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Understanding the activity of large populations of neurons is difficult due to the combinatorial
complexity of possible cell-cell interactions. To reduce the complexity, coarse graining had been previously
applied to experimental neural recordings, which showed over two decades of apparent scaling in free
energy, activity variance, eigenvalue spectra, and correlation time, hinting that the mouse hippocampus
operates in a critical regime. We model such data by simulating conditionally independent binary neurons
coupled to a small number of long-timescale stochastic fields and then replicating the coarse-graining
procedure and analysis. This reproduces the experimentally observed scalings, suggesting that they do not
require fine-tuning of internal parameters, but will arise in any system, biological or not, where activity
variables are coupled to latent dynamic stimuli. Parameter sweeps for our model suggest that emergence of
scaling requires most of the cells in a population to couple to the latent stimuli, predicting that even the
celebrated place cells must also respond to nonplace stimuli.
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A key problem in modern biological physics is
extracting useful knowledge from massive datasets enabled
by high-throughput experimentation. For example, now
one can record simultaneous states of thousands of neurons
[1–5] or gene expressions [6–8], or the abundances of
species in microbiomes [9–11]. Inferring and interpreting
the joint probability distributions of so many variables is
difficult. A promising resolution to the problem is to adapt
the renormalization group (RG) [12] framework for coarse-
graining systems in statistical physics to find relevant
features and large-scale behaviors in biological datasets
as well. Indeed, RG-inspired coarse graining showed an
emergence of nontrivial scaling behaviors in neural pop-
ulations [13,14]. Specifically, the authors analyzed the
activity of over 1000 neurons in the mouse hippocampus
as the animal repeatedly ran through a virtual maze. Their
coarse-graining scheme involved combining the most
correlated neurons into neural clusters by analogy with
Kadanoff’s hyperspins [15], while using cluster-cluster
correlations as a proxy for locality. Various correlation
functions of neural clusters exhibited self-similarity for
different cluster sizes, suggestive of criticality. Further
analysis inspired by Wilson’s momentum space approach
to renormalization [16] revealed that the joint distribution
of cluster activities flowed to a nontrivial, non-Gaussian
fixed point. The apparent scaling relations persisted for
only a decade or two (limited by the size of the experi-
mental system), and it was unclear whether they would
exist for larger systems. Nonetheless, the observations were
intriguing, and mechanisms responsible for them remain

unknown. Thus it is unclear which other systems may
exhibit them.
Observation and interpretation of signatures of criticality

in high-throughput biological experiments is a storied field
[17–22]. As a specific example, one commonly observed
signature is Zipf’s law, which describes a power-law
relation between the rank and the frequency of a system’s
states. It has been explained by the existence of stationary
latent (unobserved) fields (such as stimuli or internal states)
that couple neurons (spins) over long distances [23,24].
Similarly, here we show that the observations of Ref. [14],
including apparent scaling properties of the free energy, the
cluster covariance, the cluster autocorrelations, and the
flow of the cluster activity distribution to a non-Gaussian
fixed point, can be explained, within experimental error, by
a model of noninteracting neurons coupled to multiple
latent dynamical fields. This novel model is the first to
explain such a variety of spatiotemporal scaling phenomena
observed in large-scale biological data, and, to our knowl-
edge, is the first model to explore these phenomena using
multiple time-dependent latent fields. While developed for
the specific neural dataset, the model is much broader: it
predicts that similar spatiotemporal scaling relations
will emerge without fine-tuning in other multivariate data-
sets, biological and inanimate, with latent dynamical
variables.
Below we introduce the model, implement the coarse

graining of Ref. [14] on data generated from it, and
compare our findings with experimental results. We con-
clude by discussing which other experimental systems may
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exhibit similar apparent scaling relations under the RG
procedure.
Model.—To understand how scaling relations could arise

from coarse-graining data from large-scale systems, we
study a model of N binary neurons (spins) si ∈ f0; 1g,
i ∈ ½1; N�, where si ¼ 0 or 1 corresponds to a neuron being
silent or active. The neurons are conditionally independent
and coupled only by Nf fields hmðtÞ, m ∈ ½1; Nf� such that
the probability of a population being in a certain state fsig
is

PðfsigjfhmgÞ ¼
1

ZðfhmgÞ
e−Hðfsig;fhmgÞ; ð1Þ

where Z is the normalization and H is the “energy”:

