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Abstract. We present in this paper some worst-case datasets of deterministic

first-order methods for solving large-scale binary logistic regression problems.

Under the assumption that the number of algorithm iterations is much smaller
than the problem dimension, with our worst-case datasets it requires at least

O(1/
√
ε) first-order oracle inquiries to compute an ε-approximate solution.

From traditional iteration complexity analysis point of view, the binary logis-
tic regression loss functions with our worst-case datasets are new worst-case

function instances among the class of smooth convex optimization problems.

1. Introduction. The following notations will be used throughout this paper. We
denote natural logarithm by log(·). For any positive integer k, we use 0k and
1k to denote k-dimensional vectors of all zeros and ones, respectively. When the
dimension k is evident, we may remove the subscript and simply use 0 and 1. We
use et,k to denote the t-th standard basis vector in Rk: e>t,k = (0>t−1, 1,0

>
k−t)

>. For

any vector u, we use u(i) to denote the i-th component of u. The norm notation
‖ · ‖ is used for the Euclidean norm of a vector and the spectral norm of a matrix.

The main research questions of this paper are the following:

• For any deterministic first-order methods, what is the best possible computa-
tional performance on solving large-scale binary logistic regression problems?
• For any deterministic first-order methods, what is their respective worst-case

datasets of large-scale binary logistic regression problems that yield their worst
possible computational performance?

One way to answer the first research question is to keep designing deterministic
first-order methods with better and better computational performance for logistic
regression problems. However, note that we are seeking methods of best possible
computational performance. Equivalently, we are exploring the performance limit
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of deterministic first-order methods that solves logistic regression. In this paper,
we will focus on the second research question. The major reason is because that
an answer to the second question can be used as a certificate for methods that
achieves the best possible computational performance, hence leading to an natural
answer to the first one. Specifically, if we can find the worst-case dataset of logistic
regression problem such that all methods would uniformly achieve certain guaran-
teed worst possible computation performance, then such performance is the limit
of all methods. Moreover, any method that reaches such performance limit can not
be theoretically improved anymore; such method would then be an answer to the
first research question. We describe the binary logistic regression problems, and
provide the definitions of “deterministic first-order methods” and “computational
performance” in the sequel.

In this paper, we use the following description of binary logistic problems. Given
any data matrix A ∈ RN×n and response vector b ∈ {−1, 1}N , the binary logistic
regression problem is a nonlinear optimization problem that minimizes objective
function

min
x∈Rn,y∈R

ΦA,b(x, y) := h(Ax + y1)− b>(Ax + y1),(1.1)

where for any u ∈ Rk, h is defined by

h(u) ≡ hk(u) :=
k∑
i=1

2 log

[
2 cosh

(
u(i)

2

)]

=
k∑
i=1

2 log

[
exp

(
u(i)

2

)
+ exp

(
−u

(i)

2

)]
.

(1.2)

Here cosh is the hyperbolic cosine function. For convenience we remove the subscript
k in the definition of h and allow the variable vector of h to be of any dimension.
Using a>i to denote the i-th row of A, from (1.1) and (1.2) we have

ΦA,b(x, y)

=
N∑
i=1

2 log

[
exp

(
a>i x + y

2

)
+ exp

(
−a>i x + y

2

)]
− b(i)

(
a>i x + y

)
=

N∑
i=1

2 log

[
exp

(
b(i)(a>i x + y)

2

)
+ exp

(
−b

(i)(a>i x + y)

2

)]
− b(i)

(
a>i x + y

)
=

N∑
i=1

2 log
[
1 + exp

(
−b(i)(a>i x + y)

)]
,

which is a commonly used form of binary logistic regression problems with parame-
ter vector x and intercept y. Here in the second equality we use the fact that cosh is
an even function and b(i) ∈ {−1, 1}. Note that we can build an analogy between lo-
gistic and least squares problems through the formulation (1.1): if h(·) := ‖·‖2/2 we
have a least squares problem immediately. In fact, such analogy has been exploited
in [1] in the analysis of statistical properties of logistic regression.

In this paper, we will make an simplification and assume that we know the value
of intercept y∗ in an optimal solution (x∗, y∗). Problem (1.1) then simplifies to a
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problem of estimating the parameter vector x from

l∗A,b := min
x∈Rn

lA,b(x) := ΦA,b(x, y∗).

Indeed, in our designed worst-case dataset,we can show that the intercept y∗ = 0.
In such case, it suffices to solve a logistic model with homogeneous linear predictor:

l∗A,b := min
x∈Rn

lA,b(x) :=h(Ax)− b>Ax

=
N∑
i=1

2 log
[
1 + exp

(
−b(i)(a>i x)

)]
.

