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Molecular dynamics (MD) has become a powerful tool for

studying biophysical systems, due to increasing computational

power and availability of software. Although MD has made

many contributions to better understanding these complex

biophysical systems, there remain methodological difficulties

to be surmounted. First, how to make the deluge of data

generated in running even a microsecond long MD simulation

human comprehensible. Second, how to efficiently sample the

underlying free energy surface and kinetics. In this short

perspective, we summarize machine learning based ideas that

are solving both of these limitations, with a focus on their key

theoretical underpinnings and remaining challenges.
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Introduction
With the ever-increasing power and availability of comput-

ing resources and accurate interaction models, molecular

dynamics (MD) simulations have become an indispensable

tool for thestudy ofbiophysical systems. MD hasallowed us

to probe, with high spatiotemporal resolution, complex

processes such as protein folding, ligand dissociation and

countless others. Not dissimilar to many other fields in

science and engineering, here as well we have had an

explosion of data, easily reaching hundreds of gigabytes

fora standardmicrosecondlongMDsimulationofa protein.

This immediately leads to two pressing questions. First,

what do wedowith this much data — howdowestore it and

how do we make sense of it? And if a microsecond long

simulation of a single solvated protein can generate this

much data, what would happen if we tried to simulate an

entire cell for similar duration? Second, microsecond long

simulations can take weeks, what will it take to reach

timescales actually relevant to various biological processes

such as ligand dissociation and slow conformational

exchanges, namely milliseconds and beyond? Thus MD

suffers from two, at first glance opposing but deeply con-

nected problems — enormous amounts of data which can

be difficult to analyze, and yet, the inability to generate data

at timescales that we actually care about when it comes to

interpreting or designing laboratory experiments.

The purpose of this review is to summarize how we are

starting to see breakthroughs in the endeavor of sur-

mounting both these problems by using ideas from

machine learning (ML), motivating how the above two

problems are actually two sides of the same coin. By ML

here we mean methods incorporating artificial neural

networks (ANN). Most of these methods follow some

variant of the scheme shown in Figure 1. That is, ML is

used to find a projection from the high dimensional

structure space to a low dimensional feature space. We

focus on theoretical underpinnings and do not discuss

applications. In addition, ML approaches to designing

force-field [1–3] itself will also not be covered. We con-

clude with caution highlighting that albeit the future

ahead is exciting, much work remains.

Underlying terms and constructs
We are interested in a generic atomic/molecular system

comprising N atoms, where the 3N position coordinates

are collectively denoted by x, which in this review we call

a microstate. In classical MD, the N atoms execute

classical dynamics at a temperature T (or inverse temper-

ature b) under the influence of an interaction potential

UðxÞ. Further, we are typically interested in cases rele-

vant to biophysical systems characterized by the existence

of metastable states where the system spends extended

amounts of time, infrequently moving between any two

such states. Typical objective in performing MD is to

evaluate the following two broad types of quantities for

some generic low-dimensional collective variable (CV) sðxÞ:

1 equilibrium properties, such as the free energy FðsÞ,
where PðsÞ � e�bFðsÞ ¼ R

dx d s � sðxÞ½ �P0ðxÞ, where

P0ðxÞ / e�bUðxÞ is the equilibrium probability of a

microstate x, and PðsÞ is the probability of the CV.
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2 dynamic properties, such as the mean first passage time

for escaping any metastable state in x-space.

The dynamics in the full high-dimensional x-space can be

safely assumed to be Markovian, and thus the time-

propagation of the system in x-space can be described

for a given lag time t using a transfer operator [4] K with

eigenvalues 1 ¼ l0 > l1 � � � � and corresponding eigen-

vectors c0ðxÞ ¼ 1; c1ðxÞ; c2ðxÞ; . . .. The eigenvectors

with indices i � 1 correspond to the slow modes of the

system with corresponding timescales t i ¼ � t
log li

. A cen-

tral objective of the methods in this review is to learn the

so-called low-dimensional reaction coordinate (RC) for the

high-dimensional dynamics. Loosely speaking, this RC

can be defined as a special CV which encapsulates slow

modes of the high-dimensional transfer operator such that

the modes not captured are either fast or irrelevant.

