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Abstract— Computer-aided diagnosis (CAD) systems
must constantly cope with the perpetual changes in
data distribution caused by different sensing technolo-
gies, imaging protocols, and patient populations. Adapt-
ing these systems to new domains often requires signif-
icant amounts of labeled data for re-training. This pro-
cess is labor-intensive and time-consuming. We propose a
memory-augmented capsule network for the rapid adapta-
tion of CAD models to new domains. It consists of a capsule
network that is meant to extract feature embeddings from
some high-dimensional input, and a memory-augmented
task network meant to exploit its stored knowledge from
the target domains. Our network is able to efficiently adapt
to unseen domains using only a few annotated samples. We
evaluate our method using a large-scale public lung nodule
dataset (LUNA), coupled with our own collected lung nod-
ules and incidental lung nodules datasets. When trained on
the LUNA dataset, our network requires only 30 additional
samples from our collected lung nodule and incidental lung
nodule datasets to achieve clinically relevant performance
(0.925 and 0.891 area under receiving operating character-
istic curves (AUROC), respectively). This result is equiva-
lent to using two orders of magnitude less labeled training
data while achieving the same performance. We further
evaluate our method by introducing heavy noise, artifacts,
and adversarial attacks. Under these severe conditions, our
network’s AUROC remains above 0.7 while the performance
of state-of-the-art approaches reduce to chance level.

Index Terms— Capsule network, computer-aided diagno-
sis, incidental lung nodule, lung nodule, meta-learning.

I. INTRODUCTION

LUNG cancer is consistently ranked as the leading cause
of cancer-related deaths all around the world in the past

several years, accounting for more than one-quarter (26%) of
all cancer-related deaths [1]. The stage at which diagnosis is
made largely determines the overall prognosis of the patient.
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Fig. 1. Overview of the episodic meta-training (Left) and meta-testing
(Right) of the MEMCAP for adaptive lung nodule classification. During
the meta-training phase, the model learns to quickly encode and retrieve
the required information about the new domain (task) using a small
subset of annotated samples. During the meta-testing phase, the model
performance is evaluated on samples from never-before-seen target
domains.

The five-year relative survival rate is over 50% in early-stage
disease, while survival rates drop to less than 5% for late-stage
disease [1]. Lung cancer screening of high-risk individuals,
which is designed to detect the disease at an early stage, has
been shown in the National Lung Screening Trial (NLST) to
reduce lung cancer mortality by 20% [2]. The main challenge
in lung cancer screening is detecting lung nodules [2]. Radiol-
ogist fatigue, increasing workload, and stringent turn-around-
time requirements are just a few of the factors which negatively
impact the detection rate for lung nodules. Many studies have
documented the occurrence of diagnostic errors in clinical
practice, caused by many different contributing factors which
can generally be divided into person-specific (e.g., satisfaction
of search, etc.), nodule-specific (e.g., small size, low density)
and environment-specific issues (e.g., inadequate equipment,
staff shortages, excess workload, etc.) [3], [4].

Computer-aided diagnosis (CAD) systems aim to improve
the radiologist’s performance in terms of diagnostic accuracy
and speed [5]. The role of CAD systems in lung nodule
detection and screening has been demonstrated over the years
[6], as well as their role in distinguishing between benign and
malignant nodules [5]. However, the automated identification
of nodules from non-nodules is quite challenging mainly due
to the large variation in size, shape, margins, and density of the
nodules [7]. The nodules can also occur in different locations
(such as peri-fissural, subpleural, endobronchial, perivascular),
contributing to the diversified contextual environment around
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the nodule tissue [8]. In recent years, deep learning technology
has attracted considerable interest in the computer vision and
machine learning community [9], [10]. Deep neural networks
(DNNs) have an advantage of automatically capturing the
image’s higher-level features directly from the raw input data.
This leads to powerful features tuned to specific tasks of
medical image analysis [11]–[13]. Recent work has explored
deep networks for detecting lung pathology [13], [14].

Machine learning models are typically trained under the
assumption that training and test data are sampled from
the same distribution. This assumption is often violated as
conditions for data acquisition may change, and a trained
system may fail to produce accurate predictions for unseen
data affected by a domain shift. In medical imaging, images
acquired at different sites can differ significantly in their data
distribution, due to varying scanners, imaging protocols or
patient cohorts, thus each new hospital can be regarded as
a new domain [15]. However, it is impractical to collect large
datasets from each institution in order to update a trained
system. In pulmonary nodule detection, while most of the
existing work focuses on improving classification accuracy
with a static dataset (i.e. the LUNA dataset [16]), the problem
of adapting a classifier to changes in lung CT data is largely
under-investigated. There are many inter-patient and intra-
patient sources of variability in pulmonary CT scans that can
affect classifier performance negatively; not only does each
patient have unique characteristics, but each imaging center
utilizes different CT scanners with different imaging protocols
which lead to large variations in image contrast and signal-to-
noise ratio. The Hounsfield Unit (HU, a measure of radioden-
sity) differences observed between various CT scanners due to
poor calibration can also be significant, with the measured HU
values of each scanner changing substantially with repeated
use [17]. A possible solution is to use domain adaptation (DA)
methods to narrow down the domain shift between the target
and source domain [18], [19]. To the best of our knowledge,
there are no established techniques for the adaptation of lung
nodule classifiers to the settings unique to each hospital by
using only a few labeled examples from the new domain [20],
[21].

Motivated by the above challenges, this paper proposes a
novel framework for the on-the-fly adaptation of a lung nodule
classifier to changes in the data distribution. This eliminates
the need for both expensive data annotation and training
models from scratch in each of the target institutions. Fig.
1 shows an overview of the proposed framework during the
training and test phases. It takes sequential labeled samples,
evaluates the performance enhancement in real-time, and stops
when satisfied with the model prediction performance, making
it data efficient. Our paper makes the following contributions:
• We develop an efficient meta learning method, called

memory-augmented capsule networks (MEMCAP), for
rapidly adapting to target domains using only a few
labeled samples.

