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Molecular dynamics (MD) has become a powerful tool for
studying biophysical systems, due to increasing computational
power and availability of software. Although MD has made
many contributions to better understanding these complex
biophysical systems, there remain methodological difficulties
to be surmounted. First, how to make the deluge of data
generated in running even a microsecond long MD simulation
human comprehensible. Second, how to efficiently sample the
underlying free energy surface and kinetics. In this short
perspective, we summarize machine learning based ideas that
are solving both of these limitations, with a focus on their key
theoretical underpinnings and remaining challenges.
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Introduction

With the ever-increasing power and availability of comput-
ing resources and accurate interaction models, molecular
dynamics (MD) simulations have become an indispensable
tool for the study of biophysical systems. MD hasallowed us
to probe, with high spatiotemporal resolution, complex
processes such as protein folding, ligand dissociation and
countless others. Not dissimilar to many other fields in
science and engineering, here as well we have had an
explosion of data, easily reaching hundreds of gigabytes
forastandard microsecond long M D simulation of a protein.
This immediately leads to two pressing questions. First,
what do we do with this much data — how dowe store itand
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how do we make sense of it? And if a microsecond long
simulation of a single solvated protein can generate this
much data, what would happen if we tried to simulate an
entire cell for similar duration? Second, microsecond long
simulations can take weeks, what will it take to reach
timescales actually relevant to various biological processes
such as ligand dissociation and slow conformational
exchanges, namely milliseconds and beyond? Thus MD
suffers from two, at first glance opposing but deeply con-
nected problems — enormous amounts of data which can
be difficult to analyze, and yet, the inability to generate data
at timescales that we actually care about when it comes to
interpreting or designing laboratory experiments.

The purpose of this review is to summarize how we are
starting to see breakthroughs in the endeavor of sur-
mounting both these problems by using ideas from
machine learning (ML), motivating how the above two
problems are actually two sides of the same coin. By ML
here we mean methods incorporating artificial neural
networks (ANN). Most of these methods follow some
variant of the scheme shown in Figure 1. That is, ML is
used to find a projection from the high dimensional
structure space to a low dimensional feature space. We
focus on theoretical underpinnings and do not discuss
applications. In addition, ML, approaches to designing
force-field [1-3] itself will also not be covered. We con-
clude with caution highlighting that albeit the future
ahead is exciting, much work remains.

Underlying terms and constructs

We are interested in a generic atomic/molecular system
comprising N atoms, where the 3N position coordinates
are collectively denoted by x, which in this review we call
a microstate. In classical MD, the N atoms execute
classical dynamics at a temperature 7" (or inverse temper-
ature ) under the influence of an interaction potential
U(x). Further, we are typically interested in cases rele-
vant to biophysical systems characterized by the existence
of metastable states where the system spends extended
amounts of time, infrequently moving between any two
such states. Typical objective in performing MD is to
evaluate the following two broad types of quantities for
some generic low-dimensional collective variable (CV) s(x):

1 equilibrium properties, such as the free energy F(s),
where  P(s) = ¢ P = [dx8[s — s(x)]Po(x), where
Poy(x) x e PU® is the equilibrium probability of a
microstate x, and P(s) is the probability of the CV.
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A schematic illustrating the typical workflow of some of the methods that use machine learning to analyze and enhance MD simulation. High
dimensional data which describes the time evolution of the system in configuration space is used as the input of an ANN. The ANN is trained to
project the input to a low dimensional space. Depending on the structure of NN and objective function, the low dimensional representation
captures different features that are considered to be important, such as slow modes. In some methods, the feature learnt are used to further
enhanced the sampling of MD simulation as shown by the arrow in the bottom.

2 dynamic properties, such as the mean first passage time
for escaping any metastable state in x-space.