Although in principle one could construct the RC as a

function of Cartesian coordinates, in practice it is more

efficient to construct it as a function of low-dimensional

molecular descriptors often called order parameters (OP).

These OPs are system observables that can be defined

based on some pre-knowledge of the system or using

methods like AMINO [5]. In this review, OPs will be

denoted as v.

Using ML for analyzing MD trajectories
ML has been used in various forms to analyze long MD

trajectories and learn relevant slow modes. Ma and

Dinner in 2005 used ANNs for constructing a RC [6],

the idea being to sample configurations along transition

pathways and tabulate an ensemble of committor values,

with ANNs trained to fit CVs to these values. Recent

work has revived and somewhat generalized this frame-

work [7].

While a committor might be the most rigorous descrip-

tion of a slow mode, there are other reasonably accurate

and computationally cheaper principles defining what

constitutes slow modes. One such formalism is the

variational approach to conformation dynamics (VAC)

[8��]. VAC calculates the eigenvalues and eigenvectors

of the transfer operator starting with c1, by solving

a variational principle which states that any trial eigen-

vector c0
1 will have a time-lagged autocorrelation

hc0
1jKjc0

1i � 1, as long as it is orthonormal to c0, with

equality holding iff c0
1 ¼ c1. Thus we can approximate

the first nontrivial eigenfunction c1 by searching for a c0
1

that maximizes its autocorrelation function subject to the

orthonormal conditions. Refs. [8��,9] show how to calcu-

late such matrix elements given unbiased MD data.

Further modes can be learned in a similar manner but

with more orthonormality conditions. Methods such as

TICA [10] implement VAC directly by learning slow

eigenvectors as linear combinations of pre-selected basis

functions, and are at the heart of building MSMs. The

Variational approach for Markov processes (VAMP) prin-

ciple [11��] generalizes the mathematical framework in

the VAC principle to nonstationary and nonreversible

processes, while keeping the same key underlying intent

of learning a transformation of x in which the dynamics is

as Markovian as possible. VAMPnets use ANNs to imple-

ment the VAMP principle and automate the various steps

involved in construction of a MSM. Even more recent

methods such as state-free reversible VAMPnets (SRV)

combine strengths of VAC and VAMPnets for equilib-

rium systems, and use ANNs to construct a full hierarchy
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A schematic illustrating the typical workflow of some of the methods that use machine learning to analyze and enhance MD simulation. High

dimensional data which describes the time evolution of the system in configuration space is used as the input of an ANN. The ANN is trained to

project the input to a low dimensional space. Depending on the structure of NN and objective function, the low dimensional representation

captures different features that are considered to be important, such as slow modes. In some methods, the feature learnt are used to further

enhanced the sampling of MD simulation as shown by the arrow in the bottom.
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of slow modes expressible as non-linear functions of input

coordinates.

Slow modes s as per VAC may also be equivalently

defined as a mapping sðxÞ that maximizes autocorrelation

AðsÞ for a lag time t:

AðsÞ ¼ E ~sðxtÞ~sðxtþtÞ½ �
sðsðxtÞÞsðsðxtþtÞÞ ð1Þ

where ~s ¼ s � EðsÞ is the mean-free latent variable and

sðsÞ is the standard deviation of s. Time-lagged autoen-

coders (TAE) use an encoder-decoder framework to find

the slow component so defined. However, instead of

calculating the precise expectation value in Equation 1,

TAE approximates the slow mode by minimizing the

reconstruction loss LR:

LR � LTAE ¼
X
t

xtþt � D E xtð Þð Þ2 ð2Þ

Here E is the encoder which maps the input configuration

x to low-dimensional s and D is the decoder mapping it

back to coordinate space. Maximizing Equation 1 and

minimizing Equation 2 are identical if the encoder and

decoder are linear [12�].

