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Abstract

In proportion to the immense construction of spatial structures is the emergence of catastrophes related to structural
damages (e.g. loose connections), thus rendering personal injury and property loss. It is therefore essential to detect
spatial bolt looseness. Current methods for detecting spatial bolt looseness mostly focus on contact-type measurement,
which may not be practical in some cases. Thus, inspired by the sound-based human diagnostic approach, we develop a
novel percussion method using the Mel-frequency cepstral coefficient and the memory-augmented neural network in this
article. In comparison with current investigations, the main contribution of this article is the detection of multi-bolt loos-
eness for the first time with higher accuracy than prior methods. In particular, in terms of new data obtained via similar
joints, the memory-augmented neural network can help avoid inefficient relearn and assimilate new data to provide accu-
rate prediction with only a few data samples, which effectively improves the robustness of detection. Furthermore, per-
cussion was implemented with a robotic arm instead of manual operation, which preliminarily explores the potential of
implementing automation applications in real industries. Finally, experimental results demonstrate the effectiveness of
the proposed method, which can guide future development of cyber-physics systems for structural health detection.

Keywords
Bolt looseness detection, percussion method, structural health monitoring, Mel-frequency cepstral coefficient, memory-
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Introduction owing to large body mass and long service life, we may
encounter accidents of spatial structures, caused by dif-
ferent natural disasters such as hurricanes and earth-
quakes. Moreover, since the bending and shear forces
are transferred between each member and ball node
through only one bolt, the bolt looseness can lead to
stiffness deterioration and stress redistribution that col-
lapse the whole structure. Even though some new
joints™!® have been designed and fabricated to alleviate
this issue, we still need some effective methods to detect
the degradation and failures of bolt-ball joints, particu-
larly bolt looseness.

Due to its advantages including beauteous appearance,
lightweight, and a sense of transparency, the spatial
structure has been widely used across different infra-
structures such as airports and sports stadiums.
Generally, spatial structures are composed of many
members and joints, which can hold members together
and support loading. Compared to other joint systems
(e.g. the welded hollow spherical joints' and the space-
truss connectors),” the bolt-ball joints® are preferred
due to merits of being easy-to-implement and low mate-
rial consumption. For instance, the welded connections
are welded on-site, which requires extra labor and capi- | ) o o
tal. However rior investi ation4 has proven that Department of Mechanical Engineering, University of Houston,
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In the past decades, different structural health moni-
toring (SHM) methods have been employed to detect
damages of bolt-ball joints, including the vibration-
based method combined with numerous signal process-
ing strategies such as empirical mode decomposition
(EMD),'" rank-revealing QR (RRQR) decomposi-
tion,'? fuzzy c-means (FCM) clustering algorithm,'?
and continuous wavelet transform (CWT) method.'*
Subsequently, with the rapid development of smart
materials and structures (SMS), the SMS-enabled SHM
methods have attracted more attention in detecting
looseness of various bolts, for example, the vibration-
based method,'>'¢ the active sensing method,"” ' the
electro-mechanical impedance (EMI) method,?*?! the
nonlinear ultrasound method,?> >’ and the eddy current
method.?® Particularly, Xu et al.*® employed active sen-
sing and EMI methods™ to detect the looseness of spa-
tial bolt-ball joints, which demonstrated excellent
performance. However, instead of multiple loosening,
Xu et al.*® focus on detecting single-bar looseness of
the spatial bolt-ball joint, which dramatically reduces
the practical value-in-use. Moreover, all the SHM
methods mentioned above depend on sensor deploy-
ment; in other words, constant contact between sensors
and structures is required. This deployment can incur
high costs and is impractical in some complex cases. To
address this issue, some machine-vision-based meth-
ods®! are proposed recently to avoid contact detection
of bolt looseness. However, these methods have some
intrinsic drawbacks; for instance, the inception of loos-
eness and some exceptional cases (e.g. the loose bolt
that has one circle rotation exactly) cannot be identified
effectively. Therefore, we still need a more practical
method to detect looseness in spatial bolt-ball joints.

