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Abstract—Fabrication process variations can significantly in-
fluence the performance and yield of nano-scale electronic and
photonic circuits. Stochastic spectral methods have achieved great
success in quantifying the impact of process variations, but
they suffer from the curse of dimensionality. Recently, low-rank
tensor methods have been developed to mitigate this issue, but
two fundamental challenges remain open: how to automatically
determine the tensor rank and how to adaptively pick the
informative simulation samples. This paper proposes a novel
tensor regression method to address these two challenges. We
use a `q/`2 group-sparsity regularization to determine the tensor
rank. The resulting optimization problem can be efficiently solved
via an alternating minimization solver. We also propose a two-
stage adaptive sampling method to reduce the simulation cost.
Our method considers both exploration and exploitation via the
estimated Voronoi cell volume and nonlinearity measurement
respectively. The proposed model is verified with synthetic and
some realistic circuit benchmarks, on which our method can well
capture the uncertainty caused by 19 to 100 random variables
with only 100 to 600 simulation samples.

Index Terms—Tensor regression, high dimensionality, uncer-
tainty quantification, polynomial chaos, process variation, rank
determination, adaptive sampling.

I. INTRODUCTION

Fabrication process variations (e.g., surface roughness of

interconnects and photonic waveguide, and random doping

effects of transistors) have been a major concern in nano-scale

chip design. They can significantly influence chip performance

and decrease product yield [2]. Monte Carlo (MC) is one of the

most popular methods o quantify the chip performance under

uncertainty, but it requires a huge amount of computational

cost [3]. Instead, stochastic spectral methods based on gener-

alized polynomial chaos (gPC) [4] offer efficient solutions for

fast uncertainty quantification by approximating a real uncer-

tain circuit variable as a linear combination of some stochastic

basis functions [5–7]. These techniques have been increasingly

used in design automation [8–15]. The main challenge of

the stochastic spectral method is the curse of dimensional-

ity: the computational cost grows very fast as the number

of random parameters increases. In order to address this

fundamental challenge, many high-dimensional solvers have

been developed. The representative techniques include (but
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are not limited to) compressive sensing [16, 17], hyperbolic

regression [18], analysis of variance (ANOVA) [19, 20], model

order reduction [21], and hierarchical modeling [22, 23], and

tensor methods [23, 24].

The low-rank tensor approximation has shown promising

performance in solving high-dimensional uncertainty quan-

tification problems [24–29]. By low-rank tensor decomposi-

tion, one may reduce the number of unknown variables in

uncertainty quantification to a linear function of the parameter

dimensionality. However, there is a fundamental question:

how can we determine the tensor rank and the associated

model complexity? Because it is hard to exactly determine

a tensor rank a-priori [30], existing methods often use a

tensor rank pre-specified by the user or use a greedy method

to update the tensor rank until convergence [24, 31, 32].

These methods often offer inaccurate rank estimation and

are complicated in computation. Besides rank determination,

another important question is: how can we adaptively add

a few simulation samples to update the model with a low

computation budget? This is very important in electronic and

photonic design automation because obtaining each piece of

data sample requires time-consuming device-level or circuit-

level numerical simulations.

Paper contributions. We propose a novel tensor regres-

sion method for high-dimensional uncertainty quantification.

Tensor regression has been studied in machine learning and

image data analysis [33–35]. There are some existing works

of automatic rank determination [36–38] and adaptive sam-

pling [39, 40] for tensor decomposition and completion.

The Bayesian frameworks [41, 42] can enable and guide

the adaptive sampling procedure for tensor regression, but

limit the model in the meanwhile. Focusing on uncertainty

quantification, there are few works about tensor regression and

its automatic rank determination and adaptive sampling. The

main contributions of this paper include:

• We formulate high-dimensional uncertainty quantification

as a tensor regression problem. We further propose a

`q/`2 group-sparsity regularization method to determine

rank automatically. Based on variation equality, the tensor-

structured regression problem can be efficiently solved via

a block coordinate descent algorithm with an analytical

solution in each subproblem.

• We propose a two-stage adaptive sampling method to reduce

the simulation cost. This method balances the exploration

and exploitation via combining the estimation of Voronoi
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cell volumes and the nonlinearity of an output function.

• We verify the proposed uncertainty quantification model on

a 100-dim synthetic function, a 19-dim photonic band-pass

filter, and a 57-dim CMOS ring oscillator. Our model can

well capture the high-dimensional stochastic output with

only 100-600 samples.

Compared with our conference paper [1], this manuscript

presents the following additional results:

• The detailed implementations of the proposed method, in-

cluding both the compact tensor regression solver and the

adaptive sampling procedure (Section III and IV)

• The post-processing step of extracting statistical information

from the obtained tensor regression model (Section V).

• The enriched experiments (Section VI), including a demon-

strative synthetic example and detailed comparisons with

other methods.