Variational dynamic encoder (VDE) [13��] also uses an

encoder–decoder pair with time-lagged data, but instead

of having only a term related to reconstruction error LR,

VDE includes two additional terms. Firstly, the latent

variable st is not directly used as an input of the decoder to

predict xtþt . Instead, a sample s0t is drawn from a Gaussian

distribution NðmðxtÞ; s2ðxtÞÞ, with mean mðxtÞ ¼ EðxtÞ as

in TAE and the variance s2ðxtÞ learnt through another

ANN. This forces the decoder to be tolerant to small

variances of signals from latent space, thus increasing

model generalizability. The use of a Gaussian prior also

helps the distribution of s0t to be smooth, allowing mean-

ingful interpolation between states in latent space. This is

done by introducing the Kullback–Leibler divergence

loss:

LKL ¼ E
1 þ logsðxtÞ2 � mðxtÞ2 � sðxtÞ2

2

" #
ð3Þ

Secondly, an autocorrelation loss LAC ¼ �AðsÞ is intro-

duced. It encourages the learning of modes with high

autocorrelation and makes the training process easier to

converge. The VDE objective function is then a sum of

these three loss terms. Recent work has included a

probabilistic framework similar in spirit to VDE but

within a full Bayesian approach [14].

The EncoderMap approach of Lemke and Peter is

another method that makes use of a NN encoder-decoder

architecture [15]. In addition to a reconstruction loss

analogous to Equation 2 measuring the distance between

input configurations xt and their reconstructions D E xtð Þð Þ,
the NN loss function used for training includes an addi-

tional term meant to force s to be interpretable. This

additional term is the sketch-map cost function [16],

which aims to ‘focus’ the network’s low-dimensional

central bottleneck on learning a CV capable of reprodu-

cing distances between adjacent metastable basins as

opposed to intra-basin and basins separated from each

other. In addition, a recent ML approach [17] has been

proposed that does not leverage ANNs like most of the

above approaches. Instead, it combines the XGBoost

algorithm together with an exclusion loop to determine

a set of essential internal coordinates.

In recent work [18], Olsson and Noé have extended the

notion of encoding a global molecular configuration, x,
into encoding several local configurations x1; x2; . . . ; xj ,
each representing a partition of the original global molec-

ular structure into a local substructure. To model the time

evolution of x the propagator or conditional distribution

pðxt jxt�tÞ is written in terms of the substructures:

pðxt jxt�tÞ / e
P

i
xit ð
P

j
JijðtÞxjt�tþhiðtÞÞ ð4Þ

where Jij is the coupling parameter between the ith and

jth subsystem and hi describes the coupling between the

ith subsytem with an external field. With the choice of

this model, the problem of determining the coupling

parameters can then be reduced to N logistic regression

problems. A notable feature of this approach is that it

seems capable of predicting molecular configurations that

have not been incorporated into the training data. Pre-

diction of unsampled but likely configurations along with

a quantitative measure of their relative likelihoods is

exactly the theme of our next section.

Using ML and related data-driven approaches
to enhance sampling
In this section, we review approaches that use ML to not

just analyze existing MD generated structures and trajec-

tories, but also actively enhance the sampling capacity of

MD. In other words, these approaches use ML to not just

learn from given data, but actually generate statistically

accurate information when the underlying processes are

so slow that they simply cannot be sampled in unbiased

MD even with the best available computing resources. In

order to generate novel low-probability structures one can

simply try heating the system. A much more formidable

problem is generating them so that their statistics, typi-

cally through some corrective reweighting scheme, is in

accordance with the underlying Boltzmann probability,

and even more ambitiously, with the underlying kinetics

Machine learning for enhancing MD simulations Wang, Lamim Ribeiro and Tiwary 141
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at least in terms of inter-conversion timescales between

different metastable states. This is a complex problem for

which many exciting solutions have recently been pro-

posed, and here we outline some of them. Essentially, the

success of ML highly relies on the abundance of data.