(1.3)

The term “deterministic first-order method” is defined by the following ora-
cle description: we say that an iterative algorithm M for convex optimization
minx∈Rn f(x) is a deterministic first-order method if it accesses the information
of objective function f through a deterministic first-order oracle Of : R×Rn, such
that Of (x) = (f(x), f ′(x)) for any inquiry x, where f ′(x) is a subgradient of f
at x. Specifically, M can be described by a problem independent initial iterate x0

and a sequence of rules {It}∞t=0 such that

xt+1 = It(Of (x0), . . . ,Of (xt)), ∀t ≥ 0.(1.4)

Without loss of generality, we can assume that x0 = 0. We also assume that the
dimension of the parameter vector x is large and we can only afford T � n oracle
inquiries. Note that we are only focusing on the large scale cases with T � n;
there exists research directions that focuses on the cases when T ≥ n or large N .
See, e.g., the discussion of complexity bounds of small-scale optimization problems
and stochastic problems in [8]. However, such directions are not in the scope of our
paper.

The computational performance ofM is evaluated through its solution accuracy
f(x̂) − f∗ or ‖x̂ − x∗‖, in which x̂ is an approximate solution computed by M.
Without loss of generality, we can assume that xt’s are both inquiry points to the
oracle O and the approximate solution computed by M.

1.1. Related work. There had been many existing deterministic first-order algo-
rithms that can be applied to solve (1.3). For example, applying Nesterov’s accel-
erated gradient method [10], it is known that it takes at most O(1)(1/

√
ε) oracle

inquiries to compute an approximate solution x̂ to (1.3) such that lA,b(x)−l∗A,b ≤ ε.
HereO(1) is a constant independent of ε. Such result is known as the upper complex-
ity bound. Upper complexity bounds depict achievable computational performance
on solving a specified class of problems.

Our research question described at the beginning Section 1 is focusing on the
lower complexity bound of a problem, namely, the performance limit of determin-
istic first-order methods. For convex optimization problems f∗ := minx∈Rn f(x),
the lower complexity bound is concerned with the least number of inquiries to the
deterministic first-order oracle in order to compute an ε-approximate solution x̂
such that f(x̂) − f∗ ≤ ε. In the following we list the available lower complexity
bound results on deterministic first-order methods for large-scale convex optimiza-
tion f∗ := minx∈Rn f(x). Note that the presented lower complexity bounds have
omitted the dependence on their respective problem constants, e.g., Lipschitz con-
stant L, strong convexity constant µ, etc.

• When f is general convex (possibly nonsmooth), the lower complexity bound
is O(1)(1/ε2) [8, 10, 6, 12].
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• When f is weakly smooth convex with parameter ρ (see the definition of
the class of weakly smooth functions in [7]), the lower complexity bound is
O(1)(1/ε2/(1+3ρ)) [7, 6].
• When f is convex nonsmooth with bilinear saddle point structure, the lower

complexity bound is O(1)(1/ε) [11].
• When f is smooth convex, the lower complexity bound is O(1)(1/

√
ε) [9, 10,

6, 5, 12, 2, 3, 4].
• When f is strongly convex smooth, the lower complexity bound is O(1) log(1/ε)

[10, 12].

Two remarks are in place for the above list of lower complexity bounds. First, all
the lower complexity bounds have been demonstrated to match available upper com-
plexity bounds, namely, there exists available deterministic first-order algorithms
that achieves the lower complexity bounds. Such algorithms are known as optimal
algorithms, since the lower complexity bounds provide the verification that their re-
spective theoretical computational performance would not be improvable anymore.
Second, we can observe from the above list that the “smaller” the problem class is,
the better lower complexity bounds could be. For example, the class of smooth con-
vex optimization problems is a subclass of general convex optimization problems,
hence it is possible to expect an algorithm with O(1/

√
ε) upper complexity rather

than O(1/ε2).

1.2. Motivation. Our research question can be motivated by the second remark
above, that is, a subclass might yield better lower complexity bounds. Note that
the class of binary logistic regression problems is a subclass of the smooth convex
problem class. Is it possible to design algorithms that targets solely on logistic re-
gression, and performs better than the O(1)(1/

√
ε) complexity bounds for smooth

convex optimization? Unfortunately, such question has not yet been answered in
the literature. Although there had been lower complexity bounds O(1)(1/

√
ε) on

smooth convex optimization (see Section 1.1), the worst-case instance functions pro-
vided for smooth convex optimization are either based on convex quadratic func-
tions [9, 10, 5, 12, 2, 3] or smoothing (through infimal convolution) of maximum of
affine functions [6, 4]. None of the provided worst-case instance is a binary logistic
function.

The above discussion is based on the traditional perspective of complexity analy-
sis of convex optimization, namely, finding worst-case functions among the problem
class and explore the performance limits of algorithms. It is important to point out
that our research question can also be viewed from one other perspective. In data
analysis practice, we will usually designing algorithms that are tailored for specific
models. Consequently, we are interested at exploring the performance limit of algo-
rithms with respect to the worst-case dataset. From this perspective, our research
question asks what the worst-case dataset that yields the worst performance of any
deterministic first-order method. Note that the two aforementioned perspectives
are equivalent; however, the latter one offers a more data-oriented argument.

