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Rigidity transitions in simple models of confluent cells have been a powerful organizing principle in
understanding the dynamics and mechanics of dense biological tissue. In this work we explore the interplay
between geometry and rigidity in two-dimensional vertex models confined to the surface of a sphere. By
considering shapes of cells defined by perimeters whose magnitude depends on geodesic distances and
areas determined by spherical polygons, the critical shape index in such models is affected by the size
of the cell relative to the radius of the sphere on which it is embedded. This implies that cells can col-
lectively rigidify by growing the size of the sphere, i.e., by tuning the curvature of their domain. Finite-

temperature studies indicate that cell motility is affected well away from the zero-temperature transition

point.
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I. INTRODUCTION

Recent years have seen a growing interest in the way that
mechanical interactions between cells play a fundamental role
in structural and dynamical processes in biology [1,2]. This
connection has been particularly apparent in the context of
morphogenesis, where natural connections between mechan-
ical stresses, cellular divisions, and the buckling and bending
of epithelial sheets can be seen [2—7]. Simple coarse-grained
models, ranging from lattice-based models to soft spheres to
deformable polygons to phase field models [8—11], have been
been useful in organizing these connections into predictive
frameworks.

Here we focus on vertex models, which represent confluent
monolayers as polygonal or polyhedral tilings of space; each
geometrical unit corresponds to a coarse-grained cell [12] and
the degrees of freedom are the vertices of the geometrical
units. Vertex models attempt to explicitly represent mechani-
cal interactions between neighboring cells by force laws that
depend on the local geometry of the system, and they have
been used to model biophysical processes covering not only
morphogenesis but also wound healing and tumor metastasis
[13-20].

Such models have received attention not only for their
appealing geometrical coarse-graining of clearly complex
biological systems but also for the unusual properties such
models can support. For instance, two-dimensional vertex
models have unusual zero-temperature rigidity transitions
[21-24] with accompanying exotic mechanical states [25,26],
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their glassy dynamics at finite temperature can be deeply
anomalous [27], and they can support unusual interfaces
between coexisting populations of cells [28]. Although sys-
tematically mapping from confluent cellular systems to these
geometrical models is challenging, the models’ unusual me-
chanical and dynamical properties suggest ways in which
cells could exploit simple physical mechanisms to achieve
unusual configurations or motions that may be useful for
development.

While experiments on flat cellular monolayers are quite
common, epithelial proliferation often takes place in domains
where the curvature of the layer is both present and may
be strongly varying (as in the ellipsoidal shapes of devel-
oping embryonic systems or in the regions of both positive
and negative curvature in branching morphogenesis). While
gradients in curvature surely play an important role, we
begin in this work by studying vertex models in domains
of constant positive curvature. We are particularly interested
in the interplay between the curvature of the cellular mono-
layer and the mechanical or dynamical state of the system.
We will see that the curvature of the domain has natural
consequences for the zero-temperature rigidity transition in
such models and that the finite-temperature “glassy” behavior
of cells an be strongly affected by this underlying 7 =0
transition.

There are many natural extensions of the vertex model
that could be considered in moving from flat space to a
three-dimensional (3D) embedding [3,29-32]. For simplicity
we consider the so-called “3D apical vertex models” [29],
which represent each cell only by an apical polygon whose
vertices are constrained to a surface embedded in the 3D.
To demonstrate the tight connection between curvature and
rigidity, we focus on two-dimensional (2D) cells constrained
to the surface of a sphere, as schematically illustrated in
Fig. 1, although we note that the methods described in
this paper are easily extended to other holonomic constraint
surfaces [33].
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FIG. 1. Schematic image of 2D vertex models. Simulation snap-
shots of a 2D vertex model in flat space with periodic boundary
conditions (a) and embedded on the surface of a sphere (b).

II. METHODS

A. An apical vertex model on the surface of a sphere

We begin by writing the energy functional for a flat conflu-
ent monolayer of cells,

N

E =" Tka(Ai — Ag)* + kp(P; — o). (1
i=1

This energy depends on the area A; and the perimeter P; of
each of the N cells, indexed by i. The model parameters are
the “preferred” geometric values, Ay and Py, along with the
area and perimeter stiffnesses k4 and kp (here we assume the
monodisperse case in which all cells have identical prefer-
ences). Biologically, Ay is commonly assumed to represent a
combination of cellular incompressibility and the resistance
of the monolayer to height fluctuations, and F, to represent
a competition between tensions and adhesions acting between
cells; more broadly this can be viewed as a minimal Taylor se-
ries expansion in geometrical properties that describes cellular
matter rather than foams [34]. At T = 0 a rigidity transition
occurs at a particular value of Py, which we denote by PF,
above which the system sits in a global energy minimum and
has a vanishing shear modulus.

