΣ(k)(t) (16)

where Σ(k)(t) solves the Lyapunov equation (12) for εk

order. In particular, the leading two terms satisfy

Σ̇(0)(t) = −2q0
γ

Σ(0)(t) +
2kBT0
γ

Σ̇(1)(t) = −2q0
γ

Σ(1)(t)− 2u(t)

γ
Σ(0)(t) +

2kBT1
γ

cos(ωt).

We truncate all but the first two terms in the objective
function of the optimal control problem, and consider the
problem to optimize

max
u
− ω

4π

∫ 2π
ω

0

(
εu̇(t)Σ(0)(t) + ε2u̇(t)Σ(1)(t)

)
dt. (17)

The solution of the optimal control problem (17) can now
be expressed as follows.

Theorem 1: Consider the optimal control problem (17).
The optimal control law is

u∗(t) = q∗1 cos(ωt− φ∗), (18)

where

q∗1 =
q0gT1
2γωT0

, φ∗ = ∠(γω − i2q0), (19a)

with g =
√
γ2ω2 + 4q20 , giving power output

power = ε2
kBq0T1

2

8γT0
+O(ε3).

For assessing efficiency in next section, we provide here
the expression for the variance Σ up to first order in ε:

Σ(t) =
kBT0
q0

+ ε
kBT1
γω

sin(ωt) +O(ε2), (20)
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B. Efficiency at maximal power output

For the over-damped Langevin model (2), the heat ex-
change rate (7d) simplifies to

d̄Q =
1

2
q(t)Σ̇(t)dt. (21)

Using the control input (18), and the variance (20) the heat
exchange rate is

d̄Q =
1

2
(q0 + εu(t)) Σ̇(t)dt

=
kBT0q0

2γ

(
ε
T1
T0

+
ε2gT1

2

2γωT 2
0

cos(ωt−φ∗)
)

cos(ωt)dt+O(ε3).

(22)

For ε small, the rate is positive over an interval t ∈ [t2 −
2π
ω , t1] and negative over t ∈ [t1, t2], for the values

t1 =
π

2ω
+O(ε), t2 =

3π

2ω
+O(ε). (23)

During these time intervals, the heat exchanged is

Qh = ε
kBT1q0
γω

(
1 + ε

πT1
8T0

)
+O(ε3),

Qc = ε
kBT1q0
γω

(
1− επT1

8T0

)
+O(ε3),

respectively. Hence, the efficiency at maximum power is

η =
Qh −Qc
Qh

= ε
π

4

T1
T0

+O(ε2). (24)

Remark 1: We note that Carnot efficiency, for quastistatic
operation between two heat baths of temperatures Th and
Tc, for hot and cold respectively, is ηC = Th−Tc

Th
. Letting

Th = T0 + εT1 and Tc = T0 − εT1, and evaluating the
expression for ηC , gives

2εT1
T0 + εT1

= 2ε
T1
T0

+O(ε2).

The extra factor of π/8 in (24) is intriguing, and appears to
relate to the sinusoidal shape of the temperature profile that
generates an elliptic T-S diagram.

IV. PERFORMANCE FOR UNDERDAMPED DYNAMICS

A. Analysis for maximal power

We now consider the under-damped Langevin model (1),
subject to heat bath with continuously periodic temperature
of the form

T (t) = T0 + εT1 cos(ωt),

as before, with ε a small parameter and control gain

q(t) = q0 + εu(t). (25)

with control input u(t) about the nominal gain q0. As always,
the objective is to extract maximum power via a suitable
choice of input. We follow the same approach as in the
overdamped case and compare our results with the results
obtained in Section III .