Since ancient times, the sound has been a diagnostic
indicator for human health; for instance, infant cries
can express hunger, pain, drowsiness, and asphyxia. It
is therefore natural that we can expect the potential
“exclaim” of structures (a.k.a. percussion-induced
sound signals) to characterize the structural perfor-
mance. The percussion-based method has been brought
into focus in detecting the health status of multiple
structures®> >* recently since radiation acoustic signals
can correspond to structural damages that induce
changes in mechanical properties. Particularly, several
investigations®> > have been conducted to detect bolt
looseness via the percussion-based methods. However,
the above methods depend on manual tapping, which
might be impractical for spatial bolt-ball joints.
Furthermore, they all only consider single bolt loosen-
ess, whose real applications are rare in industries. On
the contrary, the robotic-assisted percussion method is
expected to be highly potent in detecting looseness of
spatial bolt-ball joints, since several robotic-assisted
SHM methods**° have proven their superiority by
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Figure |. Schematic of robotic-assisted detection of spatial
bolt-ball joint looseness.

virtue of being portable and low-cost. As illustrated in
Figure 1, a climbing robot, which is equipped with a
hammer and a microphone, can crawl among bolt-ball
joints to detect their looseness by tapping and process-
ing the percussion-induced sound signals.

The main contribution of this article is the detection
of multiple looseness of the spatial bolt-ball joint for
the first time by developing a new robotic-assisted per-
cussion method, which requires no contact sensor
deployment. In addition, we achieve higher identifica-
tion accuracy than prior percussion-based methods that
focus on single bolt looseness. The proposed method
employs the Mel-frequency cepstral coefficient
(MFCC) algorithm to extract features from the
percussion-induced sound signals or “exclaim” of struc-
tures. The other main contribution is the application of
memory-augmented neural network (MANN) to clas-
sify different MFCC feature sets. In comparison with
the current convolutional neural networks (CNNs), the
MANN can achieve better performance, particularly
when it encounters new data. In other words, the pro-
posed method can construct classification for similar
applications with minimal prior knowledge and can,
therefore, help relieve the pressure from feature extrac-
tors. Another advantage of MANN over CNN is better
adaptability, guaranteed through the characteristics of
the MANN. Finally, multiple proof-of-concept experi-
ments were conducted to verify the effectiveness of the
proposed method. The rest of this article is organized
as follows. An overview of related literature is pre-
sented in section “An overview of related literature.”
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The theoretical background of the MFCC and the
MANN is introduced in section “Methods.” Section
“Experimental setup” describes the experimental appa-
ratus in detail. The results are discussed in section
“Results and discussion,” and section “Conclusion”
concludes this article. Overall, the proposed method
opens up a new frontier for further investigations on
the detection of spatial bolt-ball joint loosening.

An overview of related literature

In this section, we conduct a detailed literature review
to better illustrate the research status of current
percussion-based methods for bolt looseness detection
and CNN-based MFCC feature classification. Through
this review, we can fully confirm the main contribution
of the proposed method, which can be found in the fol-
lowing subsection in detail.

Percussion-based methods for bolt looseness
detection

The principle of the percussion method has been widely
employed in our daily life to diagnose structural integ-
rity. For example, we tap melons to determine their
ripeness by listening to the sound, and the integrity of
vitreous structures can be judged according to the tone
(namely, the bright or dull sound) when we knock on
them. Moreover, the pleural effusion associated with
an unhealthy lung can be diagnosed by tapping the
patient’s chest and listening sound. Overall, the princi-
ple of the percussion-based method is that the changes
in mechanical properties, which are caused by struc-
tural damages, correspond to generated acoustic signals
when tapping on structures.*!

Recently, the superiority of the percussion method
for bolt looseness detection has been noticed. Wang
et al.¥® developed analytical modeling and numerical
simulation of radiation acoustic signals caused by per-
cussion on a bolted connection, which laid a solid foun-
dation for future investigations. However, it is well
known that analytical models, which are time-consum-
ing, are not suitable for a quick inspection.
Subsequently, some more practical methods*®® were
developed to achieve bolt looseness detection more effi-
ciently, while they all have some demerits. For instance,
the feature extraction (power spectral density, PSD) of
sound signals in Kong’s method*® was conducted
manually, thus incurring inaccuracy due to subjectivity.
Meanwhile, Zhang’s method®’ employed the MFCC
algorithm to extract features from sound signals, which
requires no manual selection. However, only the first
order of the MFCC matrix is fed into a support vector
machine (SVM) to achieve the classification. This

implementation may be questionable since other orders
of the MFCC matrix also contribute to the features of
percussion-induced sound signals. Yuan et al.®®
extracted the intrinsic multiscale entropy (IME) of
sound signals as features and trained a backpropaga-
tion neural network (BPNN) model to achieve classifi-
cation of various bolt preloads. However, all these
three methods focus on single-bolt connections and
may be incapable of handling multi-bolt connections;
thus, we still need a new method to detect multi-bolt
looseness. In addition, current percussion methods are
all implemented manually, which lack the potential of
automatic applications.