However if the events of interest are rare, one faces

paucity of relevant data to train the ML upon. One could

train ML models on data from enhanced sampling meth-

ods, but these methods themselves need an estimate of

the RC, and a wrong choice of RC used to generate the

data could mislead the ML being trained upon it. One

solution to this dilemma is to iterate between rounds of

sampling and ML, where every ML round generates a

progressively improved RC, which is used to perform

better enhanced sampling and so on. Many (though not

all) of the schemes described in this section are built

around this central idea, differing in the precise forms of

(a) the ML procedure, (b) enhanced sampling scheme

and (c) how exactly information from ML is used to

perform sampling and vice-versa.

The molecular enhanced sampling with autoencoders

(MESA) approach uses an ANN with non-linear encoder

and decoder to learn the RC from input data, which itself

is generated through umbrella sampling along trial RCs

[19]. Every round of ML leads to an improved RC along

which new umbrella sampling is performed. The itera-

tions are continued until the free energy from umbrella

sampling no longer varies with further iterations. Similar

to MESA, nonlinear RCs learned by methods like VDE

[13��] can also be used to perform enhanced sampling,

typically using TICA modes as input variables.

Reweighted autoencoded variational Bayes for enhanced

sampling (RAVE) [20,21�] is an iterative ML-MD

method motivated by the observation that many feature

learning methods, in addition to classifying features, also

provide the probability distribution in feature space [22].

The learnt features and their probability distribution can

then respectively be used as RC and its fixed or static bias

can then be applied to UðxÞ leading to more ergodic

exploration. One crucial distinguishing feature of RAVE

is that it avoids additional biasing along the RC as in

umbrella sampling [23,24] or metadynamics [25], as these

could forcefully lead to enhanced sampling through non-

equilibrium ways. In other words, even if the RC from

ML was very far from the truth, when used in umbrella

sampling especially with the typical post-processing

WHAM protocol, one could still obtain some sort of free

energy profile and have no way to tell how erroneous the

RC from ML was. On the other hand, a static bias would

lead to enhanced exploration only if the orthogonal hid-

den modes are not relevant. This serves as a test in RAVE

that helps weed out spurious local minima solutions that

often plague deep learning. Keeping the transition states

between different features devoid of bias also allows

obtaining pathways and rate constants. To learn these

features and their probabilities, RAVE uses a past-future

information bottleneck optimization scheme that outputs

a minimally complex yet maximally predictive model. An

ANN decoder is trained to predict the future state of the

system instead of only trying to recover the input data,

and a linear encoder is used to get an interpretable

projection from the space of order parameters to the

RC. The active enhanced sampling (AES) approach

[26] is another approach similar to RAVE, that uses

well-tempered metadynamics [25,27] and a stochastic

kinetic embedding formalism.

Instead of using enhanced sampling methods to explore

new possible configurations, deep generative Markov

state models (DeepGenMSM) [28] use a generative

NN to predict the future evolution of the system and

thus propose new configurations. The encoder has a

SoftMax layer which gives the probability of mapping

an input configuration to different discretized states in

latent space. A generative model is fit to predict the time-

delayed evolution of the system by minimizing a suitably

defined energy distance, which measures the difference

between the transition density of the system and that of

the generative model. The generative model is then

essentially extrapolated to produce high dimensional

structures that were not in the training database.

Boltzmann Generators are a very recent deep learning

based approach that learns the equilibrium probability

P0ðxÞ without resorting to running long trajectories [29]. It

leverages recent advances in probabilistic generative

modeling in which invertible coordinate transformations

mapping x onto a random variable x0 whose distribution is

straightforward to sample are learnt [30,31]. Using x0

together with the fact that x follows the Boltzmann

distribution, P0ðxÞ / e�bUðxÞ, the ANN can be trained

(in principle) without using maximum likelihood on a

pre-existing dataset. Starting with the KL divergence of

the probability predicted by the ANN relative to the

exact (and simple) distribution in x0-space, the loss func-

tion becomes

E bUðxÞ � logjJðx0Þj½ � ð5Þ

where the expectation is calculated with respect to sam-

ples drawn from the exact distribution in x0-space, x is the

output of the generative network that describes the

inverse mapping from x0 back to x, and the Jacobian J
describes the effect of the coordinate transformation on

the distribution. Notice that lowering the loss function

given in Equation 5 tends to lead the network towards

learning a transformation that results in sampling low-

energy configurations (i.e. approach the Boltzmann dis-

tribution). In practice, however, Boltzmann generators do

also use maximum likelihood on a pre-existing dataset in

order force the network to give non-negligible

142 Theory and simulation
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probabilities to other metastable states in addition to the

global minima.