In this paper, we describe some worst-case datasets of binary logistic regression
problems, such that for any first-order methods, it requires at least O(1)(1/

√
ε)

first-order oracle inquiries to obtain an ε-approximate solution. Such datasets can
be used as certificates of optimal deterministic first-order algorithms for binary
logistic regression. Also, from the perspective of traditional complexity analysis,
our results also provide new worst-case functions for smooth convex optimization.
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In Section 2, we describe the construction of a worst-case dataset for deterministic
first-order method that satisfy a mild assumption (see Assumption 2.1 below). In
Section 3, we provide worst-case datasets for any given deterministic first-order
method.

2. Worst-case dataset under linear span assumption. In this section, we
make the following simple assumption regarding the iterates produced by a deter-
ministic first-order method M:

Assumption 2.1. The iterate sequence {x0,x1, . . .} produced by M satisfies

xt ∈ span{∇f(x0), . . . ,∇f(xt−1)}, ∀t ≥ 1.

Recall that we have already made two assumptions in Section 1 (see the discussion
after (1.4)) on M without loss of generality, namely, that x0 = 0 and that xt is
both the inquiry point and the output of approximate solution. By Assumption 2.1,
the new iterate produced by M always lies inside the linear span of past gradients.
Throughout this paper, we refer to Assumption 2.1 as the linear span assumption.
Such linear span assumption, in the first look, does not seem to be one that can
be made without loss of generality. However, we would like to emphasize here that
the purpose of introducing the linear span assumption is only for us to demonstrate
the lower complexity bound derivation in a straightforward manner; we will show
in Section 3 that the linear span assumption can be removed, using the technique
in the seminal work by [9].

2.1. A special class of datasets. We describe our construction of a special class
of datasets for binary logistic regression. Such datasets will be used throughout this
paper to construct worst-case datasets for binary logistic regression. Suppose that
σ > ζ > 0 are two fixed real numbers. Given any positive integer k, denote

Wk :=


−1 1

−1 1

. .
.

. .
.

−1 1
1

 ∈ Rk×k(2.1)

and

Ak :=


2σWk

−2ζWk

−2σWk

2ζWk

 ∈ R4k×k, bk :=


1k
1k
−1k
−1k

 ∈ R4k.(2.2)

We then denote functions fk : Rk → R and Φk : Rk+1 → R by

fk(x) :=h(Akx)− b>k Akx,

Φk(x, y) :=h(Akx + y14k)− b>k (Akx + y14k).
(2.3)

Comparing (2.3) with previous descriptions of lA,b and ΦA,b in (1.1) and (1.3)
respectively, fk and Φk are clearly binary logistic regression objective functions
with data matrix Ak and response vector bk: we are using logistic regression to

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



6 Yuyuan Ouyang and Trevor Squires

train a classifier for two datasets whose entries have opposite signs. Recall that
σ > ζ > 0; this assumption is to avoid duplicate data entries. Note that

‖Aku‖2 =8(σ2 + ζ2)‖Wku‖2

=8(σ2 + ζ2)

[(
u(k) − u(k−1)

)2
+ . . .+

(
u(2) − u(1)

)2
+
(
u(1)

)2]
≤16(σ2 + ζ2)

[(
u(k)

)2
+
(
u(k−1)

)2
+ . . .+

(
u(2)

)2
+
(
u(1)

)2
+
(
u(1)

)2]
≤32(σ2 + ζ2)‖u‖2, ∀u ∈ Rk;

consequently

‖Ak‖ ≤ 4
√

2(σ2 + ζ2).(2.4)

A few remarks are in place regarding the above construction of Ak in equation
(2.2). First, the construction of the symmetric matrix Wk follows the worst-case
instance of convex-concave saddle-point problems in [11], which is a slight modifica-
tion of Nesterov’s tridiagonal worst-case matrix for convex quadratic programming
[10]. Indeed, W 2

k yields a tridiagonal matrix differs from Nesterov’s construction
in [10] by only one entry. Second, our constructed Ak is a block matrix with four
blocks. The major reason why it is designed in this way is to make sure that the
optimal solution of the binary logistic regression objective function Φk(x, y) in (2.3)
is of form (x∗, 0) (see Lemma 2.1 below). Such optimal solution allows us to focus
solely on homogeneous binary logistic regression. Third, we will prove in the sequel
that for any deterministic first-order methods to minimize Φk(x, y), even with the
knowledge that y = 0 in the optimal solution, it takes as much as O(1/

√
ε) to

find an ε-approximate solution. Such convergence performance is the worst possi-
ble among all first-order methods. Therefore, we call our constructed instance the
“worst” one.