The dynamics in the full high-dimensional x-space can be
safely assumed to be Markovian, and thus the time-
propagation of the system in x-space can be described
for a given lag time t using a transfer operator [4] K with
eigenvalues 1 = Ay > A; > - - - and corresponding eigen-
vectors  Yo(x) = 1,¥(x), ¥,(x),.... The eigenvectors
with indices 7 > 1 correspond to the slow modes of the
system with corresponding timescales #; = *mg%x,' A cen-
tral objective of the methods in this review is to learn the
so-called low-dimensional reaction coordinare (RC) for the
high-dimensional dynamics. Loosely speaking, this RC
can be defined as a special CV which encapsulates slow
modes of the high-dimensional transfer operator such that
the modes not captured are either fast or irrelevant.
Although in principle one could construct the RC as a
function of Cartesian coordinates, in practice it is more
efficient to construct it as a function of low-dimensional
molecular descriptors often called order parameters (OP).
These OPs are system observables that can be defined
based on some pre-knowledge of the system or using
methods like AMINO [5]. In this review, OPs will be
denoted as v.

Using ML for analyzing MD trajectories

ML has been used in various forms to analyze long MD
trajectories and learn relevant slow modes. Ma and
Dinner in 2005 used ANNs for constructing a RC [6],
the idea being to sample configurations along transition
pathways and tabulate an ensemble of committor values,
with ANNs trained to fit CVs to these values. Recent

work has revived and somewhat generalized this frame-
work [7].

While a committor might be the most rigorous descrip-
tion of a slow mode, there are other reasonably accurate
and computationally cheaper principles defining what
constitutes slow modes. One such formalism is the
variational approach to conformation dynamics (VAC)
[8°°]. VAC calculates the eigenvalues and eigenvectors
of the transfer operator starting with ¥, by solving
a variational principle which states that any trial eigen-
vector ) will have a time-lagged autocorrelation
(Y1 IK|y) <1, as long as it is orthonormal to v, with
equality holding iff ¥ = ¥,. Thus we can approximate
the first nontrivial eigenfunction ¥ by searching for a ¥/}
that maximizes its autocorrelation function subject to the
orthonormal conditions. Refs. [8°°,9] show how to calcu-
late such matrix elements given unbiased MD data.
Further modes can be learned in a similar manner but
with more orthonormality conditions. Methods such as
TICA [10] implement VAC directly by learning slow
eigenvectors as linear combinations of pre-selected basis
functions, and are at the heart of building MSMs. The
Variational approach for Markov processes (VAMP) prin-
ciple [11°°] generalizes the mathematical framework in
the VAC principle to nonstationary and nonreversible
processes, while keeping the same key underlying intent
of learning a transformation of x in which the dynamics is
as Markovian as possible. VAMPnets use ANNSs to imple-
ment the VAMP principle and automate the various steps
involved in construction of a MSM. Even more recent
methods such as state-free reversible VAMPnets (SRV)
combine strengths of VAC and VAMPnets for equilib-
rium systems, and use ANNSs to construct a full hierarchy
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of slow modes expressible as non-linear functions of input
coordinates.

Slow modes s as per VAC may also be equivalently
defined as a mapping s(x) that maximizes autocorrelation
A(s) for a lag time t:

_ [E[S‘(x,)f(xlﬂ)]
A6 = S ®))o bt 0)) M

where § = — E(s) is the mean-free latent variable and
o(s) is the standard deviation of s. Time-lagged autoen-
coders (‘T'AE) use an encoder-decoder framework to find
the slow component so defined. However, instead of
calculating the precise expectation value in Equation 1,
TAE approximates the slow mode by minimizing the
reconstruction loss Ly:

Lr = Lrag = sz+r — D(E(x,))* (2)

Here E is the encoder which maps the input configuration
x to low-dimensional s and D is the decoder mapping it
back to coordinate space. Maximizing Equation 1 and
minimizing Equation 2 are identical if the encoder and
decoder are linear [12°].