• While traditional meta-learning methods require multiple
tasks (each task consists of data and labels) for training,
we develop a domain shift simulation strategy to train our
model using only one dataset. This contribution makes

meta learning technology significantly easier to use in
medical applications where annotations are expensive and
difficult to obtain.

• We perform extensive experiments on three different
lung nodule datasets to validate the proposed network.
This includes the classification of incidental pulmonary
lung nodules from contrast enhanced and non-contrast
enhanced CT scans acquired with normal radiation dose.
These nodules were detected during screening for another
disease in patients with low-risk of lung cancer. Despite
the changes in the lesion size, morphology image contrast
and radiation dose, our model learns to incorporate the
underlying information from the target domain and makes
accurate predictions for these complex cases.

II. RELATED WORK

Domain Adaptation algorithms aim to train models that
produce accurate predictions for unseen data with domain
shift. Over the past 10 years, research in domain adapta-
tion provides a number of effective techniques to mitigate
the domain shift problem [22]–[30]. Donahue et al. [27]
showed that features of a deep network generalize well to
unseen domains. Nguyen et al. [28] proposed a network of
sparse representations for adaptation on multiple levels of
the feature hierarchy . In a similar spirit, Rusu et al. [29]
proposed a progressive network, by appending the source
network to the target network, enabling the architecture to
reuse both low-level and high-level features. Some approaches
have proposed to learn a target classifier regularized against
the source classifier to facilitate adaptation when a limited
amount of labeled data is available in the target domain [31],
[32]. Most of these domain adaptation techniques require a
computationally intensive re-training process (e.g, hours to
days) to achieve a comparable prediction performance in the
target domain. Such a requirement will inevitably interrupt
clinical workflows and cause a significant delay in diagnoses
and treatments. Moreover, due to the small numbers of data
samples from new domains, the re-training process is prone to
poor generalization. It is also unrealistic to expect the user to
collect many labeled data in each new domain [33], [34]. In
contrast, many clinical settings require real-time learning and
inference from a small amount of data provided by physicians.
This kind of flexible adaptation remains a major challenge for
the existing approaches, including those using deep networks
[35].
Meta-learning (a.k.a learning to learn) explores the training
of a meta-learner that learns to learn new tasks and skills
quickly with a few training samples [36], [37]. Model-agnostic
meta-learning (MAML) [38] is a gradient-based procedure
that incorporates an episodic training paradigm for the fast
adaptation of models to new tasks and domains. Santoro et
al. [39] proposed a memory-augmented neural network (a
recurrent network with an explicit storage buffer) with a set of
modifications on the training set up and the memory retrieval
mechanism which allows it to encode new information quickly
and thus adapt to new tasks after only a few samples. Bercea
et al. [40] introduced a memory augmented network that
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Fig. 2. Overview of the proposed model-based meta-learning approach for adaptive lung nodule classification. (a) Simulated domain shift, (b)
Sampled sequence of images for the episodic training, (c) Architecture of the MEMCAP classifier, consisting of a feature network (a 3D Capsule
Network named FastCaps++) and a task network (composed of an LSTM controller with an external memory bank). MEMCAP takes a few annotated
inputs from the new domain and refines its decision function in real-time.

decomposes input X-Ray images into several patches that
are then sequentially segmented and combined. Zhang et
al. [41] also introduced a memory augmented adversarial
network for retinal OCT screening that enhances anomalies
present in the data that are difficult to detect. While the meta-
learning approaches are significantly different in motivation
and methodologies, their training requires the availability of
multiple datasets [38], [42]. In medical applications, this
requires collecting and annotating data from different institutes
which is often expensive and inefficient.

III. METHODOLOGY

A. Memory-Augmented Capsule Network
The proposed MEMCAP architecture makes no assumption

about the form of the output Pθ(y|X), which is the probability
of a data point X belonging to the class y. We denote input
and output (label) spaces by X and Y respectively. MEMCAP
is composed of two sub-modules; first, a feature extractor
network Fθ : X � Z extracts discriminative features from the
large volumetric input images, where Z is the feature space of
much lower dimension than X . It then passes the embedding
vectors to a task network Tφ : Z � RC where C is the number
of classes in Y . The final class predictions are given by

ŷ = p(y|x; θ, φ) = softmax(Tφ(Fθ(x))) (1)

where softmax(a) = ea/
∑
i ai. The parameters θ, φ are

optimized with respect to a classification (Lclass) and a task-
specific (Ltask) objective function. We elected to use a deep
capsule network architecture as the feature extractor network
due to its ability to extract various invariant low-dimensional
properties of the entities across domains; including different
types of instantiation parameters such as position, size, ori-
entation, etc. [43]. It then passes the abstract representations
to the task network: a recurrent controller with an explicit
storage buffer to rapidly encode and store the new information
extracted from the labeled target examples, thus exploiting
the underlying intrinsic information in the target domain for
prediction [39]. Finally, we propose a stand-alone approach
for simulating the domain shift during training and testing
by applying random distortions to input and output data. The

detailed information about the model architectures, the task
set up and training strategies are provided in the following
sections.

B. FastCaps++ as Feature Extractor Network

Capsule networks (CapsNets) were proposed by Sabour et
al. [43] as an alternative to convolutional neural networks
(CNNs) that possess multiple desirable properties such as the
ability to: generalize with fewer training examples, encode and
compress a vast amount of information in short pose vectors
and matrices, and being significantly more robust to adver-
sarial attacks and noisy artifacts [14], [44]. These properties
prompted us to use a CapsNet with slight variations to encode
input instantiation parameters into lower-dimensional vectors.