In the following lemma, we describe the optimal solutions that minimizes fk and
Φk respectively. By the definition of fk in (2.3) and noting the convexity of binary
logistic regression problems, to solve a minimizer of fk it suffices to solve

∇fk(x) = A>k ∇h(Akx)−A>k bk = 0.(2.5)

Noting the definition of h in (1.2), we have

∇h(u) = tanh
(u

2

)
:=

(
tanh

(
u(1)

2

)
, . . . , tanh

(
u(k)

2

))>
, ∀u ∈ Rk, ∀k.(2.6)

Here tanh is the hyperbolic tangent function. Throughout this paper, we will
slightly abuse the notation tanh(u) and allow the scalar function tanh(·) to be
applied to any vector u component-wisely.

Lemma 2.1. For any σ > ζ > 0, there always exists c > 0 that satisfies

σ tanh(σc) + ζ tanh(ζc) = σ − ζ.(2.7)

Moreover,

x∗ := c(1, 2, . . . , k)>(2.8)

is the unique optimal solution to problem

f∗k := min
x∈Rk

fk(x)(2.9)
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with

f∗k = 8k log 2 + 4k {log cosh(σc) + log cosh(ζc)− (σ − ζ)c} .(2.10)

In addition, (x∗, 0) is the unique optimal solution to minx∈Rn,y∈R Φk(x, y).

Proof. Note that there always exists c > 0 that satisfies (2.7) since the function
r(c) := σ tanh(σc) + ζ tanh(ζc) − σ + ζ is continuous with r(0) = −σ + ζ < 0 and
limc→∞ r(c) = 2ζ > 0.

By the definitions of Wk and x∗ in (2.1) and (2.8), we observe that Wkx
∗ = c1k

and Wk1k = ek,k. Using this observation and the descriptions of ∇h, Ak, and bk in
(2.6) and (2.2) respectively, and noting that tanh is an odd function and is assumed
to apply to any vector component-wisely, we have

∇h(Akx
∗) = tanh

1

2


2σc1k
−2ζc1k
−2σc1k
2ζc1k


 =


tanh(σc)1k
− tanh(ζc)1k
− tanh(σc)1k
tanh(ζc)1k

 ,(2.11)

A>k ∇h(Akx
∗) =4[σ tanh(σc) + ζ tanh(ζc)]ek,k,

A>k bk =2(σ − ζ + σ − ζ)Wk1k = 4(σ − ζ)ek,k.(2.12)

Using the above results, the description of ∇f in (2.5), and the relation (2.7) that c
satisfies, we have ∇fk(x∗) = 0. Noting that binary logistic loss functions are strictly
convex, we conclude that x∗ is the unique minimizer of fk. Recalling the definition
of h in (1.2), noting that cosh is an even function, and using the computation of
A>k bk in (2.12), we have

f∗k =fk(x∗) = h(Akx
∗)− (x∗)

>
A>k bk = h(Akx

∗)− 4k(σ − ζ)c

=2k {log [2 cosh(σc)] + log [2 cosh(−ζc)] + log [2 cosh(−σc)] + log [2 cosh(ζc)]}
− 4k(σ − ζ)c

=8k log 2 + 4k {log cosh(σc) + log cosh(ζc)− (σ − ζ)c} .

Furthermore, by the descriptions of bk and ∇h(Akx
∗) in (2.2) and (2.11) respec-

tively, computing the partial derivative of Φ in (2.3) with respective to y at 0, we
have

∂

∂y

∣∣∣∣
y=0

Φk(x∗, y) = 1>k ∇h(Akx
∗)− b>k 1k = 0.

Noting also that ∇xΦk(x∗, 0) = ∇fk(x∗) = 0, we conclude that (x∗, 0) is the unique
minimizer of the strictly convex binary logistic loss function Φk(x, y).

2.2. Lower complexity bound under linear span assumption. In this sec-
tion, we study the lower complexity bound of deterministic first-order methods for
solving the logistic regression problem (2.9), under the linear assumption described
in Assumption 2.1.

Lemma 2.2. Suppose that k and t are fixed positive integers such that t ≤ k. Define

Kt,k := span{ek−t+1,k, . . . , ek,k}, ∀k, ∀1 ≤ t ≤ k.(2.13)
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Then for all x ∈ Kt,k, we have Akx,∇h(Akx) ∈ Jt,k and A>k ∇h(Akx),∇fk(x) ∈
Kt+1,k, where

Jt,k := span{e1,4k, . . . , et,4k, ek+1,4k, . . . , ek+t,4k,

e2k+1,4k, . . . , e2k+t,4k, e3k+1,4k, . . . , e3k+t,4k}.
(2.14)

Moreover,

min
x∈Kt,k

fk(x) = 8(k − t) log 2 + min
u∈Rt

ft(u).(2.15)

Proof. Fix x ∈ Kt,k. By (2.13) we have x> = (0>k−t,u
>)> for some u ∈ Rt. Thus

by the definition of Wk in (2.1),

Wkx =

(
−1 Wt

Wk−t

)(
0k−t
u

)
=

(
Wtu
0k−t

)
.

