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ABSTRACT: We report label-free detection of 86-base single-
stranded DNA (ssDNA) gene segments by surface-enhanced
Raman spectroscopy (SERS). The use of a slippery liquid infused
porous (SLIP) membrane induced aggregation of 43 nm gold
nanoparticles and ssDNA upon pin-free droplet evaporation. The
combined SLIPSERS approach generates significant numbers of
SERS hot-spots and enabled detection at the 100 nM level of mecA
and intll gene segments—two genes of interest in the context of
antibiotic resistance. Tree-based multiclass support vector machine
(Tr-SVM) classifiers were built to discriminate SERS spectra of 12
different gene sequences obtained by SLIPSERS: mecA, intll, as
well as analogues of mecA and intll, respectively, with 2—10 base
mismatches, and two random sequences. The trained predictive Tr-
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SVM classifiers correctly identified each gene sequence with a prediction accuracy of ~90%. This study illustrates a novel means for
discriminatory label-free SERS detection of ssDNA enabled by Tr-SVM.

he rapid analysis of nucleic acids is of great interest for
the characterization of microbial communities and
biological function in molecular biology and genetics across
numerous science, engineering, and industrial sectors.'”
Polymerase chain reaction (PCR)-based approaches are the
most widely used techniques to amplify and detect DNA and
RNA sequences.g_10 Over the last two decades, next-
generation sequencing (NGS) has rapidly developed as a
tool for DNA profiling."' ™" However, PCR and NGS both
require not only centralized research facilities with professional
personnel, but are also characterized by high costs and delayed
analysis times. These entry barriers limit the widespread
application of these tools. Hence, there is a need for alternative
analytical approaches for the detection of nucleic acids that are
more rapid, more accessible, and more cost effective.
Surface-enhanced Raman spectroscopy (SERS) is a promis-
ing candidate as an analytical biosensing tool for nucleic acid
detection. Inelastic Raman scattering arising from vibrational
modes within molecules provides unique molecular finger-
prints.'* The application of Raman scattering for sensing has
historically been limited due to the intrinsic small Raman cross
section of molecules. Following the discovery of SERS, the
phenomenon whereby the Raman signal is enhanced by a
factor of 10°—10° when an analyte is situated adjacent to the
surface of a plasmonic metal substrate,"® interest in Raman-
based methods for chemical and biological analysis has rapidly
increased. The SERS enhancement factor is determined by the
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electromagnetic resonance properties of a plasmonic rough-
ened surface or plasmonic nanoparticles. The control of
plasmonic gaps w1th1n the sub-10 nm regime is critical for
SERS enhancement.'®

Recently, researchers have used SERS to detect double-
stranded nucleic acids as well as single-stranded DNA
(ssDNA) oligonucleotides.'”~** In particular, the Bell group
has conducted experiments to develop label-free detection of
sub-micromolar concentrations of DNA or RNA using Ag
colloids with MgSO, as an aggregating agent.”>** In addition,
the Vo-Dinh group has synthesized nanoprobes that induce
high SERS signals following contact with target DNA.***°
They also developed a sandwich approach in which target
DNA was hybridized to both metal nanoparticles and magnetic
beads functlonahzed with complementary oligonucleotides for
SERS enrichment.””

Herein, we applied the slippery liquid infused porous SERS
(SLIPSERS) method developed by Wong and colleagues™® for
the label-free detection of ssDNA. A SLIP membrane was
prepared by infusing the hydrophobic perfluorinated lubricant,
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Table 1. Gene Sequences for mecA, intll, four mismatched analogues for mecA and intI1, and nonspecific (NS)1 and 2“

§’- sequences -3’

