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ABSTRACT
In this brief review, we discuss the question of calculating the distance between different molecular
configurations. We focus on the theoretical basis of different existing methods for this problem,
including ones which are more physics-driven and ones which are more data-driven. We explain the
key ideas behind these methods, and conclude with what we see as the central challenges. We hope
this review will be helpful to someone aiming to understand these methods, many of which are new
and have not been compared and reviewed together. We also hope it will help develop new methods
that address the challenges we identify and others.

ARTICLE HISTORY
Received 7 February 2020
Accepted 21 April 2020

KEYWORDS
Kinetics; reaction coordinate;
molecular dynamics;
sampling; machine learning

1. Introduction

In this review, we discuss the concept of kinetically relevant dis-
tances (henceforth, distance in short) between two configur-
ations of a given molecular system. This distance can be
formally defined in many ways, but approximately it is a
measure that is proportional to the average round-trip inter-
conversion time between two configurations, while following
the other mathematical properties expected of a distance
measure such as symmetry, non-negativity and, though not
always, the triangle inequality. As an analogy consider the dis-
tance between any two points on the earth’s surface, which is
best not measured through an Euclidean measure, but by taking
into account the surface of the earth, elevation, other geological
and even geopolitical aspects such as borders between nations.
In other words, defining a ‘kinetically relevant’ distance
measure is not a simple geometric operation, but one that
requires awareness and quantification of numerous factors.
Similarly for molecular systems, it is far from trivial to define
distance metrics that are true to underlying physical mechan-
isms at work and capture average interconversion times. Such
distance metrics matter in molecular simulations for at least
two reasons: making sense of high-dimensional data, and
designing a progress coordinate for enhanced sampling in
rare event systems. In this brief review, we collect and
examine such distance measures that have been proposed
over the years for comparing molecular ensembles and
structures to each other.

Many of these metrics are rooted in a physical perspective,
and these ones are reviewed in Section 2. In Section 3, we
review more data-driven and physics-agnostic approaches. Of
course, the demarcation between physics-based and physics-
agnostic is somewhat arbitrary, and every approach here does
require data and is thus data-driven in some sense. As such
this demarcation between themes is approximate at best.

The approaches discussed here can be applied to different
types of data, and can also be linked with each other. For

example, the root-mean squared deviation (RMSD) introduced
in Section 2.1 can be computed based on either atomic coordi-
nates or system-specific collective variables (CVs) or order par-
ameters (OPs). The RMSD itself can also be used as the input of
diffusion map [1] (Section 2.3), kinetic map and commute map
[2] (Section 2.4). The kinetic map and commute map distances
are derived with only assuming basic properties of reversible
Markov process. Thus they can be used with any abstract
data type as long as it follows the desired Markovianity. As
we discuss in Section 2.5, the path CV [3] approach is usually
not applied to high-dimensional data, a set of pre-selected
OPs is needed, and therefore does not directly use atomic coor-
dinates as input. On the other hand, the entropy-based metrics
[4,5], which we will discuss in Section 2.6 computes the dis-
tance between distributions of atomic coordinates. To dis-
tinguish various polymorphs, we may need to include the
relative coordinates to compare the distributions as well. As
dimensionality reduction methods, sketch-map [6] and
AMINO [7] can both be used for high-dimensional data.
AMINO is designed for analyzing the information carried by
CVs, while sketch-map is applied directly on coordinates in
configuration space.

Finally in Section 4, we conclude with the status of the pro-
blem and challenges ahead, including how machine learning
might help. All through this review we focus on the underlying
theoretical constructs and do not discuss any applications of
these concepts.

2. Physics based approaches

In this section we cover a range of approaches that are rooted in
the key physical aspects at work. As mentioned in the introduc-
tion, naturally all of these approaches do require access to data,
however they can be distinguished from the approaches of Sec-
tion 3 in that the key principle at work here is rooted in some
sort of physical or mechanistic understanding. We start with
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one of the simplest possible metrics, namely the root mean
squared deviation (RMSD). We cover many other increasingly
sophisticated distance metrics that can be derived solely on the
basis of configuration space. We also discuss an example of a
metric that is rooted in trajectory space per construction in
order to deal with glassy systems.