A CapsNet is composed of a cascade of capsule layers,
each of which contains multiple capsules. A capsule is the
basic unit of CapsNets and is defined as a group of neurons
whose output forms a pose vector or matrix [43], [44]. This
is in contrast to traditional deep networks that use neurons as
their basic unit. In this work, we elected to use matrix capsules
as it helps with reducing the number of trainable parameters
required by the transformation matrices [44] which eventually
made our network less prone to over-fitting. Let ΩL denote
the sets of capsules in layer L. Each capsule i ∈ ΩL outputs
a pose matrix PLi . Each element in the matrix characterizes
the instantiation parameters (such as orientation, size, pose,
etc.). The activation probability of a capsule aLi indicates the
presence of an entity and is implicitly encoded in the capsule
as the Frobenius norm of the pose matrix. The i-th capsule in
ΩL propagates its information to j-th capsule in ΩL+1 through
a linear transformation VLij = WL

ijP
L
i , where VLij is called

a vote matrix. The pose matrix of capsule j ∈ ΩL+1 is a
weighted combination of all the votes from child capsules:
P(L+1)
j =

∑
i rijV

L
ij , where rij are routing coefficients and∑

i rij = 1. These coefficients are determined by the dynamic
routing algorithm [43] which iteratively increases the routing
coefficients rij if the corresponding voting matrix VLij is
similar to PL+1

j and vice versa. Dynamic routing ensures
that the output of each child capsule gets sent to the proper
parent capsules. Through this process, the network gradually

Authorized licensed use limited to: University of Houston. Downloaded on August 02,2021 at 05:24:11 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3051089, IEEE
Transactions on Medical Imaging

4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

3D ResNet-20

input image

reconstructed

64x64x64

64x64x64

32 16 16 8

8163264

TCU3 TCU2 TCU1TC

image

PrimaryCaps ConvCaps1 ConvCaps2

ClassCaps

3DResOut
A B C

K K1 1
DR DR DR

KKK
K

Fig. 3. Illustration of the encoder (top) and decoder (bottom) paths of
the FastCaps++ architecture. It outputs an 8 × 8 matrix of semantic
features extracted from the high-dimensional input.

constructs a transformation matrix for each capsule pair to
encode the corresponding part-whole relationship and retains
geometric information of the input data.

We applied a few simple yet effective modifications to the
Fast CapsNet proposed by Mobiny et al. [14] to make it scale
properly to our high-dimensional volumetric inputs and im-
prove its convergence speed and prediction performance while
requiring a smaller number of trainable parameters. We called
our model FastCaps++ whose architecture is depicted in Fig.
3. FastCaps++ is composed of an encoder and decoder path.
The encoder path uses a 3D ResNet-20 [45] with three residual
blocks as the base network, followed by a 1 × 1 convolution
layer which outputs A = 64 feature maps. All the other layers
are capsule layers starting with the primary capsule layer. The
4 × 4 pose matrix of each of the B primary capsule maps is
a learned linear transformation of the output of all the lower-
layer ReLUs centered at that location. The primary capsules
are followed by two convolutional capsule layers with C and
D capsule maps and kernels of size K = 3 and stride s = 1
and s = 2, respectively. We selected B = C = D = 32 for
the capsule layers, and used a dynamic routing mechanism to
route the information between the capsules. The last layer of
convolutional capsules is linked to the final dense capsule layer
which has only one capsule with an 8 × 8 pose matrix. The
Frobenius norm of the pose matrices of the output capsule is
used to determine the predicted class (nodule vs. non-nodule).

The decoder network then reconstructs the input from the
final capsules, which will force the network to preserve as
much information from the input as possible across the whole
network. This effectively works as a regularizer that reduces
the risk of over-fitting and helps generalize to new samples. In-
spired by [46] we used a convolutional architecture composed
of three transposed convolution units (TCU) to reconstruct
the input volume. Each TCU doubles the volume size and
is composed of two 3D transposed convolution layers (with
K = 1, s = 1 and K = 3, s = 2, respectively), each of which
is followed by a ReLU non-linearity. The final transposed
convolution layer (shown as TC in Fig. 3) uses a kernel of
size K = 1 and stride s = 1 with a sigmoid non-linearity to
map the values into the [0, 1] range.

C. Memory-Augmented Task Network
Due to the sequential nature of annotated feedback samples

provided from each new target domain, and the need to
encode and accumulate the information over time, neural
networks with recurrent structures are a natural choice. They

are equipped with an “internal memory” that captures infor-
mation about what has been calculated so far. The long-short
term memory (LSTM) model is introduced as a modification
to vanilla recurrent networks (RNNs), which is capable of
encoding long-term dependencies [47].

In the lung nodule detection problem, the model must be
able to quickly encode and retrieve information, and modify
its decisions to make accurate inferences by using a few
annotated samples. This set of samples are provided as either
information correction by the radiologist or brand-new samples
from never-before-seen distributions. Thus the ideal model
must learn to capture the cumulative expertise gained across
domains and continuously adapt to never-before-seen distri-
butions [48]. However, neural networks with internal memory
capacity (such as LSTM) are not able to rapidly encode,
store and access a significant amount of new information
required at each step. Architectures such as memory networks
[49] and Neural Turing Machines (NTMs) are developed as
models that meet the requisite criteria. These are external-
memory equipped networks capable of rapidly encoding new
information and storing them in a stable, addressable rep-
resentation that can selectively be accessed when needed.
Inspired by [39], we use an LSTM architecture equipped with
an external memory bank as the task network (as shown in
Fig. 2) for sequentially processing the new information. The
external memory bank interacts with the LSTM controller
through reading and writing operations. The external memory
is denoted by a matrix Mt ∈ Rk×q where k is the number of
memory slots and q is the size of each slot. The model has an
LSTM controller that reads and writes to the external memory
at every time step (i.e. receiving each new annotated sample).
Reading: For a given input xt and the memory matrix Mt

with k rows (slots) of size q at time t, the controller will
produce a key kt computed as kt = tanh(Whkht + bk)
from the controller hidden states (ht). Whk and bk are the
corresponding weight matrix and bias values respectively. This
key will be compared against each memory slot Mt(i) using
the cosine similarity measure C(., .). This similarity is used
to produce the read-weight vector wr

t :

wr
t = softmax

[
C(kt,Mt(i))