mecA

TGGTGAAGTTGTAATCTGGAACTTGTTGAGCAGAGGTTCTTT

TTTATCTTGGGTTAATTTATTATATTCTTCGTTACTCATGCCAT

mecA-M2

TGGTGAAGTGGTAATCTGGAACTTGTTGAGCACAGGTTCTTT

TTTATCTTGGGTTAATTTATTATATTCTTCGTTACTCATGCCAT

mecA-M6

TGGTTAAGTTCTAATCTGAAACTTGTTTAGCACAGGTTCCTTT

TTATCTTGGGTTAATTTATTATATTCTTCGTTACTCATGCCAT

mecA-M10

TGGTTACGTTCTAATCTCAAACTTCTTTAGCACAGGATCCTTT

TTATCTTGGGTTAATTTATTATATTCTTCGTTACTCATGCCAT

mecA-M20

TCGTTTCGGTCCAAGCTCAAACTACTTTGGTACATGATCCGTT

TTATCTTGGGTTAATTTATTATATTCTTCGTTACTCATGCCAT

intll

GTGCACGGGCATGGTGGCTGAAGGACCAGGCCGAGGGCCGCA

GCGGCGTTGCGCTTCCCGACGCCCTTGAGCGGAAGTATCCGCGC

intl1-M2

GTGCACGGGAATGGTGGCTGAAGGACCAGGTCGAGGGCCGCA

GCGGCGTTGCGCTTCCCGACGCCCTTGAGCGGAAGTATCCGCGC

intl1-M6

GTACACAGGCATTGTGGCTGAAGAACCAGACCGAGGACCGCA

GCGGCGTTGCGCTTCCCGACGCCCTTGAGCGGAAGTATCCGCGC

intI1-M10

GAGCAGGCGAATGGTGGTTGAACGACTAAGTCGAGGGCTGCA

GCGGCGTTGCGCTTCCCGACGCCCTTGAGCGGAAGTATCCGCGC

intI1-M20

GACCATGCCCGTGATGAGTCAATAACAATACTGACGGATGGAG

CGGCGTTGCGCTTCCCGACGCCCTTGAGCGGAAGTATCCGCGC

NS1

ATGGCATGAGTAACGAAGAATATAATAAATTAACCCAAGATAA

AAAAAGAACCTCTGCTCAACAAGTTCCAGATTACAACTTCACCA

NS2

ACGAAGAAGAATATAATAAATTAACCCAGGAAGCGCAACGCC

GCTGCGGCCCTCGGCCTGGTCCTTCAGCCACCATGCCCGTGCAC

“Mismatched bases are bolded.

perfluoropolyether (PFPE), into a poly(tetrafluoroethylene)
(PTFE)-lined porous membrane by simple centrifugation.
When a water droplet containing plasmonic nanoparticles and
ssDNA evaporates on the SLIP membrane, SERS hot-spots are
generated upon sample aggregation without the coffee ring
effect.”® " We synthesized gold nanoparticles (AuNPs) for
the SERS application and tested two gene segments: mecA and
the class 1 integron-integrase intIl. mecA is a representative
antibiotic resistance gene (ARG) that encodes resistance to
methicillin and other f-lactam antibiotics.”"** It is commonly
found within methicillin-resistant Staphylococcus aureus
(MSRA)—one of the most widespread antibiotic-resistant
pathogens. intll is a constituent of integrons in plasmids that
facilitate horizontal gene transfer between bacterial species
through bacterial conjugation. Previous studies have shown
that the concentration of intll correlates with the total
concentration of ARGs.*”** Both mecA and intl1 are potential
indicators of antibiotic resistance in clinical and environmental
samples.

A SERS spectrum provides a unique molecular fingerprint
allowing molecule identification; however, the similarities of
SERS spectra between gene sequences remain a challenge for
discrimination. While the Bell and Ren groups reported label-
free SERS detection of DNA with single-base sensitivity,”*
their discriminations were limited to a direct comparison of
peak ratios or to simple multivariate statistical approaches,
such as the unsupervised learning tool principal component
analysis (PCA), that cannot be used to evaluate prediction
accuracy for high dimensional and correlated datasets.
Although supervised classification tools such as parametric
discriminant analysis can be used to evaluate prediction
accuracy, they were built under strong distribution assump-
tions such as normality and a specific covariance structure that
are not satisfied by SERS spectral data. More powerful

9320

classifiers are required to achieve a higher discriminatory
capacity of SERS spectra.

We built a flexible discriminatory tool by combining a tree-
based decision rule and a multiclass support vector machine
(Tr-SVM) for the identification of gene sequences based on
their SERS spectra. A tree-based decision rule groups
correlated classes and provides multiple classifiers based on
decision levels. Each classifier can be better optimized to the
dataset of each group than a single classifier. SVM is a machine
learning technique that differentiates multidimensional data by
a separating hyperplane.””*® The optimal hyperplane max-
imizes the margin of the data between different classes. SVM
has been shown to perform well in a variety of settings
including omics and is often considered among the best “out of
the box” classifiers. It also presents one of the most robust
prediction methods.”” SVM can digest high dimensional data
containing several spectral features from SERS spectra. The
flexible functionality of using different kernel functions (e.g.,
linear, polynomial, Gaussian) to define the hyperplane
boundary enables discrimination of complex data structures.
For instance, SVM was used to discriminate the Raman spectra
of Legionella species from those of other aquatic bacteria.*’ It
was found that the trained model correctly predicted nine
Legionella bacteria at the species level with an accuracy of
~86%.

Herein, we sought to combine SLIPSERS-enabled label-free
detection of ssDNA with the development of a functional
predictive model unifying a tree-based decision procedure and
a multiclass SVM classifier. As shown, this combined approach
provides the ability to discriminate SERS spectra arising from
multiple gene sequences.

https://doi.org/10.1021/acs.analchem.0c04576
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Figure 1. (A) Schematic illustration of the preparation of the SLIPSERS substrate and SERS spectra collection using Raman spectroscopy. The
inset (a) shows the image of the droplet on the membrane with the contact angle of 118°. (B) Ultraviolet—visible (UV—vis) absorbance spectrum
of as-synthesized AuNPs with the peak at 533 nm and insets show a TEM picture and size distribution of AuNPs (N = 200) measured by the
Image]J software. (C) Microscopic image of the aggregate of AuNPs and ssDNA (left) and the SERS map at 77 cm™ of the same substrate (right).
(D) SEM-EDS element mapping picture of the SLIPSERS substrate on the PTFE-lined membrane (left) and the SEM picture of aggregation of

AuNPs (right).