II. NOTATION AND PRELIMINARIES

Throughout this paper, a scalar is represented by a lowercase

letter, e.g., x ∈ R; a vector or matrix is represented by a

boldface lowercase or capital letter respectively, e.g., x ∈ R
n

and X ∈ R
m×n. A tensor, which describes a multidimensional

data array, is represented by a bold calligraphic letter, e.g.,

X ∈ R
n1×n2···×nd . The (i1, i2, · · · , id)-th data element of

a tensor X is denoted as xi1i2···id . Obviously X reduces to

a matrix X when d = 2, and its data element is xi1i2 .

In this section, we will briefly introduce the background of

generalized polynomial chaos (gPC) and tensor computation.

A. Generalized Polynomial Chaos Expansion

Let ξ = [ξ1, . . . , ξd] ∈ R
d be a random vector describing

fabrication process variations with mutually independent com-

ponents. We aim to estimate the interested performance metric

y(ξ) (e.g., chip frequency or power) under such uncertainty.

We assume that y(ξ) has a finite variance under the process

variations. A truncated gPC expansion approximates y(ξ) as

the summation of a series of orthornormal basis functions [4]:

y(ξ) ≈ ŷ(ξ) =
∑

α∈Θ

cαΨα(ξ), (1)

where α ∈ N
d is an index vector in the index set Θ, cα is the

coefficient, and Ψα is a polynomial basis function of degree

|α| = α1 + α2 + · · · + αd. One of the most commonly used

index set is the total degree one, which selects multivariate

polynomials up to a total degree p, i.e.,

Θ = {α|αk ∈ N, 0 ≤
d
∑

k=1

αk ≤ p}, (2)

leading to a total of
(d+p)!
d!p! terms of expansion. Let φ

(k)
αk (ξk)

denote the order-αk univariate basis of the k-th random

parameter ξk, the multivariate basis is constructed via taking

the product of univariate orthornormal polynomial basis:

Ψα(ξ) =
d
∏

k=1

φ(k)
αk

(ξk). (3)

Therefore, given the joint probability density function ρ(ξ),
the multivariate basis satisfies the orthornormal condition:

〈Ψα(ξ),Ψβ(ξ)〉 =

∫

Rd

Ψα(ξ)Ψβ(ξ)ρ(ξ)dξ = δα,β. (4)

The detailed formulation and construction of univariate basis

functions can be found in [4, 43].

In order to estimate the unknown coefficients cα’s, several

popular methods can be used, including intrusive (i.e., non-

sampling) methods (e.g., stochastic Galerkin [44] and stochas-

tic testing [6]) and non-intrusive (i.e., sampling) methods

(e.g., stochastic collocation based on pseudo-projection or

regression [45]). It is well known that gPC expansion suffers

the curse of dimensionality. The computational cost grows

exponentially as the dimension of ξ increases.

B. Tensor and Tensor Decomposition

Given two tensors X and Y ∈ R
n1×n2···×nd , their inner

product is defined as:

〈X ,Y〉 :=
∑

i1···id

xi1···idyi1···id . (5)

A tensor X can be unfolded into a matrix along

the k-th mode/dimension, denoted as Unfoldk(X ) :=
X(k) ∈ R

nk×n1···nk−1nk+1···nd . Conversely, folding the k-

mode matrization back to the original tensor is denoted as

Foldk(X(k)) := X .

Given a d-dim tensor, it can be factorized as a sum-

mation some rank-1 vectors, which is called CANDE-

COMP/PARAFAC (CP) decomposition [46]:

X =
R
∑

r=1

a(1)r ◦ a
(2)
r · · · ◦ a

(d)
r = [[A(1),A(2), . . . ,A(d)]], (6)

where ◦ denotes the outer product. The last term is the Krusal

form, where factor matrix A(k) =
[

a
(k)
1 , . . . ,a

(k)
R

]

∈ R
nk×R

includes all vectors associated with the k-th dimension. The

smallest number of R that ensures the above equality is called

a CP rank. The k-th mode unfolding matrix X(k) can be

written with CP factors as

X(k) =A(k)A(\k)T with

A(\k) =A(d) � · · · �A(k−1) �A(k+1) · · · �A(1),
(7)

where � denotes the Khatri-Rao product, which performs

column-wise Kronecker products [46]. More details of tensor

operations can be found in [46].

III. PROPOSED TENSOR REGRESSION METHOD

A. Low-Rank Tensor Regression Formulation

To approximate y(ξ) as a tensor regression model, we

choose a full tensor-product index set for the gPC expansion:

Θ = {α = [α1, α2, · · · , αd] | 0 ≤ αk ≤ p, ∀k ∈ [1, d]} . (8)

This specifies a gPC expansion with (p+ 1)d basis functions.

