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Harvesting energy from a periodic heat bath
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Abstract— The context of the present paper is stochastic
thermodynamics—an approach to nonequilibrium thermody-
namics rooted within the broader framework of stochastic
control. In contrast to the classical paradigm of Carnot engines,
we herein propose to consider thermodynamic processes with
periodic continuously varying temperature of a heat bath and
study questions of maximal power and efficiency for two ideal-
ized cases, overdamped (first-order) and underdamped (second-
order) stochastic models. We highlight properties of optimal
periodic control, derive and numerically validate approximate
formulae for the optimal performance (power and efficiency).

Keywords: Stochastic control, periodic stochastic control,
non-equilibrium thermodynamics.

I. INTRODUCTION

Harvesting energy is one of the principal characteristics
of living organisms. It rarely conforms to the setting of
Carnot’s cyclic [1] contact with alternating heat baths, or
the physics of the thermocouple with a stationary thermal
gradient. Instead, it is the periodic fluctuations in chemical
concentrations in conjunction with the variability of elec-
trochemical potentials that provide the universal source of
cellular energy [2]. Thus, energy exchange is often mediated
by continuous processes and energy differentials, whereas the
Carnot cycle reflects the switching mechanics of an idealized
engine.

Yet, for more than 200 years, Carnot’s gedanken ex-
periment of quasi-static operation and adiabatic transioning
between heat bath of different temperatures, has been the
cornerstone of equilibrium thermodynamics [3]. It has pro-
vided us with a wealth of ever expanding insights into the
nature of the physical world, from the absolute temperature
scale to the concept of entropy, the irreversibility enshrined
in the second law, and the time arrow that reigns supreme.

Recent attempts to extend the classical theory of thermo-
dynamics beyond equilibrium processes include the subject
of stochastic thermodynamics [4], [5]. This subject has a
strong control theoretic flavor and has already provided
important new insights. These include the Jarzinski equality
[6] and the interpretation of dissipation via Hamilton-Jacobi
theory for underdamped stochastic dynamical models [7].

Supported in part by the NSF under grants 1807664, 1839441, 1901599,
and the AFOSR under FA9550-20-1-0029.

TDepartment of Mechanical and Aerospace Engineering, University of
California, Irvine, CA; {rfu2,omovilla,ataghvae,tryphon} @uci.edu

tSchool of Aerospace Engineering, Georgia Institute of Technology,
Atlanta, GA; yongchen@gatech.edu

*Contributed equally and AT directed the completion of the work.

978-1-7281-7447-1/20/$31.00 ©2020 IEEE

The topic of this paper follows along similar lines. It puts
forth stochastic models for non-equilibrium theremodynamic
processes in contact with a heat source having periodically
and continuously varying temperature. It then explores the
question of how to optimize for energy harvesting, both in
terms of power and efficiency. This is a stochastic control
problem of a somewhat non-traditional nature; the coupling
between controlling potential and heat bath renders the mod-
els nonlinear. Expressions in closed form are not possible.
Thus, we resort to approximation and numerical verification
for limiting cases. Conclusions are drawn as to the nature
of optimal operation. Related work treating thermodynamic
systems in the linear response regime can be found in [8].

The main contributions of our paper are to be viewed
within the context of stochastic control. The motivation
and inspiration comes from nonequilibrium thermodynam-
ics processes. That natural processes would somehow self-
organize, to match driving potentials and optimize efficiency
and power, remains speculatory at present. Specific physical
processes need to be modeled, validated, and compared,
before any definitive statement is made.

The paper develops as follows. In Section II we present
certain basic stochastic models of thermodynamic processes.
Sections III and IV detail our results for overdamped and
underdamped models, respectively, and in Section VI we
discuss future directions and open questions.

II. STOCHASTIC THERMODYNAMIC MODELS

We begin by describing the basic model for a thermo-
dynamic ensemble used in this work. This consists of a
large collection of Brownian particles that interact with a
continuous periodic heat bath in the form of a stochastic
excitation and are driven under the influence of an external
(time varying) potential. The dynamics of individual particles
are expressed in the form of stochastic differential equations.
We consider two models in this paper: the under-damped
Langevin equation and over-damped Langevin equation.
Control actuation is in the form of a time-varying potential
that exerts forcing to individual particles.