2.1. Root mean squared deviation (RMSD)

We start this section by considering one of the simplest yet
widely used distance measures to quantify how far two molecu-
lar configurations are from one other. This is the root-mean
squared deviation (RMSD) metric from a given reference
state [8,9]. As compared to Euclidean distance, this removes
the often irrelevant translational and rotational degrees of free-
dom. The central idea is that conformations that look very
different (i.e. high RMSD) must be reachable only through
slow interconversion processes, and correspondingly, struc-
tures with low relative RMSD should be easily kinetically acces-
sible from each other. However, this is not always true. The
RMSD can be defined over the cartesian coordinates of all
atoms in the system in general, or for more system-specific sub-
sets of atoms, such as all Ca atoms in a biomolecule or non-sol-
vent molecules in a chemical reaction, or in the space of some
other low-dimensional collective variables (CVs). If too many
atoms are included in the RMSD, then many very different
high-dimensional configurations could naturally be con-
structed which have the same (within noise) RMSD from any
given reference configuration. In other words, as the number
of participating atoms is increased, the RMSD becomes increas-
ingly degenerate. Reducing the number of atoms that go into
the RMSD calculation in general makes it less noisy and
more reliable. However, selecting a small subset of the atoms
also means pre-selection of the crucial physics or chemistry
aspects that matter. Take for example the case of ion pair dis-
sociation in water. Here it was shown in Ref. [10] that solvent
reorganisation and solvent fluctuations play a critical role in
this process even in the simple case of sodium and chloride
ions. Considering solvent ions would have made RMSD here
effectively meaningless, and excluding them would make it use-
less. This dilemma is quite typical with the use of RMSD as a
kinetic measure, and thus necessitates the development of alter-
nate approaches which we discuss in the remaining parts of this
review.

2.2. Isocommittor

The concept of committor, though not the term itself, was
possibly first used by Onsager in his study of ion recombina-
tion in 1938 [11]. It can be contrasted with RMSD in terms
of the isocommittor being far more reliable as a kinetic
metric (essentially per construction), yet also being far harder
to compute. Given a two-state system, the committor for any
point in configuration space is defined as the probability for
the trajectory started from that point with randomised vel-
ocity to reach one boundary state before it reaches another
[12,13]. One can then join configuration points with the
same committment probability to construct a locus of iso-
committor surfaces, and finally by considering the normal

direction to these locii, one gets the committor direction.
This is an optimal reaction coordinate for this two state sys-
tem, and correlates monotonically with kinetic distance from
the boundary state used to define it [14]. However, calcu-
lation such a committor is computationally expensive as it
requires an enormous number of simulations [14]. Further-
more it can be hard to implement or interpret in more
than two state systems [15]. However, if one did explicitly
calculate the isocommittor, distance along the corresponding
isoplanes would serve as an accurate kinetic metric between
configurations. Unfortunately, a full such calculation does
not only require a long unbiased simulation with back-and-
forth between the configurations of interest, which itself is
hard to obtain for practical systems, but in addition, it
needs extra short simulations from multiple points separating
the two configurations. Likelihood maximisation schemes
have been proposed to mitigate the computational cost of
such procedures [16].

2.3. Diffusion map

When dealing with the evolution of a molecular configuration,
one is often primarily interested in the slow degrees of freedom,
treating other modes of change as fluctuations which do not
carry much information about key mechanisms. It is therefore
natural to identify the dissimilarity between two molecular
configurations using a distance metric defined along an embed-
ding from such a slow interconverting process. The isocommit-
tor introduced in Section 2.2 is one way of doing this. There are
many other linear methods such as principal component analy-
sis [17–20] and classical multidimensional scaling [21] which
also endeavour to search for this low-dimensional embedding.
By linear we mean that these dimensionality reduction methods
project high-dimensional data to the low-dimensional space by
linear transformations of the high-dimensional data. However,
for most systems it may not be possible to define such embed-
dings using linear methods as the actual pathway of evolution
can be highly nonlinear.