Let ik = αk+1, then we can define two d-dimensional tensors

X and B(ξ) with their (i1, i2, · · · id)-th elements as

xi1i2···id = cα and bi1i2···id(ξ) = Ψα(ξ). (9)
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where Φ = [Φ1, · · · ,ΦN ]
T
∈ R

N×R(p+1) with rows

ΦT
n = vec

(

Bn
(k)U

(\k)
)T

for any n ∈ [1, N ], Λ̃ =

diag( 1
η1
, . . . , 1

ηR
) ⊗I ∈ R

R(p+1)×R(p+1), and y ∈ R
N is

a collection of output simulation samples. Here ⊗ denotes

a Kronecker product, U(\k) is a series of Khatri-Rao

product defined as Eq. (7), and Bn
(k) is the k-th mode

matrization of the tensor Bn = B(ξn). For simplicity, we

leave the derivation of Eq. (21) to Appendix B.

• η-subproblem: Suppose that {U(k)}dk=1 are fixed, the

formulation of the η-subproblem is shown in (19). Ac-

cording to lemma 1, we update η as

ηr = (vr)
2−q‖v‖q−1

q + ε, (22)

where ε > 0 is a small scalar to avoid numerical

issues. Suppose that the tensor rank is reduced in the

optimization, i.e., u
(k)
r = 0, ∀k ∈ [1, d], then we can see

that ηr will become zero without ε.

E. Discussions

We would like to highlight a few key points in practical

implementations.

• The solution depends on the initialization process. In the first

iteration of updating the k-th factor matrices, we suggest the

following initialization

Φ = [Φ1,Φ2, . . .ΦN ]
T

with

Φn = vec(On,k)
T , ∀n ∈ [1, N ],

On,k =
[

φ(k)(ξnk ), . . . ,φ
(k)(ξnk )

]

∈ R
(p+1)×R,

(23)

where ξnk is the k-th variable of sample ξn, φ(k)(ξnk ) ∈
R

p+1 collects all univariate basis functions of ξnk up to

degree p, and On,k stores R copies of φ(k)(ξnk ). Besides,

in the first iteration without adaptive sampling, we set η

as an all-ones vector multiplied by a scalar factor since

we do not have a good initial guess for {U(k)}dk=1. The

value of the scalar factor does not influence a lot once it

makes Eq. (21) numerically stable. In an adaptive sampling

setting (see Section IV), we need to solve (20) after adding

new samples. In this case, we use a warm-up initialization

by setting the initial guess of {U(k)}dk=1 as the solution

obtained based on the last-round sampling, and therefore

can initialize η via Eq. (22).

• The regularization parameter λ is highly related to the force

of rank shrinkage. To adaptively balance the empirical loss

and the rank shrinkage term, we suggest an iterative update

of the parameter

λ = λ0 max(η), (24)

where λ0 is chosen via cross validation.

• We stop the block coordinate descent solver for prob-

lem (20) when the update of factor matrices {U(k)}dk=1

is below a predefined threshold, or the algorithm reaches

a predefined maximal number of iterations.

The overall algorithm, including an adaptive sampling

which will be introduced in Section IV, is summarized in

Alg. 1. After solving the factor matrices {U(k)}dk=1, i.e. the

Algorithm 1: Overall Adaptive Tensor Regression

Input: Initial sample pairs {ξn, y(ξn)}
N
n=1, unitary

polynomial order p, initial tensor rank R
Output: Constructed surrogate model [Eq. (25)]

while Adaptive sampling does not stop do
Construct the basis tensor B(ξ)
if No additional samples then

Initialize with Eq. (23)

else

Initialize {U(k)}dk=1 with the last solution

while Tensor regression does not stop do

for k = 1, 2, . . . , d do

update U(k) via Eq. (21)

Update η via Eq. (22)

Update regularization parameter λ via Eq. (24)

Shrink the tensor rank to R̂ if possible

Select new sample pairs based on Alg. 2

coefficient tensor X , the surrogate on a sample ξ can be

efficiently calculated as

ŷ(ξ) = 〈X ,B(ξ)〉 =
R
∑

r=1

d
∏

k=1

[

φ(k)(ξk)
]T

u(k)
r . (25)

In this work, tensor X is approximated by a low-rank CP

decomposition. It is also possible to use other kinds of tensor

decompositions. In those cases, although the tensor ranks are

defined in different ways, the idea of enforcing group-sparsity

over tensor factors still works. It is also worth noting that (20)

can be seen as a generalization of weighted group lasso. To

further exploit the sparsity structure of the gPC coefficients,

many variants can be developed from the statistic regression

perspective, including the sparse group lasso, tensor-structured

Elastic-Net regression, and so forth [48].

IV. ADAPTIVE SAMPLING APPROACH

Another fundamental question in uncertainty quantification

is how to select the parameter samples ξ for simulation. We

aim to reduce the simulation cost by selecting only a few

informative samples for the detailed device- or circuit-level

simulations.

