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ABSTRACT outcomes towards some demographic groups in the data. To illus-

We show that the popular k-means clustering algorithm (Lloyd’s
heuristic), used for a variety of scientific data, can result in out-
comes that are unfavorable to subgroups of data (e.g., demographic
groups). Such biased clusterings can have deleterious implications
for human-centric applications such as resource allocation. We
present a fair k-means objective and algorithm to choose cluster
centers that provide equitable costs for different groups. The algo-
rithm, Fair-Lloyd, is a modification of Lloyd’s heuristic for k-means,
inheriting its simplicity, efficiency, and stability. In comparison with
standard Lloyd’s, we find that on benchmark datasets, Fair-Lloyd
exhibits unbiased performance by ensuring that all groups have
equal costs in the output k-clustering, while incurring a negligi-
ble increase in running time, thus making it a viable fair option
wherever k-means is currently used.

1 INTRODUCTION

Clustering, or partitioning data into dissimilar groups of similar
items, is a core technique for data analysis. Perhaps the most widely
used clustering algorithm is Lloyd’s k-means heuristic [29, 30, 40].

Lloyd’s algorithm starts with a random set of k points (“centers”)
and repeats the following two-step procedure: (a) assign each data
point to its nearest center; this partitions the data into k disjoint
groups (“clusters”); (b) for each cluster, set the new center to be the
average of all its points. Due to its simplicity and generality, the k-
means heuristic is widely used across the sciences, with applications
spanning genetics [27], image segmentation [34], grouping search
results and news aggregation [38], crime-hot-spot detection [19],
crime pattern analysis [32], profiling road accident hot spots [3],
and market segmentation [8].

Lloyd’s algorithm is a heuristic to minimize the k-means objec-
tive: choose k centers such that the average squared distance of a
point to its closest center is minimized. Note that, these k centers
automatically define a clustering of the data simply by assigning
each point to its closest center. To better describe the k-means ob-
jective and the Lloyd’s algorithm in the context of human-centric
applications, let us consider two applications. In crime mapping
and crime pattern analysis, law enforcement would run Lloyd’s al-
gorithm to partition areas of crime. This partitioning is then used as
a guideline for allocating patrol services to each area (cluster). Such
an assignment reduces the average response time of patrol units
to crime incidents. A second application is market segmentation,
where a pool of customers is partitioned using Lloyd’s algorithm,
and for each cluster, based on the customer profile of the center of
that cluster, a certain set of services or advertisements is assigned
to the customers in that cluster.

In such human-centric applications, using the k-means algorithm
in its original form, can result in unfavorable and even harmful

trate bias, consider the Adult dataset from the UCI repository [17].
This dataset consists of census information of individuals, includ-
ing some sensitive attributes such as whether the individuals self
identified as male or female. Lloyd’s algorithm can be executed
on this dataset to detect communities and eventually summarize
communities with their centers.

Figure 1a shows the average k-means clustering cost for the
Adult dataset [17] for males vs females. The standard Lloyd’s al-
gorithm results in a clustering which incurs up to 15% higher cost
for females compared to males. Figure 1b shows that this bias is
even more noticeable among the five different racial groups in this
dataset. The average cost for an Asian-Pac-Islander individual is
up to 4 times worse than an average cost for a white individual.
A similar bias can be observed in the Credit dataset [43] between
lower-educated and higher-educated individuals (Figure 1c).

In this paper, we address the critical goal of fair clustering, i.e., a
clustering whose cost is more equitable for different groups. This
is, of course, an important and natural goal, and there has been
substantial work on fair clustering, including for the k-means objec-
tive. Prior work has focused almost exclusively on proportionality,
i.e., ensuring that sensitive attributes are distributed proportionally
in each cluster [7, 10, 14, 21, 37]. In many application scenarios,
including the ones illustrated above, one can view each setting of a
sensitive attribute as defining a subgroup (e.g., gender or race), and
the critical objective is the cost of the clustering for each subgroup:
are one or more groups incurring a significantly higher average
cost?

In light of this consideration, we consider a different objective.
Rather than minimizing the average clustering cost over the entire
dataset, the objective of socially fair k-means is to find a k-clustering
that minimizes the maximum of the average clustering cost across
different (demographic) groups, i.e., minimizes the maximum of the
average k-means objective applied to each group.

Can social fairness be achieved efficiently, while preserving the
simplicity and generality of standard k-means algorithm?

Applying existing algorithms for fair clustering with proportion-
ality constraints leads to poor solutions for social fairness (see
Figure 10 for comparison on standard datasets), so we need a differ-
ent solution. Our objective is similar to the recent line of work on
minmax fairness through multi-criteria optimization [31, 35, 41].

1.1 Our results

We answer the above question affirmatively, with an algorithm
we call Fair-Lloyd. Similar to Lloyd’s algorithm, it is a two-step
iteration with the only difference being how the centers are updated:
(a) assign each data point to its nearest center to form clusters
(b) choose k new fair centers such that the maximum average
clustering cost across different demographic groups is minimized.
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Figure 1: The standard Lloyd’s algorithm results in a significant gap in the average clustering costs of different subgroups of the data.

This step is particularly easy for k-means — average the points in
each cluster. We prove that, the fair centers can also be computed
efficiently: using a simple one-dimensional line search when the
data consists of two (demographic) groups, and using standard
convex optimization algorithms when the data consists of more than
two groups. Furthermore, when the data consists of two groups,
the convergence of our algorithm is independent of the original
dimension of the data and the number of clusters.

We prove convergence, stability and approximability guarantees
and apply our method to multiple real-world clustering tasks. The
results show clearly that Fair-Lloyd generates a clustering of the
data with equal average clustering cost for individuals in different
demographic groups. Moreover, its computational cost remains
comparable to Lloyd’s method. Each iteration, to find the next set of
centers, is a convex optimization problem and can be implemented
efficiently using Gradient Descent. For two groups, we give a line-
search method which is significantly faster. This extends to a fast
heuristic for m > 2 groups whose distance to optimality can be
tracked. This approach might be of independent interest as a very
efficient heuristic for similar optimization problems.

Due to the simplicity and efficiency of the Fair-Lloyd algorithm,
we suggest it as an alternative to the standard Lloyd’s algorithm
in human-centric and other subgroup-sensitive applications where
social fairness is a priority.

1.2 Fair k-means: Objective and Algorithm

To introduce the fair k-means objective, we define a more general
notion: the k-means cost of a set of points U with respect to a set of
centers C = {cy, ..., cr} and a partition U = {Uy,..., U} of U is

k
ACU) =" lp=cill?

i=1 peU;
For a set of centers C, let Uc be a partition of U such that if p € U;
then [|p — ¢;l| = min;cj<f [I|p — ¢jl|. Then the standard k-means
objective is

min  A(C,Uc)

C={c1,-ck }

ie., to find a set of k centers C = {cy,...,c;} that minimizes
A(C, Ue).