]
(2)

where softmax is used to get the normalized weight vector with
its elements summing to one. This vector allows the controller
to select values similar to previously-seen values, which is
called content-based addressing. Finally, the reading operation
is done by a weighted linear combination of all memory slots
scaled by a normalized read-weight vector wr

t as follows:

rt = (Mt)
T .wr

t (3)

Here, rt is the content vector retrieved from the memory, and
wr
t ∈ Rk×1 is the read-weight vector which specifies how

much each slot should contribute to rt,
Writing: To write into the memory, the controller will interpo-
late between writing to the most recently read memory rows
and writing to the least-used memory rows. If wr

t−1 is the
read-weight vector at the previous time step, and wlu

t−1 is a
weight vector that captures the least-used memory location, the
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Algorithm 1 Episodic training with simulated domain shift.
Input: Source training domains D = {Dk}Kk=1

Output: Feature extractor (Fθ) and task network (Tφ)
1: Randomly split D into disjoint Dtr and Dte

2: repeat
3: Randomly select a simulated domain Dtr

k

4: M � 0 . Reset for each meta-training episode
5: for xt ∈ Dtr

k do . for each labeled sample
6: Pout

t , at = Fθ(xt)
7: θ � θ − α∇θLclass(yt, at; θ) . update Fθ
8: compute kt, wr

t , ww
t , rt, at . Section III-C

9: Mt � Mt−1 + ww
t .at . update the memory

10: ŷt = Tφ((Pout
t , yt−1); rt,ht)

11: l � l + Ltask(yt, ŷt; θ, φ)

12: (θ, φ) � (θ, φ)− γ 1
|Dtr|∇l(D

tr; θ, φ) . update Fθ, Tφ
13: M � 0 . Reset for each meta-testing episode
14: ŷt′ = Tφ(Fθ(xt′)) . Evaluate for xt′ ∈ Dte

j

15: L � 1
|Dte|

∑
j

∑
t′ Ltask(yt′ , ŷt′ ; θ, φ)

16: until convergence

write weights ww
t ∈ R1×k is then computed using a learnable

sigmoid gate:

ww
t ← σ(αt)w

r
t−1 + (1− σ(αt))w

lu
t−1 (4)

where σ(.) is the sigmoid function. αt is a scalar computed as
αt = wαht+bα at each time step, and wα and bα are trainable
parameters learned discriminatively through back-propagation.
This encourages information to be written into either rarely-
used locations of the external memory to preserve recently
encoded information, or the last used location to update the
memory with newer, possibly more relevant information. The
ith memory slot at time-step t, Mt(i), is then updated as:

Mt(i)←Mt−1(i) + ww
t (i). at (5)

where at is the linear projection of the current hidden state
followed by a tanh nonlinearity.

To create the least used weight vector wlu
t , the controller

maintains a usage-weight vector wu
t which gets updated after

every read and write step as:

wu
t ← βwu

t−1 + wr
t + ww

t (6)

where β ∈ [0, 1] is a scalar parameter used to determine how
quickly previous usage values should decay. The least used
weight vector wlu

t−1 is a one-hot-encoded vector generated
from wu

t−1 by setting its minimum element to 1, and all
other elements to 0. Finally, the concatenation of the read
content vector and the hidden nodes (rt,ht) is used to predict
the output. The introduction of external memory enables the
recurrent network to store and retrieve much longer-term infor-
mation compared to LSTM. This frees up the main controller
and increases its capacity to learn highly complicated patterns
within the data.

D. Episodic Training with Simulated Domain Shift

Our learning procedure is an episodic training scheme
meant to expose the model optimization to distribution mis-
matches. The idea of episodic training is inspired by human
learning and evolution through generations [38], [39]. Each
training episode mimics a learner’s lifespan where it learns
to optimize its performance. The next episodes are like the
next generation learners using the accumulated knowledge
to solve a similar problem regardless of a possible shift in
the data distribution. Given the labeled training data D =
{(xn, yn)}Nn=1, we synthetically generate samples from new
domains D = {D1,D2, ...,DK} by altering the input/output
data distributions. In our implementation, training on each
sequence of images from the new domain Dk is called an
episode.

Theoretically, any data transformation technique can be ap-
plied to slightly change the distribution of data. By increasing
the diversity of the meta tasks, the model can be well trained
to extract useful features after adapting to training data in any
task. We elected to synthetically enhance each meta-training
task by using a variety of systematic transformations that
equivalently alter the associated data and labels to simulate
a new domain Dk = {(x(k)

n , y
(k)
n )}

Nk

n=1 where Nk is the
number of labeled samples in the k-th domain. This is done
by randomly applying affine transformations (scale, translate,
shear), jittering the pixel intensities by applying Gaussian
blurring and changing the contrast and/or brightness of the
input images. This effectively simulates the domain shift in a
real-world medical imaging scenario where differences in CT
scanners, imaging protocols, and many other factors change
the distribution of pixel intensity values [50]. Moreover, labels
are randomly flipped from episode to episode (during training
only). For example, nodules can be labeled as 1 in one episode
and 0 in another. Note that labels are consistent within the
same episode. This strategy helps prevent the MEMCAP from
learning a fixed mapping from samples to their class labels, but
a dynamic binding between image features and the provided
labels. Consider the scenario where we do not flip the labels,
the network can simply predict the ground-truth labels from
input images instead of relying on the provided labels. This
is undesirable as the model becomes insensitive to the new
information from the target domain. This is inspired by the
strategies used in other studies to learn dynamic mappings
for different tasks [39], [51]. Our extensive experiments show
that introducing such synthetic domain shifts significantly im-
proves the cross-domain transferability of the learned model.