H ¼ −η
�XN;Nf

i;m¼1

hmðtÞWimsi þ ϵsi

�
: ð2Þ

Here ε controls the mean firing rate, with ε < 0 biasing it
towards silence, η > 0 controls the variance of individual
neuron activity, and Wim are coupling constants linking
neurons to fields. The model includes two types of fields
(place and latent), explained below.
In the experiment analyzed in Ref. [14], a mouse ran on a

virtual track repeatedly, while neural activity in a popula-
tion of hippocampal neurons was recorded. A subset of
these neurons, called place cells, are activated when the
mouse is at certain points on the track. To capture this
structure, we define place fields distributed along a virtual
track of length X. We simulate 200 repetitions of a run
along a track of length X with an average forward speed v.
As in the experiments, at the end of each run, the mouse is
transported instantaneously to the beginning of the track.
Thus the mouse position is xðtÞ ¼ vðt mod TÞ, where
T ¼ X=v ¼ 1 is the time to run a track length. The place
fields hðplaceÞm ðxÞ are modeled as Gaussians with centers
μm ∼ unifð0; X� and standard deviations σm ∼ Γð4; X=40Þ
drawn from the Γ distribution with shape 4 and scale X=40.
Coupling between a spin and its place field WðplaceÞ

im is
nonzero with probability q, with its value drawn from the
standard Γ distribution, Γð1; 1Þ. We include place fields in
our model to match the observed data, but we reproduce the

apparent scaling results within error bars whether or not
place cells are modeled (see Discussion and Supplemental
Material [25]).
The second type of field is a latent field, which we

interpret as processes, such as head position or arousal
level, known to modulate neural activity, but not directly
controlled or measured by experiment [26]. We model each
latent field hðlatentÞm as an Ornstein-Uhlenbeck process with
zero mean, unit variance, and time constant τ. We model
couplings to the latent fields as

WðlatentÞ
im ¼ ϕ ×

�
∼N ð0; 1Þ if i couples to latent fields

0 otherwise:

ð3Þ

Here ∼N ð0; 1Þ denotes sampling from the standard normal
distribution and ϕ controls the strength of latent fields
relative to place fields. We present results with all latent
fields hðlatentÞm possessing the same time constant τ (see
Table I for parameters), so that temporal criticality cannot
be attributed to the diversity of timescales in the fields
driving neural activity.
While we explored many different parameter choices

(see Table S1 in Supplemental Material [25]), we present
results with N ¼ 1024 [14] and Nf ¼ 10. Consistent with
Ref. [14], we choose p ¼ 50% of neurons to be place cells,
each coupled to its own place field ðμm; σmÞ. Each latent
field is coupled to every neuron. Thus in our typical
simulations, about 512 neurons respond to place and
latent stimuli, and about 512 are exclusively latent-stimuli
neurons.
Software implementation of the model is available [27].
Results.—In the following, we simulate random neural

activity according to Eq. (1) and then replicate the real-
space and momentum-space coarse-graining schemes of
Ref. [14], while tracking the distributions of variables
within clusters as we iterate the coarse-graining algorithms.
Briefly, in each iteration of the real-space coarse-graining
scheme, pairs of highly correlated neurons are combined
into clusters. The cluster activity is the sum of the pair’s
activity. At each iteration step, the population size is
therefore halved. In the momentum-space coarse-graining
scheme, neural activity fluctuations are projected onto the

TABLE I. Simulation parameters for Figs. 1–3.

Parameter Description Value

ϕ Latent field multiplier ϕ ¼ 1.0
ϵ Bias toward silence ϵ ¼ −2.67
η Variance multiplier η ¼ 6.0
q Probability of coupling to latent field q ¼ 1.0
Nf Number of latent fields Nf ¼ 10
τ Latent field time constant τ ¼ 0.1
hðplaceÞm Presence or absence of place fields All cells couple to latent fields, half couple to place fields
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eigenvectors of the covariance matrix of the population
activity, selecting the K eigenvectors with the largest
eigenvalues, and then projected back to the original system
size N. All results of Ref. [14] can be quantitatively
reproduced by our model, and we include corresponding
experimental results in blue on each figure when appro-
priate. Several scaling exponents were not included or were
only reported for a single recording in Ref. [13], and
therefore we refer to Ref. [14].
1. Scaling of the activity variance.—Real-space coarse

graining of experimental data [14] reported that the
variance of the cluster variables scaled with cluster size
K as Kα, α ¼ 1.40� 0.06, in one experiment. In our
simulations, the coarse-grained activity variance scales as
Kα, α ¼ 1.36� 0.01, over more than two decades in K
[Fig. 1(a)], within error bars of the experimental value. This
indicates that the microscopic variables are not fully
independent (which would be α ¼ 1), nor are they fully
correlated (which would be α ¼ 2).
2. Scaling of the free energy.—The effective free energy

is related to the probability of silence in a cluster, and is
expected to scale as a power of cluster size Kβ̃ [14].
Specifically, we marginalize Eq. (1) over all fields,

PðfsigÞ ¼
Z

dfhmgPðfhmgÞPðfsigjfhmgÞ; ð4Þ

and compute lnPðfsi ¼ 0gÞ ¼ lnPðfsi ¼ 0gjfhmgÞþ
ln
P

fhmg PðfhmgÞ, where Pðfsi ¼ 0gÞ is the probability
that all neurons fsig are silent. This defines

FðfsigÞ ¼ − lnPðfsi ¼ 0gjfhmgÞ; ð5Þ

where FðfsigÞ is effective free energy. In Fig. 1(b), we
observe that the average free energy at each coarse-graining
step scales, with exponent β̃ ¼ 0.84� 0.01, within error
bars of experimental results, 0.88� 0.01 [14].