The density dependence of this model can be made trans-
parent [10,35] by choosing the unit of length to be /{A)
and by exploiting the fact that in these models the cells
completely fill space, ) ;A; = Ao = N(A). Letting a and
p refer to dimensionless areas and perimeters, and letting
k, = ka(A)/kp, Eq. (1) can be rewritten as

N
=Y [ke(a; — 1) + (p; — po)*] + Nky(ag — 1)".

i=1

kp(A)

Thus, if Py is a control parameter (and if the stiffness k,
and Py are themselves density independent, an interesting
biological question), the density dependence of the model
in flat space enters via py = Py/+/(A) = Pyp'/?>. Writing this
dimensionless form for the energy makes it clear that the
parameter ag couples to the total size of the system—serving
as an offset to the total pressure—but it does not affect the
forces between degrees of freedom [10,35] and hence does
not control the rigidity transition. To be explicit, via this
mechanism if cells divide in a domain of fixed area their
average size decreases and cells which were initially in an

incompatible regime of parameter space (pg < pj, in which
geometrical frustration prevents the cells from achieving the
global energy ground state) could enter into a compatible
regime of parameter space. Thus, in flat space, cells in this
model can unjam via growth.

Extending the above expressions to a spherical vertex
model requires no change of notation (although justifying the
geometric coarse-graining would require a more biologically
informed derivation, as we discuss in the conclusion). We
simply interpret the “areas” and “perimeters” to be those
measured on the sphere: perimeters are given by sums of
geodesic distances as one traverses the vertices composing
the cell, and areas are given by the area of the spherical
polygons enclosed by those geodesic arcs. The forces acting
on the vertices are given by the negative spherical gradients of
Eq. (1) (explicit expressions are given below). The statistical
mechanics of fluids confined to curved manifolds is itself a
rich topic [36,37], and a natural nonbiological application
of the methods developed here is to general phenomena of
disordered rigidity transitions in non-Euclidean spaces.

To implement efficient and highly scalable numerical sim-
ulations of the above equations, allowing T1 transitions to
facilitate neighbor exchanges between cells and evolving the
degrees of freedom under equations of motion ranging from
energy minimization schemes to overdamped Brownian dy-
namics to self-propelled “active” dynamics, we combine the
GPU-accelerated frameworks described in Refs. [38,39]. We
now provide some additional computational details for the
interested reader.

B. Projection operator formalism for the constraint surface

We follow Refs. [33,40] in using the projection operator
formalism to enforce the hard constraint that the degrees of
freedom lie on the surface of a sphere. Explicitly, for the case
of overdamped Brownian dynamics at temperature 7 we write

AF; = Pr(7;, —uAtVE + 1), (2)

where w is an inverse friction coefficient, and n is a nor-
mally distributed random force with zero mean and with
(Mia )N jp(t")) = 2T At8;;8qp in each of the three Cartesian
directions denoted by Greek indices (so that the noise has
the correct statistics in the tangent plane of the vertex). The
operator Pr(a,b) =b — (a-ba) projects the forces and the
random noise onto the tangent plane at the location of the
degree of freedom. To maintain the spherical constraint, small
time steps must be used, and degrees of freedom are projected
back onto the surface of the sphere of radius R after they are
moved via 7;(t + At) = Py[Fi(t) + AF;] for Py(a) = R-2

lal*

C. Explicit force calculations

For completeness, and to better illustrate the computational
challenges that must be addressed when simulating 2D vertex
models constrained to curved surfaces, we explicitly docu-
ment some of the expressions used to compute forces in the
vertex model where the degrees of freedom are constrained to
lie on the surface of a sphere of radius R. As in previous works
[22,38,41], the calculation of the gradient of Eq. (1) is readily
expanded via chain rules to to separate out contributions from
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the particular functional form of the energy and from the en-
tirely geometric quantities, i.e., how much distances and areas
of polygons change when degrees of freedom are moved.
Thus, the new quantities to implement in the present case
of a spherical vertex model are a complete set of primitives
for calculating geodesic distances, spherical polygon areas,
and the appropriate derivatives of each with respect to vertex
positions.

