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ABSTRACT
Artificial intelligence (AI)-based approaches have had indubitable impact across the sciences through the ability to extract relevant informa-
tion from raw data. Recently, AI has also found use in enhancing the efficiency of molecular simulations, wherein AI derived slow modes
are used to accelerate the simulation in targeted ways. However, while typical fields where AI is used are characterized by a plethora of data,
molecular simulations, per construction, suffer from limited sampling and thus limited data. As such, the use of AI in molecular simulations
can suffer from a dangerous situation where the AI-optimization could get stuck in spurious regimes, leading to incorrect characteriza-
tion of the reaction coordinate (RC) for the problem at hand. When such an incorrect RC is then used to perform additional simulations,
one could start to deviate progressively from the ground truth. To deal with this problem of spurious AI-solutions, here, we report a novel
and automated algorithm using ideas from statistical mechanics. It is based on the notion that a more reliable AI-solution will be one that
maximizes the timescale separation between slow and fast processes. To learn this timescale separation even from limited data, we use a
maximum caliber-based framework. We show the applicability of this automatic protocol for three classic benchmark problems, namely, the
conformational dynamics of a model peptide, ligand-unbinding from a protein, and folding/unfolding energy landscape of the C-terminal
domain of protein G. We believe that our work will lead to increased and robust use of trustworthy AI in molecular simulations of complex
systems.
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I. INTRODUCTION

With the development of more accurate force fields and power-
ful computers, molecular dynamics (MD) has become a ubiquitous
tool to study complex structural, thermodynamic, and kinetic pro-
cesses of real-world systems across disciplines. However, the predic-
tive capacity of the methodology is limited by the large timescale
gap between the conformational dynamics of the complex pro-
cesses of interest and the short periods accessible to it.1,2 This
disparity is mostly attributed to the rough energy landscape typi-
cally characterized by numerous energy minima with hard to cross
barriers between them,1,3,4 which trap the system in metastable
states, leading to an incomplete sampling of the configuration space.

Comprehensive sampling of the configuration space not only pro-
vides high temporal and spatial resolutions of the complex process
but also allows us to compute converged thermodynamic proper-
ties, sample physiologically relevant molecular conformations, and
explore complex motions critical to biological and chemical pro-
cesses such as protein folding, ligand binding, energy transfer, and
countless others.5–13

To overcome the limitations of timescales and accurately char-
acterize such complex landscapes, a plethora of enhanced sam-
pling techniques have been developed. We can broadly divide
these methods into (1) tempering based, and (2) collective vari-
able (CV) or reaction coordinate (RC) based,4 either of which can
then also be coupled with multiple replica based exchange schemes.
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In tempering based methods, the underlying landscape is sampled by
either modifying the temperature and/or Hamiltonian of the system
through approaches, such as temperature replica exchange, simu-
lated annealing, and accelerated MD.14–21 On the other hand, CV
based methods involve enhancing fluctuations along pre-defined
low-dimensional modes through biased sampling approaches such
as metadynamics,22–24 umbrella-sampling (US),25 adaptive biasing
force (ABF),26–30 and many others.27,31–33 Although CV-based meth-
ods can be computationally more efficient than tempering-based
approaches, and given a poor choice of low-dimensional modes (a
non-trivial task to intuit for complex systems), CV biasing can fail
miserably.34 Indeed, one could also argue that one way to make
tempering methods more efficient is to select a specific part of the
system, akin to a CV, which is then subjected to the tempering
protocol.35,36

Artificial intelligence (AI) potentially provides a systematic
means to differentiate signal from noise in generic data and thus
discover relevant CVs to accelerate the simulations.37–41 A number
of such AI-based approaches have been proposed recently37–39,42,43

and remain the subject of extensive research. A common under-
lying theme in these methods is to exploit AI tools to gradually
uncover the underlying effective geometry, parametrize it on-the-
fly, and exploit it to bias the design of experiments with the MD
simulator by emphasizing informative configuration space areas that
have not been explored before. This iterative MD-AI procedure is
repeated until desired sampling has been achieved. Conceptually,
these approaches effectively restrain the 3N-dimensional space to a
very small number of dimensions (typically 1 or 2), which encode
all the relevant slow dynamics in the system, effectively discard-
ing the remaining fast dynamics. Every round of AI estimates the
slow modes given sampling so far, and this information is used to
launch new biased rounds of simulations. Biasing along the slow
modes leads to increased exploration, which can then be used in
another round of AI to estimate the relevant slow modes even more
accurately. The use of standard reweighting procedures can then
recover unbiased thermodynamic and kinetic information from the
AI-augmented MD trajectories so obtained.