For an illustrative example of the potential bias for different
subgroups of data, see Figure 2 left. The two centers selected by
minimizing the k-means objective are both close to one subgroup,
and therefore the other subgroup has higher average cost. Note

that the notion of fairness based on proportionality also prefers
this clustering which impose a higher average cost on the purple
subgroup. To introduce our fair k-means objective and algorithm,
in this section we focus on the case of two (demographic) groups.
In Section 3, we discuss how to generalize our framework to more
than two groups.

k-means Fair k-means
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Figure 2: Two demographic groups are shown with blue and pur-
ple. The 2-means objective minimizing the average clustering cost
prefers the clustering (and centers) shown in the left figure. This
clustering incurs a much higher average clustering cost for purple
than for blue. The clustering in the right figure has more equitable
clustering cost for the two groups.

The fair k-means objective for two groups A, B such that U =
AU B is the larger average cost:
A(C,UNA) A(C,UNB) )

1Al |B| ’

where U N A ={U1 NA,...,Ugx N A}. The goal of fair k-means is
to minimize ®(C, Uc), so as to minimize the higher average cost.
As illustrated in Figure 2 right, minimizing this objective results in
a set of centers with equal average cost to individuals of different
groups. In fact, as we will soon see, the solution to this problem
equalizes the average cost of both groups in most cases. Next we
present the fair k-means algorithm (or Fair-Lloyd) in Algorithm 1

The second step uses a minimization procedure to assign centers
fairly to a given partition of the data. While this can be done via
a gradient descent algorithm, we show in Section 2 that it can be
solved very efficiently using a simple line search procedure (see
Algorithm 2) due to the structure of fair centers (Section 2.1). In
Section 2.3, we discuss some other properties of the fair k-means
and Fair-Lloyd (Algorithm 1). More specifically, we discuss the

d(C,U) := max{
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Algorithm 1: Fair-Lloyd
Input: A set of points U = AUB,and k € N

Initialize the set of centers C = {cy, ..., ck }.
repeat
1. Assign each point to its nearest center in C to form a partition
U={Uy,...,Ux}of U.

2. Pick a set of centers C that minimizes ®(C, U).
C « Line Search(U, U)

until convergence;
return C = {cy,..., ek}

stability of the solution found by Fair-Lloyd, the convergence of
Fair-Lloyd, and approximation algorithms that can be used for fair
k-means (e.g., to initialize the centers). In summary, our fair version
of the k-means inherits its attractive properties while making the
objective and outcome more equitable to subgroups of data.

1.3 Related Work

k-means objective and Lloyd’s algorithm. The k-means objec-
tive is NP-hard to optimize [2] and even NP-hard to approximate
within a factor of (1 + €) [5]. The best known approximation al-
gorithm for the k-means problem finds a solution within a factor
p + € of optimal, where p =~ 6.357 [1]. The running time of Lloyd’s
algorithm can be exponential even on the plane [42].

As for the quality of the solution found, Lloyd’s heuristic con-
verges to a local optimum [39], with no worst-case guarantees
possible [24]. It has been shown that under certain assumptions on
the existence of a sufficiently good clustering, this heuristic recov-
ers a ground truth clustering and achieves a near-optimal solution
to the k-means objective function [6, 28, 33]. For all the difficulties
with the analysis, and although many other techniques has been
proposed over the years, Lloyd’s algorithm is still the most widely
used clustering algorithm in practice [23].

Fairness. During the past years, machine learning has seen a
huge body of work on fairness. Many formulations of fairness
have been proposed for supervised learning and specifically for
classification tasks [18, 20, 25, 44]. The study of the implications
of bias in unsupervised learning started more recently [11, 12, 14,
26, 35, 36]. We refer the reader to [9] for a summary of proposed
definitions and algorithmic advances.

Majority of the literature on fair clustering have focused on
the proportionality/balance of the demographical representation
inside the clusters [14] — a notion much in the nature of the widely
known disparate impact doctrine. Proportionality of demographical
representation has initially been studied for the k-center and k-
median problems when the data comprises of two demographic
groups [14], and later on for the k-means problem and for multiple
demographic groups [7, 10, 22, 37]. Among other notions of fairness
in clustering, one could mention proportionality of demographical
representation in the set of cluster centers [26] or in large subsets
of a cluster [13].

Our proposed notion of a fair clustering is different and comes
from a broader viewpoint on fairness, aiming to enforce any objective-
based optimization task to output a solution with equitable objective
value for different demographic groups. Such an objective-based
fairness notion across subgroups could be defined subjectively e.g.,
by equalizing misclassification rate in classification tasks [15] or

by minimizing the maximum error in dimensionality reduction
or classification [31, 35, 41]. We define a socially fair clustering as
the one that minimizes the maximum average clustering cost over
different demographic groups. To the best of our knowledge, our
work is the first to study fairness in clustering from this viewpoint.

2 AN EFFICIENT IMPLEMENTATION OF FAIR
k-MEANS

The Fair-Lloyd algorithm (Algorithm 1) is a two-step iteration,
where the second step is to find a fair set of centers with respect to
a partition. A set of centers C* is fair with respect to a partition U
if C* = argmin, ®(C, U). In this section, we show that a simple
line search algorithm can be used to find C* efficiently.

2.1 Structure of Fair Centers

We start by illustrating some properties of fair centers. A partition
of the data induces a partition of each of the two groups, and hence
a set of means for each group . Formally, for a set of points U = AUB
and a partition U = {Uy, ..., Ui} of U, let ;1;4 and p? be the mean
of AN U; and B N U; respectively for i € [k]. Our first observation
is that the fair center of each cluster must be on the line segment
between the means of the groups induced in the cluster.

LEmMMA 1. LetU =AU B and U = (Uy, ..., Uy) be a partition of
U.LetC = (c1,...,cx) bea fair set of centers with respect to U. Then
ci is on the line segment connecting yf‘ and pf.

Proor. For the sake of contradiction, assume that there exists
an i € [k] such that ¢; is not on the line segment connecting /,1;4
and ,u? . Note that (see [24] for a proof of the following equation)

Dollp—clt= D lp—pf P+ AN Uil - cill?