Diffusion map is a dimensionality reduction technique
[1,8,22] that allows discovering nonlinear low-dimensional
embeddings. A central assumption is that the evolution of mol-
ecular configurations can be described as a diffusion process,
and thus it is more likely that a configuration evolves to a
configuration close as per the associated diffusion distance.
With this assumption, diffusion map was designed to follow
the underlying geometric structure by transforming the data
in the configuration space to an embedding space, such that
the Euclidean distance in this embedding space approximates
the diffusion distance in the original configuration space.
Given two configurations, if there is a pathway along which
intermediate configurations exist, the diffusion distance
between these two configurations would be smaller than
between two configurations without such a pathway, even
though the latter might have a smaller Euclidean distance sep-
aration in the configuration space. Thus, the diffusion map pre-
serves the local similarity between configurations. We now
restate this intuitive picture in a more mathematical
framework.

450 S.-T. TSAI AND P. TIWARY



The diffusion map method starts from defining a Gaussian
kernel which can be used to measure the local similarity:

Aij = exp − d(xi, xj)
2

2e

( )
(1)

where i and j represent two molecular configurations and d(i, j)
can be the Euclidean distance or RMSD (see Section 2.1). The
tunable parameter ε provides a local length scale which is some-
times referred to as the ‘kernel bandwidth’. If two configur-
ations are further apart than ε, the kernel approaches zero
quickly. Therefore, applying the Gaussian kernel has the
effect of connecting points lying in the neighbourhood roughly
of size ε. Note that the kernel is symmetric and positive semi-
definite as it should be for constructing a distance metric.

The next step is to normalise each row of the A = [Aij]
matrix to yield a new M matrix:

Mij =
Aij∑N
j=1 Aij

i, j = 1, . . . , N. (2)

where M is a right stochastic Markov transition matrix. By
doing so we are saying that the process we are dealing with is
a Markov process. The transition matrix M naturally defines
a random walk, which has a spectral decomposition:

M(m)
ij =

∑
k

lmk fk(xi)fk(xj) (3)

where M(m)
ij = Mij can be interpreted as the transition prob-

ability p(m)(xj|xi) of the system to move from configuration xi
to xj in m time units. l0 = 1 ≥ l1 ≥ l2 ≥ · · · are the eigen-
values and fk(x) are the corresponding eigenfunctions of M.
The squared diffusion distance D2

m(x1, x2) is then the Euclidean
distance in the space of weighted coordinates F(x):

D2
m(x1, x2) = ‖Fm(x1)−Fm(x2)‖2 (4)

=
∑
k≥0

l2mk (fk(x1)− fk(x2))
2 (5)

The mapping from configuration space x to the Euclidean space
of diffusion distance Fm(x) = (lm0 f0(x), l

m
1 f1(x), . . . ) is then

called the diffusion map. Since the eigenvalues lmk of the Mar-
kov transition matrix Mm

ij corresponds to the time scale of the
diffusion process, it can then perform a dimensionality
reduction to the low-dimensional embedding of the slow
degree of freedom by truncating at certain lk, where the
lk+1, lk+2, . . . are all fast fluctuations that we don’t want.

2.4. Kinetic map and commute map

Consider a dynamical system with configuration space Ω and
propagation of probability density of states rt(x) defined as fol-
lows for x, y [ V:

rt+t(y) =
∫
x[V

rt(x)pt(y|x) dx (6)

= P ◦ rt(x) (7)

where P is the dynamical operator for the Markov process,
pt(y|x) is the transition probability density for finding the

system at y after a time duration τ when starting from x
at time 0. In addition, we assume that the system has a
unique equilibrium distribution p(x) which can be found by
solving

p(x) = P ◦ p(x) (8)

The squared kinetic distance D2
t(x1, x2) at a lag time τ between

two molecular configurations x1 and x2 is then defined as [1]:

D2
t(x1, x2) = ‖pt(y|x1)− pt(y|x2)‖2p−1 (9)

=
∫
y[V

|pt(y|x1)− pt(y|x2)|2
p(y)

dy (10)

Note that here x1, x2, and y are not restricted to be position vec-
tors but can also be other state variables in general. In addition,
the transition process pt(y|x) does not have to be a diffusion
process. This expression calculates the distance between two
probability distributions evolving from delta functions centred
at x1 and x2 after a duration τ. If the two configurations x1 and
x2 are separated by a large barrier which cannot be overcome
within this time scale τ, this distance would be large.