Using the above result, the descriptions of Ak and ∇h in (2.2) and (2.6) respectively,
and the definition of Jt,k in (2.14), we have

Akx =



2σWtu
0k−t
−2ζWtu

0k−t
−2σWtu

0k−t
2ζWtu
0k−t


∈ Jt,k, ∇h(Akx) =



tanh(σWtu)
0k−t

− tanh(ζWtu)
0k−t

− tanh(σWtu)
0k−t

tanh(ζWtu)
0k−t


∈ Jt,k.(2.16)

Also, note that for all v ∈ Rt, the definition of Wk in (2.1) results in

W>k

(
v

0k−t

)
= Wk

(
v

0k−t

)
=

(
−1 Wk−t

Wt

)(
v

0k−t

)
=

0k−t−1
−v(t)
Wtv

 ∈ Kt+1,k.

(2.17)

Combining (2.16) and (2.17), and using the definition of Ak in (2.2) we have

A>k ∇h(Akx) =2σW>k

(
tanh(σWtu)

0k−t

)
− 2ζW>k

(
− tanh(ζWtu)

0k−t

)
− 2σW>k

(
− tanh(σWtu)

0k−t

)
+ 2ζW>k

(
tanh(ζWtu)

0k−t

)
∈Kt+1,k.

Using the above result and noting the value of A>k bk in (2.12), we conclude that

∇fk(x) = A>k ∇h(Akx)−A>k bk ∈ Kt+1,k.
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To finish the proof it suffices to prove (2.15). By the definition of h in (1.2), the
computations in (2.16), and the setting x> = (0>k−t,u

>)> we have

h(Akx) =
t∑
i=1

2 log(2 cosh(σWtu)(i)) + (k − t) · 2 log(2 cosh(0))

+
t∑
i=1

2 log(2 cosh(−ζWtu)(i)) + (k − t) · 2 log(2 cosh(0))

+
t∑
i=1

2 log(2 cosh(−σWtu)(i)) + (k − t) · 2 log(2 cosh(0))

+
t∑
i=1

2 log(2 cosh(ζWtu)(i)) + (k − t) · 2 log(2 cosh(0))

=8(k − t) log 2 + h(Atu).

Also, noting that x> = (0>k−1,u
>)>, by the description of A>k bk in (2.12) we have

b>k Akx = 4(σ − ζ)u(t) = b>t Atu.

Hence we conclude from the definition of fk(x) in (2.3) that fk(x) = 8(k− t) log 2+
ft(u), and thus (2.15) holds.

As an immediate consequence of the above lemma, in the following we show that
the linear span assumption of a first-order method M will lead to xt ∈ Kt,k when
minimizing fk(x).

Lemma 2.3. Suppose that M is any deterministic first-order method that satisfies
Assumption 2.1. When M is applied to minimize fk(x) in (2.3), we have xt ∈ Kt,k
for all 1 ≤ t ≤ k.

Proof. We prove the t = 1 case first. By Assumption 2.1, x1 ∈ span{∇fk(x0)}.
Recalling the assumption that x0 = 0, we have ∇fk(x0) = ∇fk(0) = −A>k bk, and
by the value of A>k bk in (2.12) we have ∇fk(x0) ∈ span{ek,k}. Noting the definition
of Kt,k in (2.13) we have x1 ∈ K1,k.

Let us use induction and assume that xi ∈ Ki,k for all 1 ≤ i ≤ s < k. By Lemma
2.2, we have ∇fk(xi) ∈ Ki+1,k for all s. Noting Assumption 2.1 we have

xs+1 ∈ span{∇fk(x0), . . . ,∇fk(xs)} ⊆ Ks+1,k.

Hence the induction is complete and we conclude that xt ∈ Kt,k for all 1 ≤ t ≤
k.

By the description of f∗k in (2.10), the relation (2.15), and Lemma 2.3, we con-
clude that the error of iterate xt in terms of objective function value can be lower
bounded by

fk(xt)− f∗k ≥ min
x∈Kt,k

fk(x)− f∗k = 8(k − t) log 2 + f∗t − f∗k

=4(k − t) [(σ − ζ)c− log cosh(σc)− log cosh(ζc)] .
(2.18)

In the following lemma, we provide a simplification of the above lower bound:

Lemma 2.4. For any real numbers σ and ζ that satisfy 2ζ > σ > ζ > 0, we have

(σ − ζ)c− log cosh(σc)− log cosh(ζc) ≥ c2σ2C(σ/ζ),
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where C(σ/ζ) is a universal constant that depends only on the ratio σ/ζ. In par-
ticular, When σ/ζ = 1.3, we have

C(1.3) >
1

2
.(2.19)

Proof. By checking its derivative it is easy to verify that the function c 7→ c tanh(c)
is increasing when c > 0. Hence we have

ζc tanh(ζc) ≤ σc tanh(σc), i.e., ζ tanh(ζc) ≤ σ tanh(σc).