PEANU; PEANU;
2 B2 B 2
Dlp-cll?= ) lp— PP+ IBOUIEE - el

PEBNU; pEBNU;

Let ¢ be the projection of ¢; to the line segment connecting p?
and le. Then by Pythagorean theorem for convex sets, we have

2 2
[ l

A A 2
g = cill® = g = cill® +lle; —ci
B

B 2 2 2
i’ = cill® 2 Iy’ = cill + llej = cill

Therefore since ||c] — ¢ill> > 0, we have ||y;A —cill < ||/1;4‘ —cill
and ||,uf.B —cill < ||,u£B = ci||. Thus, replacing c; with c] decreases the
fair k-means objective. O

The above lemma implies that, in order to find a fair set of centers,
we only need to search the intervals [ ,u;“, ,u?] . Therefore we can
find a fair set of centers by solving a convex program. The following
definition will be convenient.

DEFINITION 1. GivenU = AUB and a partitiond = {Uy, ..., Uy}
ofU, fori=1,...,k, let
AN Uil
ai = ,
A
A_ (A
Also let M* = {p, ...

_IBnUj|
Bi= H

it} and MP = (P, .

andl; = ||pf = .

B
MY

We can now state the convex program.



Cororrary 1. Let U = {Us,..., U} be a partition of U = AU B.
Then C is a fair set of centers with respect toU ifc; = i exip)
pect toU ifc; = A s

where (xf, el x,’;, 0%) is an optimal solution to the following convex

program.
min 6 (1)
A
s.t. M+ Z aixil <0
A ielk]
B
W + > pilli—xi)? <0
i€[k]
0<x; <1l ,iel[k]

We can solve this convex program with standard convex opti-
mization methods such as gradient descent. However, as we show
in the next section, we can solve it with a much faster algorithm.

2.2 Computing Fair Centers via Line Search

We first need to review a couple of facts about subgradients. For a
convex continuous function f, we say that a vector u is a subgradi-
ent of f at point x if f(y) > f(x) +u’ (y — x) for any y. We denote
the set of subgradients of f at x by af(x).

Fact 1. Let f be a convex function. Then point x* is a minimum
for f if and only if 0 € af (x¥).

Fact 2. Let fi, ..., fm be smooth functions and

F(x) = max_fj(x).
j€lm]

Let Sx = {j € [m] : fj(x) = F(x)}. Then the set of subgradients of
F at x is the convex hull of union of the subgradients of f;’s at x for
j € Sx.

Let
A
falx) = W Z aixi?,
ie[k]
B
) = SO 5 -
ielk]

Then we can view the convex program (1) as minimizing

f(x) == max{fa(x), fp(x)} s.t.0 < x; < 1;,Vi € [k]. (2)
Note that f(x) is convex since the maximum of two convex func-
tions is convex. Therefore by Fact 1, our goal is to find a point
x* such that 0 € df (x*). Note that f4 and fg are differentiable.
Hence by Fact 2, we only need to look at points x for which there
exists a convex combination of V f4 (x) and Vfg(x) that is equal to
0. As we will see, this set of points is only a one-dimensional curve
in [0,[1] X --- X [0,];]. When f4(x) > fg(x), f(x) has a unique
gradient and it is equal to Vf4 (x). Similarly, when f4(x) < fg(x),
we have Vf(x) = Vfg(x). In the case that fy(x) = fg(x), for any
y € [0,1],

u(y,x) = yVfa(x) + (1 - y)Vfp(x)

is a subgradient of f(x) — and these are the only subgradient of f
at x. Now consider the set

Z={xe[0li] x---x[0,L]:3ye[0,1],uy,x) =0}
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If we find x* € Z such that f4(x*) = fg(x*), then 0 € f (x*) and
therefore, x* is an optimal solution. We first describe Z and show
that there exists an optimal solution in Z.

(1-y)Bil;
yai+(1-y) i

LEmMA 2. Lety € [0,1] andu(y,x) = 0. Then x; =
Proor. We have aixifA(x) = 2a;x; and 3 fB(x) = 2Bi(x; — I;).
Using the fact that u(y, x) = (_5 we have

y(aixi) + (1= y)(2Pi(xi = I})) = 0.

Hence,

_ (-ppi
yai+(1=y)pi’
[m]

The previous lemma gives a complete description of set Z. One
example of set Z is shown in Figure 3 left for the case of k = 2. The
following is an immediate result of Lemma 2.

(-y)Bil; [0, 1]}

LEMMA 3. Z ={x:x; = var(i-ppi Y €

Note that when y = 1, this recovers the all-zero vector and when
Yy = 0,x = (I1,...,1t). Therefore these extreme points are also
in Z. As we mentioned before if there exists x* € Z such that
fa(x*) = f(x™), then x* is an optimal solution. Therefore suppose
such an x™ does not exist. One can see that

d . (A-ypil _ —aifil;
dy yai+(1-y)fi"  (yai+(1-y)Bi)?

Therefore, for 1 < i < k, x; is decreasing in y. Also one can see
that f4 is increasing in x; and fp is decreasing in x;. Therefore fy
is decreasing in y and fp is increasing in y. Figure 3 right shows
an example that illustrates the change of f4 and fp with respect
to y. This implies that if there does not exist any x* € Z such
that fa(x*) = f(x"), then either f4(0) > f3(0) or f5(¢) > fa(0),
where £ = (I3, ..., ). In the former case, the optimal solution to (1)
is 0 which means that the fair centers are located on the means of
points for group A. In the latter case the optimal solution is £ which
means that the fair centers are located on the means of points for
group B.

The above argument asserts that we only need to search the
set Z to find an optimal solution. Each element of Z is uniquely
determined by the corresponding y € [0, 1]. Our goal is to find an
element x* € Z such that f4 (x*) = fg(x™). Since f4 is decreasing
in y and fp is increasing in y, we can use line search to find such a
point in Z. If such a point does not exist in Z, then the line search
converges to y = 0 or y = 1. Two steps of such a line search
are shown in Figure 3. See Algorithm 2 for a precise description.
Using this line search algorithm, we can solve the convex program
described in (2) in O(k log(max; [;)) time.

2.3 Fair k-means is well-behaved

In this section, we discuss the stability, convergence, and approx-
imability of Fair-Lloyd for 2 groups. As we will show in Section 3,
these results can be extended to m > 2 groups.
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Figure 3: Left: an example of the one-dimensional curve for k = 2. Right: the functions f4 and fg with respect to y, and two steps of the line
search algorithm. We can use a line search to find the optimal value of y and an optimal solution to (2).