We note that on the surface of the sphere there are many
equivalent expressions for the geodesic distance between two
points (or the included angle between three points, or the area
of a spherical polygon given by n points, etc.). While ana-
lytically equivalent, these expressions typically have different
regimes of numerical stability. For instance, given two points
on the sphere, 7i; and 7, the distance d may be written as

d, = Rcos™! (4 - M),

dp = Rsin™" (| x al),

d. = Rtan™! (—'ﬁl x ﬁ2|>
c — .

d(iy, iiy) =

3

A

n ~ﬁ2

The first expression above is the simplest and least com-
putationally expensive, but it is poorly conditioned for very
small distances (as might be relevant when vertices get very

J

10d,

close to each other before performing a T1 transition). The
second expression is poorly conditioned for large distances,
whereas the third is the most computationally expensive but
is well-conditioned for all distances. These questions of nu-
merical stability become especially acute when dealing with
the forces, and we have found it important to implement
self-consistency checks on the force calculations and switch
to analytically equivalent but numerically different routes of
calculating gradients in the spherical vertex model.

Gradient calculations

Given a vertex position 71, which our program stores in R3,
we first express it in the usual spherical basis 7i; = {ry, 61, ¢}
and compute the local 6 and ¢ directions. The spherical
gradient of the distance between two vertices as the position
of the first vertex is changed is then given by

Y 1d(ir. i) 18dé+ 1 dd .
Ay, fip) = ——— ———¢1,
T T R 96, T Rsind) ¢y
where choosing a particular formula to compute the geodesic
distance we have

d,(7iy, ity) = Rcos™ ' [cos(6;) cos(6,) (®)]
+ sin(6;) sin(6>) cos(¢p1 — ¢2)]. (6)

“

Thus,

cos(6;) sin(6;) — cos(6y) cos(¢p; — ¢p2) sin(6;)

R0~ /1 [cos(0;)cos(02) + cos(dr — da) sin(@)) sin(@)]*
sin(6,) sin(¢; — ¢2)

1 ad,

@)

®)

Rsin6; 9y V1 = [cos(8;) cos(6r) + cos(dr — o) sin(@;) sin(62)]>

From this one readily appreciates the substantial cost of
computing gradients of dj, or d., and so whenever possible
we opt for the simpler expressions stemming from d,,.

Similarly, the area of a spherical triangle A(7i,, 7, #i3) can
be written as

A=Ra+pB+y —m), where ©)
o — cos-! (cos(a). - cos.(b) cos(c)>’ (10)
sin(b) sin(c)

8 = cos! <cos(b).— cos.(a) cos(c)>’ (11
sin(a) sin(c)
_ _1 { cos(c) — cos(a) cos(b)
v o= cos ( sin(a) sin(b) )’ (12)
where
a = d(iy, ni3)/R, (13)
b = d(iiy, ii3)/R, (14)
¢ =d(iy, np)/R. (15)

Clearly, again, care must be taken in choosing distance func-
tions that will lead to well-conditioned expressions for both
the area and gradients of the area while also minimizing

(

the complexity of the resulting expressions. Additional con-
siderations include the efficiency and the numerical stability
of computing cellular areas as either the sum of spherical
triangles formed by the cell centroid and consecutive vertices
around the cell or the sum of the included angle at each of the
n vertices,

Y XCUTIN T 0 ) =R2|:<Za,»> - (n—2)n:|; (16)

this is particularly delicate when the cells are not convex or
when edges cross.