Applying the above relation to (2.7), we have

2ζ tanh(ζc) ≤ σ − ζ ≤ 2σ tanh(σc).

Since tanh is an increasing function, we have from the above inequality that

c ∈ [clb, cub], where clb :=
1

σ
arctanh

(
1

2
− ζ

2σ

)
and cub :=

1

ζ
arctanh

(
σ

2ζ
− 1

2

)(2.20)

in which clb, cub > 0 are well-defined real numbers under the assumption that 2ζ >
σ > ζ > 0. Using the above result, the definition of c in (2.7), and noting that
the function c 7→ c tanh(c) − log cosh c is increasing when c > 0 (by checking its
derivative), we have

(σ − ζ)c− log cosh(σc)− log cosh(ζc)

=c2σ2 1

c2σ2
[σc tanh(σc)− log cosh(σc) + ζc tanh(ζc)− log cosh(ζc)]

≥c2σ2C

where

C :=
1

c2ubσ
2

[σclb tanh(σclb)− log cosh(σclb) + ζclb tanh(ζclb)− log cosh(ζclb)] .

Noting (2.20), we can observe that the above constant C depends only on the ratio
σ/ζ. The result (2.19) can then be computed numerically.

We are now ready to state a lower complexity bound of deterministic first-order
methods under the linear span assumption.

Theorem 2.5. Suppose thatM is any deterministic first-order method that satisfies
the linear span assumption in Assumption 2.1. Given any iteration number T ,
there always exist data matrix A ∈ RN×n and response vector b ∈ {−1, 1}N , where
n = 2T and N = 8T , such that the T -th approximate solution xT generated by M
on minimizing the binary logistic loss function lA,b in (1.3) satisfies

lA,b(xT )− l∗A,b >
3‖A‖2‖x0 − x∗‖2

32(2T + 1)(4T + 1)
,

‖xT − x∗‖2 >1

8
‖x0 − x∗‖2,

(2.21)

where x∗ is the minimizer of f .

Proof. Let us fix any ζ > 0 and set σ = 1.3ζ in the definition of Ak in (2.2). By
(2.4) we have

‖Ak‖ ≤ 4
√

2σ2 + 2(σ/1.3)2 < 8σ.(2.22)
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Let us apply M to minimize fk defined in (2.3) where k = 2T . Recall that M
starts at x0 = 0, and that the minimizer x∗ in (2.8) satisfies

‖x0 − x∗‖2 = c2
k∑
i=1

i2 =
c2

6
k(k + 1)(2k + 1).(2.23)

By Lemmas 2.3 and 2.4, the lower bound estimate (2.18), and noting that σ > ζ,
we have xt ∈ Kt,k and

fk(xt)− f∗k ≥ 2(k − t)c2σ2, ∀t ≤ k.

Applying (2.22) and (2.23), the above relation becomes

fk(xt)− f∗k >
3(k − t)‖Ak‖2‖x0 − x∗‖2

16k(k + 1)(2k + 1)
.(2.24)

Also, since xt ∈ Kt,k, by the definition of Kt,k in (2.13) we have x
(1)
t = . . . =

x
(k−t)
t = 0. Noting the description of x∗ in (2.8) and focusing on the difference

between xt and x∗ in the first (k − t) components, we have

‖xt − x∗‖2 ≥ c2
k−t∑
i=1

i2 =
c2

6
(k − t)(k − t+ 1)(2k − 2t+ 1).(2.25)

Specially, setting t = T and recalling that k = 2T , (2.24) becomes

fk(xT )− f∗k >
3‖Ak‖2‖x0 − x∗‖2

32(2T + 1)(4T + 1)
,

and (2.23) and (2.25) imply that

‖xT − x∗‖2 ≥ c2

6
T (T + 1)(2T + 1) >

c2

48
· 2T (2T + 1)(4T + 1) =

1

8
‖x0 − x∗‖2.

We conclude (2.21) from the above two results by setting A := Ak ∈ R8T×2T ,
b := bk ∈ R8T and noting the equivalence between lA,b in (1.3) and fk in the above
derivation.

3. Lower complexity bound for general deterministic first-order methods.
In this section, we extend the lower complexity bound to general deterministic first-
order methods. The derivation is based on the concept of orthogonal invariance in
the seminal work of [9], and is organized in a similar way as in [11]. Note that we
can also use the concept of zero-respecting algorithms in [2, 3] to finish the proof.

We will use the following technical lemma which is proved in [11] (see Lemma
3.1 within).

Lemma 3.1. Let X ( X̄ ⊆ Rp be two linear subspaces. Then for any x̄ ∈ Rp,
there exists an orthogonal matrix V ∈ Rp×p such that

V x = x, ∀x ∈ X , and V x̄ ∈ X̄ .