Given a set of initial samples Θ, we design a two-stage

method to balance the exploration and exploitation in our

active sampling process. In the first stage, we estimate the

volume of some Voronoi cells via a Monte Carlo method to

measure the sampling density in each region. In the second

stage, we roughly measure the nonlinearity of y(ξ) at some

candidate samples via a Taylor expansion. We choose new

samples that are located in a low-density region and make y(ξ)
highly nonlinear. In our implementation, the initial samples

Θ = {ξn, y(ξn)}
N
n=1 are generated by the Latin Hypercube

(LH) sampling method [49]. Specifically, we first generate

some standard LH samples {ζLHn }
N
n=1 in a hyper cube [0, 1]

d
,

then we transform them to the practical parameter space Ω via

the inverse transforms of the cumulative distribution function.
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Fig. 2. An example of Voronoi diagram on [0, 1]2. Each LH sample is a
Voronoi cell center. The lower right cell should be selected in the first-stage
since it has the largest estimated area (volume).

Generally, the initial sample size of Θ depends on the number

of unknowns in the model. Since problem (20) is regularized

and solved via an alternating solver, given a limited simulation

budget, we set the initial size N to be smaller than the number

of unknowns in our examples.

A. Exploration: Volume Estimation of Voronoi Cells

Firstly, we employ an exploration step via a space-filling

sequential design. Given the existing sample set Θ, the sample

density in Ω can be estimated via a Voronoi diagram [50].

Specifically, each sample ξn corresponds to a Voronoi cell

Cn ∈ Ω that contains all the samples that lie closely to ξn than

other samples in Ω. The Voronoi diagram is a complete set of

cells that tesselate the whole sampling space. The volume of

a cell reflects its sample density: a larger volume means that

the cell region is less sampled.

Here we provide a formal description of the Voronoi cell.

Given two distinct samples ξi, ξj ∈ Ω, there always exist a

half-plane hp(ξi, ξj) that contains all samples that are at least

as close to ξi as to ξj

hp(ξi, ξj) = {ξ ∈ R
d| ‖ξ − ξi‖ ≤ ‖ξ − ξj‖}. (26)

The Voronoi cell Ci is defined as the space that lie in the

intersection of all half-plane hp(ξi, ξj), ∀ξj ∈ Ω \ ξi:

Ci =
⋂

ξj∈Ω\ξi

hp(ξi, ξj). (27)

It is intractable to construct a precise Voronoi diagram and

calculate the volume exactly in a high-dimensional space.

Fortunately, we do not need to construct the exact Voronoi

diagram. Instead, we only need to estimate the volume in order

to measure the sample density in that cell. This can be done

via a Monte Carlo method.

Observation 1. In order to detect the least-density region in

Ω, we can either estimate the density of Ω directly or estimate

the density of hyper-cube [0, 1]
d

and then transform it to Ω.

In the Monte-Carlo-based density estimation, it is fairer to

choose the latter one.

Example. One simple example is given in Appendix C.

Based on the above observation, we estimate the volume of

Voronoi cell in the hyper cube. Let the existing LH samples

{ζLHn }
N
n=1 be the cell centers {Cn}

N
n=1. We first randomly

generate M Monte Carlo samples {ψm}
M
m=1 ∈ [0, 1]

d
. For

each random sample, we calculate its Euclidean distance

towards the cell centers and assign it to the closest one.

Then the volume of the cell vol(Cn) is estimated by counting

the number of assigned random samples. The cell with the

largest estimated volume is least-sampled. The MC samples

assigned to this cell are denoted as set Γ. A simple example

that illustrates the first-round search is shown in Fig. 2. After

transforming all Monte Carlo samples in set Γ back to the

actual parameter space Ω via the inverse transform sampling

method, we obtain a set of candidates for the next-stage

selection, denoted as set ΓΩ.

The accuracy of volume estimation depends on the number

of random samples. Clearly, more Monte Carlo samples can

estimate the volume more accurately, but they also induce

more computational burden. As suggested by [51], to achieve

a good estimation accuracy, we use M Monte Carlo samples

with M = 100N .

B. Exploitation: Nonlinearity Measurement

In the second stage, we aim to do an exploitation search

based on the obtained candidate sample set ΓΩ. Based on the

assumption that the region with a more nonlinear response is

harder to capture, we choose the criterion in the second stage

as the nonlinearity measure of the target function. We know

that the first-order Taylor expansion of a function becomes

more inaccurate if that function is more nonlinear. Therefore,

given a sample ξ, we measure the non-linearity of y(ξ) via the

difference of y(ξ) and its first-order Taylor expansion around

the closest Voronoi cell center a ∈ Ω [52]. We do not know

exactly the expression of y(ξ), but we have already built a

surrogate model ŷ(ξ) based on previous simulation samples.