However, there is a fundamental problem in such an approach.
Most AI tools are designed for data-rich systems. It has been
argued44–47 that given good quality training data and with a neu-
ral network with infinitely many parameters, the objective function
for associated stochastic gradient optimization schemes is convex.
However, in enhanced MD, we are, per construction, in a poorly
sampled data-sparse regime, and moreover, it is impractical to use
a dense network with too many parameters. The AI optimization
function is therefore no longer guaranteed to be convex and can
give spurious or multiple solutions for the same data set—in the
same spirit as a self-driving car miscategorizing a “STOP” sign
as an indication to speed up or some other action.48 This would
happen because gradient minimization got stuck in some spuri-
ous local minima or even a saddle point on the learning land-
scape. The slow modes thus derived would be spurious and using
them as a biasing CV or RC would lead to incorrect and ineffi-
cient sampling. This could naturally lead one to derive misleading
conclusions.

While the concerns stated above and the approach in this work
to address them should be applicable to more general instances
of AI application in molecular simulations, here, we focus on the

problem of enhanced sampling through MD-AI iterations. We
report a new and computationally efficient algorithm designed to
screen the spurious solutions obtained in AI-based methods. Our
central hypothesis is that spurious AI solutions can be identified by
tell-tale signatures in the associated dynamics, specifically through
poor timescale separation between slow and fast processes. Thus,
different slow mode solutions obtained from different instances of
AI applied to the same data set can be ranked on the basis of how
much slower the slow mode is relative to the fast modes. This dif-
ference between slow and fast mode dynamics is known as spec-
tral gap. We would like to emphasize that the concept of largest
spectral gap correlating with CV optimality is a well-founded and
theoretically justified concept at the heart of many previous stud-
ies.49–53 However, it has not yet been applied in a computationally
tractable manner to representations arising from AI frameworks
used on biased datasets, as done in this work. Here, this is made fea-
sible through the use of the “Spectral Gap Optimization of Order
Parameters (SGOOP)” framework.54 This builds a maximum cal-
iber or path entropy55 based model of the unbiased dynamics along
different AI based representations even when the underlying observ-
ables arise from biased simulations, which then yields spectral gaps
along different slow modes obtained from AI trials. We demonstrate
this path entropy based screening procedure in the context of our
recent iterative AI-MD scheme “Reweighted Autoencoded Varia-
tional Bayes for Enhanced sampling (RAVE).”40 Here, we show how
this automated protocol can be applied to the study of a variety of
molecular problems of increasing complexity. These include con-
formational dynamics in a model peptide, ligand unbinding from
a protein, and extensive sampling of the folding/unfolding of the
C-terminal domain of protein G (GB1-C16). We believe that the
presented algorithm marks a major step forward in the use of fully
automated AI-enhanced MD for the study of complex biomolecular
processes.

II. THEORY
A. AI can mislead

In this work, our starting point is the recent AI-based method
RAVE.37,40,56 RAVE is an iterative MD-AI approach wherein rounds
of MD for sampling are alternated with rounds of AI for learn-
ing slow modes. Specifically, RAVE begins with an initial unbiased
MD trajectory comprising values of some order parameters s = (s1,
s2, . . ., sd). These could be generic variables such as dihedrals or
protein–ligand distances,57 as well as other CVs deemed to best
describe the behavior of the system of interest. This trajectory is then
treated with the past–future information bottleneck (PIB) frame-
work.58–62 Per construction, the PIB is a low-dimensional represen-
tation with the best trade-off between minimal complexity and max-
imal predictive capability of the trajectory’s evolution slightly ahead
in the future. RAVE uses the PIB as a computationally tractable
approximation for the RC, which is traditionally considered as the
definition of a slow mode.63 PIB is then used in an importance sam-
pling framework to perform the next round of biased MD. Assuming
that the biased PIB is close enough to the true slow mode or modes
of the system, one expects the exploration of the configuration space
in this new biased round of MD to be greater than in the previous
round. The biased MD itself can be performed using one of the many
available biased sampling schemes.40,64,65
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In order to learn the PIB, RAVE uses an encoder–decoder
framework. The PIB or RC χ is expressed as a linear combina-
tion of order parameters χ = ∑icisi, where the order parameters are
s = (s1, s2, . . ., sd), ci denotes different weights,57 and d denotes the
dimension of the order parameter space. The PIB objective function
that is then minimized in every training round can be written as a
difference of two mutual information,66