3. Scaling of the eigenvalue spectra.—We expect the
eigenvalues of the covariance matrix of microscopic
variables within each cluster to scale as a power law of
the scaled eigenvalue rank [14]. Thus there are two
scalings: the rank by the cluster size and the eigenvalue
by the scaled rank. Specifically, the Rth eigenvalue λR of a
cluster of size K was shown in Ref. [14] to follow

λR ∝
�
K
R

�
μ

: ð6Þ

In Fig. 1(c), we plot the average eigenvalue spectrum of the
covariance matrix for each coarse-grained variable for
cluster sizes K ¼ 16, 32, 64, 128, 256. We observe scaling
according to Eq. (6) for roughly 1.5 decades, with scaling
exponent μ ¼ −0.65� 0.01, within error bars of the
experimental value μ ¼ −0.71� 0.06.
4. Scaling of the correlation time.—Another signature of

critical systems is that the timescale of cluster autocorre-
lation τc is a power law of length scale (cluster size K) with
exponent z̃. In Fig. 2(a), we plot the average autocorrelation
function for K ¼ 4; 8;…; 256. In Fig. 2(b), we show the
same data as a function of rescaled time, τ=τc, where τc is
calculated by fitting the correlation function to the expo-
nential form. The collapse shown in Fig. 2(b) suggests that
Cðt=τcÞ is scale invariant. We then observe a power-law
relation between the time constant τc and the cluster size K
for roughly 1.5 decades in Fig. 2(c), with a scaling
exponent z̃ ¼ 0.27� 0.01. For the recording reported in
Ref. [14], the exponent was somewhat different,
z̃ ¼ 0.16� 0.02, but the value over three different record-
ings, z̃ ¼ 0.22� 0.08� 0.10 (mean, individual recording
rms errror, standard deviation across recordings) again
matches our result.
5. Flow to a non-Gaussian fixed point.—We replicated

the momentum space coarse-graining analysis of Ref. [14].
We first calculated the covariance matrix Γij of the neural

(a) (b) (c)

FIG. 1. (a) Activity variance of coarse-grained variables at each coarse-graining iteration, fit to ∝ Kα, α ¼ 1.37� 0.01. This is within
error of the experimental observation α ¼ 1.4� 0.06 [14], shown in blue. (b) Average free energy, Eq. (5), at each coarse-graining
iteration, fit to ∝ Kβ̃, β̃ ¼ 0.84� 0.01, again close to experimentally found β̃ ¼ 0.88� 0.01 [14]. (c) Eigenvalue spectrum of cluster
covariance for cluster sizes K ¼ 32, 64, 128 against the scaled rank, averaged over clusters. We observe scaling as in Eq. (6) for ∼1.5
decades with μ ¼ 0.65� 0.01, within error of the experimental μ ¼ 0.71� 0.06 [14]. For all panels, error bars are standard deviations
over randomly selected contiguous quarters of the simulation.
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activity fluctuations matrix Φit ¼ Sit − hSitit, where i
indexes neurons and t indexes time step. We then calculated
the eigenvalues and eigenvectors of Γij and constructed a
matrix S̃ij containing the eigenvectors in its columns,
ordered by the corresponding eigenvalues, from largest
to smallest. Summing over the first k modes, we calculated
the coarse-grained variable,

SðkÞit ¼ zi
XN;k

l;j0
S̃ij0ΦltS̃lj0 ; ð7Þ

where we set zi such that h½SðkÞit �2it ¼ 1 [14].

In Fig. 3, we follow the distribution of SðkÞit over coarse-
graining cutoffs k. As the coarse-grained variables are
linear combinations of the original variables, if correlations
between the original variables are weak, the distribution

will approach a Gaussian due to the central limit theorem.
However, close to criticality, the system may flow to a non-
Gaussian fixed point. We show the distributions of coarse-
grained variables SðkÞit for k ¼ N=16; N=32; N=64; N=128
modes retained, observing the flow to a non-Gaussian
limit as k decreases: the limit distribution retains a
sharp peak at 0 and a heavy positive tail, similar to
experiments [14].
Experimental agreement.—To investigate which param-