Algorithm 2: Line Search(U, U)
Input: A set of points U = A U B and a partition U = {Uy, ..., U} of U.
Compute ai,ﬁi,yf‘,p?,li,MA,MB // See Definition 1.

y < 0.5
fort=1,...,Tdo
Xj — )./ LB 1,...k

yai+(1-y)pi’

Compute fu (x) and f(x)
if fa(x) > f(x) then

|y v+
else if f4(x) < fp(x) then

| yey-@/2)
else

| break
end

end

(=) g+ B .
ci — ————L foralli=1,....k
1

return C = (cy,...,¢ck)

Stability. The line search algorithm finds the optimal solution to
(1). This means that for a fixed partition of the points (e.g., the last
clustering that the algorithm outputs), the returned centers are opti-
mal in terms of the maximum average cost of the groups. However,
one important question is whether we can improve the cost for
the group with the smaller average cost. The following proposition
shows that this is not possible; assuring that the solution is pareto
optimal.

PROPOSITION 1. Letx™ be the optimal solution for a fixed partition
U ={Ui,...,Ux} of U. Then there does not exist any other optimal
solution with an average cost better than fs (x*) or fg(x*) for groups
A and B, respectively.

PRrOOF. Let y be another optimal solution. Without loss of gen-
erality, suppose fa(x*) > fg(x*). If fa(x*) > fg(x*), then by our
discussion on the line search algorithm, x* = 0 and it is the only
optimal solution. Therefore y = x*. Now suppose fa (x*) = fp(x¥).
For the sake of contradiction and without loss of generality, assume
fax") = fa(y), but fis(x") > fi(y). Therefore f2(y) > fi(y). First
note that y # 0 because if f4(0) > fg(0), then for any other x in
the feasible region, fa(x) > fg(x) which is a contradiction because
fa(x*) = fp(x™). Hence we can decrease one of the coordinates of
y by a small amount to get a point y” in the feasible region. If the

change is small enough, we have f4(y) > fa(v’) > f5(y’) > f5(y)

but this is a contradiction because it implies f(x*) = f(y) > f(y’)
which means x* was not an optimal solution. O

Convergence. Lloyd’s algorithm for the standard k-means prob-
lem converges to a solution in finite time, essentially because the
number of possible partitions is finite [29]. This also holds for the
Fair-Lloyd algorithm for the fair k-means problem. Note that for
any fixed partition of the points, our algorithm finds the optimal
fair centers. Also, note that there are only a finite number of par-
titions of the points. Therefore, if our algorithm continues until a
step where the clustering does not change afterward, then we say
that the algorithm has converged and indeed the solution is a local
optimum. However, note that, in the case where there is more than
one way to assign points to the centers (i.e., there exists a point
that have more than one closest center), then we should exhaust all
the cases, otherwise the output is not necessarily a local optimal.
This is not a surprise because the same condition also holds for
the Lloyd’s algorithm for the k-means problem. For example, see
Figure 4. Adjacent points have unit distance from each other. The
centers are optimum for the illustrated clustering. However, they
do not form a local optimum because moving c; and c3 to the left
by a small amount € decreases the k-means objective from 2 to
2(1-€)? +e® =2 —4e+3€? < 2.
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Figure 4: An ex;n-1ple of k-means f)roblem whe}é the current clus-
tering is not a local optimal and we need to check all the possible
partitions with the current centers. cy, c2, c3 are the centers and the
points are marked with the letter A on top of them.

Initialization. An important consideration is how to initialize
the centers. While a random choice is often used in practice for
the k-means algorithm, another choice that has better provable
guarantees [28] is to use a set of centers with objective value that
is within a constant factor of the minimum. We will show that a c-
approximation for the k-means problem implies a 2c-approximation
for the fair k-means problem, and so this method could be used to



initialize centers for Fair-Lloyd as well. The best known approxi-
mation algorithm for the k-means problem finds a solution within
a factor p + € of optimal, where p ~ 6.357 [1].

THEOREM 1. If the k-means problem admits a c-approximation
in polynomial time then the fair k-means problem admits a 2c-
approximation in polynomial time.

ProOF. Let
AC,UcNA) AC,UcNB)
g(C) = :
Al |B|

This is basically the k-means objective when we consider a weight
of |}\| for the points in A and a weight of —L- Bl for the points in B.

Let O be an optimal solution to g and S be a c-approximation
solution to g (i.e., g(S) < cg(O)). Moreover
A(S,Us N A) A(S,Us N B)
A ’ |B|
< A(S, Us N A) + A(S,Us N B)
B 1Al |B|
=9(S).
Hence @(S, Us) < ¢g(0). Now let O’ be an optimal solution for ®.
Then

D(S, Us) = max{

}

, AO', U NA) A0, Uo N B)
9(0’) =
|A] |BI
A(O’ ' NA) A0 N B
< 2max{ (O’T::T ), (O,(|L];|O )}

20(0", Uy < 20(S, Us).

Also by optimality of O for g, we have g(O) < g(O’). Therefore
g(0) < 20(0", Up) < 20(S, Us) < 2¢g(0).

(S, Us

—(D((()’,'L(f))/) < 2c. o

3 GENERALIZATION TO m > 2 GROUPS

Let U = Aj U --- U Ay, Then the objective of fair k-means for m
demographic groups is to find a set of centers C that minimizes the
following

This implies that

A(C, Ue N Ay) AC, Uc N Ap)

®(C,Ucr) := max
(6 Ue) = max{=—p4 A

I3

Let U = {Uy,...,U;} be a partition of U, and ,u{ be the mean of
Ui N Aj (i.e.,, the mean of members of subgroup j in cluster i). Then
by a similar argument to Lemma 1, one can conclude that for a fair
set of centers C = {cy, ..., ¢} with respect to U, ¢; is in the convex
hull of {,uil, ..., fI"}. Then we can generalize the convex program
in Equation 1 to m demographic groups as the following:

min 6 3)

AM,UNA; ; ;
(—j)+ Z a{”Ci_,ul!”Z <9

- ,j € [m]
14;l ic[k]

ci eConv(,ul,...,pl ) i€ [k]

] |U,ﬁA‘ J_
where a; = v and M —{,ul,..

. pi}. The set of ¢;’s found by
solving the above convex program will be a fair set of centers with
respect to U. We can solve this using standard convex optimization

algorithms including gradient descent. However, similar to the
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case of two groups, we can find a fair set of centers by searching
a standard (m — 1)-simplex. Namely, we only need to search the
following set to find a fair set of centers.

m
Vi
Z={C=(c1,...,¢c):¢i = _ =1
{C=(crnmmnc) s ;W P Zy, }
The following notations will be convenient. For C = (c1 s C)s

and j € [m], let
AMI,UNAj)

O = =+ 2 el =l
J ic[k]
and F(C) = max¢[p,] fj(C). Then the convex program represented

in (3) is equlvalent tominF(C) : ¢; € Conv(ul, L) Vie k]

Let u =ci— /,1{ For a vector v, let v(s) denote its s’th component.