The expression in Equation (10) can be calculated when the
transition density is directly accessible. In practice, a spectral
decomposition technique is used in estimating this kinetic dis-
tance for more complex systems where the density might be
harder to directly calculate. For a metastable Markov process
which satisfies detailed balance p(x)pt(y|x) = p(y)pt(x|y),
the transition density can be approximated by

pt(y|x) =
∑n
j=1

lj(t)cj(x)fj(y)+ Pfast(t)rt(x) (11)

where fi, ci are the eigenfunctions of the propagator P and the
backward propagator T respectively, related by fi(x) =
p(x)ci(x). The eigenvalues are sorted in non-increasing norm:

l0 = 1 ≥ |l1| ≥ · · · |ln| (12)

Suppose we operate at a lag time τ such that |ln+1(t)| ≈ 0 or
Pfast(t) ◦ rt(x) ≈ 0 everywhere, then pt(y|x) ≈

∑n
j=0 lj(t)

cj(x)fj(y). Plugging this expression in Equation (10), we obtain
a form which can be used to calculate the kinetic distance

D2
t(x1, x2) =

∑n
j=1

[ljcj(x1)− ljcj(x2)]
2 (13)

Although this expression is similar to the diffusion distance of
Equation (5) introduced in the diffusion map, it can be used for
any reversible Markov dynamics. The weighted coordinates
c̃j(x) = ljcj(x) are then defined as the kinetic map:

C̃ = (c̃0, c̃1, . . . c̃n) (14)

Note that when the transition density pt(y|x) is given by a diffu-
sion process, this C̃(x) is a diffusion map.

The above expression, however, depends on the lag time
parameter τ and does not provide a clear physical interpret-
ation. In order to avoid the dependency, the squared commute
distance is defined as the integrated version of the kinetic
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distance [2]:

d2comm =
∫1
0
D2
t(x1, x2) dt (15)

=
∑n
j=1

[cj(x1)− cj(x2)]
2
∫1
0
l2j (t) dt (16)

=
∑n
j=1

��
tj
2

√
cj(x1)−

��
tj
2

√
cj(x2)

[ ]2

(17)

where tj is the relaxation time scale of the jth process. The com-
mute distance is equal to the Euclidean distance in the space of
c̃j =

����
tj/2

√
cj(x). This distance metric is then called the com-

mute map. As demonstrated in a simple Markov process [2],
this squared commute distance d2comm(x1, x2) between two mol-
ecular configurations x1 and x2 is equivalent to the averaged
commute time between them:

tcomm = t12 + t21
2

(18)

where tij is the mean first passage time from xi to xj.

2.5. Path collective variable

The path CV formalism was introduced in Ref. [3] in the con-
text of enhanced sampling of fluctuations along and orthogonal
to a given trial path connecting any two molecular configur-
ations A and B. The first step is to define milestones along a
given reference path taking the system from A to B. A variable
s, introduced in Ref. [3] in a continuous (i.e. infinitely many
milestones) and discrete (finite number of milestones, which
is usually the case) quantifies the progress along these mile-
stones and thus along the chosen starting path. These mile-
stones themselves are typically not defined in high-
dimensional configuration space but in the space of pre-
selected order parameters. For example, this could be in the
RMSD space or in the contact map space[23,24]. The value
of s then is a natural metric to calculate the distance along
the chosen path between any two configurations.

Depending on whether this path is indeed the preferred path
of least resistance [25], this distance might or might not be the
kinetic distance we seek in this review. In order to discover
other possible pathways and quantify distance along them,
Ref. [3] introduces a second z variable which is orthogonal to
s and measures distance from the starting path. Together s
and z could be biased in enhanced sampling simulations such
as metadynamics to discover new pathways and distances
along them[3].

2.6. Entropy-based distance metric

Often one is interested in characterising molecular configur-
ations resulting from the process of phase transitions. While
the concepts of this subsection apply to generic phase tran-
sitions, here we consider for instance crystallisation, which is
a process going spontaneously from disordered to ordered geo-
metric structures. A natural way to characterise such transitions
is thus quantifying the entropy, which is qualitatively related to

the extent of ordering. It is therefore intuitive to use entropy to
quantify how and when a system crystallises. In addition, using
entropy to detect the crystallisation in the atomistic simulations
has further advantages. Since entropy does not prejudge the
system’s geometric structure, it can be used to describe a tran-
sition in which multiple crystal phases are involved or classify
previously unknown ordered phases.