Proposition 1. For any Ak and bk in the form of (2.2), any deterministic first-
order methodM, and any t ≤ (k−3)/2, there exists an orthogonal matrix Ut ∈ Rk×k
that satisfy the following:

1. UtA
>
k bk = A>k bk;

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



12 Yuyuan Ouyang and Trevor Squires

2. When M is applied to minimize the binary logistic regression loss function
lAkUt,bk

defined in (1.3), its iterates x0, . . . ,xt satisfy

xi ∈ U>t K2i+1,k, ∀i = 0, . . . , t.

Proof. Let us fix Ak, bk and the method M. Throughout this proof, we will use
the notation

U :=
{
V ∈ Rk×k

∣∣ V is orthogonal and V A>k bk = A>k bk
}
.

We conduct the proof by induction. The case when t = 0 is trivial by setting
U0 to be the identity matrix. Let us assume that the proposition is true when
t = s− 1 < (k− 1)/2. By the induction hypothesis there exists Us−1 ∈ U such that
when M is applied to minimize lAkUs−1,bk

, its iterates satisfy

xi ∈ U>s−1K2i+3,k, ∀i = 0, . . . , s− 1.(3.1)

Suppose that xs is the next iterate. To prove the case when t = s, let us start by
finding an orthogonal matrix Us ∈ U . Noting that s < (k−1)/2, from the definition
of Kt,k in (2.13) we have

K1,k ( K2,k ( . . . ( K2s+1,k.(3.2)

Thus U>s−1K2s,k ( U>s−1K2s+1,k, and by Lemma 3.1 there exists orthogonal matrix
V such that

V x = x, ∀x ∈ U>s−1K2s,k, and V xs ∈ U>s−1K2s+1,k.(3.3)

Let us define

Us := Us−1V.(3.4)

Noting the descriptions of A>k bk and K1,k in (2.12) and (2.13) respectively, we
observe that A>k bk ∈ K1,k ⊂ K2s,k. Using such observation, by (3.3), (3.4), and the
induction hypothesis Us−1 ∈ U , we have U>s A

>
k bk = V >U>s−1A

>
k bk = A>k bk, hence

Us ∈ U . Also, from (3.2) we have U>s−1K2i+1,k ⊂ U>s−1K2s,k for all i = 0, . . . , s− 1.
Consequently by (3.3) and (3.4) we have

U>s K2i+1,k = V >U>s−1K2i+1,k = U>s−1K2i+1,k, ∀i = 1, . . . , s− 1.(3.5)

Applying the above relation to (3.1) and also noting xs ∈ U>s K2s+1,k from (3.3)
and (3.4), we obtain

xi ∈ U>s K2i+1,k, ∀i = 0, . . . , s.(3.6)

Let us applyM to minimize lAkUs,bk
. We will prove that its first s+1 iterates are

exactly x0, . . . ,xs (the ones computed when M is applied to lAkUs−1,bk
). Indeed,

we can make the following observation: if

lAkUs,bk
(x) = lAkUs−1,bk

(x) and ∇lAkUs,bk
(x) = ∇lAkUs−1,bk

(x), ∀x ∈ U>s K2s−1,k,

(3.7)

then by (3.6) and the oracle assumption (1.4), M would obtain exactly the same
first-order information at x0, . . . ,xs−1 ∈ U>s K2s−1,k from the first-order oracle when
minimizing either lAkUs,bk

or lAkUs−1,bk
. Therefore, if (3.7) holds, thenM produces

exactly the same iterates x0, . . . ,xs when minimizing either lAkUs,bk
or lAkUs−1,bk

.
Consequently, noting that Us ∈ U and (3.6) we obtain the results of the t = s case
by choosing U = Us and complete the induction.
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To finish the induction proof it suffices to prove (3.7). Let us fix any x ∈
U>s K2s−1,k. By (3.3) and (3.5) we have x ∈ U>s−1K2s−1,k. Noting (3.3) and that
Us−1, Us ∈ U , we obtain the following relations:

Usx = Us−1V x = Us−1x ∈ K2s−1,k and U>s A
>
k bk = A>k bk = U>s−1A

>
k bk.(3.8)

Moreover, noting that Us−1x ∈ K2s−1,k, applying Lemma 2.2 we have

A>k ∇h(AkUs−1x) ∈ K2s,k,

and hence by (3.3) we observe that

V >U>s−1A
>
k ∇h(AkUs−1x) = U>s−1A

>
k ∇h(AkUs−1x).

Using such observation, recalling the definition of lA,b in (1.3), and noting the
relations in (3.8), we conclude that

lAkUs,bk
(x) =h(AkUsx)− x>U>s A

>
k bk = h(AkUs−1x)− x>U>s−1A

>
k bk

=lAkUs−1,bk
(x),

∇lAkUs,bk
(x) =U>s A

>
k ∇h(AkUsx)− U>s A>k bk

=V >U>s−1A
>
k ∇h(AkUs−1x)− U>s−1A>k bk

=U>s−1A
>
k ∇h(AkUs−1x)− U>s−1A>k bk = ∇lAkUs−1,bk

(x).