Now Σ(t) denotes the 2 × 2 covariance matrix for the
stochastic vectorial process (Xt, vt)

′ that includes position
and velocity. It obeys the Lyapunov equation

Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)′ +D(t)D(t)′, (26)

for

A(t) =

[
0 1

− q(t)m − γ
m

]
, D(t) =

[
0
σ(t)

]
,

and σ(t) =
√

2γkBT (t)/m2. Our problem to maximize
power for small perturbations u(t) becomes:

max
u

− ω

4π

∫ 2π
ω

0

εu̇(t)Σ11(t)dt

subject to Σ̇ = AΣ + ΣA′ +DD′

u(0) = u(
2π

ω
). (27)

We carry out analysis for small values of ε. To this end,
we consider a series expansion for the covariance,

Σ(t) = Σ(0)(t) + εΣ(1)(t) +O(ε2),

where Σ(0)(t) and Σ(1)(t) satisfy

Σ̇(0)(t) = A0Σ(0)(t) + Σ(0)(t)A′0 +D0D
′
0,

Σ̇(1)(t) = A0Σ(1)(t) + Σ(1)(t)A′0

+ U(t)Σ(1)(t) + Σ(1)(t)U(t)′ +D1(t)D′1(t),

where

A0 =

[
0 1
− q0m − γ

m

]
, D0 =

[
0√

2γkBT0

m2

]
,

U(t) =

[
0 0

−u(t)m 0

]
, D1(t) =

[
0√

2γkBT1

m2 cos(ωt)

]
.

Inserting the expansion terms into the objective function (27),
and retaining the first two leading terms yields

max
u
− ω

4π

∫ 2π
ω

0

[
εu̇(t)Σ

(0)
11 (t) + ε2u̇(t)Σ

(1)
11 (t)

]
dt. (28)

A variational approach to this maximization problem results
in the solution summarized below.

Theorem 2: Consider the optimal control problem (28) for
the underdamped Langevin model. Then, the optimal control
law is

u∗(t) = q∗1 cos(ωt− φ∗), (29)

where

q∗1 =
q0γT1

√
α2 + β2

T0(2γβ − αωm)
, φ∗ = ∠(β − iα), (30a)

with α = 4q0γ − 3ω2γm, β = ω(2γ2 + 4q0m − ω2m2),
giving power output

power = ε2
q0ωkBγ

2T 2
1

2T0(2γβ − αωm)
+O(ε3). (31)
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For the purpose of evaluating efficiency in the next section,
we note that the time variation of the entries of the covariance
matrix for the optimal choice of control is as follows

Σ11(t) =
kBT0
q0

+ ε
2γkBT1

2γβ − αωm
[2γ sin(ωt)−mω cos(ωt)]

+O(ε2), (32a)

Σ12(t) = ε
ωγkBT1

2γβ −mωα
[2γ cos(ωt) +mω sin(ωt)] +O(ε2),

(32b)

Σ22(t) =
kBT0
m
− ε2γkBT1r2

r
sin(ωt+ φ∗ + θ)

+ ε
2γkBT1q0ω

2γβ −mωα
cos(ωt− 2φ∗) +O(ε2), (32c)

where r =
√
α2 + β2, r2 =

√
( 2q0
m − ω2)2 + (ωγm )2, and

θ = ∠
(
2q0
m − ω

2 + iωγm
)
.

Remark 2: In the limit as m → 0, we have α → 4q0γ,
β → 2γ2ω, and we recover the optimal control law and
the power output that were derived in over-damped limit in
Section III.

B. Efficiency at maximal power output
For the underdamped model that we consider here, the

heat exchange rate is given by:

d̄Q = γ

(
kB
m
T (t)− Σ22(t)

)
dt.

Using the expressions for Σ22 in (32c), the rate becomes

d̄Q = ε
γkBT1
m

(
cos(ωt)− κ1sin(ωt− φ∗ + θ)

−κ2 cos(ωt− 2φ∗)

)
dt+O(ε2),

where κ1 = 2mγr2
r and κ2 = 2mγq0ω

2γβ−mωα . The expression can
be simplified to

d̄Q = ε
γkBT1
m

κ cos(ωt+ ψ)dt+O(ε2),

where

κ2 =(1− κ1sin(θ − φ∗)
−κ2 cos(2φ∗))2 + (−κ1 cos(θ − φ∗)− κ2 sin(2φ∗))2.