MFCC feature classification using CNN-based
methods

It is worth noting that new opportunities, which can
break through the current bottleneck of one research
filed, are always generated via migrating approaches
from another research field. That is to say, we can
expect the potential of automatic speech recognition
(ASR) techniques to process percussion-induced sound
signals for bolt looseness identification since these sig-
nals are similar to human speech, which has rich char-
acters to be extracted. Thus, Zhang’s method®’
provides good inspiration for our research; however, a
new classification method is required to process the
MEFCC feature sets to detect bolt looseness. Recently,
the deep learning technology has attracted a lot of
attention across multiple applications. Particularly, the
CNNs** have proven their better performance over
current ASR methods, including the hidden Markov
models (HMMs), the Gaussian mixture models
(GMMs), and their combination (i.e. the GMM-
HMMs). This improvement can be partially attributed
to the unique capacity of the CNNs in characterizing
complex functions* since the CNNs can automatically
integrate different levels (from low to high) of features
in an end-to-end classification architecture. Moreover,
the combination of CNN and MFCC has demon-
strated its superiority in speech recognition and other
applications of pattern recognition. For instance, Liu
et al.*> proposed a CNN-MFCC hybrid method for
short utterance speaker recognition, and Phan et al.*
developed a Label-Tree Embeddings (LTE) algorithm,
which employs the CNNs to classify different labeled
low-level features including the MFCC, to achieve
audio scene classification. Similar investigations have
also been reported in previous literature.*’ >> Even
though these studies®® *° demonstrate that CNNs have
significant capacity to process the MFCC and capture
features for classification, some demerits limit the per-
formance. Notably, current CNN-based methods
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Figure 2. Flowchart of the proposed method.

require large amounts of data to train the models
extensively, and the models need to relearn their inher-
ent parameters to incorporate classifications when
encountering new input. On the other hand, we always
expect to achieve rapid inference with smaller quanti-
ties of data for most issues of interest. Therefore, we
apply the MANN to process MFCC features in this
article to obviate the downsides of current methods.
More details of MANN are presented in section
“MANN.”

Methods

The flowchart of the proposed method in this article is
illustrated in Figure 2. First, the percussion-induced
sound signals are pre-processed and then converted to a
representation in the time-frequency domain through
the MFCC. After graying and normalizing the MFCC
features, we fed them into the MANN, which consists
of a long short-term memory (LSTM) controller and an
external memory. More details of the MFCC and the
MANN will be introduced in the following subsection.

MFCC

To reduce dimensionality and quantify the signal prob-
ability for speech recognition, we can project the origi-
nal acoustic signal to a feature space through many
feature extraction methods. One of the most popular
approaches is the MFCC,> which represents the non-
linear cepstrum of signals, and its computation process
is depicted in Figure 3. After splitting and windowing
the initial input signal in the time domain to prevent
frequency distortion, we apply the discrete Fourier

transform (DFT) to obtain the power spectrum in the
frequency domain. Subsequently, we convert the fre-
quency (Hertz scale) to the Mel scale through a filter
bank, which can also achieve frequency filtering.
Finally, by utilizing the discrete cosine transform
(DCT) on the Mel power spectrum (in logarithm), we
extract the MFCC features. The detailed process is
given as follows:

(a) After applying a Hamming window to segment the
initial signal x(n), we can realize the DFT through

M,—1

x(k)="Y " x(me M (1)

n=0

where 0<k=<M,, and M; is the total points for the DFT;
k is the parameter for M;.