B EXPERIMENTAL SECTION

Materials. Gold chloride trihydrate (HAuCl,-3H,0),
sodium citrate tribasic dihydrate (Na;Cit-2H,0), and
nuclease-free water were purchased from Sigma-Aldrich (St.
Louis, MO). A PTFE-lined membrane with a 2 ym pore size
was purchased from SKC Inc. (Eighty Four, PA). The
perfluorinated liquid lubricant PFPE (Dupont Krytox GPL
103) was purchased from Zoro Tool Inc. (Buffalo Grove, IL).
Prior to use, all glassware was cleaned with aqua regia—3:1 (v/
v) hydrochloric acid (HCI)/nitric acid (HNO,).

Gene Sequence Design. We tested two different ssDNA
oligonucleotides: mecA and intI1. Sequences for mecA and intl1
were obtained from the National Center for Biotechnology
Information (NCBI) database using the Basic Local Alignment
Search Tool (BLAST). Briefly, forward and reverse primers
matching each type of ssDNA were identified from previous
studies.*”** BLAST then identified the best-fit sequences with
complementary genes to two primers. Using the identified
sequences for mecA and intI1, we selected 86-base-length gene
segments for each. Second, for the development of the
discriminatory and predictive model with high base sensitivity,
we tested four analogues of the mecA and intl1 gene segments
with 2, 6, 10, and 20 base mismatches. These are annotated as
mecA or intl1-M2, -M6, -M10, and -M20. In addition, we
tested two randomly designed sequences that we refer to as
nonspecific 1 and 2 (NS1 and NS2). The sequences are
provided in Table 1. Further, to investigate the effect of
sequence differences with the same base composition and a
single-base mismatch on the SERS spectra, we also tested an
intI1 gene segment with two base position alternations and an
intI1 gene segment with one base mismatch (infI1-M1).

All oligonucleotides were purchased from Integrated DNA
Technologies Corp. (Coralville, IA) with the request of

polyacrylamide gel electrophoresis (PAGE) purification.
Following arrival in the solid state, the oligonucleotides were
rehydrated using nuclease-free water and stored at —20 °C
prior to use. The initial concentration of ssDNA was quantified
using a Qubit fluorometer.

Synthesis and Characterization of the SLIPSERS
Substrate. We synthesized citrate-coated AuNPs using a
seed-mediated growth method reported previously.”’ To
synthesize the seed solution, 1 mM HAuCl,-3H,0 was heated
to boil and 3.88 mM Na;Cit-2H,0 was added as a reducing
agent. After 30 min of stirring, the solution was cooled and
filtered through a 0.22 ym PTFE filter. Then, a 100 mL aliquot
of 0.254 mM HAuCl,-3H,0 was heated to boil followed by the
addition of 0.85 mL of seed solution and 0.44 mL of 38.8 mM
Na;Cit-2H,0O. The mixture was refluxed for 30 min and cooled
to room temperature. As-synthesized AuNPs were charac-
terized using a Cary 5000 UV—Vis—NIR spectrophotometer, a
JEOL 2100 transmission electron microscope (TEM), and a
Zetasizer Nano ZS dynamic light scattering (DLS) instrument.
The final product was stored at 4 °C prior to use.

Figure 1A illustrates the preparation of the SLIPSERS
substrate and a SERS measurement. To make the SLIP
membrane, we followed the protocol of Wong et al. with minor
changes.”® A PTFE-lined porous membrane was immersed in
PFPE and then subjected to centrifugation at 100 X g for 1 min
to remove excess fluids. The SLIP membrane was then
transferred onto a glass slide. Then, 5 uL of as-synthesized 0.1
nM AuNPs with 0.2% glycerol and 100 nM ssDNA was
pipetted and mixed thoroughly on the SLIP membrane. Prior
to addition to the membrane, the samples were preheated to
95 °C for 30 s to ensure oligonucleotide extension.’® Glycerol
maintains the wet state of the three-dimensional (3D)
aggregate matrix and prevents the quenching of SERS hot-
spots.”"* The contact angle of the droplet on the SLIP

https://doi.org/10.1021/acs.analchem.0c04576
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Figure 2. (A) Average of 400 SERS spectra for 100 nM mecA and intll gene segments in the range from 600 to 1700 cm™". (B) Histogram of the
normalized Raman intensity at 731 cm™ for 100 nM mecA and intl1 gene segments. Insets show the spatial normalized intensity distribution across

the scanning area.

membrane was measured using a ramé-hart Model 250
standard goniometer. The droplet was then evaporated at 60
°C. After evaporation, the 3D aggregate of AuNPs and the
analytes (i.e., the SLIPSERS substrate) was a visible black dot.
The SLIPSERS substrates were characterized by FEI environ-
mental scanning electron microscopy (SEM) and Bruker
energy dispersive spectroscopy (EDS).