Then we have
d

2 j 2
lei = /11> = " ul (5)
s=1

THEOREM 2. Any optimum solution of (3) isin Z.

ProOF. We can view a set of centers as a point in a k X d dimen-
sional space. Let {e; s : i € [k], s € [d]} be the set of standard basis
of this space. Then we have

—f] €)= ZaJuj (s).

By Fact 1 and 2, we only need to show that set Z is the set of all
points for which there exists a convex combinations of Vi (C),. ..,
Vfm(C) thatis equalto0.Let0 < y1,...,¥m < 1 suchthatzt vt =

1. We want to find a C such that Zm 1ViVfi(C) = 0. Therefore for
each i, s, we have

m d L . m . .
0= vig—fi(C) = > yi2au](s) = 3 2yja (es(s) =] (5)).
j=1 LS j=1 j=1

Thus

m

ol
es) = 3 (),

1
= e+t ym 6{

C’_Z m Hi

= 1y1oc +t yma;

This shows that the set of centers that satisfy Z L ViV (C) =0,
for some y1, ...

and

, Ym, are exactly the members of Z O

Note that any element in Z is identified by a point in the standard
(m — 1)-simplex, i.e., (y1,-..,ym) such that Z L, Yj = 1. However,
the function defined on the (m — 1)- 51mplex is not necessarily
convex. Indeed, as we will show in Figure 11 in the Appendix, it is
not even quasiconvex. Thus, one can either use standard convex
optimization algorithms to solve the original convex program in (3),
or other heuristics to only search the set Z. For our experiments,
we use a variant of the multiplicative weight update algorithm on
set Z — see Algorithm 3.

To certify the optimality of the solution, one can use Fact 1 and
show that 0 is a subgradient. However, the iterative algorithms
usually do not find the exact optimum, but rather converge to the
optimum solution. To evaluate the distance of a solution from the
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optimum, we propose a min/max theorem for set Z in Section 3.2.
This theorem allows us to certify that the solutions found by our
heuristic in the experiments are within a distance of 0.01 from the
optimal.

3.1 Multiplicative Weight Update Heuristic

Note that the original optimization problem given in (3) is convex.
However we can use a heuristic to solve the problem in the y space.
One such heuristic is the multiplicative weight update algorithm
[4], precisely defined as Algorithm 3.

Algorithm 3: Multiplicative Weight Update

Input: Integers m and k, numbers a{, and centers /,zl’ fori € [k] and
MM UNA )

j € [m],and A for j € [m].
J
Yi— #,forj € [m]
fort=1,..., T do
J
; mo_ Vi% g
ci— X7 Y rem—" pf, fori € [k]

C e (c1,..s cx)
Compute f;(C) forall j € [m]
F(C) < maxje[m) f;(C)
dj < F(C) - f;(O), for j € [m]
d;

. (1 ——J
Vi y](l tHImax je[ ) dj
Normalize y;’s such that ¥72, y; = 1

end
return C

3.2 Certificate of Optimality

Next, we give a min/max theorem that can be used to find a lower
bound for the optimum value. Using this theorem, we can certify
that, in practice, the multiplicative weight update algorithm finds a
solution very close to the optimum.

THEOREM 3. Let S C [m] and

m

i
o Yi% j

= ylai + -+ ymai

Zs ={C = (c1,...

m
Zyj =1, andyj =0,Vj ¢ S}.
j=1

Then

max min f;(C) < min max C
CeZs jesfj() CeZs je fj()

Moreover
C) < C
BT % cpin, e O
Proor. Let C,C" € Zs and let y,y’ be the corresponding pa-
rameters for C,C’, respectively. Note that Zg C Z. Therefore
Zie[m] ViV (C) = 0. Hence because yj = 0 forany j ¢ S, we
have 3 ;esv;Vfj(C) = 0. Hence (X es v Vfi(C)) - (C"=C) = 0.
Therefore there exists a j* € S such that Vfj=(C) - (C" = C) > 0.
Thus because fj is convex, we have

fi#(C") = fi+(C) + Vfj+(CO) - (C" = C) = fj+(C)

Therefore maxcs fj(C’) = minjes fj(C). Note that this holds for
any C,C’ € Z and this implies the first part of the theorem.

Let C’ be the optimum solution to mincez, maxjes fj(C). Note
that by Theorem 2, this is an optimum solution to the problem of
finding a fair set of centers for the groups in S. Moreover for any
set of centers C”” outside the convex hull of the centers of groups in
S, we have maxjes fj(C’) < maxjes fj(C”") — proof of this is simi-
lar to Lemma 1. Hence max g fj(C’) < mincez,,, max;es fj(C).
Thus we have

max min fj(C) < min max C) = max c’
CGZSJESf’( ) CeZs j f}( ) f)( )
< min maxf (C) £ min max f;j(C)
CEZ[]]ES] CZ[]][J]
O

Note that we can use Theorem 3, to get a lower bound on the op-
timum solution of the convex program in (3). For example, suppose
C’ is a solution returned by a heuristic. Then

min f (C’) £ max min f (C) £ min max f;(C).
jelm)™ CeZim jelm) ™~ CeZimy jelm]”
Therefore min j¢ [, fj(C’) is a lower bound for the optimum solu-

tion. Hence the difference of the solution returned by the heuristic
with the optimum solution is at most

(jr?[ar;(]ﬁ(c ) - (jlgl[i;ll]ﬁ(c ))-

This will be very useful for the case where f;(C*) = F(C") for
all j € [m], where C* is the optimum solution. The reason is
that in this case, Theorem 3 implies maxcez,,,, min;e[m fi©) =
Mincez m| MaXje[m] fi(C). However this might not be the case
and we might have f;(C*) < F(C*) for some j. In this case we can
use S C [m]. For example an S that gives a larger lower bound and
for which maxcez, minjes fj(C) = mincezg maxjes fj(C).

3.3 Stability and Approximability

We conclude this section by a discussion on the stability and the
approximability of fair k-means for m groups.

Our stability results generalizes to m demographic groups. Let

* = {c],...,c}} be an optimal solution, and S C [m]. Also let
£i(C*) = max;e [y, fi(C*) for j € S,and f;(C*) < max;ec[pm) fl(C*)
for j ¢ S. Then one can see that, for all i € [k], ¢} € Conv({,u{ :
j € S}). This uniquely determines the location of the optimal
solution, and thus we cannot improve the value of functions f;
where j ¢ S. Moreover, with an argument similar to Proposition 1,
one can deduce that we cannot improve the value of functions f;
where j € S.