The precise value of the angle ψ is irrelevant for the
computation of the total heat exchange (hence not included).
Integrating over the time interval where the heat exchange
rate is positive, yields

Qh =

∫ 2π
ω

0

(dQ)+ = ε
2κγkBT1
mω

+O(ε2). (33)

From this we readily determine the efficiency as being

η =
2π
ω power

Qh
= ε

πmωq0γT1
2κT0(2γβ − αωm)

+O(ε2). (34)

Remark 3: Once again, as m→ 0, we recover the results
in Section III. Specifically, as m→ 0, κ1 → 1, κ/m→ q0

2γ2 .
Hence, the heat exchange Qh → εkBT1q0

γω and the efficiency
η → επ4

T1

T0
.

V. NUMERICAL VALIDATION

In this section we provide numerical validation and insight
into the effect of higher order terms in the expansions.
Specifically, we consider a sinusoidal control input and use
Fourier representations to numerically solve the Lyapunov
equation and obtain expressions for the power. Our interest
mainly focuses on how maximal power depends on the
amplitude and phase of the control, and on how efficiency at
maximal power depends on the amplitude of the temperature
fluctuations of the heat bath.

Starting from the choice of control

q(t) = q0 + q1 cos(ωt− φ) = a−1e
−iωt + a0 + a1e

iωt,

where a0 = q0 and a1 = ā−1 = 1
2q1e

−iφ, the power drawn
can be expressed as

power = − iω
2

(a1c−1 − a−1c1) (35)

and

power = − iω
2

(a1Σ11,−1 − a−1Σ11,1), (36)

for overdamped and underdamped dynamics respectively,
where cn is the nth Fourier coefficient of covariance Σ for
overdamped dynamics, and Σ11,n is the nth Fourier coeffi-
cient of Σ11 for underdamped one. The Fourier coefficients
can be obtained by expressing the Lyapunov equation in the
Fourier domain, to obtain a set of linear coupled equations
for the various terms. We truncate and keep the first 100
modes, and solve the resulting finite-dimensional problem
for a range of values for q1 and φ.

The numerical result for the power is depicted in Figure 1a
and Figure 1b for the over-damped model and under-damped
model respectively. It is observed that the pair of values
(φ, q1) that maximize the power are close to the analytical
expressions obtained by ignoring second-order terms. The
model parameters used to obtain the numerical result are
presented in Table I.

Notation vs. value notation overdamped underdamped
perturbation ε 1 1

viscosity coefficient γ 1 1
frequency ω 2 2

temperature T1 0.5 0.5
temperature T0 1 1

nominal gain q0 1 10∗

TABLE I: Parameters selected in the simulations. Note that
the value marked with ∗ is chosen to ensure stability.

The thermal efficiency is also evaluated numerically, for
the optimal values φ∗ and q∗ that maximize the power. The
efficiency as a function of the temperature fluctuation T1
is depicted in Figures 2a and 2b, for the over-damped and
under-damped cases, respectively. The numerical result is
compared with the analytical result obtained up to first-order
approximation. It is observed that the analytical expression
captures the behaviour of the efficiency for small values of
T1 for both models.
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(a) Over-damped model (b) Under-damped model

Fig. 1: Numerical evaluation of the power output as a function of the control phase φ and control amplitude q1 as described
in Section V. The points marked by ”◦” and ”∗” correspond to optimal control parameters. The first (”◦”) was computed
numerically, and the second (”∗”) analytically using (19) for the over-damped, and (30) for the under-damped model.
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(a) Over-damped model

0 0.2 0.4 0.6 0.8 1
T1/T0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
numerical method
analytical method

(b) Under-damped model

Fig. 2: Numerical evaluation of efficiency as a function of temperature fluctuation T1, at maximum power. The numerical
result is compared with the analytical expressions derived using first-order approximations, in (24) and (34) for the over-
damped model and under-damped model, respectively.

VI. CONCLUDING REMARKS

We addressed the question of maximal power and effi-
ciency for thermodynamic processes in contact with a heat
bath having periodic continuously varying temperature. Our
analysis is approximate and focuses on sinusoidal fluctua-
tions. It is of interest to study the effect of the temperature
profile, and properties of optimal controlling potential, in a
more general setting.
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