Therefore, the nonlinearity of y(ξ) can be roughly estimate as

γ(ξ) = |ŷ(ξ)− ŷ(a)−∇ŷ(a)T (ξ − a)|. (28)

Notice that the nonlinear measure does not imply the accuracy

of the surrogate model since we do not use the simulation

value here. In the second stage, we will choose the sample ξ?

that has the largest γ(ξ) from the candidate set of ΓΩ:

ξ? = argmax
ξ∈ΓΩ

(γ (ξ)) . (29)

To summarize, we select the most nonlinear sample from

the least-sampled cell space, which is a good trade-off be-

tween exploration and exploitation. Based on the above, we

summarize the adaptive sampling procedure in Alg. 2.

C. Discussion

The proposed adaptive sampling method can be easily

extended to a batch version by searching for the top-K least-

sampled regions in the first stage. We can stop sampling

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2021 at 06:46:45 UTC from IEEE Xplore.  Restrictions apply. 



2156-3950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCPMT.2021.3093432, IEEE

Transactions on Components, Packaging and Manufacturing Technology

6

Algorithm 2: Adaptive sampling procedure

Input: Initial samples pairs Θ = {ξn, y(ξn)}
N
n=1

Output: Sample pairs Θ? with the additional sample

Uniformly generate M = 100N Monte Carlo samples

{ψm}
M
m=1 ∈ [0, 1]

d

for m = 1, 2, . . . ,M do
Find the closest cell Cn center to ψm

vol(Cn)← vol(Cn) + 1

Find the cell with the biggest estimated volume vol
and the sample set Γ assigned to this cell

ΓΩ ← Inverse transform sampling(Γ)
Calculate the nonlinearity measure γ(ΓΩ) via Eq. (28)

Select ξ? according to Eq. (29)

Θ? ← Θ
⋃

{ξ?, y(ξ?)}

when we exceed a sampling budget or when the constructed

surrogate model achieves the desired accuracy.

The sampling criteria do not rely on the structure of the

targeted surrogate model. Therefore, the proposed sampling

method is very flexible and generic. The proposed method is

very suitable for constructing a high-dimensional polynomial

model due to two reasons. Firstly, the number of samples

required in estimating the Voronoi cell does not rely on

the parameter dimensionality but on the number of existing

samples. Secondly, the derivative and the nonlinearity of the

surrogate model are easy to compute.

Some variants of the proposed sampling methods may

be further developed. For instance, we may define a score

function as the combination of the estimated volume and the

nonlinearity measure, and then calculate the score for each

Monte Carlo sample and select the best one. In the batch

version, we may also select several top nonlinear samples from

the same Voronoi cell.

V. STATISTICAL INFORMATION EXTRACTION

Based on the obtained tensor regression model ŷ(ξ) =
∑

α∈Θ

cαΨα(ξ) = 〈X ,B(ξ)〉, we can easily extract important

statistical information such as moments and Sobol’ indices.

• Moment information. The mean µ of the constructed ŷ(·)
is the coefficient of the zero-order basis Ψ0(ξ):

µ = c0 = x11···1 =
R
∑

r=1

u(1)
r (1)u(2)

r (1) · · ·u(d)
r (1). (30)

x11···1 is the (1, 1, · · · , 1)-th element of tensor X , and

u
(k)
r (1) denotes the first element of vector u

(k)
r The variance

of y(ξ) can be estimated as:

σ2 =
∑

α∈Θ,α 6=0

cα = 〈X ,X〉 − x2
11···1

=
R
∑

r1=1

R
∑

r2=1

d
∏

k=1

u(k)
r1

T
u(k)
r2
− µ2.

(31)

• Sobol’ indices. Based on the obtained model, we can also

extract the Sobol’ indices [53, 54] for global sensitivity

analysis. The main sensitivity index Sj measures the contri-

bution by random parameter ξj along to the variance y(ξ):

Sj =
Var [E [y(ξ)|ξj ]]

σ2
(32)

where E [y(ξ)|ξj ] denotes the conditional expectation of

y(ξ) over all random variables except ξj . The variance of

this conditional expectation can be estimated as

Var [E [y(ξ)|ξj ]] =

p+1
∑

ij=2

x2
1···ij1···1

=

p+1
∑

ij=2





R
∑

r=1

u(j)
r (ij)

∏

k 6=j

u(k)
r (1)





2

.

(33)

The total sensitivity index Tj measures the contribution to

the variance of y(ξ) by variable ξj and its interactions with

all other variables:

Tj = 1−
Var
[

E

[

y(ξ)|ξ\j

]]

σ2
.

(34)

Here ξ\j includes all elements of ξ except ξj . The involved

variance of a conditional expectation is estimated as

Var
[

E

[

y(ξ)|ξ\j

]]

=
∑

(i1,i2,···id), ij=1

x2
i1···id

− x2
11···1

=
R
∑

r1=1

R
∑

r2=1

u(j)
r1

(1)u(j)
r2

(1)
∏

k 6=j

u(k)
r1

T
u(k)
r2
− µ2.

(35)

Similarly, we can also express any higher-order index rep-

resenting the effect from the interaction between a set of

variables with an analytical form.