Instrumentation. SERS spectra of the target ssDNA on
the SLIPSERS substrate were collected using a WITec
AlphaSO0R Raman spectrometer with a 785 nm laser and a
10X confocal microscope objective. A 300 gr/mm grating was
used and the spectral center was set to 1500 cm™". Following
microscope focusing, 20 X 20 (X X Y) points were measured
across a 100 X 100 ym” area using a 0.1 s integration time per
point. SERS peaks were selected using automated peak labeling
within the WITec Control Five (v.5.0) software with the
minimum relative height set to 0.1. The baseline was corrected
using an asymmetric least squares smoothing method.

Evaluation of the Tree-Based Multiclass SVM (Tr-
SVM) Classifiers. We prepared 12 different gene sequences
(i.e, mecA and intll, four analogues with 2—20 base
mismatches for each, and two nonspecific genes) to collect
our SERS spectral dataset and evaluated their prediction
powers using the Tr-SVM classifiers. Once the ssDNA was
subjected to SLIPSERS, 400 (20 X 20) SERS spectra were
collected per gene sequence using the area scan method.
Within the spectra, 21 spectral features in the range of 600—
1700 cm™' labeled by the WITEC Control Five (v.5.0)
software were extracted after baseline correction. To account
for point-to-point variability, the extracted features were
normalized by the peak at 959 cm™ corresponding to the
vibrational mode of deoxyribose.'” A total of 4800 spectra
from 12 gene sequences were used to develop the
discriminatory SVM classifier. Prior to the development of
the predictive model, we designed a tree-based classification
system with two decision levels to reduce the complexity of
discrimination. At the first decision level, considering the
similarity in base composition between the 12 gene sequences,
the mecA or intll gene segments and their four base mismatch
analogues were considered as two groups (mecA and intll
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groups). The difference in base composition for the mecA and
intl1 gene segments within each group ranged from 2.3 to 16.3
and 4.7 to 23.3%, respectively, while that for NS1 and NS2
varied from 60.5 to 67.4% and 32.6 to 74.4%, respectively. At
this decision level, the SVM classifier was trained to
discriminate four gene groupings (i.e., mecA and intll groups,
NS1, and NS2). At the second decision level, two models were
separately trained to discriminate the SERS spectra of five
mecA and five intI1 species independently (mecA, mecA-M2,
mecA-M6, mecA-M10, mecA-M20; intll, intl1-M2, intI1-M6,
infl1-M10).

To discriminate the 12 gene sequences, a multiclass SVM
classifier with a binary class tool was trained using the classifier
learner application in Mathworks MATLAB/SIMULINK
(v.R2019b). To illustrate, for three or more classes, multiple
binary classifiers were further evaluated for every possible pair
of classes and the most voted class was predicted. When
training was completed, the performance of the SVM classifier
was evaluated in terms of the true positive rate, true negative
rate, false-positive rate, and false-negative rate. These results
were reported and visualized using a confusion matrix. With
these rates, the SVM classifier was exhaustively evaluated in
terms of accuracy, sensitivity, and specificity. Accuracy
indicates how the model correctly identifies and excludes a
given condition. Sensitivity and specificity evaluate how the
classifier correctly predicts the positive and rules out the
negative result, respectively. Ten-fold cross-validation was
conducted to validate the trained model. A total of 4800
spectra were divided into 10 subsets of equal size. Only one of
the subsets was subjected to the test and the rest were used to
train the classifier. The procedure was iterated until every
subset was used for testing. Instead of leave-one-out cross-
validation (LOOCYV), 10-fold cross-validation has a computa-
tional advantage over LOOCYV while providing more accurate
estimates of the test error rate because it uses less correlated
trained sets. In addition, the iterative estimation of the
prediction on unseen data by cross-validation reflects how well
the model generalizes to unseen data.

https://doi.org/10.1021/acs.analchem.0c04576
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Figure 3. (A) SERS spectra for 12 different gene sequences normalized by the 959 cm™ peak (dark gray region) stacked vertically. The distinct
peaks in the gray region were identified as components of ssDNA. (B) Tree-based multiclass classification model at first (mecA gene segment and
its analogues vs infI1 gene segment and its analogues vs nonspecific 1 vs nonspecific 2) and second decision levels (mecA gene segment vs its
analogues; infI1 gene segment vs its analogues). (C) Schematic illustration of SVM with the hyperplane to differentiate two gene sequences. (D)
Eigenvalues of principal components with the number of principal components (top) and the PCA plot for the selected features (bottom).