A. Under-damped and over-damped Langevin equations
The underdamped Langevin equations
dXt = Utdt (la)
mdv, =V, U(t, Xy)dt —yvidt++/2vkpT(t)dB;, (1b)

represent a standard model for molecular systems interacting
with a thermal environment. Throughout, X, € R? denotes
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the location of a particle and v; € R? denotes its velocity at
time ¢, U(t, z) denotes a (C! in t and C? in z) time-varying
potential for z € R?, m is the mass of the particle, v is
the viscosity coefficient, kp is the Boltzmann constant, 7'(t)
denotes the temperature of the heat bath at time ¢, and B;
denotes a standard R%valued Brownian motion.

When the inertial effects in the Langevin equation (1b) are
negligible, specifically, when the temporal resolution At >
%, averaging out the fast variable v; leads to the overdamped
Langevin equation

2%k 5T (%)
Y

Formally, the overdamped Langevin equation is obtained
from (1b) by setting m = 0 and replacing v;dt = dX;.
For a more detailed explanation see [4, page 20].

In this work we focus on a tractable bilinear model that
consists of a quadratic potential and a sinusoidally varying
temperature of a heat bath, that is,

1
= 5‘](75)12

= Ty + T cos(wt),

U(t,x)

T(t) To > T, >0,

with Tj and T specified.

The state of the thermodynamic ensemble is identified
with the the joint probability density of X;,v;, denoted by
p(t, z,v), for the under-damped case, and probability density
of X;, denoted by p(t,z), for the over-damped case. The
corresponding Fokker-Planck equations are

op v kBT (t)
a =-V { |:_nl@(’yv +V;1;U):| P} + m2 Avpa

(3a)
and
ap 1
— ==V, [(V.U+kgTV,logp)p], (3b)
ot v
respectively.

B. Internal energy, heat and work

The internal energy of a single particle, governed by the
under-damped Langevin equation (1), is the summation of
the kinetic energy and the potential energy,

1
E} = 5mvf +U(t, Xy). (4a)

For the over-damped model (2), the kinetic energy is negli-
gible and hence ignored, and the internal energy is

E° =U(t, X,). (4b)

The superscript in the notation suggests the case.

Evolution of the thermodynamic ensemble under the influ-
ence of the time-varying thermal environment and the time-
varying potential U (t, z), leads to an exchange of work and
heat. These can be defined at the level of a single particle as
explained below.

The energy exchange between an individual particle and
the external potential represents work. Specifically, the work

transferred to the particle by an infinitesimal change in the
actuating potential is
ou
ot (
Here we use d to emphasize that dW is not a perfect
differential, in that [ dW depends on the path and not just
on the end-point conditions. The same definition for work
holds for both under-damped and over-damped models.
The energy exchange between an individual particle and
the thermal environment represents heat. The heat exchange
is defined in such a way so that the first law of thermodynam-
ics, dEy = d@Q + dW holds. Because the internal energy in
the over-damped model does not involve the kinetic energy,
the heat is different for the two models. It is

dQu = VzU(t,Xt) o dXt

AW = (¢, X,)dt. (5)

ksT ()7 4, ¢ 2k T (t)yvdB,,

for the under-damped model, and
dQ° =V, U(t,X;) odX;

kp
= —ylolf?de + =2

dt

1 kT (t
- ;||VIU(t,Xt)||2dt+ AUt Xy) BW( )

2T (t
+ V., U(t, Xy) 2kpT(t)

dBta
for the over-damped model. In each case, the first entry on
the right is the expression in the Stratonovich form, whereas
the second entry brings in the correction term for changing
into the Itd form. For details see [4, section 4.1].
Accordingly, for a thermodynamic ensemble at a state
p(t,x,v) or p(t,z), the work and heat differentials are
obtained by averaging over the ensemble,

aw" = // p(t,x,v) dxdv} dt, (7a)
ao" = //(_7||U||2+€l(t)’7> p(t,x,v) dxdv] dt,
] (7b)
and
dW° = %—(tj(t,x)p(t, x) dx] dt, (Tc)
aQ° = /(—HV U|2+A UkB:( )> p(t, ) dx} dt,
] (7d)

for the under-damped and over-damped models, respectively.
The expressions satisfy the first law of thermodynamics for
the ensemble d€(p,U) = dQ + dW, where the internal
energy is given by

E%p, U //< mlv||* + U(t, x)> p(t,z,v) dzdo,
(8a)
and
£2(p,U) = /R U)ol ) de, (8b)

for the two models, respectively.
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C. Work and heat exchange with periodic temperature

We now consider a cyclic process of period %” in which
energy is extracted and heat exchanged from a heat bath with
varying temperature. Without loss of generality, we restrict
to the scalar case, i.e., d = 1. Under the quadratic potential
U(t,z) = 3q(t)z?, the work extracted over a cycle, W =