L ≡ I(s, χ) − γI(sΔt , χ), (1)

where I(.) denotes the mutual information between two random
variables.66 The term I(sΔt , χ) describes the predictive power of the
model, which is quantified by the amount of information shared
by the information bottleneck χ and the future state of the system
sΔt when the information bottleneck is decoded back to the order
parameter space. To optimize the objective function, the informa-
tion bottleneck χ should be as informative as possible about the
future state of the system, quantified through increasing I(sΔt , χ).
At the same time, we seek to minimize the complexity of the
low dimensional representation. Therefore, when the encoder maps
the present state of the system s to information bottleneck χ,
we aim to minimize the amount of information shared between
them by decreasing I(s, χ). The parameter γ is introduced to tune
the trade-off between predictive power and the complexity of the
model.

In Eq. (1), the encoder is a linear combination of the input
coordinates, thereby keeping it interpretable and relatively robust to
overfitting. The decoder is a deep artificial neural network (ANN).
Due to the principle of variational inference40,67 wherein optimizing
the decoder is guaranteed to lead to a convex optimization problem,
we are not concerned with over-fitting in the decoder. Fitting the
encoder, which directly leads to an interpretable RC, is our concern
here. This can be best illustrated through a simple numerical exam-
ple involving protein conformational dynamics, which we described
in detail in the supplementary material and in Fig. 1. We performed
six different independently initialized trials of PIB learning using the
same input trajectory for a model peptide (alanine dipeptide), each
running for the same number of epochs. The RC was expressed as
a linear combination of the sines and cosines of various Ramachan-
dran dihedral angles. As shown in Fig. 1(b), we obtain different RCs
with different trials even though they are all stopped at the same low
value of the loss function (within four decimal digits of precision).

FIG. 1. Spurious AI solutions for RCs describing conformational dynamics of ala-
nine dipeptide. (a) Molecular representation of alanine dipeptide showing relevant
Ramachandran dihedral angles, ϕ and ψ. (b) Table highlights the insensitivity of
the objective function toward the changes in the weights of the order parameters.
Six independently initiated trials of RAVE, on the same input trajectory, resulted
in different RCs. The RCs are expressed as a linear combination of sines and
cosines of ϕ and ψ with coefficients/weights listed in the table.

Given the use of an interpretable linear encoder, one can see a sense
of symmetry, at first glance, even in the differently looking RCs in
Fig. 1(b). However, as will be shown later, the situation exempli-
fied here exacerbates quickly with more complicated systems, and
we expect this degeneracy to get only worse in more ambitious
AI-based applications where even the encoder is non-linear37,41,51

and/or where one does not really know a priori when to stop the
training.

The above numerical example demonstrates the problem at
heart of what we wish to tackle in this manuscript: How does one
screen through spurious solutions resulting from attempts to opti-
mize an objective function in AI applications to molecular simula-
tions and more broadly in chemistry and other physical sciences?
The problem is especially difficult in two scenarios: first, when one
does not know the ground truth against which different AI solutions
could be ranked, as is expected in any application where one seeks
to gain new insight. Second, as is the case in AI-augmented MD,
this problem will have critical, unquantifiable ramifications in iter-
ative learning scenarios when any such AI-derived insight is used
to make new decisions and drive new rounds of biased simulations.
For instance, in RAVE, we have yet another parameter that is not
obvious how to select the choice of the predictive time-delay Δt in
Eq. (1). As shown in Ref. 68, theoretically speaking the method is
robust to the choice of this parameter as long as it is non-zero yet
small enough. In practice, it can be hard to judge whether it is indeed
small enough or not.