B RESULTS AND DISCUSSION

Development of the SLIPSERS Substrate. The as-
synthesized AuNPs exhibited a distinct plasmonic property
with a characteristic localized surface plasmon resonance
(LSPR) peak at ~533 nm.***” The AuNPs were spherical and
had a normally distributed, TEM determined mean diameter of
429 + 62 nm (Figure 1B). The electrophoretic mobility
(EM) and (-potential of AuNPs suspended in 50 uM Na,Cit
solution were —3.1 (0.1, n = 3) X 107 m?*/Vs (= —39.1 mV
(£0.8)) and were consistent with other citrate-coated
AuNPs.**

To produce a SLIPSERS substrate, 10 uL of a droplet
containing AuNPs and a given ssDNA analyte was deposited
on the SLIP membrane. The contact angle of the droplet was
measured by a goniometer to be 118° at room temperature
(Figure 1A,a). The extreme hydrophobicity of the SLIP
membrane enables formation of a pin-free liquid contact line.”®
The low surface tension of the droplet enhances the mixing of
AuNPs and gene sequences during droplet evaporation and
results in the formation of dense SERS hot-spots. After
complete evaporation, the 3D aggregates of AuNPs and
ssDNA analytes were observed by light microscopy to have
dimensions of ~200 X 200 ym” and arbitrary shapes (Figure
1C, left). A SERS map produced based upon the intensity of
the band at 77 cm™" shows the ubiquity of SERS hot-spots
across the substrate (Figure 1C, right). Previous studies have
shown that the density of SERS hot-spots is reflected by the
intensity of the pseudo-band at 77 cm™.*7°* SEM-EDS
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images indicate closely packed AuNPs with a porous structure
on top of the PTFE-lined membrane (Figure 1D).

SERS Detection of ssDNA. We observed several distinct
peaks between 600 and 1700 cm™" in the SERS spectra of the
intll and mecA gene segments (Figure 2A). While these
spectra are similar in terms of the locations of the peaks at 731,
959, 1315, and 1458 cm™, the relative peak intensities differ.
ssDNA consists of a phosphate backbone (deoxyribose and
phosphate groups) and four base nucleotides: adenine (A),
cytosine (C), guanine (G), and thymine (T). Twenty-one
separate spectral features were selected via automated peak
labeling within the WITec Control Five (v.5.0) software. Most
of the featured peaks arise from the aromatic ring breathing
mode of the base nucleotides: 616 (A),*® 649 (G),**>* 731
(A),>* 782 (C,T),>* 1029 (C),** 1173 (C,G),>* 1208 (A,T),*
1230 (A,T),>* 1315 (G),> 1337 (A,G),”° 1544 (G),”” 1575
(A,G),>*® 1603 (C),”” and 1643 (C,T)** cm™. Additionally,
the 815/860,°>%° 1110, and 1230°* cm™ peaks arise from
the symmetric bend, symmetric stretch, and asymmetric
stretch modes of PO,™". The 959> and 1458 cm™ peaks
reflect deoxyribose ring symmetric stretch and bend. Some
minor peaks such as the C—N stretch (920 cm™) and CH,
deformation (1398 cm™") were also detected.””®!

While some portions of the SERS spectra in our study are
similar to those in previous studies on label-free ssDNA
detection (e.g., the strongest peak from the adenine breathing
mode at 731 cm™'), some peaks did not match as
well,!7?#2#353662 This can be attributed to the different
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conformational states of ssDNA to AuNP that are dependent
on sample preparation. For instance, the spectra in our study
exhibit a high-intensity band at 959 cm™' that arises from
deoxyribose. Xu et al. did not report a peak at 959 cm™" and
instead report a strong peak at 1087 cm™' arising from the
PO, ! stretch.*> We suggest that such differences in the SERS
profiles reflect how ssDNA and the plasmonic substrates
interact and that localized SERS hot-spots enhance signals
from different locations within ssDNA. Xu et al. used Ag
colloid with MgSO, as an aggregating agent. Mg** has a charge
shielding effect that increases the interaction between PO,
and AgNPs. Our method, pin-free evaporation-induced AuNP
aggregation, should not enhance such charged interactions so it
is more likely that charge-neutral deoxyribose interacts with
AuNP than does PO,™". Unlike MgSO,-induced aggregation,
SLIPSERS primarily induces nonspecific sorption of ssDNA.
This tendency is reflected in the weaker peak intensities of the
PO, '-related peaks than those from deoxyribose. To test this
hypothesis, we compared the SERS profiles of ssDNA prepared
by different approaches (i.e, SLIPSERS, MgSO,-induced
aggregation, and thiol-linked ssDNA; Figure S1). As expected,
we found that there was a significant difference in the SERS
spectra across the different sample preparation approaches.
The replicability of our sample analysis approach was tested by
the preparation of duplicate samples. As illustrated in Figure
S2, there was no discernable difference in the collected spectra,
thus illustrating the replicability of our approach.

Figure 2B shows the histogram of the normalized peak at
731 cm™" for both mecA and intll gene segments across the
scan area. The inset illustrates that the intensities were evenly
distributed across the scan area. The coefficients of variation
(CV) of the normalized intensity at 731 cm™" were 24.9 and
16.4% for mecA and intl1, respectively. It has been reported
that CVs for many commercial SERS substrates are >45%.%
Unless they are rigorously designed by high-cost fabrication
techniques, signal reproducibility is often a challenge in SERS
due to the heterogeneous aggregation of nanoparticles within
different SERS substrates.”* The low CVs for the SLIPSERS
samples indicate that the method has sufficiently high spatial
reproducibility. Furthermore, the results imply that the
conformational and adsorption states of ssDNA to the Au
surface are reproducible across different SLIPSERS substrates.