— fo%r dW, can be expressed as (using (7¢) or (7a))

W=-E {/“ dW} = —% /T GOE{X2}dt. (9)
0 0

In contrast to the classical Carnot cycle, where the engine
switches contact adiabatically between two heat baths of
differing temperatures, such a delineation of phases in the
cycle is no longer rigid. It is now the sign of the heat flux
differential d Q that determines the phase of the cycle when
heat flows in, or out of the ensemble, respectively. Thus,
accordingly,

27 2m

0= [" @, o=~ [" (a0

specify the heat flowing in and out of the ensemble, in the
respective portion of the cycle. Here, (z)4+ = max{0, 2} for
all z € R. We note that alternative definitions of heat have
been used, see, e.g., [8].

Our goal is to determine the average power
w
QWW’
that can be made available by suitable choice of the linear
control gain ¢(t). Moreover, we are interested in assessing
the efficiency 7 of the heat engine while operating at maxi-
mum power, namely

(10)

power =

- Q,—Q. W
Qh Qh
Those two problems lead us to consider different versions of
the control problem to maximize the performance index

27

mac{ =1 [ dOB(XF ),

over choice of the control gain ¢(¢). This problem, in the
context of a Carnot-like cycle, has already been tackled both

Y

about the mean value Tj, and study the potential for drawing
power by applying periodic control

q(t) = qo + eu(t), (14)
where eu(t) is the deviation of the control input from the
nominal value gg. We study the limit case when perturba-
tions, and thus ¢, are small.

We seek to determine a control input that maximizes
power, that is,

max — — eu(t)X(t)dt,
u 4 Jo
subject to B(t) = —%(qo +eul)) () + %kBT(t),
2
u(0) = u(g). (15)

To this end, we carry out a perturbation analysis about ¢ = 0.
The variance X(t) is expressed as

S(t) =Y ex®(t) (16)
k=0

where X(%)(t) solves the Lyapunov equation (12) for €*
order. In particular, the leading two terms satisfy

. 2 2%k 5T,
2O (1) = 7%2(0) (t) + %

. 2 2t %k T,

0 (1) = _%2(1)(,5) _ uw()E(O) )+ 2T s t).

We truncate all but the first two terms in the objective
function of the optimal control problem, and consider the
problem to optimize

max —% /O - (eu(t)E(o)(t)+e2a(t)2(1)(t)) dt. (17)

The solution of the optimal control problem (17) can now
be expressed as follows.

Theorem 1: Consider the optimal control problem (17).
The optimal control law is

within the overdamped [9], [10] and the underdamped [11], u*(t) = ¢} cos(wt — ¢%), (18)
[12] framework.
where
III. PERFORMANCE FOR OVERDAMPED DYNAMICS
; . T
A. Analysis for maximal power ¢ = 2(13690111 ¢ = L(w —i2q0), (192)
Consider the over-damped Langevin dynamics (2). With- 0
out losAs of generality, assume t'he mean of X; is zero. Let with g = \/72w? + 442, giving power output
Y(t) £ E[X?] denote the variance of X;. The evolution
of the variance is governed by the differential Lyapunov 2kBqOT12 3
equation power = € ST + O(e”).
N(t) = fgq(t)g(t) + ngT(t). (12) For assessing efficiency in next section, we provide here
v v the expression for the variance X up to first order in e:
We consider sinusoidal temperature fluctuation EnT) bnT
kBl BL1 . 2
T(t) = Ty + €T} cos(wt) (13) B(#) ==~ T, sl o), Q0
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B. Efficiency at maximal power output

For the over-damped Langevin model (2), the heat ex-
change rate (7d) simplifies to

10— %q(t)E(t)dt. 21

Using the control input (18), and the variance (20) the heat
exchange rate is

adQ = % (qo + eu(t)) X(t)dt

kpToqo [ Ti  €2gTy?
= €—
2y To 2ywIg

(22)

For e small, the rate is positive over an interval ¢ € [ty —
2% t1] and negative over ¢ € [t1,t5], for the values

us 3
t) = — to = — . 23
1= 50 +O0(e), to % + O(e) (23)
During these time intervals, the heat exchanged is
kT1qo w1 3
= 14+e— (0]
On=¢ o +68Tg + O(e%),
kT1qo T 3
.= 1— L) +0(e),
Q.=¢ o € ST +0(e)
respectively. Hence, the efficiency at maximum power is
Qh - Qc 7T Tl 2
=" =€e—— 4+ 0(€). 24)
U o 1T, (%) (