D. Initial conditions

The initial conditions for both the zero-temperature
quenches and the finite-temperature simulations reported in
this work are chosen to be high-temperature random configu-
rations of cells. We create these configurations by first picking
a desired number of cells, ., and distributing N, points uni-
formly on the surface of the sphere. We use the Computational
Geometry Algorithms Library (CGAL) [42,43] to construct
the convex hull of these points and take the initial vertex
positions to be the centroids of the resulting facets (projected
back onto the sphere) [44].
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FIG. 2. Finite-size effects in vertex model transitions for flat monolayer (left) and spherical (right) monolayers. Probability distribution of
the critical value of the perimeter, pj;, above which the k. = 0 vertex model transitions from a rigid to a mechanically unstable system. The
main plots show the derivative of the fraction of states at zero energy, F'(po) (shown in the insets). Colors correspond to system sizes N = 32,
48, 64, 96, 128, 192, 256, 512, and 1024 (darker red to lighter blue). The correspondingly colored pentagons show the perimeter of a unit-area

regular pentagon on a sphere of radius /N/(47w).

III. RESULTS
A. Athermal rigidity transition

We first directly probe the athermal rigidity transition of
the spherical vertex model as a function of N and py; for sim-
plicity, here we first focus on the k., = 0 limit of Eq. (2). We
prepare between 100 and 500 initial configurations for each
value of py, seeded by randomly placing cell centers on the
surface of the sphere and deriving the initial positions of the
vertices from the convex hull of that point pattern. We perform
a FIRE energy minimization [45] of these configurations to find
the inherent state associated with each initial configuration.
Like its counterpart in flat space, the spherical vertex model
described here is extensively underconstrained; as such, we
anticipate that the ground states of the model are mechanically
stable only in the presence of residual stresses [23,25,35].

Thus, we estimate the rigidity transition for a given value
of N by computing the fraction of minimized states, F'(pg, N),
which minimize to an inherent state of zero energy. The proba-
bility distribution of transition points is given by the derivative
of this function; to take this derivative while suppressing
noise, we convolve a linear interpolation of the F(pg, N)
with the derivative of a Gaussian whose standard deviation
is related to the shape of F(pg, N) (see Ref. [35]). We have
done this for both the planar and the spherical vertex models
at k, = 0, and the results are shown in Fig. 2.

Our results for the mean value of the transition for the
planar vertex model, and the variance of the distribution, are
consistent with previous studies [46] (although note that other
simulations, based on the SURFACE EVOLVER package [47] and
minimizing under a different protocol, have reported slightly
different results [22]). As might be expected, the primary
effect of approaching the thermodynamic limit in the planar
case is to develop a more sharply peaked distribution about
the N — oo limiting value, with very little change in the mean
value of the distribution. In contrast, the effects of changing
the size of the sphere relative to the typical size of each cell is
readily seen in the way the distribution of the transition point
not only sharpens but also shifts with N.

The critical value of py separating the mechanically rigid
and floppy phases as a function of N closely tracks (but is not

precisely equal to) the way in the which the perimeter of a
unit-area regular pentagon varies on a sphere of total surface
area N. This value of py forms a natural bound for the nonlin-
ear rigidity transition: sufficiently large cellular displacements
require cells to exchange neighbors; on average cells have six
sides, so during the T1 transition a spherical pentagon must
be formed. If po(N) < ppenta(IV), this configuration will cost
energy, but the precise connection between this bound on the
nonlinear behavior of rearrangements and the infinitesimal
rigidity calculation shown in Fig. 2 remains unclear, both here
and in the planar case [25].

B. Finite-temperature dynamics

To show that this qualitative shift is neither just a result of
the k, = 0 limit explored above nor an artifact of the exotic
mechanical states at zero temperature found in vertex models
(i.e., a result just of studying an extensively underconstrained
model) [23,25,26,46], we study the finite-temperature dynam-
ics of disordered configurations of the spherical vertex model,
with a range of k,, pg, N, and T. We have performed over-
damped Brownian dynamics, and to illustrate the importance
of curvature here we present representative data in which
we consider fixing py = 3.775 (less than the planar critical
value, but above the spherical critical value for small N) while
varying both N and T (while holding the typical cell size
fixed, so that varying N corresponds to varying the curvature
of the cellular substrate).