VI. NUMERICAL RESULTS

In this section, we will verify the proposed tensor-regression

uncertainty quantification method in one synthetic function

and two photonic/ electronic IC benchmarks.

A. Baseline Methods for Comparison

We compare our proposed method with the following ap-

proaches.

• Tensor regression with adaptive sampling based on space

exploration only introduced in Section IV-A (denoted as

Space).

• Tensor regression with adaptive sampling based on ex-

ploiting nonlinearity only introduced in model with only

Section IV-B (denoted as Nonlinear).

• Tensor regression model with random sampling (denoted

as Rand). In each iteration of adding samples, new

samples are simply randomly selected.

• Fixed-rank tensor regression (denoted as Fixed rank).

This method uses a tensor ridge regularization in the

regression objective function [35]:

min
{U(k)}d

k=1

f(X ) =h(X ) + λ
d
∑

k=1

‖U(k)‖2F. (36)
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Fig. 3. Results of approximating the synthetic function. (a) Testing error on 105 MC samples. (b) The estimated rank. (c) Probability density functions of
the function value.
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Fig. 4. Sensitivity analysis of the synthetic function in (38). The proposed
method fits the results from Monte Carlo [53] with 107 simulations very well.

TABLE I
MODEL COMPARISONS ON THE SYNTHETIC FUNCTION

Sample # Variable # Mean Std Testing

Monte Carlo 105 N/A -162.95 4.80 N/A
Sparse gPC 380 5151 -163.04 2.27 2.3%
Fixed rank 380 15x100 -163.24 5.02 1.01%

Proposed 380 3x100* -162.93 4.86 0.37%

* In the alternating solver, there are 100 subproblems with 3 unknown
variables in each one (the rank has been shrunk).

The standard ridge regression does not induce a sparse

structure. We will keep the tensor rank fixed in solving

Eq. (36).

• Sparse gPC expansion with a total degree truncation [55]

(denoted as Sparse gPC). With the truncation scheme in

Eq. (2), we compute the gPC coefficients by solving the

following problem:

min
ĉ

1

2

∑

n=1

(

yn −
∑

α∈Θ

ĉαΨα(ξn)

)2

+ λ‖ĉ‖1. (37)

B. Synthetic Function (100-dim)

We first consider the following high-dimensional analytical

function [56]:

y(ξ) = 3−
5

d

d
∑

k=1

kξk +
1

d

d
∑

k=1

kξ3k + ξ1ξ
2
2 + ξ2ξ4

− ξ3ξ5 + ξ51 + ξ50ξ
2
54 + ln (

1

3d

d
∑

k=1

k(ξ2k + ξ4k)) (38)

where dimension d = 100, ξ20 ∼ U([1, 3]), and ξk ∼
U([1, 2]), k 6= 20. We aim to approximate f(ξ) by a tensor-

regression gPC model and perform sensitivity analysis.

Assume that we use 2nd-order univariate basis functions

for each random variable, then we will need 3100 multi-

variate basis functions in total. To approximate the coefficient

tensor, we initialize it with a rank-5 CP decomposition and use

q = 0.5 in regularization. We initialize the training with 200

Latin-Hypercube samples and adaptively select 9 batches of

additional samples, with each batch having 20 new samples.

We test the accuracy of different models on additional 105

samples. Fig. 3 (a) shows the relative `2 testing errors (i.e.,
‖y(ξ)−ŷ(ξ)‖2

‖y(ξ)‖2
) of different methods. The testing errors may not

monotonically decrease since more samples can not strictly

guarantee the convergence of the surrogate model. However,

see from the figure, we can generally conclude that more

training samples lead to a better model approximation and the

proposed sampling method outperforms the others. Fig. 3 (b)

shows the estimated tensor rank as the number of training

samples increases. The proposed method shrinks the tensor

rank differently from other methods while achieving the best

performance. It shows that a correct determination of the

tensor rank helps the function approximation. Fig. 3 (c) plots

the predicted probability density function of our obtained

model which is estimated via a kernel density estimator. It

matches the Monte Carlo simulation result of the original

function very well.

We compare the complexity and accuracy of different

methods in Table I. We treat the result from 105 Monte

Carlo simulations as the ground truth. For the other models,

the mean and standard deviation are both extracted from the

polynomial coefficients. Given the same amount of (limited)
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Fig. 5. Schematic of a band-pass filter with 9 micro-ring resonators.

TABLE II
MODEL COMPARISONS ON THE PHOTONIC BAND-PASS FILTER

Sample # Variable # Mean Std Error

Monte Carlo 105 N/A 21.6511 0.0988 N/A
Sparse gPC 100 210 21.6537 0.0735 0.39%
Fixed rank 100 12x19 21.6677 0.1906 0.52%
Proposed 100 3x19 21.6567 0.0955 0.16%

training samples, the proposed method achieves the highest

approximation accuracy.