Remark 1: We note that Carnot efficiency, for quastistatic
operation between two heat baths of temperatures 7}, and
T., for hot and cold respectively, is nc = ThTi;TC Letting
T, = Ty + €11 and T, = Ty — €11, and evaluating the
expression for n¢, gives

2€T1 T1 2
—— = 2e— + O(¢).
To + €Ty To ()
The extra factor of 7/8 in (24) is intriguing, and appears to
relate to the sinusoidal shape of the temperature profile that

generates an elliptic T-S diagram.
IV. PERFORMANCE FOR UNDERDAMPED DYNAMICS

A. Analysis for maximal power

We now consider the under-damped Langevin model (1),
subject to heat bath with continuously periodic temperature
of the form

T(t) = To + €T} cos(wt),
as before, with ¢ a small parameter and control gain

q(t) = qo + eu(t). (25)

with control input u(t) about the nominal gain gg. As always,
the objective is to extract maximum power via a suitable
choice of input. We follow the same approach as in the
overdamped case and compare our results with the results
obtained in Section III .

cos(wt—¢*)) cos(wt)dt+O(e%).

Now X(t) denotes the 2 x 2 covariance matrix for the
stochastic vectorial process (X3, v:)" that includes position
and velocity. It obeys the Lyapunov equation

() = A(t)S(t) + B(t)A(t) + D(t)D(t), (26)
for
=L .00-[2]

and o(t) = +/2vkpT(t)/m2. Our problem to maximize

power for small perturbations u(t) becomes:

27
max  — 2 / ()1 ()t
u 47T 0

subject to X = AX 4+ XA’ + DD’
2
u(0) = u(—).

w

27)

We carry out analysis for small values of €. To this end,
we consider a series expansion for the covariance,

(1) = 2O@) + D (t) + O(€?),
where X(9)(¢) and XV (¢) satisfy

2O @) = 42O ) + 2O (1) Al + DD,
SW(t) = 42D (t) + =D (1) Al
+UMSW () + 2D @)U(#) + D) Dy (1),

where

0 1 0
AO = |: q 'Y:| ’ ‘DO = [ 2’7kBTO‘| ?
“m T m \/ T m?

0 0 0

Inserting the expansion terms into the objective function (27),
and retaining the first two leading terms yields

S

2
(J\) w
max — —

ax = | [eu(t)Eﬁ)(t)+62a(t)2(111)(t)} dt. (28)

A variational approach to this maximization problem results
in the solution summarized below.

Theorem 2: Consider the optimal control problem (28) for
the underdamped Langevin model. Then, the optimal control
law is

u*(t) = qf cos(wt — ¢™), (29)
where
g = WOIVOPE P e 5 ), Gow)
To(2v8 — awm)
with a = 4qoy — 3w?ym, B = w(2v? + 4gom — w?m?),
giving power output
kpvy?T}
power = € QoOPBY 71 O(€®). 31

2T0(2v5 — awm)
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For the purpose of evaluating efficiency in the next section,
we note that the time variation of the entries of the covariance
matrix for the optimal choice of control is as follows

kBT 2vkpT;
Tu(t) = zo 0 62,}/;_306:””, [2 sin(wt) — mw cos(wt)]
+ O(€?), (32a)
Sia(t) = eIt cos(wt) + muw sin(wt)] + O(e2)
12 278 — mwa i ’
(32b)
kBT 2vkpT
Yoa(t) = ]jno e ]i 12 sin(wt + ¢* + 0)
2vkpT;
e IPB100Y cos(wt — 2¢™) 4+ O(€?), (32¢)
2v3 — mwa

where r = \/m, ry = \/(2%
9:4(% —w2—|—z%).

Remark 2: In the limit as m — 0, we have o — 4qq7,
B — 2+%w, and we recover the optimal control law and
the power output that were derived in over-damped limit in
Section III.

—w?)? 4 (%1)?, and

B. Efficiency at maximal power output

For the underdamped model that we consider here, the
heat exchange rate is given by:

dQ =v (ljsT(t) - Egg(t)> dt.

Using the expressions for Yoo in (32c), the rate becomes

kT
dQ = ¢ B7L (cos(wt) — kisin(wt — ¢* + 0)
m
— kg cos(wt — 2¢*))dt + O(é?),
where k1 = 2772 and ko = 23}?]% The expression can

be simplified to
do = E%K cos(wt + ¥)dt + O(€?),
where
K% =(1 — rysin(f — ¢*)
—tip €08(20%))? + (=K1 cos(f — ¢*) — Ko sin(2¢%)).