(b) Typically, the Mel-scale filter bank consists of sev-
eral triangular filters, whose distribution is based
on the Mel-scaling estimation, and the corre-
sponding response H;(k) of ith filter takes the

form of
0 k<kb,—l
k—kp,—
Nl B kbi_lﬁkgkb,
kp, — kp, 1
H;(k) = A
=
——  kp<k<k,
kbl+1 — kbl b; bi+1
0 k>kp, 11
kbi = (Ms/Fs)f,;e} [fmel(fmin) + i{fmel(fmax) _fmel (fmm)}/(Q + 1)}

2)
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Figure 3. Flowchart of the MFCC feature extraction and computation process.

where k, is the boundary points of the filter,Q is the
total of filters, and f,x and f,, are the maximum and
minimum of the frequency range. Then, based on
O’Shaughnessy’s theory,”” the function f;,; and its
inverse f,,.; can be obtained as follows

Fnet =2595X1og;o (1 + =55) ‘)
S =700(10/1/2595 — 1)
(¢) Finally, we compute the MFCC coefficients c(n)
by using the DCT to process the energy spectrum
s(7) of filter bank

0-1

cm)= 3 s(i) cos (”("—QOS) 77)

i=0

o—1
s(i) = m[z |x(k)|2hn(k)]
k=0

MANN

As we have discussed earlier, an especially daunting
challenge we face with deep learning is the generation
of new behavior (e.g. classification) according to infer-
ence from a few scraps of information.®! This require-
ment has gone beyond the capacity of current machine
intelligence to some extent. Contemporary gradient-

based solutions must re-learn parameters completely
from the new data, and when there are little data, these
strategies are prone to poor learning, incurring cata-
strophic interference. Several attempts have been made
at alleviating this obstacle, and some solutions®* have
proven their potential with rapid learning based on
sparse data with the notion of meta-learning.
Moreover, Neural Turing Machines (NTMs)® and
memory networks® were proposed to meet the require-
ment better. Particularly, Santoro et al.®> developed the
MANN, which has a better capacity to accomplish
meta-learning.®® Subsequently, several investigations®’
" have proven the advantages of MANN.

The architecture of MANN is illustrated in Figure 4.
MANN consists of several components: a controller
(generally, we employ the LSTM), an output distribu-
tion, an external memory, and read/write heads. After
receiving the input data (x;,y;_1), the controller can
update the state as

gfagiago)ﬁzwx}l(xtayt—l)+Whhht—1 +bh (5)

where g/, &', g° are the gates of forget, input, and out-
put, respectively; W¥(x,,y,_1) is the weight from the
input (x,,y,—1) to the hidden state; W is the weight
between two different hidden states; h;_; is the hidden
state under data label y,_;; and b" is the bias of the hid-
den state.
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Figure 4. The architecture of the MANN.®

Subsequently, the concatenated output of the con-
troller can be expressed as

o,=(h,r,) (6)

where h,=c(g°) ®tanh (¢); ¢;=0(@) O¢, +0(E)O
tanh (a) is the cell state; r, is the read vector according
to the external memory M,; and o() is the sigmoid func-
tion. It is worth noting that the read vector r, is
retrieved via read-weight vector w} as

R DAL O]
e (K, ML) @)
Zj exXp (K (ky, Mt(])))

where K (k;, M, (@) =k - M) /||k:||||M;(@)]|| is the cosine
distance between the query key vector and each row of
M,

wi (i)

Similarly, Least Recently Used Access (LRUA) is
employed to implement memory write function, and
more details can be found in prior investigation.®®

Finally, the output distribution can be calculated via
o,, producing the classification probability p, as

exp (W?(i)o,)
> exp (W (i)o,)

p.(0) — (8)

where W is weight of the output, and the episode loss
L(0) can be obtained through

L©O)=—> ylogp, ©)
t

Experimental setup

To prove the capacity and verify the effectiveness of
the proposed method, we conducted multiple proof-of-

concept experiments on a 6-bay, 83-member spatial
bolt-ball joint structure (size: 0.35 m length, 0.35 m
width, and 2.1 m height), which is made of aluminum.
As depicted in Figure 5, the experimental apparatus
consists of a computer, an acoustic signal acquisition
interface (Scarlett 18i8; Focusrite), a digital torque
wrench, a robotic arm with control handle (OWI-535;
OWI Robotic), a microphone (Ambeo VR; Sennheiser)
held through a tripod, and a designed hammer. It is
worth noting that a copper ball and a steel spring con-
stitute the hammer since this design can better simulate
the action of “tapping,” rather than the “peening” when
we apply the robotic arm that has no spring-back (see
Supplementary Material). The tapping point is on the
ball joint, while no accurate position can be guaranteed
due to the spring. In other words, the copper ball does
not need to hit the same spot in the repeated tapping.
Generally, this scenario is preferred since it is more con-
ducive to industrial applications. Moreover, the classifi-
cation performance, which will be discussed in the next
section, can demonstrate that this random tapping posi-
tion has no significant influence on the damage detec-
tion results. The microphone has a pre-selected distance
from the impact point (about 0.2 m) to reduce the effect
of airflow, and its sampling time and sampling rate are
set to 0.1 s and 48 kHz, respectively.