The NN based variationally enhanced sampling (VES)

method also stands out with respect to many of the

other ML methods mentioned here as it does not try to

learn slow modes, but instead tries to express the bias as

a smoothly differentiable ANN potential as a function

of pre-selected small number of CVs [32��]. To learn

such a bias, it optimizes the objective function intro-

duced in [33].

We now mention some data driven approaches which

while not using ANNs, are connected with ML ideas. We

begin with the diffusion map directed MD (DM-d-MD)

[34] and variants thereof [35], which are a series of

pioneering methods that use non-linear manifold learning

techniques such as diffusion maps [36] to gradually build

up the slow modes of a system. The central idea in these

methods is to start with a short unbiased MD run, perform

diffusion map (or a similar method) on it, and then use

this diffusion map to select coordinates in configuration

space for launching new rounds of unbiased MD (unbi-

ased apart from the implicit bias in selection of initiation

points). The key differences in various flavors of such an

approach arise in how the new launch-off points are

selected. Although these approaches lead to enhanced

exploration, it is non-trivial to obtain a Boltzmann-

weighted ensemble directly from such approaches. The

extended DM-d-MD method in principle alleviates this

problem, but can lead to a drop in the computational

speed-up relative to unbiased MD.

SGOOP [37,38] is an iterative method similar to RAVE

and MESA that uses rounds of enhanced sampling to

learn a progressively improved RC. However to learn the

RC, instead of ML, a maximum path entropy or Caliber

model [39] is learnt that identifies the RC as the low-

dimensional projection with maximum separation of

timescales between visible and hidden modes.

Finally, the reinforcement learning based adaptive sam-

pling (REAP) method of Ref. [40] learns relevant CVs on-

the-fly as exploration of the landscape is carried out.

REAP starts with a dictionary of OPs v and associated

trial weights. A round of unbiased MD is carried out,

clustered into states, after which the weights are adjusted

in order to maximize a reward function. In a nutshell, the

reward function is designed to favor the least populated

clusters and is iteratively adjusted as new clusters are

visited.

Software
While the development of new algorithms is important

and thus was the focus of this review, it is equally

important to have efficient software implementing these

algorithms in an accurate manner. Thankfully there is no

dearth of such software. PYEMMA, PLUMED and

ANNCOLVAR, as well as associated modules and scripts

provided in GitHub repositories of various publications

[41–43], make it possible to implement many of the

algorithms listed in this review.

Conclusions
In this overview we have summarized some recent ML-

based methods for analyzing and enhancing MD simula-

tions. This is a very lively field with multiple approaches

published even during the course of this review being

written. These approaches are making it possible to

compress high dimensional data generated during MD

into low dimensional models, arguably in a more robust

and automatic manner than achievable with previous non-

ML methods, and revealing hidden patterns that might

not have been discernible otherwise. Thus while there is

clear progress, we would argue that the field is still full of

several difficult, exciting open questions. First, what did

the ML model learn, or can we peer into the black box

that is ML and interpret what is has learnt. This is the

interpretability challenge. Second, would the ML model

still work for small (or large) perturbations in the system

being studied. In other words, would ML models trained

on given systems be transferable to new systems of

interest. This is the transferability challenge. Thirdly,

can a fitted ML model be used to generate Boltzmann-

weighted samples that were previously unexplored, or the

sampling challenge. These challenges are not very dif-

ferent from those faced by ML in application domains

outside biology, and thus a lot is to be gained from cross-

pollination between ideas from active ML experts across

different domains. We thus conclude with cautious opti-

mism for the future.
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