The characteristic relaxation time of the simulated systems,
(T, po), were calculated as in Ref. [27] using the decay
of the self-overlap function [48]. This function measures the
fraction of particles that have been displaced by more than a
characteristic distance b after a time ¢,

N

Q.(t) = % Y w(FE@) — RO,

i=1

a7

where 7; is the vector position of cell i, w is a window
function, w(r < b) = 1, and w(r > b) = 0. The cutoff b plays
a very similar role to a choice of § when looking at the decay
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FIG. 3. System size takes one from a fluid to a glassy regime.
The «-relaxation time as a function of temperature for N = 32, 128,
and 1024 (dark red to light blue), py = 3.775, and k, = 0 goes from
fluidlike to glassy as N increases. Data were averaged over two to ten
independent simulations for larger and smaller N. (Inset) The mean-
squared displacement (MSD), in units of (A), in the spherical vertex
model with py = 3.75, k., =1, and N = 32, 128, and 1024 (dark
red to light blue) averaged over (8192/N) independent simulations
at T =5 x 107*. Again, the MSD shows a transition from purely
diffusive for small N to transiently caged for large N.

of the self-intermediate scattering function,

Fy(q. 1) = N_1<Zei(7'(;i(t)_;i(o))>' (18)

We choose b = 1/2 and estimate (T, pg) as the time it takes
for Q4(t) to decay to 1/e.

Figure 3 shows representative changes in how the « relax-
ation time grows both with decreasing temperature and with
increasing N. One clearly sees how the underlying change in
po(N) at T = 0 affects the finite-temperature dynamics, with
these examples showing an order-of-magnitude change in the
dynamical scale (measured either as a time scale or a mag-
nitude of typical displacements) as the system size changes
from N = 32 to N = 1024. Notably both the mean-squared
displacement and relaxation-time data indicate a qualitative
change in the temperature dependence of the dynamics as the
system size is increased: the MSD data in the inset shows
an example of cellular motions crossing over from simple
diffusive behavior for small N to caged, glassy behavior as
N is increased, and this is reflected in the curvature visible
in the plot of log 7, (T) for large N but not for small N. We
note that the magnitude of these dynamical effects will depend
on [py — pj(N — 00)]; a systematic study of these effects is
currently under way.

IV. DISCUSSION

The fact that the mean of the rigidity transition shifts
as the relationship between curvature and cell size varies
suggests a mechanism by which cells could collectively tune
between different mechanical phases as a function of their
curvature. Models of 3D collections of cells in embryonic
zebra fish development have shown the potential for coexis-
tence between fluidlike behavior in regions of high curvature

0 Gonat
growth a 2
3.9t fixed cell siz_e_,—_'-/'f?"
o 38 o
0 -
3.7F /
L growth at fixed
25 sphere radius
3.5 A . B ;
0.90 0.95 1.00 1.05 1.10

(A)

FIG. 4. Jamming and unjamming via cellular division and death.
Curves show the estimated dependence of P} as a function of (A) in
the spherical vertex model for N = 32, 64, 128, and 256 (dark red
to light blue) and for N = 1024 (dashed black line), all at (A) = 1.
The value p§(N) is estimated from the mean of the distributions in
Fig. 2, on top of which the energy functional dependence of /(A
is applied. Schematically, cells dividing in a finite fixed domain
would correspond to decreasing the typical cell size, moving the
system along curves of constant color, whereas cells dividing in a
growing domain would move the system across curves of different
colors. This shows the possibility of cells collectively unjamming or
Jjamming via growth at fixed other model parameters.

and solidlike behavior in regions of lower curvature [49]. Per-
haps more relevant to this explicitly two-dimensional model,
developing insect embryos look much like ellipsoidal versions
of Fig. 1(b), with regions of high and low curvature. Thus,
although we currently neglect gradients in curvature, the
curvature-dependent rigidity discussed here might be directly
relevant in the modeling of such systems [50].

This connection between curvature and the ability to
support mechanical stresses suggests a relationship between
density and jamming that is qualitatively different from the
planar case. There is now a competition between the scaling
of the critical perimeter with typical cell size and the effect
of curvature as expressed by the ratio of the sphere radius to
the typical cell size, leading to Py(N) = (AY1/2 DPo(N), where
po(N) itself is estimated from the mean of the distributions in
Fig. 2.

Crucially, the effect of curvature is strong enough to re-
verse the qualitative dependence on density. This is schemat-
ically depicted in Fig. 4, which shows an estimate of the
shifting of the rigidity transition Py (N, (A)). In one limiting
case, the number of cells could increase on a sphere of fixed
radius. In this scenario, the decrease of (A) lowers the critical
transition point, so cells dividing (at constant other model
parameters) could induce the system to collectively unjam via
growth. In the other limiting case, the number of cells could
increase in a simultaneously enlarging spherical domain (so
that the cell number increases at fixed (A)). In such a case the
system could potentially rigidify via growth.