Development of the Discriminatory Tool Based on
SVM. SERS spectra of different gene sequences of the same
length are expected to differ due to the varying sequences of
bases and the associated changes in oligonucleotide con-
formation. The Bell group investigated the effect of base
position and content on the SERS spectra of ssDNA,
concluding that SERS only provides information on a simple
sum of the signals from ssDNA components but not the
primary sequence of bases.”* Li et al. recently reported that
ssDNA can potentially form random coils or various hairpin
conformations thus affecting the SERS spectrum.”” The
formation of Watson—Crick hydrogen bonds upon folding of
ssDNA induces A—T and G—C pair formation on the surface
of the substrate, thus resulting in the enhanced intensity of
peaks from A and G. Such localized enhancement of certain
peaks makes the SERS spectra of ssDNA highly complex.
Comparing one or two peaks and/or their ratios within the
collected spectra is insufficient if one wants to elucidate the
possible formation of hairpins or coils of ssDNA and their
consequences on the spectra. To rigorously differentiate SERS
spectra for different gene sequences, we collectively extracted
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all labeled peaks from the spectra and subjected them to the
SVM technique. The SERS spectra of 12 different gene
segments are vertically stacked in Figure 3A. All gene segments
had 86 bases and only varied in total base composition and
sequence. As expected, due to the different sequences and total
base contents, we found slightly different peak intensities in the
SERS spectra but consistent peak positions. For comparative
purposes, we tested intl1 segments with lengths of 43, 65, 86,
107, and 129 nts. These segments had highly similar SERS
profiles that could not be differentiated by eye (Figure S2).
This consistency indicates that the differences observed in
Figure 3A primarily arise due to differences in base
composition and sequence.

A key challenge in the development of a predictive model
based upon spectral data is to standardize how spectral features
are defined such that they reflect all possible differences
resulting from gene sequence variation. If all spectral features,
including baseline noise, are used during model learning, the
developed model can be unnecessarily biased such that it does
not solely reflect gene classification. Over the spectral range of
600—1700 cm™!, at a resolution of ~4 cm™!, a total of 302
spectral features could be extracted. PCA of these 302 spectral
features resulted in the selection of >200 principal components
(PCs; Figure S3). This large number of PCs implies that
intensities close to the baseline (i.e. spectral noise) can be
expected to be involved in model training and generate feature
clusters prone to overfitting.”> Additionally, different back-
ground correction methods can generate significant differences
in noise-like intensities that bias the resulting models. We
suggest that instead of processing all data points within the
SERS spectrum that computer-aided selection of distinct peaks
defined by standards such as the relative minimum height helps
avoid potential model biases. In Figure 3A, the peak at 959
cm™! (dark gray), arising from the deoxyribose vibration, was
used to normalize the remaining 20 peaks (gray). These
normalized spectral features were extracted to develop our
predictive models. Peak selection is dependent on the defined
minimum relative height for automated peak labeling within
the WITec Control Five (v.5.0) software.

Multiclass SVM classifiers were built using the normalized
20 spectral features. To predict 12 gene sequences, we built Tr-
SVM classifiers at the first and second tree-decision levels using
a tree-based classification system (Figure 3B). At the first tree-
decision level, mecA or intll gene segments and their four base
mismatch analogues (i.e, mecA-M2, mecA-M6, mecA-M10,
mecA-M20 or intl1-M2, intl1-M6, intl1-M10, intl1-M20) were
separated into two groups and one SVM classifier was built for
the combined mecA group, the combined intll group, NSI,
and NS2. At the second tree-decision level, two SVM classifiers
were built for mecA or intl1 gene segments and their analogues.
Given the dataset, SVM finds the optimal hyperplane that
maximizes the margin between classes (Figure 3C). The kernel
function was applied to project the data to a high dimensional
space where they can be separated. SVM was chosen over
other classification techniques because it not only includes
many kernel functions, providing flexibility in the determi-
nation of the decision boundary (i.e., hyperplane) between
classes, but it is also effective in high dimensional data
matrices. We tested both polynomial (i.e., linear, quadratic,
and cubic) and different scale Gaussian (i.e., fine, medium, and
coarse) kernel functions to find the best-score classification
algorithm. In addition, we also compared the SVM classifiers to
parametric-based discriminant analyses, including linear
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Table 2. Prediction Results via the PCA-SVMs with Highest Accuracy for the First and Second Decision Levels

first decision level

second decision level

kernel function samples accuracy (%) sensitivity (%) specificity (%) kernel function  samples  accuracy (%) sensitivity (%) specificity (%)
fine Gaussian mecA 88.7 89.0 90.4 quadratic mecA 90.8 88.0 97.8
intll 93.0 94.9 mecA-M2 93.3 95.9
NS1 83.8 99.0 mecA-M6 89.3 98.2
NS2 68.5 98.0 mecA-M10 91.8 98.6
mecA-M20 91.5 97.9
quadratic intl1 94.4 96.3 98.5
intl1-M2 93.3 97.1
intl1-M6 94.5 99.0
intl1-M10 96.8 99.7
intI1-M20 91.3 98.7