B. Path entropy model of dynamics can be used
to screen AI solutions

In order to rank a set of AI-generated putative RCs, we appeal
to the fundamental notion of timescale separation, which is ubiqui-
tous across physics and chemistry through concepts such as Born–
Oppenheimer approximation69 and Michaelis–Menten principle.70

We posit that given a basket of RC solutions generated through
AI, we can rank them as being closer to the true but unknown RC
if they have a higher timescale separation between slow and fast
modes. Thus, a spurious AI solution should have a tell-tale signa-
ture in its dynamics, with poor separation between slow and fast
modes. Indeed, one of the many definitions of an RC in chemistry is
one that maximizes such a timescale separation.71 To estimate this
timescale separation efficiently and rank a large number of puta-
tive AI based solutions for the true RC or PIB, here, we use the
SGOOP framework,54 which uses a maximum path entropy or cal-
iber model55,72 to construct a minimal model of the dynamics along
a given low-dimensional projection (Fig. 2). To construct such a
model, SGOOP requires two key inputs. First, it needs the stationary
probability density along any putative RC, which we directly obtain
after each round of RAVE.40,68 Second, it needs estimates of unbiased
dynamical observables, which we obtained from short MD simu-
lations. With these two key sets of inputs, SGOOP can construct a
matrix of transition rates along any putative RC. Diagonalizing this
matrix gives the eigenvalues for the dynamical propagator. The spec-
tral gap from these eigenvalues is then our estimate of the timescale
separation.73 While improving the quality of the dynamical observ-
ables can lead to increasingly accurate eigenvalues,74 here, we use a
computationally inexpensive dynamical observable denoted as ⟨N⟩
and defined as the average number of nearest neighbor transitions
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FIG. 2. Flowchart illustrates our novel and computationally efficient protocol to
screen AI solutions. Starting from short unbiased MD simulations, our protocol
automatically screen the spurious solutions obtained in AI-based method and
learns the optimal RC. In this work, we demonstrate the applicability of our protocol
in the context of RAVE, and the screening of the spurious solutions is achieved by
a path entropy based procedure.

per unit time along any RC. The SGOOP protocol requires a stan-
dard grid parameter (also used for histogramming), which, in all the
studied systems, was set to 20. We use pn to denote the stationary
probability density along any suitably discretized putative RC at grid
index n. With these inputs, the SGOOP transition probability matrix
K for moving between two grid points m and n is given by55,73

Kmn =
< N >
∑

√
pnpm

√

pn
pm

. (2)

Our net product is an iterative framework that leverages the pre-
dictive power of RAVE and the fundamental notion of timescale
separation of SGOOP to generate an optimal RC. The use of AI in
RAVE allows one to generate several possible candidate RCs, and

by constructing a minimal path entropy based dynamical model,
we efficiently screen out spurious solutions generated from AI. We
would like to note that maximum path entropy does not require any
additional simulations beyond those already available from RAVE;
rather, it is a post processing protocol that can be employed after
each set of RAVE runs to sieve-out spurious solutions. The RC iden-
tified so is then used as a biasing variable in enhanced sampling, and
the biased trajectory itself is fed back to the AI module to further
optimize the RC. The iteration between this framework and sam-
pling continues until multiple transitions between different inter-
mediate states are achieved. We also apply this framework to cleanly
select the best choice of predictive time-delay (Δt) in Eq. (1)—the
optimal predictive time delay in our model for PIB is the one that
achieves the highest timescale separation.

III. RESULTS
In Sec. II B, we described a path entropy and timescale separa-

tion based paradigm to capture spurious solutions in AI-enhanced
MD. In this section, we illustrate the effectiveness of our frame-
work through three generically relevant biophysical examples of
increasing complexity. Specifically, we consider (A) conformational
dynamics of a model peptide in vacuum, (B) dissociation of a
millimolar-affinity ligand from FK506-binding protein (FKBP) pro-
tein, and (C) folding of the GB1-C16 peptide. All simulations are
done at an all-atom resolution, including explicit water in (B) and
(C). In all three systems, starting with an initial unbiased MD tra-
jectory comprising generic order parameters s, we perform itera-
tive rounds of RAVE followed by biased enhanced sampling using
SGOOP to screen RC candidates generated in RAVE and to select
the optimal time delay Δt in Eq. (1). Apart from the starting choice
of order parameters that are kept quite generic (Table S1), all steps
are carried out with minimal use of human intuition. To display
the versatility of our framework, we combined it with two different
enhanced sampling algorithms.75 In systems (A) and (B), we employ
static biases to further enhance the conformational sampling of the
model peptide and ligand dissociation along the reaction path.76