Variational dynamic encoder (VDE) [13°°] also uses an
encoder—decoder pair with time-lagged data, but instead
of having only a term related to reconstruction error Lg,
VDE includes two additional terms. Firstly, the latent
variable s, is not directly used as an input of the decoder to
predictx,4.. Instead, a sample §, is drawn from a Gaussian
distribution N (u(x,),0%(x,)), with mean u(x,) = E(x,) as
in TAE and the variance o°(x,) learnt through another
ANN. This forces the decoder to be tolerant to small
variances of signals from latent space, thus increasing
model generalizability. The use of a Gaussian prior also
helps the distribution of §, to be smooth, allowing mean-
ingful interpolation between states in latent space. This is
done by introducing the Kullback-Leibler divergence
loss:

1+ logo(x,)* — n(x,)* — o(x,)’

2

Ly, =F (3)

Secondly, an autocorrelation loss Lac = —A(s) is intro-
duced. It encourages the learning of modes with high
autocorrelation and makes the training process easier to
converge. The VDE objective function is then a sum of
these three loss terms. Recent work has included a
probabilistic framework similar in spirit to VDE but
within a full Bayesian approach [14].

The EncoderMap approach of Lemke and Peter is
another method that makes use of a NN encoder-decoder
architecture [15]. In addition to a reconstruction loss
analogous to Equation 2 measuring the distance between
input configurations x, and their reconstructions D(£(x;)),
the NN loss function used for training includes an addi-
tional term meant to force s to be interpretable. This
additional term is the sketch-map cost function [16],
which aims to ‘focus’ the network’s low-dimensional
central bottleneck on learning a CV capable of reprodu-
cing distances between adjacent metastable basins as
opposed to intra-basin and basins separated from each
other. In addition, a recent ML, approach [17] has been
proposed that does not leverage ANNs like most of the
above approaches. Instead, it combines the XGBoost
algorithm together with an exclusion loop to determine
a set of essential internal coordinates.

In recent work [18], Olsson and Noé have extended the
notion of encoding a global molecular configuration, x,
into encoding several local configurations x!,x%,... %,
each representing a partition of the original global molec-
ular structure into a local substructure. To model the time
evolution of x the propagator or conditional distribution

P(x/[x,—) is written in terms of the substructures:
Pxilxre) o DI OIRACAIO) 4)

where J;; is the coupling parameter between the /th and
/th subsystem and /; describes the coupling between the
7th subsytem with an external field. With the choice of
this model, the problem of determining the coupling
parameters can then be reduced to N logistic regression
problems. A notable feature of this approach is that it
seems capable of predicting molecular configurations that
have not been incorporated into the training data. Pre-
diction of unsampled but likely configurations along with
a quantitative measure of their relative likelihoods is
exactly the theme of our next section.

Using ML and related data-driven approaches
to enhance sampling

In this section, we review approaches that use ML to not
just analyze existing MD generated structures and trajec-
tories, but also actively enhance the sampling capacity of
MD. In other words, these approaches use ML to not just
learn from given data, but actually generate statistically
accurate information when the underlying processes are
so slow that they simply cannot be sampled in unbiased
MD even with the best available computing resources. In
order to generate novel low-probability structures one can
simply try heating the system. A much more formidable
problem is generating them so that their statistics, typi-
cally through some corrective reweighting scheme, is in
accordance with the underlying Boltzmann probability,
and even more ambitiously, with the underlying kinetics
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at least in terms of inter-conversion timescales between
different metastable states. This is a complex problem for
which many exciting solutions have recently been pro-
posed, and here we outline some of them. Essentially, the
success of ML highly relies on the abundance of data.
However if the events of interest are rare, one faces
paucity of relevant data to train the ML upon. One could
train ML models on data from enhanced sampling meth-
ods, but these methods themselves need an estimate of
the RC, and a wrong choice of RC used to generate the
data could mislead the ML being trained upon it. One
solution to this dilemma is to iterate between rounds of
sampling and ML, where every ML round generates a
progressively improved RC, which is used to perform
better enhanced sampling and so on. Many (though not
all) of the schemes described in this section are built
around this central idea, differing in the precise forms of
(a) the ML procedure, (b) enhanced sampling scheme
and (c) how exactly information from ML is used to
perform sampling and vice-versa.