Now we perform sensitivity analysis to identify the random

variables that are most influential to the output. Fig. 4 plots the

main and total sensitivity metrics from the proposed method

and a Monte Carlo estimation [53] with 107 simulations. With

much fewer function evaluations, our proposed method can

precisely identify the indices of some most dominant random

variables that contribute to the output variance.

C. Photonic Band-pass Filter (19-dim)

Now we consider the photonic band-pass filter in Fig. 5.

This photonic IC has 9 micro-ring resonators, and it was orig-

inally designed to have a 3-dB bandwidth of 20 GHz, a 400-

GHz free spectral range, and a 1.55-nm operation wavelength.

A total of 19 independent Gaussian random parameters are

used to describe the variations of the effective phase index

(nneff) of each ring, as well as the gap (g) between adjacent

rings and between the first/last ring and the bus waveguides.

We aim to approximate the 3-dB bandwidth f3dB at the DROP

port as a tensor-regression gPC model.

We use 2nd order univariate polynomial basis functions for

each random parameter and have 319 multivariate basis func-

tions in total in the tensor regression gPC model. We initialize

the gPC coefficients as a rank-4 CP tensor decomposition and

set q = 0.5 in our regularization. We initialize the training with

60 Latin-Hypercube samples and adaptively select 9 batches of

additional samples, with each batch have 10 new samples. We

test the obtained model with additional 105 samples. Fig. 6 (a)

shows the relative `2 testing errors. The proposed method

outperforms the others in the first few adaptive sampling

rounds. All the models perform similarly when the ranks are

all shrunk to 1. Fig. 6 (b) shows the estimated tensor rank

as the number of training samples increases. The tensor ranks

TABLE III
MODEL COMPARISONS ON THE CMOS RING OSCILLATOR

Sample # Variable # Mean Std Error

Monte Carlo 3× 104 N/A 12.7920 0.3829 N/A
Sparse gPC 600 1711 12.7931 0.3777 0.11%
Fixed rank 600 12x57 12.7929 0.3822 0.10%
Proposed 600 6x57 12.7918 0.3830 0.04%

are shrunk gradually in all cases, but our proposed method

finds the best rank with minimal samples. Fig. 6 (c) plots the

predicted probability density function of our obtained result.

Since the benchmark has a relatively small standard deviation,

the limited approximation error is revealed as the discrepancy

around the peak.

In order to see the influence of the tensor rank initialization,

we do the one-shot approximation with different initial tensor

ranks R and different regularization parameters λ as illustrated

in Fig. 7. For a specific benchmark, the best-estimated tensor

rank highly depends on the number of training samples.

Given the limited number of simulation samples, the rank-1

initialization works the best in this example. It coincides with

the results shown in Fig. 6, where the predicted rank is 1.

We also compare the complexity and accuracy of all methods

in Table II. The proposed method achieves the best accuracy

with limited simulation samples.

D. CMOS Ring Oscillator (57-dim)

We continue to consider the 7-stage CMOS ring oscillator

in Fig. 8. This circuit has 57 random variation parameters,

including Gaussian parameters describing the temperature,

variations of threshold voltages and gate-oxide thickness, and

uniform-distribution parameters describing the effective gate

length/width. We aim to approximate the oscillator frequency

with tensor-regression gPC under the process variations.

We use 2nd-order univariate basis functions for each random

parameter, leading to 357 multivariate basis functions in total.

We initialize the gPC coefficients as a rank-4 tensor and set

q = 0.5 in the regularization term. We initialize the training

with 500 Latin-Hypercube samples and adaptively select 300

additional samples in total by 6 batches. We test the obtained

model with 3× 104 additional samples. Fig. 10 (a) shows the

relative `2 testing errors of all methods. The proposed method

outperforms other methods significantly when the number of

samples is small. Fig. 10 (b) shows that the estimated tensor

rank reduces to 2 in all methods. Fig. 10 (c) plots the predicted

probability density function of the obtained tensor regression

model, which is indistinguishable from the result of Monte

Carlo simulations.

We do the one-shot approximation with different initial

tensor ranks R and different regularization parameters λ as

illustrated in Fig. 9. Conforming with the results shown in

Fig. 10, a rank-2 model is more suitable in this example. We

compare the proposed method with the fixed rank model and

the 2nd-order sparse gPC in Table III, where the proposed

compact tensor model is shown to have the best approximation

accuracy.
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Fig. 6. Result of the photonic filter. (a) Testing error on 105 MC samples. (b) The estimated rank. (c) Probability density functions of the 3-dB bandwidth
f3dB at the DROP port.
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Fig. 8. Schematic of a CMOS ring oscillator.

VII. CONCLUSION

This paper has proposed a tensor regression framework for

quantifying the impact of high-dimensional process variations.