eter regimes give rise to scaling in our model, we vary the
parameters η, ϕ, and ϵ in Eq. (2), the latent field correlation
time τ, the number of latent fields Nf, and the probability
that a neuron couples to a latent field q. We vary them one
at a time, while keeping other parameters at values in
Table I. We also run simulations with only latent
fields hðlatentÞm , or with only place fields hðplaceÞm . We record
parameters whose simulations display eigenvalue spectra
collapse for at least 1.5 decades, as in Fig. 1(d), and
activity variance scaling for over two decades, as in
Fig. 1(a). Parameter regimes leading to apparent scaling
are summarized in Table S1, with detailed plots shown in
Supplemental Material [25]. We show scatter plots of pairs
of scaling exponents (if scaling is observed) in Fig. S8,
compared to the values from three different experiments as
reported in Ref. [14]. Our simulations show that a broad
range of parameters lead to scaling exponents in quanti-
tative agreement with experiments. Briefly, to achieve
nontrivial robust scaling, one crucially needs ≥ 5 strong
latent fields, as well as a strong bias toward silence.
Discussion.—When the number of activity variables is

large, working with their joint probability distributions is
hard, and one coarse grains to develop interpretable models
of the data. We have shown that, under two different coarse-
graining schemes, a model of population activity, in which
neurons (spins) are randomly coupled to a few slowly
varying latent stimuli or fields (certainly an amount
insufficient to overfit the data), replicates power-law scal-
ing relationships and the flow of activity distributions to a

FIG. 3. Distribution of coarse-grained variables for k ¼ N=16;
N=32; N=64; N=128 modes retained under momentum-space
coarse graining, with a Gaussian distribution (gray dashed line)
shown for comparison. Note that the momentum-space coarse-
grained variables may take negative values. The distribution of
coarse-grained variables approaches a non-Gaussian limit as k
decreases. Error bars are standard deviations over randomly
selected contiguous quarters of the simulation.

(a) (b) (c)

FIG. 2. (a) Average autocorrelation function for cluster sizes K ¼ 2; 4;…; 256 as a function of time. (b) Same data, but with time
rescaled by the appropriate τc for each cluster size. (c) Time constants τc extracted from each curve in (a) obey τc ∝ Kz̃, z̃ ¼ 0.27� 0.01,
for roughly one decade. Experimentally found z̃ is shown in blue [14]. Error bars are standard deviations over randomly selected
contiguous quarters of the simulation.
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non-Gaussian fixed point, reported in mouse hippocampus
experiments [13,14]. Other models, such as a randomly
connected rate network [28], or a spiking Brunel neural
network in the synchronous irregular regime [29], cannot
reproduce these results [14]. In the latter case, one can
approximate the network by a population of uncoupled
neurons driven by a single common time-varying input
[20], but we show that the emergence of scaling requires
multiple time-dependent latent processes, explaining why
previous models cannot reproduce these hippocampal data.
Our parameter sweeps show that emergence of scaling in

the model is robust to parameter changes. The existence of
scaling is most sensitive to nearly all cells having signifi-
cant latent field coupling, irrespective of whether they
additionally couple to place fields. This is especially clear
in Fig. S13, where only simulations with widespread latent
field coupling reproduce the autocorrelation time collapse
[25]. This allows us to make an interesting—and testable—
biological prediction that even place cells in hippocampus
must be driven not solely by the animal’s position. This is
consistent with the observations that place cells carry about
as much information about activity of other cells in the
population as they carry about the animal’s position [30].
Further, since it is difficult to reproduce temporal scaling
over many decades using latent fields with a single time
constant, but diversity of time constants makes it easier (see
Supplemental Material [25]), another testable prediction of
our analysis is that the latent fields are likely to have diverse
timescales.
More broadly, we have shown that the surprising spatio-

temporal scaling results of Ref. [14] can be explained by the
presence of multiple unknown, time-varying latent fields
(possibly with just a single time constant). To our knowl-
edge, this is the first model able to explain such observations,
though models of related spatiotemporal scaling phenomena
(e.g., neural avalanches) certainly exist [31]. The coarse-
graining approach we study here, and especially the
momentum-space analysis, has been shown effective in
distinguishing critical and noncritical models [32]. This
makes it even more surprising that the approximately
scale-free distributions necessarily emerge under renormal-
ization in our class of models, which do not require fine-
tuning, and that the scaling relations become more robust for
larger systems sizes for results with an order of magnitude
more neurons [25]). This raises questions whether and when
apparent scaling in multivariate biological systems can be
viewed as evidence of more traditional criticality, which
emerges through fine-tuning of internal interaction param-
eters. While here we have focused on neural data, our more
important result is the prediction that the apparent scaling
relations discussed in this Letter, whether they should be
viewed as signatures of criticality or not, will emerge from
any sparsely active multivariate system (whether biological,
inanimate, social, or human made) driven by several latent
dynamical processes.
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