Algorithm 1 summarizes the episodic training of the MEM-
CAP model. We first split the source domains D = {Dk}Kk=1

into disjoint meta-train (Dtr) and meta-test (Dte) sets. In
the meta-training phase, we train the system by sequentially
feeding the input xt from a new domain Dtr

k to FastCaps++
(feature extractor network) to extract semantic features Pout

t ∈
Z , which will then be fed along with the time-delayed output
yt−1 to the task network to predict the current label yt (also
shown in Fig. 2).
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Fig. 4. Sample images of nodules (Left) and non-nodules (Right) selected from Data-I (LUNA), Data-II (our dataset), and Data-III (incidental lung
nodule). Each image is a slice along the 2D axial plane in the middle of the volume. Samples from Data-II are numbered and discussed in the text.

IV. DATASET

We used three different sets of CT images in our experi-
ments. These datasets were collected and pre-processed inde-
pendently, and thus it is reasonable to consider their images
as samples from different distributions. Fig. 4 shows examples
of extracted candidates and the corresponding labels from
all three sets. These images illustrate the highly challenging
task of distinguishing nodules from non-nodule lesions as
the pulmonary nodules come with large variations in shapes,
sizes, types (solid, sub-pleural, cavitary, and ground-glass)
and the non-nodule candidates often mimic the morphological
appearance of the real pulmonary nodules.

A. Data-I: LUNA-16 Lung Nodule Dataset

We use the candidate nodules provided by the LUNA-16
challenge [16] as the source data which is used for the initial
meta-training and meta-testing phases to train and evaluate the
model. This dataset is a subset of LIDC-IDRI data [52], the
largest publicly available reference database for lung nodules
including a total of 1018 CT scans. It consists of low-dose
CT scans collected from a wide range of scanner models
and acquisition parameters from seven different participating
academic institutions. LUNA-16 includes candidate nodules
(of size ≥ 3mm) generated from only 888 scans and labeled
by experienced thoracic radiologists in a two-phase reading
process. In the first phase, four radiologists annotated scans
and marked all suspicious lesions. In the next phase, the
annotations generated by all other radiologists were revealed
to each radiologist who then independently reviewed all
annotations [16]. This results in 750K candidate nodules
of size 64 × 64 × 64, containing about 1500 true nodules.
We withhold 20% of the data for testing and perform five
fold cross validation on the remaining 80%. We evaluate the
performance of the trained models on the disjoint test dataset.

B. Data-II: Colleted Lung Nodule Dataset

This dataset includes 226 unique CT Chest scans captured
by General Electric and Siemens scanners at the MD Anderson
Cancer Center on a single day. The data was pre-processed
by the Triradiate Industries - Autonomous Image Recogni-
tion software which is a proprietary automated segmentation

system trained on datasets from the same institution. The core
algorithm is an expert system used primarily for isolating lung
parenchyma and blood vessels. The system uses a combination
of density filters and simple feature analysis to produce a voxel
level segmentation map. From within the segmented lung
tissue, a set of potential nodule points is generated based on the
size and shape of regions within the lung which exceeds the air
HU threshold. Additional filters, based on symmetry and other
common morphological characteristics, are applied to decrease
the false positive rate while maintaining very high sensitivity.
Bounding boxes with at least 8 voxels padding surrounding
the candidate nodules are cropped and resized to 64×64×64
pixels. Each generated candidate is reviewed and annotated
by board-certified radiologists. From all the generated images
(about 7400 images), around 56% were labeled as nodules
while the rest were labeled as non-nodules. The radius of the
detected nodules ranges from 3 to 15 mm with an average
of 5 (±1.86) mm. The differences in scan protocol for the
various chest studies yield slice thickness ranging from 0.625
- 2.5 mm. In each case, an attempt was made to get as
close to isotropic as possible while adhering to slice thickness
multiples of 0.625mm. For example, most studies have an in-
plane resolution of approximately 0.7× 0.7 mm; in this case,
linear interpolation was used to convert the data to 0.625mm
slice thickness (voxel dimension of 0.7× 0.7× 0.625mm).

C. Data-III: Collected Incidental Lung Nodule Dataset

The incidental lung nodules on CT scans are usually small
nodules (< 5mm) detected incidentally on cross-sectional
imaging studies performed for some other reason. Unlike
low-dose CT lung cancer screening suggested by multiple
trials and studies [2], [53], [54], this dataset is collected from
either contrast or non-contrast enhanced CT scans with normal
dose at the Houston Methodist Hospital System. This can
make incidental lung nodules difficult to detect; the patient
may have other abnormalities present in the scan that can
mislead the radiologist or classifier. Therefore, detecting them
at the early stage and monitoring their growth over time
can potentially help prevent them from developing into lung
cancer in the future. Current lung nodule detection networks
are typically trained on public low-dose CT datasets such
as LUNA16 or NLST [16], [55]. These models have shown
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TABLE I
PREDICTION PERFORMANCE OF DEEP NETWORKS TRAINED ON DATA-I AND TESTED ON DATA-I, DATA-II, AND DATA-III. WE PERFORMED 5-FOLD

CROSS-VALIDATION ON THE SOURCE DATA (DATA-I) AND REPORT THE AVERAGE (±STD.) FOR EACH METRIC AND DATASET OVER THE MODELS.