Unfortunately, there is no exact expression for entropy
which one could calculate with computational ease during a
molecular simulation, to use either as a biasing variable in
the context of enhanced sampling or simply as a distance coor-
dinate quantifying the extent of crystallisation. Piaggi et. al.
have taken the idea from liquid state theory in Ref. [4], in
which the excess entropy per atom is expanded in an infinite
series of multiparticle correlation functions [26]. For compu-
tational ease, they proposed the use of just the first term in
the expansion which only includes the two-body correlation
function:

S2 = −2prkB

∫1
0
[g(r) ln g(r)− g(r)+ 1]r2 dr (19)

where g(r) is the radial distribution function and ρ is the
density of the system. As mentioned in [4], even though
entropy can only have proper thermodynamic meaning
when being averaged over an ensemble of states, the use of
the instantaneous value as per Equation (19) is proposed. In
practice, the radial distribution function is replaced by a
modified version:

gm(r) =
1

4pNrr2
∑
i=j

1������
2ps2

√ e−(r−rij)
2/(2s2) (20)

where rij is the distance between particles i and j, and σ is a
broadening parameter. The modification is used in order to
ensure the calculation of the derivative of CVs.

Theoretically, it has also been shown there is an interplay
between entropy and enthalpy during first-order phase tran-
sitions including crystallisation [4]. To deal with this, the
authors in Ref. [4] while studying crystallisation of Na and
Al, included the enthalpic CV sH :

sH = U(R)+ PV
N

(21)

where P is the pressure, V is the volume, U(R) is the potential
energy and N is the number of atoms in the system. It was
found that while studying the crystallisation of Al, both entro-
pic and enthalpic CVs were needed to distinguish between the
possible BCC and FCC crystal phases; while for Na, only using
entropic CVs was sufficient, as the only crystalline phase was
BCC which entropy could be used to distinguish from the
liquid phase.

In subsequent work [27], this method was also extended for
dealing with molecular crystals which have significant com-
plexity due to the presence of a large number of polymorphs.
A common reason polymorphs can arise is due to various com-
peting orientations of constituent molecules. In order to
include the relative orientations between two molecules, one
can represent each molecule by the position of its centre of
mass and define the orientation with a vector vi associated to
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the ith molecule. The radial distribution function g(r, u) is then
different from the previous g(r) in Equation (19), as it involves
an angle θ between two molecules, which is defined as
u = arccos ( vi·vj

|vi‖vj| ). The entropic CV s itself then, in contrast

to the one in Equation (19) is also modified to include this
new variable θ:

Su = −prkB

∫1
0

∫p
0
g(r, u) ln g(r, u)− g(r, u)+ 1
[ ]

r2 sin u dr du

(22)

As mentioned in Ref. [27], instead of considering all Euler
angles ϕ, θ, ψ, which makes the calculation of g(r, f, u, c) cum-
bersome, a single angle θ has been used. This makes the choice
of θ crucial when calculating Su during a simulation.

Equation (22) can be used to perform enhanced sampling
along the entropy coordinate, but is still not sufficient to ident-
ify and classify different polymorphs. By observing that
Equation (22) can be viewed as the distance between the
g(r, u) of the present configuration and the g(r, u) of an ideal
gas; i.e. g(r, u) = 1 ∀ r, u, [27] defines a new quantity which
is similar to Kullback-Leibler (KL) divergence in form:

D(g1‖g2) =
∫1
0

∫p
0

g1(r, u) ln
g1(r, u)
g2(r, u)

− g1(r, u)+ g2(r, u)

[ ]

× r2 sin u dr du

(23)

This quantity is convex and has a minimum when g1 = g2. To
make it a well-defined distance metric for the use, we can use a
symmetric form:

d(g1, g2) =
D(g1‖g2)+ D(g2‖g1)

2
(24)

Note that Equations (19) and (21) are used for only crystallisa-
tion of simple atomic systems, while Equations (22)–(24)
includes the quantities to identify detailed molecular orien-
tation θ.