These static biases were directly obtained by inverting the probabil-
ity distribution learnt during RAVE.40,56 In system (C), we employ
time-dependent biasing through well-tempered metadynamics24,65

to capture folding of the GB1-C16 peptide. All the simulations were
performed with GROMACS version 5.077 patched with PLUMED
version 2.4.2.78,79

A. Conformational dynamics of alanine dipeptide
The first system we consider here is the well-studied case of

alanine dipeptide in vacuum. It can exist in multiple conformations
separated by barriers and commonly characterized by differing val-
ues of its backbone dihedral angles ϕ and ψ [Fig. 1(b)]. Enabled by
the small size of the system, we performed three independent sim-
ulations, each 2 μs long. The corresponding trajectories along with
the dihedral angles ϕ and ψ are provided in Fig. S1 of the supplemen-
tary material. In line with standard practice,80,81 the sines and cosines
of these two dihedral angles provide natural input order parameters
(OPs) s = (cosϕ, sinϕ, cosψ, sinψ) for RAVE, which then learns
the optimal RC χ as a linear combination of these four. In the three
independent trajectories, even with such long simulation times, we
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capture only 1, 2, and 4 transitions between the axial and the equa-
torial conformations of the dipeptide. Using such input trajectories
with a different number of transitions helps us ascertain robustness
of the protocol developed here. Each trajectory was used to perform
RAVE with 11 different choices of the predictive time delay Δt in
Eq. (1) ranging from 0 ps to 40 ps. Furthermore, ten different trials
were performed for each Δt value corresponding to different input
trajectories. This amounts to a total of 330 RAVE calculations, with
110 for each input trajectory. Each trial was stopped after the same
training time, and the loss function value after the training and the
RC so-obtained were recorded.

As hinted in Sec. I, we obtain very different RCs for the dif-
ferent Δt values and for different independent trials. Furthermore,
different trials that were stopped at a similar loss function value
gave different RCs and spectral gaps (Figs. 3 and S2). However,
our protocol of using spectral gaps to rank these different solu-
tions works well in screening out the RC. In Figs. 3(a)–3(c), we
demonstrate the noisy correlation that we find between the loss
function value and the spectral gap for all three input trajectories.
In the supplementary material [Fig. S2(b)], we provide an illustra-
tive figure for one particular trajectory showing how the same loss
function value results in RCs with different free energy profiles and
that the one with the highest spectral gap stands out with the most
clearly demarcated metastable states. Similarly, the spectral gap cap-
tures the most optimal RC not just from the set of multiple trials
at each time delay, but it can also be used to select the optimal

time delay itself [Fig. 3(d), red]. In the subsequent calculations, an
optimal time delay of 8 ps, corresponding to the maximum spec-
tral gap, was employed. Irrespective of the choice of input trajectory,
we find that the optimal RC shows higher weights for ϕ (as com-
pared to ψ) (Table I), in line with previous studies that highlighted
ϕ to be a more important degree of freedom than ψ.40,82 Using the
RC corresponding to the ntrans = 4 and its probability distribu-
tion as a fixed bias,40 we then explored the conformational space of
the peptide. The two-dimensional free-energy landscape along the
dihedrals ϕ and ψ was able to capture axial and equatorial confor-
mations of the peptide in only 20 ns of biased simulation [Fig. 3(e)].
This is in excellent agreement with previously published studies for
this system.24,40 However, biased simulations with the RAVE-alone
RC result in poorer sampling of the configuration space relative to
biased simulations using the RC further screened with SGOOP, as
shown by the lesser number of transitions between the energy basins
in Fig. S3.