Moreover, the Fair-Lloyd algorithm for m demographic groups
converges to a solution in finite time, essentially because the num-
ber of possible partitions of points is finite. Finally, if the k-means
problem admits a c-approximation then the fair k-means problem
for m demographic groups admits an mc-approximation — the proof
is similar to the proof of Theorem 1.

4 EXPERIMENTAL EVALUATION

We consider a clustering to be fair if it has equal clustering costs
across different groups. We compare the average clustering cost
for different demographic groups on multiple benchmark datasets,
using Lloyd’s algorithm and Fair-Lloyd algorithm. The code of our
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LFW dataset Adult dataset Credit dataset
1800 —Lloyd (Female) 1o =Lloyd (Female) 16 —Lloyd (Lower Education)
1400 ~Fair-Lloyd (Female) 105 Fair-Lloyd (Equal Cost) 15 Falr—Lloy.d (Equal CO§t)
. =Lloyd (Male) —Lloyd (Higher Education)
< Fair-Lloyd (Male) 100 14
g _ 1300 =Lloyd (Male) - w
7o) 72} €K
8 8 o 8 95 8 13
3 1200
90 12
1100 85 11
1000 80 10
4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16
k k k
1500 105 17
1400 100 16
15
< 1300 95
&) 8 14
A~ S
E 1200 90 13
1100 12
85
11
1000
80 10
4 6 8 10 12 14 16 4 6 8 10 12 14 16
1500 1056 17
1400 16
100
< 15
Q 1300
A~ g 14
53 95
LE 1200 13
~
B 1100 90 12
1
1000
4 6 8 10 12 14 16 85 10
k 4 6 8 10 12 14 16 4 6 8 10 12 14 16

Figure 5: Average clustering cost of different groups when using Fair-Lloyd algorithm versus the standard Lloyd’s. Rows correspond to different
pre-processing methods and columns to the datasets. Note that the fair clustering costs for the two groups are identical or nearly identical in

all datasets.

experiments is publicly available at https://github.com/fairkmeans/
Fair-K-Means- Clustering.

We used three datasets: 1) Adult dataset [17], consists of records
of 48842 individuals collected from census data, with 103 features.
The demographic groups considered are female/male for the 2-
group setting and five racial groups of “Amer-Indian-Eskim”, “Asian-
Pac-Islander”, “Black”, “White”, and “Other” for the multiple-groups

o

.‘g 4
%5
© —Lloyd
2\, —Fair-Lloyd
1
20 40 60 80 100

k
Figure 6: Adult dataset: The maximum ratio of average clustering
cost between any two racial groups: “Amer-Indian-Eskim”, “Asian-
Pac-Islander”, “Black”, “White”, and “Other”.

setting; 2) Labeled faces in the wild (LFW) dataset [21], consists of
13232 images of celebrities. The size of each image is 49 X 36 or a
vector of dimension 1764. The demographic groups are female/male;
and 3) Credit dataset [43], consists of records of 30000 individu-
als with 21 features. We divided the multi-categorical education

110
105
-e-Lloyd w/o PCA (Female)
100 -e-Lloyd w/ PCA (Female)
- -+-Lloyd w/ Fair-PCA (Female)
2 95 =s+Fair-Lloyd w/o PCA (Equal Cost)
S =«=Fair-Lloyd w/ PCA (Equal Cost)
90 «=+Fair-Lloyd w/ Fair-PCA (Equal Cost)
—Lloyd w/o PCA (Male)
—Lloyd w/ PCA (Male)
85 —Lloyd w/ Fair-PCA (Male)
80

Figure 7: Adult dataset: comparison of the standard Lloyd’s and Fair-
Lloyd algorithm for the three different pre-processing choices of
w/o PCA, w/ PCA, and w/ Fair-PCA.
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LFW dataset Adult dataset Credit dataset
25 12 6
o Fair-Lloyd
» —Lloyd 10 5
@
=1
£15 8 4
o0
= 6 3
g 1
j 4 2
0.5
2 1
0
4 6 8 10 12 14 16 0 0
k 4 6 8 10 12 14 16 4 6 8 10 12 14 16

Figure 8: Running time (seconds) of Fair-Lloyd algorithm versus the standard Lloyd’s algorithm on the k-dimensional PCA space for 200
iterations.

LFW dataset Adult dataset Credit dataset
700 15 115
—Lloyd
1" .
® 14 —Fair-Lloyd
2 650 10 I ——
< 13 5
>
® 10
.2, 600 12
s 9.5
L 11 9
8 550
10 85
500 ‘ ‘ ‘ 9 ‘ ‘ ‘ ‘ 8 ‘ ‘ ‘ : ‘
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
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Figure 9: Convergence rate of Fair-Lloyd algorithm versus the standard Lloyd’s algorithm for k = 10. The plotted objective value for the
standard Lloyd is the average cost of clustering over the whole population, and the objective value for Fair-Lloyd is the maximum average
cost of the demographic groups. The reported objective values are averaged over 20 runs and the shaded areas are the standard deviation of

these runs.

attribute to “higher educated” and “lower educated”, and used these
as the demographic groups.

As different features in any dataset have different units of mea-
surements (e.g., age versus income), it is standard practice to normal-
ize each attribute to have mean 0 and variance 1. We also converted
any categorical attribute to numerical ones. For both Lloyd’s and
Fair-Lloyd we tried 200 different center initialization, each with 200
iterations. We used random initial centers (starting both algorithms
with the same centers in each run).

For clustering high-dimensional datasets with k-means, Princi-
pal Component Analysis (PCA) is often used as a pre-processing
step [16, 28], reducing the dimension to k. We evaluate Fair-Lloyd
both with and without PCA. Since PCA itself could induce represen-
tational bias towards one of the (demographic) groups, Fair-PCA
[35] has been shown to be an unbiased alternative, and we use it as a
third pre-processing option. We refer to these three pre-processing
choices as w/o PCA, w/ PCA, and w/ Fair-PCA respectively.

Results. Figure 5 shows the average clustering cost for different
demographic groups. In the first row, all datasets are evaluated
in their original dimension with no pre-processing applied (w/o
PCA). In the second and third rows (w/ PCA and w/ Fair-PCA), the
PCA/Fair-PCA dimension is equal to the target number of clusters k.

Our first observation is that the standard Lloyd’s algorithm re-
sults in a significant gap between the clustering cost of individuals

in different groups, with higher clustering cost for females in the
Adult and LFW datasets, and for lower-educated individuals in the
Credit dataset. The average clustering cost of a female is up to 15%
(11%) higher than a male in the Adult (LFW) dataset when using
standard Lloyd’s. A similar bias is observed in the Credit dataset,
where Lloyd’s leads up to 12% higher average cost for a lower-
educated individual compared to a higher-educated individual.