So far in this sub-section we have described using entropic
CVs to define distance metric in order to classify different poly-
morphs emerging in crystal nucleation. The entropy was
approximated by computing the excess entropy per atom
using the radial distribution function. A very different approach
has been proposed [5] which uses neural networks to directly
learn the entropy as a function of temperature and density. A
key idea in this approach is to calculate the entropy through
the Helmholtz free energy:

Si =
Ui + AML(r, T)

T
(25)

where Si is defined as the entropy for each configuration i gen-
erated during the (N , P, T) simulation, Ui and Vi are the
internal energy and volume of the system, and AML is the ML
prediction of the Helmholtz free energy at the density r = N

Vi

and temperature T. The internal energy is calculated by:

Ui = U pot
i + 3

2
NkBT (26)

where U pot
i is contributed to by the internal potential energy

and internal kinetic energy. In Ref. [5], the Helmholtz free
energy was trained by the data points generated from the John-
son, Zollweg, and Gubbins equation of state for the liquid phase
[28] and from the van der Hoef equation of state for the face-
centred cubic crystal [29]. The authors also used entropy
calculated from ML as the reaction coordinate to drive MD
simulation of a Lennard-Jones system with the umbrella
sampling method [5]. The nucleation process is also shown
to be consistent with the previous study using the ML
approach.

2.7. s-ensemble and ergodicity based distance metrics

In the previous section, we considered the case of phase tran-
sitions such as crystallisation where entropy can be used to
define useful distance metrics quantifying the progress of the
transition as well as the difference between different competing
polymorphs. An even more complicated transformation is that
from liquid phase to glass phase [30,31]. While it is reported to
be a first-order transition [32], the glassy phase is inherently ill-
defined in configuration space due to the presence of dynamical
heterogeneities [33], and a more natural way to view this tran-
sition is as one occurring in trajectory space, as suggested for
example by Chandler [32,34] and others [35,36]. The essential
idea is that onset of glassiness corresponds to a loss in ergodi-
city. To capture this transformation in ergodicity, one intro-
duces a dynamical field s, which drives the system from
active or ergodic liquid state to inactive or non-ergodic glass
state. In order to study this transition which is driven out of
equilibrium, Lester, et. al. [32] applied the transition path
sampling method [37] with a perturbed path ensemble distri-
bution:

Ps[x(t)] = P0[x(t)] exp {− sK[x(t)]} (27)

where x(t) represents the position of the system in the configur-
ation space, P0[x(t)] is the equilibrium probability distribution,
K[x(t)] is the order parameter which is defined in order to dis-
criminate the system between liquid and glassy states. In the
ordinary transition path sampling method, the distribution
P0[x(t)] is sampled by performing a random selection of n
independent trajectories each of length tobs in the trajectory
space. One can also perform the selection based on the Metro-
polis rule for the perturbed distribution Ps[x(t)], which means
that we accept or reject the selections so as to preserve the
weight Ps[x(t)]. This way to perform the transition path
sampling is called ‘s-ensemble’. In [32], K[x(t)] is defined as
a measure of mean dynamical activity, calculated as the follow-
ing functional of trajectory x(t) over period (0, tobs):

K[x(t)] = Dt
∑tobs
t=0

∑N
j=1

|r(t + Dt)− r(t)|2 (28)

where N is the number of particles in the system, rj refers to
position as function of time t, Dt is the time increment such
that the number of points summing over time is equal to
tobs/Dt. The order parameter is integrated over the observation
time tobs and therefore depends on the system’s history. Note
that the K[x(t)] is not normalised with respect to the system
size and observation period and so is an extensive quantity,
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When the system is in the liquid phase, the particles are
mobile and K[x(t)] is large; on the other hand, when the system
is in glass phase, the particles are immobile and K[x(t)] is small.
It has been shown in the finite-size atomistic systems,
〈K[x(t)]〉s (where subscript denotes sampling using Ps[x(t)])
changes abruptly at the critical field s = s∗, which is a feature
of first-order phase transitions. Just like the density can be
used to distinguish liquid and gas, the order parameter
K[x(t)] serves as a quantity to distinguish supercooled liquids
and glass. As previously mentioned, the difference between
liquids and glass cannot be seen readily in the state space
since they have similar local structure [38], and that a more
prominent difference is that in the ergodicity. The quantity
K[x(t)], which involves the squared displacement
|r(t + Dt)− r(t)|2, measures the local dynamical activity and
thus corresponds to an effective ergodicity measure. It can
also be viewed as the relative distance away from equilibrium
in the trajectory space. The order parameter K[x(t)] is also
used to detect the dynamical coexistence as it quantifies the
order-disorder transition in space time. [34,39] In practice,
one weights the trajectories by the factor esK to favour the none-
rgodic or immobile state. If then the transition to nonergodic
phase happens for nonzero s, there is a dynamical phase coex-
istence exists at s=0.