Model #param.
(M)

Validation on different data (Data-I / Data-II / Data-III)
precision recall accuracy AUROC

ResNet-20 0.8 90.7(±1.6) / 55.1(±1.8) / 9.5(±3.4) 59.7(±3.3) / 74.1(±2.1) / 80.9(±2.3) 86.7(±1.1) / 56.5(±2.4) / 37.4(±2.4) 78.6(±1.8) / 59.3(±2.7) / 57.3(±2.2)
ResNet-110 5.2 96.3(±1.4) / 58.1(±2.2) / 10.7(±2.8) 66.4(±4.3) / 86.5(±1.9) / 73.6(±2.1) 90.6(±2.8) / 61.9(±2.0) / 49.2(±1.8) 82.7(±2.3) / 67.7(±2.6) / 60.4(±2.0)
ResNet-1202 58.1 91.5(±1.7) / 72.1(±1.4) / 12.7(±2.1) 85.9(±2.7) / 64.5(±3.1) / 44.4(±4.0) 93.3(±1.4) / 69.6(±2.5) / 71.6(±2.0) 91.3(±1.8) / 69.7(±2.4) / 59.2(±2.3)
FastCapsNet 52.2 82.5(±2.0) / 63.5(±3.1) / 11.2 (±3.2) 88.2(±2.9) / 90.6(±0.7) / 74.5(±1.8) 91.9(±1.7) / 69.1(±2.7) / 51.2(±2.3) 88.6(±1.8) / 69.0(±2.3) / 61.8(±1.9)
FastCaps++ 2.4 96.2(±1.5) / 75.8(±2.1) / 11.6(±2.6) 87.0(±3.1) / 66.9(±2.6) / 69.3(±2.4) 95.3(±2.0) / 72.3(±2.5) / 55.8(±2.1) 92.8(±1.6) / 72.3(±2.4) / 62.0(±2.1)

inferior performance in identifying incidental lung nodules
from normal dose CT scans. On the other hand, the size of
the incidental lung nodules is comparatively smaller which
can be considered another factor causing a shift in the data
distribution for the detection problem.

Due to the unique nature of incidental lung nodules and
the complexity involved in detecting and annotating them,
this dataset is relatively small compared to the other two
datasets, and consists of 94 CT scans; 55 of which have at
least one nodule. The original CT slices are of size 512×512
pixels for all patients with varying numbers of slices for
different patients. A resampling step is conducted to achieve an
isotropic resolution of 1×1×1 mm so that the networks do not
need to learn zoom/slice thickness invariance. Normalization
is also used to compress the HU values to be in the range
of 0 to 255. Positive samples are created by cropping a
volume centered on the nodule. Negative samples are created
by collecting the false-positive nodules generated by a 3D
Faster R-CNN network [56] pre-trained on LUNA-16.

V. EXPERIMENTS AND RESULTS

A. Training Procedure and Implementations Details

All baseline deep models were trained using an Adam
optimizer with β1 = 0.9 (β1 = 0.5 for CapsNets), β2 = 0.999,
a fixed batch size of 16, and a learning rate of 10−3 which was
decayed exponentially (every 1000 steps with a base of 0.97)
to a minimum of 10−5. CNNs were trained with cross-entropy
loss while CapsNets were trained to minimize the margin loss
[43] to enforce the output capsule to have a large activation a
if and only if a nodule exists in the input image:

Lclass = y max(0,m+ − a)2 + λ(1− y) max(0, a−m−)2]
(7)

where y is the ground truth label. Minimizing this loss forces
a to be higher than m+ if a nodule exists, and lower than m−

otherwise. In our experiments, we set m+ = 0.9, m− = 0.1,
and λ = 0.5. The parameters of the recurrent task network
are optimized through maximizing the cross-entropy between
predicted probabilistic scores and the ground truth labels.
We train the MEMCAP model end-to-end using the ADAM
optimizer with the same configuration as the baseline models.
A random search is performed to find the best parameter
values. The best results are achieved using 128 memory slots
of size 40 and an LSTM controller with 200 hidden units.

For each episode, we randomly applied a combination of
contrast, brightness, Gaussian blurring and affine transforma-
tions to the entire 3D space to generate samples from the new

simulated domain (or task). Note that for fair comparison, the
same data augmentation techniques is used in all of our exper-
iments. The probability of each transformation being selected
for a given simulated domain is 0.5. We used the Python
Imaging Library (PIL) [57] to perform contrast, brightness
and blurring transformations; parameters were selected in the
range [0.1, 1.9] to allow for both low and high brightness
and contrast values (where 1 outputs the original image) and
a range of [0, 2] for blurring. We used TensorFlow [58] to
apply affine transformations, including scaling ([0.5, 2], where
0.5 corresponds to half the image size in each dimension),
translation (up to 20 pixels along each axis), and shear (with
counterclockwise shear angle selected in the range [−0.5, 0.5]
radians). All analyses are done using a desktop machine
equipped with 128 GB of memory, a single NVidia TITAN
V with 12 GB of video memory, and Intel Core i9-7960X
CPU 2.80GHz with 32 cores.

B. Baseline Deep Neural Network Performance

To understand the effects of domain shifts between training
and testing data, we trained various 3D models on DATA-
I (i.e. LUNA) and then evaluated performance on all three
datasets. We observe significant drops in accuracy across
various popular computer vision architectures when testing on
data from a different domain (as shown in Table I). This result
was expected as these architectures are not explicitly designed
to deal with the domain shift problem. This emphasizes the
challenge of designing a framework that not only performs
well on a provided set of samples, but also quickly adapts
to a new domain by providing only a few samples without
the need to retrain the whole system from scratch; especially
in the medical imaging field where the annotation process is
time-consuming, costly, and inconsistent.
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Fig. 5. Comparison of the test prediction performance of the proposed
framework with (right) and without (left) the external memory on the
LUNA dataset. The average AUROC (±std.) is computed over 100
unique meta-test tasks and after different numbers of labeled samples.
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standard deviation of prediction AUROC over 100 randomly sampled episodes.

TABLE II
COMPARING THE AVERAGE TEST AUROC (%) ACHIEVED BY DIFFERENT APPROACHES OVER 100 RUNS WITH RANDOMLY SELECTED ANNOTATED

SAMPLES FROM THE TARGET DATASET. THE NUMBER OF PROVIDED LABELED SAMPLES FOR EACH EXPERIMENT ARE DENOTED ABOVE THE

RESULTS (I.E. 2ND FOR TWO SAMPLES, 4TH FOR FOUR, AND SO ON).