Our second observation is that the Fair-Lloyd algorithm effec-
tively eliminates this bias by outputting a clustering with equal
clustering costs for individuals in different demographic groups.
More precisely, for the Credit and Adult datasets the average costs
of two demographic groups are identical, represented by the yel-
low line in Figure 5. For the LFW dataset, we observe a very small
difference in the average clustering cost over the two groups in
the fair clustering (0.4%, 1% and 0.6% difference for without PCA,
with PCA, and with Fair-PCA respectively). Notably, Fair-Lloyd
mitigates the bias of the output clustering independent of whether
it is applied on the original data space, on the PCA space, or on the
Fair-PCA space. In Figure 7, we show a snapshot of performance of
Fair-Lloyd versus Lloyd’s on the Adult dataset for all three different
pre-processing choices.

Figure 6 shows the maximum ratio of average cost between any
two racial groups in the Adult dataset, which comprised of five
racial groups “Amer-Indian-Eskim”, “Asian-Pac-Islander”, “Black”,
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Figure 10: Comparison of socially fair k-means (Fair-Lloyd) to proportionally fair k-means (Fairlet) on the Credit and Adult dataset in terms

of proportionality and clustering cost.

“White”, and “Other”. Note that, the max cost ratio of one indicates
that all groups have the same average cost in the output clustering.
As we observe, the standard Lloyd algorithm results in a significant
gap between the cost of different groups resulting in a high max
cost ratio overall. As for the Fair-Lloyd algorithm, as the number
of clusters increases, it outputs a clustering of the data with same
average cost for all the demographic groups.

The price of fairness. Does requiring fairness come at a price,
in terms of either running time or overall k-means cost? Figure 8
shows the running time of Lloyd’s versus Fair-Lloyd for 200 it-
erations. Running time for all three datasets is measured in the
k-dimensional PCA space, where k is the number of clusters. As
we observe, Fair-Lloyd incurs a very small overhead in the run-
ning time, with only 4%, 4%, and 8% increase (on average over k)
for the Adult, Credit, and LFW dataset respectively. Moreover, as
illustrated in Figure 9, the convergence rate of Lloyd and Fair-lloyd
are essentially the same in practice. Finally, the increase in the stan-
dard k-means cost of Fair-Lloyd solutions (averaged over the entire
population ) was at most 4.1%, 2.2% and 0.3% for the LFW, Adult,
and Credit datasets, respectively. Arguably, this is outweighed by
the benefit of equal cost to the two groups.

Socially fair versus proportionally fair. The first introduced notion
of fairness for k-means clustering considered the proportionality
of the sensitive attributes in each cluster [14]. For the case of two
groups A and B (e.g., male and female), and a clustering of points
U ={Uy,..., U}, the proportionality or balance of the clustering
U is formally defined as

[ANU;| |BNU|

min min{ ——, ——
1<i<k [BNU;|" [ANT]

We emphasize that improving the proportionality is at odds with
improving the maximum average cost of the groups. This can be
seen in Figure 2. To illustrate this more, we compared our method
to one of the proposed methods that guarantees the proportionality
of the clusters on the credit and adult datasets. We used the code
provided in [10]. As illustrated in Figure 10, the proportionally
fair method fails to achieve an equal average cost for different
populations and our methods do not achieve proportionally fair
clusters.

5 DISCUSSION

Fairness is an increasingly important consideration for Machine
Learning, including classification and clustering. Our work shows
that the most popular clustering method, Lloyd’s algorthm, can be
made fair, in terms of average cost to each subgroup, with minimal
increase in the running time or the overall average k-means cost,
while maintaining its simplicity, generality and stability. Previous
work on fair clustering focused on proportional representation of
sensitive attributes within clusters, while we optimize the maxi-
mum cost to subgroups. As Figure 2 suggests, and Figure 10 shows
on benchmark data sets, these criteria lead to different solutions.
We believe that both perspectives are important, and the choice of
which clustering to use will depend on the context and application,
e.g., proportional representation might be paramount for partition-
ing electoral precincts, while minimizing cost for every subgroup
is crucial for resource allocation.



Socially Fair k-Means Clustering

REFERENCES

(1]

2]

[10]

[11]

[12

[13]

[14]

(15

[16]

[17]
[18]

[19

[20]

[21

[22]

[23]

[24]

[25]

[26

[27

[28]

[29

[30]

AHMADIAN, S., NOROUZI-FARD, A., SVENSSON, O., AND WARD, ]. Better guarantees
for k-means and euclidean k-median by primal-dual algorithms. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017 (2017), C. Umans, Ed., IEEE Computer Society, pp. 61-72.
ALOISE, D., DESHPANDE, A., HANSEN, P., AND PopAT, P. Np-hardness of euclidean
sum-of-squares clustering. Machine learning 75, 2 (2009), 245-248.

ANDERsON, T. K. Kernel density estimation and k-means clustering to profile
road accident hotspots. Accident Analysis & Prevention 41, 3 (2009), 359-364.
ARORA, S., HazAN, E., AND KALE, S. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing 8, 1 (2012), 121-164.
AwAsTHI, P., CHARIKAR, M., KRISHNASWAMY, R., AND SiNop, A. K. The hardness
of approximation of euclidean k-means. arXiv preprint arXiv:1502.03316 (2015).
AwASTHL, P., AND SHEFFET, O. Improved spectral-norm bounds for clustering. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 2012, pp. 37-49.

BACKURS, A., INDYK, P., ONAK, K., SCHIEBER, B., VAKILIAN, A., AND WAGNER, T.
Scalable fair clustering. arXiv preprint arXiv:1902.03519 (2019).

BALAKRISHNAN, P. S., COOPER, M. C., Jacos, V. S., AND LEwIs, P. A. Comparative
performance of the fscl neural net and k-means algorithm for market segmenta-
tion. European Journal of Operational Research 93, 2 (1996), 346-357.

Barocas, S., HARDT, M., AND NARAYANAN, A. Fairness and Machine Learning.
fairmlbook.org, 2019. http://www.fairmlbook.org.

BERA, S., CHAKRABARTY, D., FLORES, N., AND NEGAHBANI, M. Fair algorithms
for clustering. In Advances in Neural Information Processing Systems (2019),
pp. 4954-4965.

CeLis, L. E., KEswaNiI, V., STRASZAK, D., DESHPANDE, A., KATHURIA, T., AND
Visunor, N. K. Fair and diverse dpp-based data summarization. arXiv preprint
arXiv:1802.04023 (2018).