B. Unbinding of millimolar-affinity ligand from FKBP
In the second example, we applied our framework to a well-

studied problem of dissociation of 4-hydroxy-2-butanone (BUT), a
millimolar affinity ligand, from the FKBP protein [Fig. 4(a)]. Force-
field parametrization83–85 and other MD details are provided in
the supplementary material. Here, our objective was to use RAVE
to learn the most optimal RC on-the-fly as well as the absolute

FIG. 3. Capturing the spurious AI solutions in alanine dipeptide. Spectral gap and loss function values were calculated for each of the three unbiased trajectories at multiple
time delays Δt between 0 ps and 40 ps, indicated using circles of different colors in the bottom right-hand side. (a)–(c) show noisy correlation between the loss and the
spectral gap for the number of transitions ntrans equaling 1, 2, and 4 respectively. Different circles denote different independent trials, with color denoting Δt. For visual clarity,
for every ntrans, we have plotted a mean-free version of the loss function value by subtracting out the average of all losses. (d) Maximum spectral gap (out of ten different
trials of RAVE) vs Δt was plotted for three different unbiased trajectories. Optimal time delay of 8 ps was employed in subsequent calculations. (e) Free energy surface (FES)
along the two dihedrals Φ and Ψ obtained from the 20 ns-long simulation in the presence of static bias. Energy contours are shown at every 4 kJ/mol.
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TABLE I. Optimal weights of OPs obtained through a combination of RAVE and
SGOOP.

Trajectory Transitions cosϕ sinϕ cosψ sinψ

1 1 −0.71 −0.68 0.09 −0.15
2 2 0.35 0.81 0.32 0.34
3 4 0.63 −0.65 0.03 0.42

binding free energy of this protein–ligand complex. This is a difficult
and important problem for which many useful methods have already
been employed with varying levels of success.86 At this stage at least,
our intention is not to compete with these other existing methods,
but instead validate that our framework works for a well-studied
benchmark problem. We begin by performing four independent MD
simulations of FKBP in its ligand-bound form (PDB:1D7J).87 The
MD simulations were stopped when the ligand unbound, specifically
when it was 2 Å away from the binding pocket [Fig. 4(b)]. All trajec-
tories were expressed in terms of eight OPs representing various dis-
tances between the center of mass (COM) of the ligand and the COM
of the residues in the binding pocket (Table S1), which comprise a
natural choice for the process of ligand unbinding from the protein

and have been employed in previous studies.57,88 We combined the
results of the four independent MD trajectories to perform RAVE
with 11 different choices of predictive time delay ranging from 0 ps
to 40 ps. At each Δt, 10 different trials were performed, resulting in a
total of 110 RAVE calculations. Each trial was stopped after the same
training time, and the loss function value after the training as well
as the RC so-obtained were recorded. Different RCs were screened
using a path entropy based model, as discussed in Sec. II and done
for alanine dipeptide. We again find noisy correlation between the
loss function values and the spectral gap [Fig. 4(c)] for the case of
Δt = 40 ps (additional plots are given in Fig. S4). The same value
of the loss function gives rise to very different values of the spec-
tral gap and the RC [Fig. 4(c)]. Furthermore, the spectral gap not
only captures the most optimal RC but also is able to select the most
optimal time delay [Fig. 4(d)]. By using this RC and its probability
distribution as a fixed bias,40 we then performed 800 ns of biased
simulations starting from the bound pose, but allowing the ligand
to re-associate [Figs. S5(a) and S5(b)]. Through this, we then calcu-
lated the absolute binding affinity of the protein–ligand complex to
be 6.6 kJ/mol [Fig. 4(e)], in good agreement with the values reported
through metadynamics.57 Interestingly, the binding affinity of the
protein–ligand complex was also in good agreement with the val-
ues reported through extended unbiased simulations by Pan et al.,89

although the ligand was parameterized with the generalized amber

FIG. 4. Unbinding of 4-hydroxy-2-butanone (BUT) from FKBP. (a) Molecular image of the bound FKBP/BUT protein–ligand complex, with binding pocket residues highlighted.
The distances to the residues were used as different OPs detailed in Table S1. (b) Time evolution of the distance between the center of mass (COM) of the bound ligand
and COM of residue W59. It is to be noted that in order to avoid entropy dominant process, only the ligand-bound trajectories were considered in our protocol. (c) Spectral
gap and loss (at time delay of 40 ps) for ten different trials were calculated after combining all four independent trajectories at multiple time delay Δt between 0 ps and
40 ps, indicated using circles. Rest of the time delays are shown in Fig. S1. For visual clarity, at each iteration, we have plotted a mean-free version of the loss function value
by subtracting out the average of all losses. (d) Plot of the maximum spectral gap (out of ten different trials of RAVE) vs time delay (Δt). (e) Absolute binding free energy
G in kJ/mol of the FKBP/BUT system as a function of simulation time with static external bias. The black dotted and orange dotted line show the reference value reported
through metadynamics57 and long unbiased MD simulations performed on ANTON, respectively.89 The shaded region shows the free energy estimate from long unbiased
MD simulations performed on Anton including the ±2.092 kJ error reported.89 (f) A visual depiction of the OP weights.
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force field (GAFF).88 It is worth pointing out that the ANTON
simulations took 39 μs, while we obtained converged estimates in
around 800 ns, reflecting roughly a factor of 48 speed-up with
minimal use of prior human intuition.