The molecular enhanced sampling with autoencoders
(MESA) approach uses an ANN with non-linear encoder
and decoder to learn the RC from input data, which itself
is generated through umbrella sampling along trial RCs
[19]. Every round of ML leads to an improved RC along
which new umbrella sampling is performed. The itera-
tions are continued until the free energy from umbrella
sampling no longer varies with further iterations. Similar
to MESA, nonlinear RCs learned by methods like VDE
[13°°] can also be used to perform enhanced sampling,
typically using TICA modes as input variables.

Reweighted autoencoded variational Bayes for enhanced
sampling (RAVE) [20,21°] is an iterative ML-MD
method motivated by the observation that many feature
learning methods, in addition to classifying features, also
provide the probability distribution in feature space [22].
The learnt features and their probability distribution can
then respectively be used as RC and its fixed or static bias
can then be applied to U(x) leading to more ergodic
exploration. One crucial distinguishing feature of RAVE
is that it avoids additional biasing along the RC as in
umbrella sampling [23,24] or metadynamics [25], as these
could forcefully lead to enhanced sampling through non-
equilibrium ways. In other words, even if the RC from
ML was very far from the truth, when used in umbrella
sampling especially with the typical post-processing
WHAM protocol, one could still obtain some sort of free
energy profile and have no way to tell how erroneous the
RC from ML was. On the other hand, a static bias would
lead to enhanced exploration only if the orthogonal hid-
den modes are not relevant. This serves as a test in RAVE
that helps weed out spurious local minima solutions that
often plague deep learning. Keeping the transition states
between different features devoid of bias also allows
obtaining pathways and rate constants. To learn these

features and their probabilities, RAVE uses a past-future
information bottleneck optimization scheme that outputs
a minimally complex yet maximally predictive model. An
ANN decoder is trained to predict the future state of the
system instead of only trying to recover the input data,
and a linear encoder is used to get an interpretable
projection from the space of order parameters to the
RC. The active enhanced sampling (AES) approach
[26] is another approach similar to RAVE, that uses
well-tempered metadynamics [25,27] and a stochastic
kinetic embedding formalism.

Instead of using enhanced sampling methods to explore
new possible configurations, deep generative Markov
state models (DeepGenMSM) [28] use a generative
NN to predict the future evolution of the system and
thus propose new configurations. The encoder has a
SoftMax layer which gives the probability of mapping
an input configuration to different discretized states in
latent space. A generative model is fit to predict the time-
delayed evolution of the system by minimizing a suitably
defined energy distance, which measures the difference
between the transition density of the system and that of
the generative model. The generative model is then
essentially extrapolated to produce high dimensional
structures that were not in the training database.

Boltzmann Generators are a very recent deep learning
based approach that learns the equilibrium probability
Py (x) without resorting to running long trajectories [29]. Tt
leverages recent advances in probabilistic generative
modeling in which invertible coordinate transformations
mapping x onto a random variable x’ whose distribution is
straightforward to sample are learnt [30,31]. Using x'
together with the fact that x follows the Boltzmann
distribution, Py(x) x ¢ PU®  the ANN can be trained
(in principle) without using maximum likelihood on a
pre-existing dataset. Starting with the KL divergence of
the probability predicted by the ANN relative to the
exact (and simple) distribution in x’-space, the loss func-
tion becomes

E[BU(x) — logl/ (x')]] ()

where the expectation is calculated with respect to sam-
ples drawn from the exact distribution in x'-space, x is the
output of the generative network that describes the
inverse mapping from x’ back to x, and the Jacobian J
describes the effect of the coordinate transformation on
the distribution. Notice that lowering the loss function
given in Equation 5 tends to lead the network towards
learning a transformation that results in sampling low-
energy configurations (i.e. approach the Boltzmann dis-
tribution). In practice, however, Boltzmann generators do
also use maximum likelihood on a pre-existing dataset in
order force the network to give non-negligible
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probabilities to other metastable states in addition to the
global minima.