The precise value of the angle v is irrelevant for the
computation of the total heat exchange (hence not included).
Integrating over the time interval where the heat exchange
rate is positive, yields

Qp = /OQJ(dQ)+ =

From this we readily determine the efficiency as being

2kvkpT
e ImB-1

+0(%).  (33)

mw

B zw—”power B TmwqoyT1
= 9, 62,‘$T0 (2768 — awm)
Remark 3: Once again, as m — 0, we recover the results
in Section III. Specifically, as m — 0, k1 — 1, k/m — 2(%

+0(e%). (34

Hence, the heat exchange Q) — ekaTitjq“ and the efficiency

Ty
n—e€rT

V. NUMERICAL VALIDATION

In this section we provide numerical validation and insight
into the effect of higher order terms in the expansions.
Specifically, we consider a sinusoidal control input and use
Fourier representations to numerically solve the Lyapunov
equation and obtain expressions for the power. Our interest
mainly focuses on how maximal power depends on the
amplitude and phase of the control, and on how efficiency at
maximal power depends on the amplitude of the temperature
fluctuations of the heat bath.

Starting from the choice of control

q(t) = qo + ¢q1 cos(wt — @) = a_1e "t £ ay + ae™t,
where ag = qo and a; = a_, = 3q1e~"?, the power drawn
can be expressed as

power = —% (arc—1 —a_1cy) (35)

and

w
power = —?(alEn,q —a_1%11,1), (36)

for overdamped and underdamped dynamics respectively,
where c,, is the nth Fourier coefficient of covariance X for
overdamped dynamics, and X1, is the nth Fourier coeffi-
cient of 317 for underdamped one. The Fourier coefficients
can be obtained by expressing the Lyapunov equation in the
Fourier domain, to obtain a set of linear coupled equations
for the various terms. We truncate and keep the first 100
modes, and solve the resulting finite-dimensional problem
for a range of values for ¢; and ¢.

The numerical result for the power is depicted in Figure 1a
and Figure 1b for the over-damped model and under-damped
model respectively. It is observed that the pair of values
(¢, q1) that maximize the power are close to the analytical
expressions obtained by ignoring second-order terms. The
model parameters used to obtain the numerical result are
presented in Table I.

Notation vs. value notation | overdamped | underdamped
perturbation € 1 1
viscosity coefficient ¥ 1 1
frequency w 2 2
temperature Ty 0.5 0.5
temperature To 1 1
nominal gain qo 1 10*

TABLE I: Parameters selected in the simulations. Note that
the value marked with * is chosen to ensure stability.

The thermal efficiency is also evaluated numerically, for
the optimal values ¢* and ¢* that maximize the power. The
efficiency as a function of the temperature fluctuation 73
is depicted in Figures 2a and 2b, for the over-damped and
under-damped cases, respectively. The numerical result is
compared with the analytical result obtained up to first-order
approximation. It is observed that the analytical expression
captures the behaviour of the efficiency for small values of
T, for both models.
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(a) Over-damped model
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Fig. 1: Numerical evaluation of the power output as a function of the control phase ¢ and control amplitude ¢; as described

99 99

in Section V. The points marked by

o” and ”+” correspond to optimal control parameters. The first (") was computed

numerically, and the second (’x’) analytically using (19) for the over-damped, and (30) for the under-damped model.

0.8 T T T T

—— numerical method
| — analytical method

0.2 0.4 0.6 0.8 1
T1/T0

(a) Over-damped model

0.7 T T T T

—— numerical method

0.6 - — analytical method 4
051 1

04r 1

031 1

0.1r 1

0 0.2 0.4 0.6 0.8 1
T1/TO

(b) Under-damped model

Fig. 2: Numerical evaluation of efficiency as a function of temperature fluctuation 73, at maximum power. The numerical
result is compared with the analytical expressions derived using first-order approximations, in (24) and (34) for the over-

damped model and under-damped model, respectively.

VI. CONCLUDING REMARKS

We addressed the question of maximal power and effi-
ciency for thermodynamic processes in contact with a heat
bath having periodic continuously varying temperature. Our
analysis is approximate and focuses on sinusoidal fluctua-
tions. It is of interest to study the effect of the temperature
profile, and properties of optimal controlling potential, in a
more general setting.
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