Hence (3.7) is proved.

Theorem 3.2. Suppose thatM is any deterministic first-order method. Given any
iteration number T , there always exists data matrix A ∈ RN×n and b ∈ RN , where
n = 4T +2 and N = 16T +8, such that the T -th approximate solution xT generated
byM on minimizing the binary logistic regression loss function lA,b in (1.3) satisfies

lA,b(xT )− l∗A,b ≤
3‖A‖2‖x0 − z∗‖2

32(4T + 3)(8T + 5)

‖xT − z∗‖2 >1

8
‖x0 − z∗‖2,

where z∗ is the minimizer of lA,b.

Proof. Let us fix any ζ > 0 and set σ = 1.3ζ in the definition of Ak in (2.2), in
which we set k = 4T + 2. Note that the norm of Ak satisfies (2.22). Applying
Proposition 1 to Ak, bk, and M with t = T , we obtain the following result: there
exists an orthogonal matrix U := UT that satisfies U>A>k bk = A>k bk, such that
when M is applied to minimize lAkU,bk

, its iterates xi satisfies xi ∈ U>K2i+1,k for
all 0 ≤ i ≤ T . Note that in this result we have

lAkU,bk
(xT ) ≥ min

x∈U>K2T+1,k

lAkU,bk
(x) = min

x∈U>K2T+1,k

h(AkUx)− x>U>A>k bk

= min
x∈K2T+1,k

h(Akx)− x>A>k bk = min
x∈K2T+1,k

fk(x) and

l∗AkU,bk
= min

x∈Rk
lAkU,bk

(x) = min
x∈Rk

h(AkUx)− x>U>A>k bk(3.9)

= min
x∈Rk

h(Akx)− x>A>k bk = min
x∈Rk

fk(x) = f∗k .

Here we use the definition of fk in (2.3). Consequently,

lAkU,bk
(xT )− l∗AkU,bk

≥ min
x∈K2T+1,k

fk(x)− f∗k .(3.10)
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Note from (3.9) above that the minimizer z∗ of lAkU,bk
(x) satisfies z∗ = U>x∗,

where x∗ is the minimizer of fk defined in (2.8). Since xT ∈ U>K2T+1,k, we have

‖xT − z∗‖2 ≥ max
x∈K2T+1,k

‖x− x∗‖2

≥c2
k−2T−1∑
i=1

i2 =
c2

6
(k − 2T − 1)(k − 2T )(2k − 4T − 1)

=
c2

6
(2T + 1)(2T + 2)(4T + 1).

Here the last equality is since we set k = 4T + 2. Also, recalling that M starts at
x0 = 0 we have

‖x0 − z∗‖2 = ‖x∗‖2 =c2
4T+2∑
i=1

i2 =
c2

6
(4T + 2)(4T + 3)(8T + 5).

Summarizing the above two relations we have

‖xT − z∗‖2 >1

8
‖x0 − z∗‖2.(3.11)

Furthermore, applying (3.11), Lemma 2.4, and the estimate of lower bound in (2.18)
to (3.10), we have

lAkU,bk
(xT )− l∗AkU,bk

≥4(k − 2T − 1) [(σ − ζ)c− log cosh(σc)− log cosh(ζc)]

≥2(k − 2T − 1)c2σ2

=
6 ∗ (k − 2T − 1)σ2‖x0 − z∗‖2

(2T + 1)(4T + 3)(8T + 5)
.

Applying the estimate of ‖Ak‖ in (2.4) to the above, and recalling that k = 4T + 2,
we obtain

lAkU,bk
(xT )− l∗AkU,bk

≤ 3‖A‖2‖x0 − z∗‖2

32(4T + 3)(8T + 5)
.

By setting A := AkU ∈ R(16T+8)×(4T+2) and b := bk ∈ R(16T+8), we conclude
the proof from (3.10) and (3.11).

4. Concluding remarks. In this paper, we describe some worst-case datasets for
deterministic first-order methods on solving binary logistic regression. The binary
logistic regression functions with our worst-case datasets can also serveF as new
worst-case function instances among the class of smooth convex optimization prob-
lems.

It should be noted that our description of Ak and bk in (2.2) are designed so that
the optimal intercept of binary logistic regression is 0. If we are focusing only on
homogeneous linear predictor case without requiring the optimal intercept to be 0,
an easier dataset can be designed by simply setting

Ak :=

(
2σWk

2ζWk

)
∈ R2k×k, bk :=

(
1k
−1k

)
∈ R2k

and follow the derivations in Sections 2 and 3.
Our complexity analysis studies binary logistic regression solely from an opti-

mization theory perspective. In the future work, it might be possible to explore
the proposed construction of worst datasets further and seek potential connections
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with certain statistical learning theories, e.g., theory on data generalization error
or Vapnik-Chervonenkis dimension1.
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