The NN based variationally enhanced sampling (VES)
method also stands out with respect to many of the
other MLL methods mentioned here as it does not try to
learn slow modes, but instead tries to express the bias as
a smoothly differentiable ANN potential as a function
of pre-selected small number of CVs [32°°]. To learn
such a bias, it optimizes the objective function intro-
duced in [33].

We now mention some data driven approaches which
while not using ANNSs, are connected with ML ideas. We
begin with the diffusion map directed MD (DM-d-MD)
[34] and variants thereof [35], which are a series of
pioneering methods that use non-linear manifold learning
techniques such as diffusion maps [36] to gradually build
up the slow modes of a system. The central idea in these
methods is to start with a short unbiased MD run, perform
diffusion map (or a similar method) on it, and then use
this diffusion map to select coordinates in configuration
space for launching new rounds of unbiased MD (unbi-
ased apart from the implicit bias in selection of initiation
points). The key differences in various flavors of such an
approach arise in how the new launch-off points are
selected. Although these approaches lead to enhanced
exploration, it is non-trivial to obtain a Boltzmann-
weighted ensemble directly from such approaches. The
extended DM-d-MD method in principle alleviates this
problem, but can lead to a drop in the computational
speed-up relative to unbiased MD.

SGOOP [37,38] is an iterative method similar to RAVE
and MESA that uses rounds of enhanced sampling to
learn a progressively improved RC. However to learn the
RC, instead of ML, a maximum path entropy or Caliber
model [39] is learnt that identifies the RC as the low-
dimensional projection with maximum separation of
timescales between visible and hidden modes.

Finally, the reinforcement learning based adaptive sam-
pling (REAP) method of Ref. [40] learns relevant CVs on-
the-fly as exploration of the landscape is carried out.
REAP starts with a dictionary of OPs v and associated
trial weights. A round of unbiased MD 1is carried out,
clustered into states, after which the weights are adjusted
in order to maximize a reward function. In a nutshell, the
reward function is designed to favor the least populated
clusters and is iteratively adjusted as new clusters are
visited.

Software

While the development of new algorithms is important
and thus was the focus of this review, it is equally
important to have efficient software implementing these
algorithms in an accurate manner. Thankfully there is no

dearth of such software. PYEMMA, PLUMED and
ANNCOLVAR, as well as associated modules and scripts
provided in GitHub repositories of various publications
[41-43], make it possible to implement many of the
algorithms listed in this review.

Conclusions

In this overview we have summarized some recent ML-
based methods for analyzing and enhancing MD simula-
tions. This is a very lively field with multiple approaches
published even during the course of this review being
written. These approaches are making it possible to
compress high dimensional data generated during MD
into low dimensional models, arguably in a more robust
and automatic manner than achievable with previous non-
ML methods, and revealing hidden patterns that might
not have been discernible otherwise. Thus while there is
clear progress, we would argue that the field is still full of
several difficult, exciting open questions. First, what did
the ML model learn, or can we peer into the black box
that is MLL and interpret what is has learnt. This is the
interpretability challenge. Second, would the ML, model
still work for small (or large) perturbations in the system
being studied. In other words, would ML models trained
on given systems be transferable to new systems of
interest. This is the transferability challenge. Thirdly,
can a fitted MLl model be used to generate Boltzmann-
weighted samples that were previously unexplored, or the
sampling challenge. These challenges are not very dif-
ferent from those faced by ML in application domains
outside biology, and thus a lot is to be gained from cross-
pollination between ideas from active ML experts across
different domains. We thus conclude with cautious opti-
mism for the future.
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