The use of a linear encoder in RAVE allows us to directly inter-
pret the weights of the different OPs in the RC [Fig. 4(f)]. The highest
weight corresponds to the OP d5, which is the ligand separation
from residue I56. This residue forms direct interactions with the
bound ligand in the crystal structure. Interestingly, previous stud-
ies87 have highlighted the importance of I56 as it forms hydrogen
bonding interactions with the carbonyl group of the bound ligand;
our algorithm also captured it as the most significant OP. Followed
by this highest weight component, the second and third highest
components are for d1 and d2, denoting distances from the residues
V55 and W59, respectively. These are roughly equal in magnitude,
reflecting that the ligand moves closer to V55 and W59 as it moved
away from I56.

C. Folding/unfolding dynamics of GB1 peptide
Finally, we tested our method on the folding/unfolding dynam-

ics of GB1-C16, which is known to adopt a β-hairpin structure.90–94

Force-field parametrization and other MD details are provided in
the supplementary material. The free-energy landscape of this pep-
tide has been extensively explored by replica-exchange MD simula-
tions and clustering based methods.90,94,95 These studies reported the
presence of multiple intermediate conformations by projecting the
simulation data along multiple OPs, such as radius of gyration (Rg),
root-mean-squared deviation (RMSD), fraction of native contacts
(NC), and native state hydrogen bonds (NHB). These OPs on their
own were not able to distinguish between intermediate conforma-
tions with proper energy barriers. However, using a combination of

these OPs as the input in advanced slow mode analysis methods such
as TICA52,96,97 recovers a more superior two-dimensional descrip-
tion.90 That work, however, used more than 12 μs of enhanced sam-
pling, specifically replica exchange MD trajectories, for this purpose.
Here, instead, we use just 1.6 μs of unbiased trajectories as our start-
ing point. From this point onwards, using the same OPs as in Ref.
90, our work provides a semi-automated solution in deriving an
optimal two-dimensional RC for GB1-C16, which is capable of
resolving the intermediate conformations. Here, in contrast to the
previous two examples, we use well-tempered metadynamics24,65

simulations as the choice of the enhanced sampling engine coupled
with RAVE.

We start by performing four independent 400 ns of unbiased
MD simulations of the peptide in explicit solvent. All the simulated
systems were observed to be fairly stable when projected along a
library of OPs comprising RMSD, NC, Rg, and NHB, with their
detailed construction described in the supplementary material (see
Figs. 5 and S6). All the unbiased trajectories were mixed and fed
into RAVE for learning the RC. We performed 10 different trials
of RAVE for different time delays Δt ranging from 0 ps to 20 ps,
which amounts to a total of 110 RAVE calculations. Different puta-
tive RCs learnt from RAVE were screened using the path entropy
based model, as discussed in the Sec. II and as done for the other
two systems. Similar to the previous systems, we find a noisy corre-
lation between the loss function value and the spectral gap (Fig. S7).
The most optimal RC was selected for biased simulations using well-
tempered metadynamics [Figs. S7(a) and S7(b)]. Based on the max-
imum spectral gap, we chose Δt = 8 ps for the next round of the
50 ns-long metadynamics simulation. We then alternatively iterate
between the rounds of learning improved RC, using our framework,
and running metadynamics using the optimal RC in every iteration.
After two iterations, we did not find any further improvement in