PCA-SVM Confusion matrix

First decision level
Kernel function: Fine Gaussian
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Kernel function: Quadratic
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Kernel function: Quadratic

infl1 and its base mismatches

Figure 4. PCA-SVM confusion matrix results for first (left) and second (middle and right) decision levels. X, Y axes show true and predicted class,
while the Z axis shows the number of counts for each case. Blue and red colored columns indicate the correct and wrong prediction counts,

respectively.

discriminant analysis (LDA) and quadratic discriminant
analysis (QDA), to investigate the efficacy of SVM for SERS
discrimination of ssDNA.

PCA was preconducted to reduce the dataset dimensionality.
A prior study has illustrated the effect of a pre-PCA step on the
accuracy of different SVM models for microarray data for
colon cancer.”® It was reported that PCA increased model
performance in terms of accuracy and running time. Figure 3D
shows the results of the PCA analysis of 20 spectral features.
Most of the spectral features were closely clustered and seven
significant principal components (PCs) were determined with
an explained variance of ~95%.

The predictive results of the Tr-SVM classifiers with the
highest accuracy at both the tree-decision levels are
summarized in Table 2. To validate the predictive models, a
10-fold cross-validation was conducted and confusion matrices
were generated based on the validation results (Figure 4). The
fine Gaussian SVM classifier successfully discriminated the
gene sequences with an overall accuracy of 88.7% at the first
tree-decision level. From 4800 SERS spectra, 4257 were
correctly predicted by the model. At the second tree-decision
level, for both mecA and intll, the quadratic SVM classifiers
showed the highest prediction accuracy of 90.8 and 94.4% with
1816 and 1888 spectra correctly identified from 2000. The
predictive models showed high sensitivity and specificity at
both tree-decision levels. Sensitivity and specificity relate to the
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classifier’s ability to correctly identify the true positives as
positives and the true negatives as negatives. At the first tree-
decision level, the maximum sensitivity was 93.0% for the intl1
group, while the lowest sensitivity was 68.5% for NS2. All
specificities were >90% for the intIl and mecA groups, NSI,
and NS2. At the second tree-decision level, the maximum
sensitivities were 93.3 and 96.8% for intl1-M2 and mecA-M10.
The lowest sensitivities were 88.0 and 91.3% for mecA and
intI1-M20. Both second tree-decision levels had a high
specificity of >95% for all classes. We also trained the
predictive model without a tree-based classification system, in
other words, the classification of 12 gene sequences with one
model (Figure S4). The quadratic SVM classifier showed the
highest overall accuracy of 80.1% among other kernel
functions. This simplified model had lower accuracy, thus
illustrating that the multidecision tree-based system improved
the overall classification performance of SVM. Using one
predictive model for a large number of classes limits the
flexibility of the hyperplane. Instead, individual predictive
models for a limited number of classes can allow the
hyperplanes to be better optimized for data clusters such as
mecA and intll gene segments and their analogues. Owing to
this benefit, at the second decision level, the models showed
high sensitivity and specificity of >90% despite their similarity
in base composition.
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Figure 5. Comparison of the accuracy of the different trained multiclass SVM classifiers (linear, quadratic, cubic kernel functions and fine, medium,
coarse Gaussian kernel functions) and LDA and QDA with PCA-enabled feature selection. Each boxplot has 10 points from the 10-fold cross-
validation results, upper and lower quartiles, the outlier whisker, median, and mean (red-colored star) at first and second decision levels.

We investigated the base discrimination limit of our method.
For the intI1 group, we added one base mismatch (intI1-M1)
and developed an SVM classifier (Figure SS). The quadratic
SVM classifier successfully discriminated against intI1 and its
mismatches including the single-base mismatch with an
accuracy of 84.3% with 2023 SERS spectra correctly classified
from 2400 spectra. This result illustrates the discriminatory
capacity of the SVM classifier and its base sensitivity. Further,
the effect of the base sequence was tested by comparing intI1
with intI1 with two base position alternations (Figure S6). The
two SERS spectra were readily discriminated by an SVM
classifier with an accuracy of 100%. This result indicates that
there was a detectable spectral difference despite the sequences
having the same base composition and may reflect sequence-
driven differences in ssDNA secondary structure that alter
which ssDNA signals are enhanced by the SERS hot-spots.
Accordingly, the measured SERS signals reflect the combined
effects of sequence and sequence-dictated 3D conformation.