CeLrs, L. E., STRAsZAK, D., AND VisuNor, N. K. Ranking with fairness constraints.
arXiv preprint arXiv:1704.06840 (2017).

CHEN, X,, FAIN, B, Lu, L., AND MUNAGALA, K. Proportionally fair clustering. In
International Conference on Machine Learning (2019), pp. 1032-1041.
CHIERICHETTL F., KUMAR, R., LATTANZI, S., AND VASSILVITSKIL, S. Fair clustering
through fairlets. In Advances in Neural Information Processing Systems (2017),
pp. 5029-5037.

DieTERICH, W., MENDOZA, C., AND BRENNAN, T. Compas risk scales: Demonstrat-
ing accuracy equity and predictive parity. Northpointe Inc (2016).

DING, C., AND HE, X. K-means clustering via principal component analysis. In
Proceedings of the twenty-first international conference on Machine learning (2004),
p- 29.

Dua, D., AND GRAFF, C. UCI machine learning repository, 2017.

DwoRrk, C., HARDT, M., PrTass1, T., REINGOLD, O., AND ZEMEL, R. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference (2012), ACM, pp. 214-226.

GrusesIc, T. H. On the application of fuzzy clustering for crime hot spot detection.
Journal of Quantitative Criminology 22, 1 (2006), 77.

HARDT, M., PrICE, E., AND SREBRO, N. Equality of opportunity in supervised
learning. In Advances in neural information processing systems (2016), pp. 3315—
3323.

HuAaNG, G. B., MATTAR, M., BERG, T., AND LEARNED-MILLER, E. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Huang, L., JIANG, S., AND VisHNoI, N. Coresets for clustering with fairness
constraints. In Advances in Neural Information Processing Systems (2019), pp. 7589—
7600.

Jain, A. K. Data clustering: 50 years beyond k-means. Pattern recognition letters
31, 8 (2010), 651-666.

Kanunco, T., MounT, D. M., NETaNYAHU, N. S, P1aTko, C. D., SILVERMAN, R,
AND Wu, A. Y. A local search approximation algorithm for k-means clustering.
In Proceedings of the eighteenth annual symposium on Computational geometry
(2002), pp. 10-18.

KLEINBERG, J., MULLAINATHAN, S., AND RAGHAVAN, M. Inherent trade-offs in the
fair determination of risk scores. arXiv preprint arXiv:1609.05807 (2016).
KLEINDESSNER, M., SAMADI, S., AWASTHI, P., AND MORGENSTERN, J. Guarantees
for spectral clustering with fairness constraints. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (Long Beach, California, USA, 09-15 Jun
2019), K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97 of Proceedings of Machine
Learning Research, PMLR, pp. 3458-3467.

KrisHNA, K., AND MURTY, M. N. Genetic k-means algorithm. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 29, 3 (1999), 433-439.
KuMAR, A., AND KANNAN, R. Clustering with spectral norm and the k-means
algorithm. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science (2010), IEEE, pp. 299-308.

LLoyp, S. Least squares quantization in pcm. IEEE transactions on information
theory 28, 2 (1982), 129-137.

MaAcQUEEN, J. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical

(31]

(32]

(33]

(34]

[35

[36]

[37

[39

[40

(41

[42

[43]

statistics and probability (1967), vol. 1, Oakland, CA, USA, pp. 281-297.
MARTINEZ, N., BERTRAN, M., AND SAPIRO, G. Minimax pareto fairness: A multi
objective perspective. In International Conference on Machine Learning (ICML
2020) (2020).

Narg, S. V. Crime pattern detection using data mining. In 2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
Workshops (2006), IEEE, pp. 41-44.

OsTROVSKY, R., RABANT, Y., SCHULMAN, L. J., AND Swamy, C. The effectiveness of
lloyd-type methods for the k-means problem. Journal of the ACM (JACM) 59, 6
(2013), 1-22.

Ray, S., AND Turi, R. H. Determination of number of clusters in k-means clus-
tering and application in colour image segmentation. In Proceedings of the 4th
international conference on advances in pattern recognition and digital techniques
(1999), Calcutta, India, pp. 137-143.

SAMADL, S., TANTIPONGPIPAT, U. T., MORGENSTERN, J. H., SINGH, M., AND VEMPALA,
S. S. The price of fair PCA: one extra dimension. In Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada (2018), S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
pp. 10999-11010.

SCHMIDT, M., SCHWIEGELSHOHN, C., AND SOHLER, C. Fair coresets and streaming
algorithms for fair k-means clustering. arXiv preprint arXiv:1812.10854 (2018).
SCHMIDT, M., SCHWIEGELSHOHN, C., AND SOHLER, C. Fair coresets and streaming
algorithms for fair k-means. In International Workshop on Approximation and
Online Algorithms (2019), Springer, pp. 232-251.

ScuLLEY, D. Web-scale k-means clustering. In Proceedings of the 19th international
conference on World wide web (2010), pp. 1177-1178.

SELIM, S. Z., AND IsMAIL, M. A. K-means-type algorithms: A generalized con-
vergence theorem and characterization of local optimality. IEEE Transactions on
pattern analysis and machine intelligence, 1 (1984), 81-87.

STEINHAUS, H. Sur la division des corps materiels en parties. bull. acad. polon.
sci., cl. iii vol iv: 801-804.

TANTIPONGPIPAT, U., SAMADI, S., SINGH, M., MORGENSTERN, J. H., AND VEMPALA, S.
Multi-criteria dimensionality reduction with applications to fairness. In Advances
in Neural Information Processing Systems (2019), pp. 15135-15145.

VATTANI, A. K-means requires exponentially many iterations even in the plane.
Discrete & Computational Geometry 45, 4 (2011), 596-616.

YeH, I, AND LIEN, C. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with
Applications 36, 2 (2009), 2473-2480.

ZAFAR, M. B., VALERA, I, RODRIGUEZ, M. G., AND GumMADI, K. P. Fairness
constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259
(2015).


http://www.fairmlbook.org

6 APPENDIX

The functions f; and their maximum are not necessarily quasicon-
vex in terms of y;’s. Figure 11 shows an example — it illustrates a
level set of function F. In this example, we have two clusters and
three groups. The parameters used for this example are listed in

the corresponding table.

0.75

71

0.5

0.25

a{ ] =1 ] = J =
i=1 0.9 | 0.01 | 0.95
i=2 0.1 | 0.99 | 0.05
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Figure 11: An example that shows F is not quasiconvex. The yellow
area represents the points for which the value of F is less than 4.2.
As one can see, the yellow area is not convex and therefore F is not
quasiconvex in terms of y;’s. The table shows the parameters that

were used for this example.
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