In this article, we considered multiple scenarios,
including single-bar looseness and multi-bar looseness
of the spatial bolt-ball joint. Furthermore, to demon-
strate the superiority of the MANN, we tapped another
bolt-ball joint via the robotic arm to conduct a new
training and testing dataset, that is to say, the training
dataset and the testing dataset for Case 7 are from dif-
ferent joints. More details of experimental arrange-
ments are summarized in Table 1. For each case (from
Case 1 to Case 6), we repeated the percussion tests 100
times to construct the dataset, in which the training set
and testing set include 80% and 20% of the dataset,
respectively. On the contrary, in terms of Case 7, the
testing set has 20 samples, and the number of training
sets is set to 2, 4, 6, 8, and 10, respectively.

Results and discussion

After down-mixing the percussion-induced sound sig-
nals to the mono channel (taking mean values from the
left and right channels), we depicted samples under
Cases 1-6 in Figure 6. Then, we employed the MFCC
to process the pretreated signals to obtain feature sets,
whose sample images under each case are also given in
Figure 6. Typically, the size of samples affects the clas-
sification performance significantly: oversized samples
increase the complexity and lead to redundant compu-
tation, while sufficient information cannot be presented
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Figure 5. Experimental setup.

Table |. Details of different experimental scenarios.

Case Joint Looseness Tightened (20 N m)
| A N/A Bars I,2,3,4,and 5
2 Bar | (10 N m) Bars 2, 3,4, and 5

3 Bar | (0 N m) Bars 2, 3,4,and 5

4 Bars | and 2 (0 N m) Bars 3,4,and 5

5 Bars |,2,and 3 (0 N m) Bars 4 and 5

6 Bars I, 2,3,and 4 (0 N m) Bar 5

7 B Corresponding to Cases |-6

through too small samples adequately. Therefore, we
conducted the trial and error, and the frame length was
set as 10 ms with an overlap of 5 ms, thus rendering
the size of the MFCC (8 X 14).

After converting the MFCC matrixes to the grays-
cale maps, we normalized the features under each case
by subtracting mean and dividing them with standard
deviation, which was obtained over the whole dataset.
Then, the normalized MFCC features under each case
were fed into the MANN model, which was conducted
and achieved on the TensorFlow framework.
Meanwhile, the data augmentation was implemented
through random translation and rotation of inputs. To

train the MANN, we first sorted the MFCC images
with corresponding five-step labels, and each sequence
was regarded as an episode. The ADAM (adaptive
moment estimation) optimizer with a minibatch size of
32, whose configuration is the same as the CNN, was
employed to construct the MANN, and a grid search
was implemented to figure out the best values of para-
meters. In this article, 128 memory slots with a size of
40 were found to be the optimal solution, and the size
of the LSTM controller was 200. In addition, the learn-
ing rate was set to le *, and the number of reads from
memory is 4 (with write decay of 0.99). Moreover, to
enhance the computation efficiency, we employed a
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Figure 6. Samples of sound signal and MFCC features under
different cases.

GPU (graphics processing unit, Nvidia GTX 960) with-
out the requirement of GPU programming since the
TensorFlow framework provides the support.
Subsequently, to verify the effectiveness of the MANN,
we computed its classification accuracies with maxi-
mum episodes of 100,000, as depicted in Figure 7. It is
worth noting that these accuracies are computed for up
to 10 feedbacks. That is to say, the instance accuracy in
Figure 7 means the classification accuracy of the corre-
sponding observation order of the whole cases.
According to Figure 7, we find that the MANN
achieves the highest testing accuracy after 25,000 epi-
sodes with 100% through the 10th feedback. Moreover,
to further confirm the superiority of the MANN, we
also implemented current percussion-based bolt loosen-
ess inspection methods’®>® and the CNN-based
MFCC classification, and the comparison results are
presented in Table 2. It can be found that the CNN-
based method outperforms the SVM, BPNN, and the
decision tree in classifying the audio signals, while the
proposed MANN has the best performance, which
indicates that the proposed method possesses a stronger
capacity for multi-bolt looseness detection.
Subsequently, we test the anti-noising capacity of
the proposed method. Since the proposed method is
still in the initial exploration stage (i.c. it is temporarily
difficult to implement on-site experiment to realize the
actual environmental noise), we add different white
Gaussian noises into the testing data to obtain