Comparison of SVM and Discriminant Analysis. We
compared models to find the most powerful algorithm for
discrimination of SERS spectra of different gene sequences: Tr-
SVM classifiers with different kernel functions and two
discriminant analyses. The set of boxplots in Figure 5 shows
the accuracy of different kernels for the identification of gene
sequences. Each boxplot consisted of 10 prediction results
from the 10-fold cross-validation. At the first tree-decision
level, the quadratic, fine, and medium Gaussian SVM classifiers
showed comparable accuracy of ~85% based on the post-hoc
Duncan’s method (@ = 0.05). A Gaussian kernel function is a
popular function to provide a nonlinear SVM classifier and is
an attractive tool for multivariate analysis owing to its
computational simplicity.”” The fine and medium Gaussian
kernel functions are versatile means to solve nonlinear
optimization problems. This result implied that the dataset at
the first tree-decision level showed nonlinearity and the
quadratic SVM classifier can perform comparably to the fine
and medium Gaussian SVM classifiers. The accuracies for the
models followed the order linear SVM > QDA > coarse
Gaussian SVM = LDA > cubic SVM. The linear SVM classifier
had higher accuracy than LDA and QDA, thus demonstrating
the superior power of SVM for discrimination of gene
sequences. In theory, the flexibilities of kernel functions
increase in the order of linear < quadratic < cubic
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(polynomial) and fine < medium < coarse (Gaussian). Given
the results at the first tree-decision level, the high degree of
flexibility of kernel functions such as cubic and coarse Gaussian
may increase the chance of overfitting the model and decreased
accuracy.

The SVM classifiers for discrimination of mecA and intll
species at the second decision levels showed statistically similar
accuracy with all kernel functions (post-hoc Duncan’s method,
a = 0.0S). Even discriminant analysis techniques showed
accuracy as high as the SVM classifiers. This result
demonstrates that such a dataset was relatively linear separable
compared to the one at the first tree-decision level such that
the linear classifiers had comparably high predictive accuracy.

The stability of the predictive model was evaluated based on
the variability in accuracy. The CV of accuracy for the tree-
based cubic SVM was 35.4%, while the CVs for the other
models ranged from 3.0 to 6.7% at the first tree-decision level.
This result implies that the high degree polynomial factor
could overfit the hyperplane and result in poor model stability.
The CVs at the second tree-decision levels ranged from 7.5 to
17.9% for mecA species and 3.8 to 9.5% for intll species,
indicating the relatively high stability of the models.

To recapitulate, the classifiers with linearity (e.g., linear
Gaussian SVM and LDA) or flexibility (e.g, quadratic and
fine/medium Gaussian SVM) had a significant influence on the
accuracy at the first tree-decision level, while all classifiers
showed comparable predictive performance at the second tree-
decision level. It is expected that a high extent of nonlinearity
within a dataset would require a flexible classifier for precise
identification. The optimal classifier is strongly dependent on
the dataset characteristics. It needs to be determined if a more
flexible and robust classifier (e.g., cubic or coarse Gaussian) is
required in circumstances with more highly complicated data
structures.

B CONCLUSIONS AND FUTURE OUTLOOK

The SLIPSERS substrate presented herein successfully enabled
label-free detection of 100 nM ssDNA of 86 base length by the
generation of dense SERS hot-spots. The low spatial variability
of SERS hot-spots in the SLIPSERS substrate compared to
other commercial SERS substrates illustrates the reproduci-
bility of the approach. Tr-SVM classifiers were successfully
built to discriminate 12 different gene sequences including
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mecA and intll gene segments with an accuracy of ~90%. Tr-
SVM classifiers discriminated two base mismatches out of 86
bases (2.3% difference). It was also found that one SVM
classifier had single-base discriminatory ability. To the best of
our knowledge, all prior studies using SERS to interrogate
ssDNA have used shorter gene lengths than our 86
genes.”"*>*® For example, Xu et al. reported SERS detection
of 12 nts oligonucleotides with single-base sensitivity. In this
case, the sensitivity is 1/12 nts (8.3% difference). Dick and Bell
also detected the spectral difference in additional nucleobases
from 10 to 24 nts (4.2—9.1% difference) with scaled spectral
subtraction. Based on these comparisons, we believe that the
base discrimination limit of our approach is low enough to
provide single-base sensitivity.

Some challenges remain when discriminating ssDNA using
SLIPSERS and the Tr-SVM classifiers. To our knowledge,
there is no solid rule for feature selection from SERS spectra to
develop discriminatory models. The computer-aided feature
selection method used in our study should be collectively
compared with other methods. Also, our results reflect that the
accuracy of the Tr-SVM classifiers is dependent on the kernel
functions and the characteristics of the dataset. A deeper
understanding of these spectral datasets will be required for the
better development of the models. To expand the applicability
of Tr-SVM classifiers for diverse types of ssDNA with respect
to gene length and sequence, higher dimensional datasets of
ssDNA must be collected and subjected to training. However,
recent advances of SERS DNA detection with an aid of
computational analysis illustrate the ability to detect such
mutations.”* "% Overall, despite these challenges, this study
illustrates the great promise of discriminatory detection of
ssDNA using SERS and the functional prediction model (i.e.,
the Tr-SVM classifiers).
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