AUROC with Labeled Samples (%)

Model Data-I Data-II Data-III
2nd 4th 10th 20th 30th 2nd 4th 10th 20nd 30th 2nd 4th 10th 20th 30th

Transfer Learning - - - - - 70.16 70.23 71.31 73.20 73.56 62.04 62.12 62.83 63.24 63.58
Associative Learning 67.29 72.33 77.81 80.07 80.45 65.58 73.01 75.16 78.94 80.19 62.10 64.21 68.49 70.63 72.06
LSTM 56.45 68.86 73.22 79.54 80.33 60.33 67.01 75.40 81.00 81.31 59.42 61.33 67.81 72.91 74.68
MANN 59.30 69.94 75.63 84.11 85.35 61.45 69.73 72.59 82.49 83.03 59.95 63.71 80.16 83.28 84.19
MAML 60.43 68.43 76.39 83.21 85.13 60.11 71.57 78.42 83.84 84.29 60.79 63.43 78.58 81.94 82.52
MEMCAP (ours) 62.77 77.43 84.09 87.92 90.24 64.17 73.07 83.42 89.57 92.45 61.23 64.43 84.71 88.67 89.09

C. Evaluation of adaptive classifier

To evaluate the domain adaptability of our memory-
augmented architecture, we utilized an episodic training
scheme with simulated domain shifts on Data-I. Note that the
training and testing data subsets were disjointed to prevent
data leakage. Fig. 5 shows a comparison of test performance
with and without the external memory bank during the meta-
testing phase as a function of the number of training episodes.
Each training episode consists of randomly sampling a few
images from both classes and applying the simulated domain
shift on all of them. We evaluated the adaptation performance
of the model after every few episodes, during which no further
learning occurred and the network predicts the class labels for
samples pulled from a disjoint set. We drew labeled samples
(from 2 to 30 samples) from the test data and evaluated
the classifiers on the remaining data. The labeled samples
effectively mimic the data that needs to be annotated by the
human expert when adapting to the new domain. For example,
the 2nd sample accuracy is the classification accuracy after
providing two labeled samples from a given domain, while
the 4th sample accuracy is the classification accuracy after the
first four labeled samples, and so on. We generate 100 unique
meta-test tasks, each meant to mimic unique sample domains.
We note that storing a single sample per class (yellow curve)
allows the architecture to encode some relevant information
which helps it exceed chance performance. The MEMCAP
architecture achieves AUROC of 84.1% and 90.2%, after
providing 10 and 30 labeled samples respectively. We also
observe that one training episode of MEMCAP lasts only
0.47(±0.04) seconds on average, with an overall training time
of around 14 hours. The architecture is also composed of 3.6M
trainable parameters (compared to MAML’s 7.1M), requires
11.48 GB of memory (compared to MAML’s 11.89 GB), and

has a computational overhead of 178M FLOPs (compared to
MAML’s 195M).

We then evaluated the proposed architecture’s robustness
to various domain shifts. To do this, we took the best model
(MEMCAP trained for 85,000 episodes) and tested it in two
different experiments. The first consisted of evaluating the
model with three different simulated domain shifts (Contrast
shifts, Gaussian blurring, and FGSM Adversarial attacks [59])
of various magnitudes. FGSM Adversarial attacks compute
the gradient of the loss with respect to each pixel and then
alter pixel intensity in the opposite direction of the gradient
which is scaled by a single hyperparameter ε. We also compare
with the results obtained from learning by association [60]
and MAML [38]. We modify the baseline models to make
the comparison fair. For associative learning, we train the
network on the source domain (Data-I) to minimize the loss
function (a combination of visit, walker and classification loss
as explained in [60]). For MAML, the best performance was
achieved when setting the inner and outer update learning rates
as α = 10−3 and β = 0.005. The results presented in Fig. 6
demonstrates that the MEMCAP model trained with 30 labeled
samples per domain significantly outperforms other methods
after both mild and severe data distortions are applied.

The second experiment was conducted by simply evaluating
the performance of the model on CT scan datasets derived
from different institutions. This enables us to check the
networks’ adaptability and performance robustness in a more
natural setting. Classification results of the different models are
presented in Table II. We also compare our results with those
achieved using transfer learning in which the models trained
on Data-I are fine-tuned to each respective target domain (i.e
Data II and III) [61], [62]. After training the model on Data-
I, we freeze the parameters of the convolutional layers and
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only fine-tune the parameters of the capsule layers to prevent
over-fitting on the small number of samples from Data-II
and III. The initial learning rate is decreased to 10−4 and
is decayed exponentially (every 1000 steps with a base of
0.97) to a minimum of 10−5. We also performed the transfer
learning experiment using all available labelled data from each
target domain to determine the maximum performance that
can be achieved with the baseline model. FastCaps++ achieves
95.2% and 92.1% AUROC on dataset II and III respectively.
Considering the performance of MEMCAP as shown in Table
II, we see that MEMCAP is able to achieve 97.1% and 96.8%
of the theoretical maximum performance by using only 30
labeled samples from the respective target domains.

For the domain adaptation with associative learning, we
used the network that was pre-trained under the associative
learning regime and fine-tune it using a different number of
labeled data from the target domain. Also note that a subset of
100 samples from the remaining training data was randomly
selected as the set of unlabeled samples required for this
approach. For all three baseline approaches, we ran the fine-
tuning for as many iterations as required and reported the
best results achieved. We observed that MEMCAP signifi-
cantly outperforms the other baseline methods, with larger
labeled sample sets contributing to more substantial increases
in performance. We also generated results using the MANN
architecture (with ResNet-110 as the feature extractor) to high-
light the contribution of the FastCaps++ feature extractor [39].
Our result indicates that FastCaps++ in MEMCAP improves
generalization with fewer samples in all tasks.