Recent work has suggested that real monolayers of ep-
ithelial cells in curved space may adopt configurations in
which the apical and basal surfaces of a cell have very dif-
ferent geometries [5,51,52]. Whether the apical vertex models
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considered in this and related works are still sufficiently
expressive coarse-grained models to capture the underlying
physics requires further work; it may be that in curved space,
models written only in terms of a single cross-sectional plane
are sufficient only when the individual cells are small enough
to not appreciably feel the effects of curvature. A test of these
models could be provided by ongoing experiments conducted
on cellular monolayers on substrates with nontrivial curvature
(e.g., Refs. [53,54]), as the present formulation could be
readily extended from spherical constraints to more general
ones (tori, Gaussian bumps, and simple sinusoidal profiles
being particularly straightforward to implement numerically).

Before considering such complications, interesting exten-
sions of the spherical vertex model presented here are antic-
ipated by some existing studies of apical vertex models on
curved surfaces [3,31,32], in which the curved space is not
a fixed embedding but can itself evolve and deform as the
cells collectively exert stresses on their environment. It will be
very interesting to combine models in which the surface can
fluctuate rather than serving as a holonomic constraint with
dynamical models that allow for cellular rearrangements.

Additionally, it will be very interesting to investigate the
finite-temperature glassy dynamics of this model in greater
detail. Previous work on planar vertex and Voronoi mod-
els identified a deeply anomalous type of “sub-Arrhenius”
dynamics, in which the relaxation time of the cells grew
more slowly than exponential with decreasing temperature
[27]. One speculation relates these unusual glassy dynamics
to the unusual, residual-stress-driven rigidity transition those
models possess at zero temperature. Embedding the vertex
model on a sphere, as we have done here, provides one way
to formally probe this hypothesis. We have constrained the
vertices to lie exactly on the sphere, but have included no other
energetic terms related to the curvature. Previous works on the
apical vertex model have taken Eq. (1) and supplemented it
with a discrete bending energy term [55] of the form

E,=BY (1—i;-#). (19)
ij

where i and j run over all neighboring faces and 7; is the
surface normal corresponding to cell i.

Adding such a term is clearly relevant for the case where
the surface can fluctuate, but it is also interesting even for

the perfectly spherical case. On a unit sphere, note that the
geodesic distance between two points is |7;;| = cos™! (; - it i)
in the limit where the intercellular spacing is small compared
to the radius of the sphere, the above term can be approxi-
mated by E, ~ g > ; rl-zj, adding an additional quadratic con-
straint for every pair of cellular neighbors. Whereas Eq. (1)
represents an extensively underconstrained system that can
only rigidify through residual stresses, Eq. (19) introduces
enough additional constraints to rigidify the system more
conventionally. Thus, studying the glassy dynamics of the
spherical vertex model as a function of tuning B from zero
to unity could test the root cause of the anomalous glassy
behavior seen in other simple models of cellular matter. This
would also further support our finding that the mechanism
discussed here in the context of a particular underconstrained
vertex model is present more generally in the class of space-
filling or shape-based models of cellular matter.

In summary, in this work we have studied both the zero-
temperature rigidity and the finite-temperature glassy dynam-
ics of apical vertex models constrained to the surface of
spheres, for which the energy functional is now expressed
in terms of geodesic distances and the areas of spherical
polygons. This constraint introduces an additional ratio of
length scales compared to the usual vertex model: the size
of the sphere relative to the typical cell size. The critical
shape index previously found to control the zero-temperature
rigidity transition is affected by this ratio of length scales,
and we find two modes by which cells could either rigidify
or unjam as they divide, depending on whether the cellular
division is accompanied by a growth of the spherical domain
that keeps the cell cross-sectional area fixed or not. Finite-
temperature studies show that the glassy dynamics of the
spherical vertex model is sensitive to the underlying changes
in the zero-temperature rigidity transition. Although the ver-
tex model considered here is a somewhat specialized model of
cellular monolayers, we emphasize that we expect the results
obtained here—which fundamentally stem from introducing
curvature to the space in which the monolayer is constrained
to move—to be generic.
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