3. Data driven and other physics-agnostic
approaches

In this section we cover a few approaches that are not inher-
ently based in the physics of the problem (for instance, exist-
ence of few slow modes or onset of lack of ergodicity). Like
in Section 2 it is inevitable that we cannot cover the huge num-
ber of approaches that exist in this domain, and instead we
restrict our attention to two emblematic approaches, one recent
and one not-so-recent. We also want to highlight that the diffu-
sion map approach of Section 2.3 could very well be considered
as a more data-driven than physics-driven approach and be
included in this section.

3.1. Sketch-map

Many nonlinear dimensionality reduction algorithms assume
that the configuration phase can be mapped to a lower-dimen-
sional space which locally resembles Euclidean space. These
nonlinear manifold learning methods include the local linear
embedding [40], Isomap [41] and Diffusion map in Section
2.3. However, it has been shown that this assumption can be
invalid for data taken from typical atomistic simulations [6].
There is also evidence that the potential energy surfaces of
protein can be in a fractal dimension or can have an intrinsi-
cally non-Euclidean topology [6,19,42]. A dimensionality
reduction method called sketch-map was proposed by Ceriotti
et al which rectifies such problems [6]. It is a nonlinear multi-
dimensional scaling method which is able to find a distance
metric which preserves the connectivity within and between
clusters of data points in the higher-dimensional space.

Sketch-map takes sigmoid transforms of both the high- and
low-dimension representations and minimises a stress function

between them defined as follows:

x2 =
∑

j=i wiwj F(Rij)− f (rij)
[ ]2∑
j=i wiwj

(29)

where wi is the weight of point i and Rij = |Xi − Xj|(D) and
rij = |xi − xj|(d) is some generic distance between points i and
j in the high- and low-dimensional spaces. The subscripts D
and d represent the dimensions of corresponding high- and
low-dimensional spaces. F and f are the general sigmoid func-
tions of the form:

ss,a,b(r) = 1− 1+ 2a/b − 1
( ) r

s

( )a[ ]−b/a
(30)

where ss,a,b(s) = 1/2, and the exponent a and b determine the
rate at which the function approaches 0 and 1. The functions F
and f then become transformations which transform Rij and rij
to values between 0 and 1. As a result, F(Rij)− f (rij) is small
when the length scale of Rij and rij are both larger or smaller
than σ. In other words, it creates a mapping which preserves
the spatial relation between the connections in the low and
high-dimensional spaces. In practice, the same value of σ is
used in both F and f. Different values of σ simply corresponds
to a scaling of coordinates. The value of a and b, however, are
chosen differently as aD and bD for F and ad and bd for f. It has
been shown that precise choice of a and b has little effect on the
performance of this method.

The computational cost for evaluating Equation (29) grows
quadratically with the data points involved [6,43,44]. If one
uses the ‘point-wise global’ optimisation strategy, as the authors
used in their first paper [6], the cost could scale even cubically.
Therefore, a set of landmark points are often chosen to rep-
resent the original trajectory in order to avoid the efficiency
problem. The landmark points are either picked up randomly
or by using the farthest point sampling strategy (FPS) as men-
tioned in Ref. [6]. The weights for the landmarks are evaluated
by the estimate of free energy, thereby necessitating accurate
sampling of the free energy landscape before sketch-map can
be performed. After completing the minimisation, one can
obtain the low-dimensional representation x through minimis-
ing the following function:

d2(x) =
∑N

i=1 wi F(|X − Xi|(D))− f (|x − xi|(d))
[ ]2∑N

i=1 wi
(31)

where N is the number of landmarks, |X − Xi|(D) is the distance
between ith landmark points and the frame that is projected
and |x − xi|(d) is the projected Euclidean distance in the low-
dimensional embedding. As stated above, while sketch-map
provides a way to express complex high-dimensional clusters
and their corresponding connectivity with a low-dimensional
representation, it suffers from the efficiency problem and has
to choose landmarks as the representative subset. Recently,
Lemke et. al. [45] have combined the autoencoders, a popular
machine learning technique, with sketch-map to provide
another way for efficiently performing the sketch-map algor-
ithm with all data points instead of landmarks, with still accep-
table efficiency. They called their method ‘Encodermap’, which
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uses the sketch-map stress function as the cost function in the
autoencoder neural network.