100

==& 1st instance
©— 2nd instance
5th instance | -{
—&— 10th instance

80 -

(-2
=}

Accuracy (%)
&

20

)
100000

0 20000

40000
Episode

60000 80000

Figure 7. Testing accuracies under different cases (I-6) using
the MANN.

Table 2. Comparison of testing classification accuracies
between the proposed method and current methods.

Model Instance (% accuracy)
PSD + DT3¢ 66.67
MFCC + SVM¥ 92.17
IME + BPNN?3® 81.33
MFCC + CNN 99.17
MFCC + MANN 100.00

PSD: power spectral density; DT: decision tree; MFCC: Mel-frequency
cepstral coefficient; SVM: support vector machine; IME: intrinsic
multiscale entropy; BPNN: backpropagation neural network; CNN:
convolutional neural network; MANN: memory-augmented neural
network. Bold values are used to highlight the classification accuracy of
the proposed method.

corresponding signal-to-noise ratio (SNR), which can
be defined as

(10)

noise

_ Afignal
SNRdB = 1010g10 A2

where 4., and 4, are the amplitude of the signal
and noise, respectively.

This process of adding noise is illustrated in
Figure 8, and we select four noise levels (from 20 to
80 dB with an interval of 20 dB) in this article. The
newly classification accuracy results among different
methods are compared in Figure 9, and it can be
observed that the proposed method still has the best
performance, which demonstrates the anti-noising
capacity.

In addition, to further demonstrate the efficacy of
the MANN, we conducted the experiments under Case
7 to develop a new training and testing dataset, that is,
the scenarios of Cases 1-6 are repeated once again at
Joint B, instead of Joint A. A typical and perpetual
problem that current percussion-based methods and
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Figure 10. Testing accuracies under Case 7 using the MANN
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deep network-based classifiers (e.g. CNN) face is the
dramatic deterioration of classification accuracy under
a new dataset. On the other hand, a classifier retraining,
which is a common solution, is less efficient and costly,
since it is difficult to obtain enough training data from
all the connections. Therefore, the MANN provides a
better choice: we only need a few training data from
Joint B to amend the well-trained model (via Joint A)

to achieve promising classification accuracy. In other
words, no retraining is required, which improves the
practicability. For instance, after conducting the new
dataset through Case 7, we allow both the MANN and
CNN to use only a few new MFCC samples from each
class of Joint B for adaptation (here, the number of
training set is set to 2, 4, 6, 8, and 10), and Figure 10
compares their classification accuracies of using the
new testing set of 20 samples. We can observe that the
MANN shows capacity superior to CNN in classifica-
tion, particularly when only a few new training data are
available.

Conclusion

In this article, inspired by the sound-based human diag-
nostic approach, we propose a novel robotic-assisted
percussion method to detect bolt-ball joint looseness in
spatial structures. In other words, similar to the exclaim
of patients, the percussion-induced sound signals are
rich in different features, which can be utilized to detect
bolt looseness. Therefore, the MFCC, which is a stan-
dard technology for speech recognition, was applied to
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extract feature sets from sound signals, and the MANN
was used to train the model for classification of differ-
ent bolt integrity status. The main contribution of this
article is the detection of multi-bolt looseness for the
first time. Compared to current percussion-based meth-
ods, the proposed method can achieve higher accuracy;
particularly, it can maintain a good performance when
new data are encountered (i.c. when other connections
with the same size and configuration are detected).
Since this article preliminarily explores and verifies the
effectiveness of the robotic-assisted percussion method,
we have enough confidence that an automatic inspec-
tion system, which provides good guidance for the
development of the cyber-physical system, can be devel-
oped to detect structural damage. Moreover, in the
future work, we will conduct further investigation to
determine the sensitivity of the proposed method, such
as the minimum looseness degree or the case that the
joint is partially loose.
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