VI. DISCUSSION

The adaptability of a CAD model to various different
domains is fundamental to its feasibility in healthcare applica-
tions. This is due to the significant variation that can be seen
across medical datasets; differences between patients, patient
cohorts, and imaging centers can all contribute to potentially
degraded CAD performance. In the context of Computed
Tomography (CT) scans, we note that these variations are
often caused by the use of unique CT scanners with varying
HU values [17]. The reason for scanning a patient can also
contribute to these significant domain shifts; the dosage of
radiation used for each disease can vary, which alters the image
noise distributions. Even data derived from various different
imaging centers (as is the case for the LUNA dataset) can
not characterize all of the observable domain variations. This
is reflected in our results presented in Table I which show
that deep neural networks trained on Data I do not generalize
well to Data II, a similar sample set which was collected in
a different institution. It is unrealistic to have physicians label
data for each possible domain; even with a model trained on
a large dataset, fine-tuning and retraining is required to match
the new target domain. The use of domain adaptation methods
is therefore warranted in the context of medical imaging tasks.

We propose MEMCAP, a deep neural network architec-
ture trained with meta-learning to perform domain adaptation
in lung nodule classification from CT scans. It consists of

a CapsNet feature network that extracts invariant low and
high-level semantic structures across domains from the high-
dimensional input volume. The output is then fed to the task
network: a memory augmented recurrent network which learns
to quickly store and retrieve domain-specific information from
its external memory bank using a small number of labeled
samples. MEMCAP is thus able to leverage the available
labeled target examples to store and exploit the underlying
intrinsic information in the target domain.

To evaluate the performance of our proposed architecture,
we compared our results with transfer learning, associative
learning, and MAML. We simulated domain shifts by applying
different types of distortions (contrast shift, Gaussian blurring,
and FGSM adversarial attacks). From these results, we observe
that MEMCAP was more robust to data distortions than the
other evaluated methods. This suggests that MEMCAP was
more resistant to domain shifts and was thus able to learn the
underlying domain-independent information. We then evalu-
ated the performance of the technique with data sets collected
from unique institutions and with unique imaging settings. In
Data II, the samples were collected from a single hospital and
were then labeled by an independent group of experienced
thoracic radiologists. We note that MEMCAP significantly
outperforms the other techniques once enough labeled samples
are provided; with just 10 labeled samples, MEMCAP achieves
an 83.42% average AUROC, while MAML requires 20 labeled
samples to achieve a similar level of performance. The per-
formance disparity between MAML and MEMCAP is due to
the inherent weaknesses of the MAML framework; while we
observed stable performance across episodes in the MEMCAP
model (as shown in the right panel of Figure 5), we observed
significant performance instability when training the MAML
model. This can be the result of vanishing and exploding
gradients that occur due to a lack of skip connections and
the large depth of the unfolded network [63]. We also note
that the performance of MAML depends heavily on finding
the optimal hyper-parameters across a large range of possible
values (such as the α and β learning rates) for a given input
dataset. MEMCAP is less susceptible to these limitations; it
achieves its peak performance of 92.45% with 30 labeled
samples, exceeding the performance of all baseline methods
by a large margin.

We then evaluated the effectiveness of MEMCAP on the
common occurrence of incidental lung nodules which are
usually missed by radiologists and classifiers [64], [65]. These
are lung nodules that were incidentally detected while scan-
ning for another disease; this means that either contrast or
non-contrast enhanced scans could be used to image patients
which generally have a low-risk of lung cancer. This makes
the detection of incidental lung nodules challenging; while
screening for lung nodules in a high-risk population primes the
radiologist for the task at hand, the assessment of incidental
lung nodules must be done simultaneously to detect the other
intended abnormalities. This issue is exacerbated by the fact
that incidental lung nodules are detected in both non-contrast
and contrast enhanced scans with imaging protocols optimized
for different organs other than the lung. This is especially lim-
iting as a thin slice thickness is usually required to identify a
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small lung nodule. Unlike Data I and II, all samples generated
in Data III were incidental. Moreover, due to the nature of
these scans, the nodules are often smaller than the nodules
observed in Data I and II. The results show that this significant
domain shift is handled well by the MEMCAP framework
when compared to the other baseline methods. We note that
MEMCAP outperforms all other methods and achieves 84.7%
and 89.1% accuracy for classifying incidental lung nodules
after only 10 and 30 labeled samples, respectively. Given the
resistance of MEMCAPS to domain shifts, we show that it is
well suited to the task of assessing incidental lung nodules,
and can be used effectively in a clinical setting.

We can also conclude based on our findings that this
architecture is well suited to other medical imaging techniques.
For example, optical coherence tomography (OCT) is a med-
ical imaging technique that utilizes low-coherence light to
capture both 2D and 3D structures within biological tissues
at both low and high spatial resolution [66]. Previous works
have shown that it is possible to augment the sensitivity and
specificity of OCT skin lesion analysis through the integration
of computational techniques [67]. Future works should aim to
integrate MEMCAP into OCT skin lesion analysis in order to
address both the data scarcity and resolution variability of the
data.

VII. CONCLUSION

This paper systematically evaluates the adaptability of deep
networks; we found that while deep neural networks achieve
state-of-the-art performance on a set of data, they do not
perform well in response to domain shifts. We propose a
practical adaptive classifier called MEMCAP which is capable
of taking a few annotated inputs from a new target domain to
refine its decision making ability accordingly. This prevents
the operator from having to re-train the network for each
domain, as re-training requires a significant amount of time,
computational resources, and human effort. Our experimental
results have demonstrated that when the data distribution
changes, the proposed classifier adapts almost perfectly in the
lung nodule classification task while popular deep networks’
performance decrease to chance with large domain shifts.
Exploring the possibility of utilizing the proposed framework
for the recognition of critical radiology findings from across
the body (such as liver tumors, enlarged lymph nodes, and
so on) as well as examining different optimization strategies
to speed up the convergence of MEMCAP are promising
directions for future work.
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