By low-rank tensor representation, this formulation can re-
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Fig. 9. One-shot approximations for the CMOS ring oscillator with 150
training samples under different ranks and λ. In this example, the rank-2
model works the best in most cases.

duce the number of unknown variables from an exponential

function of parameter dimensionality to only a linear one.

Therefore it works well with a limited simulation budget. We

have addressed two fundamental challenges: automatic tensor

rank determination and adaptive sampling. The tensor rank

is estimated via a `q/`2-norm regularization. The simulation

samples are chosen based on a two-stage adaptive sampling

method, which utilizes the Voronoi cell volume estimation and

the nonlinearity measure of the quantity of interest. Our model

has been verified by both synthetic and realistic examples with

19 to 100 random parameters. The numerical experiments have

shown that our method can well capture the high-dimensional

stochastic performance with much fewer simulation data.

APPENDIX A

PROOF OF LEMMA 1

We consider two cases α ∈ (0, 2) [47] and α = 2 [35].

When α ∈ (0, 2), κ(η) := 1
2

∑p
r=1

y2
r

ηr
+ 1

2‖η‖β is a con-

tinuously differentiable function for any ηi ∈ (0,∞). When
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Fig. 10. Results of the CMOS ring oscillator. (a) Testing error on 3 × 104 MC samples. (b) The estimated rank. (c) Probability density functions of the
oscillator frequency.

yr 6= 0, lim
ηr→∞

κ(η) = ∞ and lim
ηr→0

κ(η) = ∞. Therefore,

the infimum of κ(η) exists and it is attained. According to

the first-order optimality and enforcing the derivative w.r.t.

ηr (ηr > 0) to be zero, we can obtain

ηr = |yr|
2−α
‖η‖α−1

α
2−α

. (39)

With yr = ‖η‖
1−α
2−α
α

2−α
ηr

1
2−α , we have ‖η‖ α

2−α
=

‖η‖
1−α
2−α
α

2−α
(
∑p

r=1 ηr
α

2−α )
1
α = ‖y‖α, therefore we obtain the

optimal solution ηr = |yr|
2−α
‖y‖α−1

α in Lemma 1. If yr = 0,

the solution to minη≥0 κ(η) is ηr = 0, which is also consistent

with Lemma 1.

When α = 2, ‖η‖1 is non-differentiable. Given a scalar yr,

we have yr = yr
2

2ηr
+ 1

2ηr only when ηr = yr (we let yr
2

2ηr
= 0

when yr = ηr = 0). Similarly, given a vector y ∈ R
p, we

have ‖y‖1 = 1
2

∑p
r=1

yr
2

ηr
+ 1

2‖η‖1 only when η = |y|, which

is also consistent with Lemma 1.

APPENDIX B

DETAILED DERIVATION OF EQ. (21)

Let Λ = diag( 1
η1
, . . . , 1

ηR
) and ∗ denote a Hadamard

product, we can rewrite the objective function of an U(k)-

subproblem as

fk(U
(k))

=
1

2

N
∑

n=1

[

yn − 〈U
(k)U(\k)T ,Bn

(k)〉
]2

+
λ

2

R
∑

r=1

‖u
(k)
r ‖22
ηr

=
1

2

N
∑

n=1

[

yn − Tr

(

U(k)
(

B̃n
(k)

)T
)]2

+
λ

2
Tr(U(k)ΛU(k)T )

with B̃n
(k) = Bn

(k)U
(\k). When the dimension d is large, it is

intractable to store and compute Bn
(k) ∈ R

(p+1)×(p+1)(d−1)

or

U(\k) ∈ R
(p+1)(d−1)×R. Fortunately, based on the property of

Khatri-Rao product, we can compute B̃n
(k) as

B̃n
(k) = Bn

(k)U
(\k)

= φ(k)(ξnk )[φ
(d)(ξnd )

TU(d) ∗ · · ·φ(k+1)(ξnk+1)
TU(k+1)∗

φ(k−1)(ξnk−1)
TU(k−1) ∗ · · ·φ(1)(ξn1 )

TU(1)].

Enforcing the following 1st-order optimality condition

∂fk(U
(k))

∂U(k)
=

−
1

2

N
∑

n=1

[

yn − Tr(U(k)(B̃n
(k))

T
)
]

B̃n
(k) + λU(k)Λ = 0,

we can obtain the analytical solution in Eq. (21).

APPENDIX C

AN EXAMPLE TO SHOW OBSERVATION 1

Suppose we already have two samples [0.2, 0.6], and we

consider a candidate sample 0.4 in the interval [0, 1] equipped

with a uniform distribution. Then, based on Box–Muller

transform, their corresponding Gaussian-distributed samples

are [−0.8416, 0.2533] and −0.2533, respectively. It is easy

to know that the PDF value of sample 0.2533 is larger

than sample −0.8416 in a standard Gaussian distribution.

Apparently, the candidate sample is equally close to the two

examples in a uniform-sampled space, but it is closer to the

one with a higher probability density in the Gaussian-sampled

space.
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