3.2. AMINO

The very last approach we discuss in this review is called Auto-
matic mutual information noise omission (AMINO) [7] that
constructs distance not between molecular configurations, but
instead between the collective variables or order parameters
one could use to describe these configurations. AMINO is a
data-driven method that allows screening out redundancies
from such a large dictionary of CVs, in terms of the physics
they represent. AMINO involves taking a biased or unbiased
molecular simulation trajectory to calculate the mutual infor-
mation I(X, Y) between any two order parameters X and Y .
The central idea is that if two order parameters or CVs carry
completely different or independent information, then
I(X, Y) = 0. Further, increasingly higher non-zero values of
I(X, Y) correspond with X and Y becoming increasingly corre-
lated or dependent. Inspired by this. we define a normalised
distance metric D(X, Y) between two OPs as follows:

D(X, Y) = 1− I(X, Y)
H(X, Y)

(32)

where H(X, Y) is the joint entropy of X and Y. This quantity
D(X, Y) then defines the pairwise distances in an abstract infor-
mation-theoretic space. In this abstract space, order parameters
which carry similar amount of information will be close to each
other. As a result, we can expect multiple clusters in this
abstract space. The goal then becomes defining good represen-
tations of such clusters. In [7], the authors used a quantity
called distortion jump which allows them to identify the appro-
priate number of clusters. After that, they could pick the centres
of these clusters as the approximated representations. The
smaller set of CVs or order parameters returned by AMINO
are then directly beneficial to nearly all the methods described
in this review in terms of significantly reducing their compu-
tational workload.

4. Conclusions and challenges ahead

In this brief review we have surveyed some of the many
measures available to determine the distance between two mol-
ecular configurations. Such a measure is useful both from the
purpose of making sense of high-dimensional and often
hard-to-interpret data, and also for the purpose of being used
as a progress coordinate for driving enhanced sampling simu-
lations of rare events. Such a kinetic distance could also be use-
ful in the design of coarse-grained models which are accurate in
context of dynamics. We do not make any claims on the com-
pleteness of this work as this continues to be a field of active
research interest. We conclude this review by what we deem
to be some of the key challenges ahead. First, it is our view
that most of these metrics are still suited to the analysis of tra-
jectories where different regions of the configuration or phase
space have been sampled exhaustively. While this is of course
useful, the problem of constructing kinetic distances in under-
sampled situations and from biased simulations is more or less

a very open problem. One approach here could be to mix com-
mute maps with ideas such as the SGOOP approach which
allow extracting timescale-like quantities from biased simu-
lations [46]. Another challenge is if recent machine learning
developments especially in the context of recurrent neural net-
works, such as Long Short-Term Memory (LSTM) networks
[47], reservoir computing [48] or others [49] can be helpful
in the endeavour of recovering kinetic distance from data.
For example, reservoir computing has been found useful for
model-free prediction of spatio-temporal evolution in chaotic
systems, which is closely related to the problem discussed
here. As mentioned in the introduction, choosing an appropri-
ate set of pre-selected CVs is important for some of the
methods discussed in this review, and thus care needs to be
exercised in deciding the space in which the distance metric
is computed. Finally, many practical problems will have differ-
ent physics at work in different parts of configuration space or
at different moments in time -- crystal nucleation being a clas-
sic example where intermediate pathways could involve amor-
phous glassy-like states [50]. Similar concerns may apply to
protein-ligand dissociation and protein conformational change
problems [51,52]. Developing kinetic measures for such sys-
tems, so that they can be analyzed or their sampling enhanced
in an automated manner, will require mixing many of the
approaches discussed here as well as developing new ones.
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