FIG. 5. Dynamics of GB1-C16 captured from unbiased MD. One of the four representative trajectory of the peptide in explicit solvent is projected along different order
parameters: (a) number of hydrogen bonds (NHB), (b) native contacts (NC), (c) radius of gyration (Rg), and (d) root-mean square deviation (RMSD). (e) Molecular image of
the GB1-C16. Native backbone hydrogen bonds are highlighted with green lines.
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FIG. 6. Free-energy landscape and OPs
contribution. (a) Contribution of the dif-
ferent OPs to the two-dimensional RC
χ. The two components χ1 and χ2 are
shown in blue and red bars, respectively.
(b) A highly rugged two-dimensional
free-energy landscape of GB1-C16 fold-
ing/unfolding. We were able to cap-
ture multiple states corresponding to the
folded (IS1), unfolded (IS4), and interme-
diate states (IS2 and IS3). Interestingly,
it is only by projecting the free energy as
a function of the two RCs that we were
able to capture a partially helical state
(IS3), which, otherwise, was not easy to
distinguish solely using traditional OPs.
Representative snapshots of the cap-
tured structures are shown in the bottom
panel, and their locations on the energy
landscape shown in (b).

sampling with this one-dimensional RC, which we call χ1. With a
1d metadynamics, we were unable to attain back and forth transi-
tions between different metastable states, suggesting the presence
of missing/orthogonal degrees of freedom not encapsulated by χ1.
In order to learn these other degrees of freedom through the sec-
ond component of the RC, which we call χ2, we used the protocol
from Ref. 98. For practical purposes, this corresponds to ignoring
the already learnt χ1 and treating the biased trajectory without any
consideration of the bias along χ1. We would like to note that in the
previous study,73 we have extended the scope of SGOOP by employ-
ing the notion of conditional probability factorization where known
features are effectively washed out to learn additional features of the
underlying energy landscape. This is what we have used for RAVE
as well in the current work. In principle, RAVE could be directly
used to output a two-dimensional or even higher-dimensional RC,
but this protocol ensures that we gradually ensure the RC dimen-
sionality only when a lower dimension is found insufficient for
sampling. We then performed 50 ns long 2D metadynamics simu-
lations [Figs. S7(e) and S7(f)], which were used to train χ2. The most
optimal two-dimensional RC obtained after three iterations of train-
ing χ2 is detailed in [Fig. 6(a)]. The backbone heavy atom RMSD
contributes the most toward the construction of the slowest dimen-
sion χ1, whereas Rg contributed more toward the second slowest
dimension.

The two-dimensional RC is then used in longer well-tempered
metadynamics simulations to facilitate movement between differ-
ent metastable states (see Video 1 of the supplementary material)
and to obtain converged free energy surfaces. We performed 1.2 μs-
long metadynamics simulations at 300 K, starting from the crystal
structure (Fig. S8). The two-dimensional metadynamics simulations
were performed with an initial hill height of 0.5 kJ, bias factor = 10,
Gaussian widths of 0.03 for both χ1 and χ2, and bias added every
4 ps. Additional restraint potential was applied along the RMSD
order parameter preventing very high values from being attained
(see details in the supplementary material). In principle, this step
is not necessary as the simulation would eventually return back to
low RMSD states, but in practice, due to the entropic nature of the

high RMSD states, such a restraint significantly helps with computa-
tional efficiency. Figure 6(b) shows the 2D free energy landscape as
a function of the two RC components at 300 K. We find that the
system shows multiple energy basins corresponding to the differ-
ent stable and metastable intermediates. Interestingly, we captured
a helical conformation of this peptide, which was not easy to distin-
guish by using a combination of conventional OPs such as RMSD,
Rg, and contact map.99 For example, previous metadynamics-based
studies employed Rg and native hydrogen bonds to accelerate the
folding process, but they were not able to clearly demarcate distinct
conformational states with energy barriers.100,101 Interestingly, the
two-dimensional free-energy landscapes when projected along the
pair of OPs yield results consistent with the previous studies and
suggest the presence of two metastable states (Fig. S9).

IV. CONCLUSION
To conclude, we have introduced a new approach to sieve out

the spurious solutions from AI-augmented enhanced sampling sim-
ulations.37,38 AI-based approaches have had an indisputable impact
across sciences, including their use in enhancing the efficiency of
molecular simulations. However, when these AI-based approaches
are applied to a data sparse regime, it can lead to spurious or mul-
tiple solutions. This would happen because gradient minimization
can get stuck in some spurious local minima or even saddle points
on the learning landscape, leading to misleading use of AI.

To deal with this issue of trustworthiness of AI in molecu-
lar simulations, we report a novel automated algorithm aided by
ideas from statistical physics.102 Our algorithm is based on the
simple but powerful notion that a more reliable AI solution will
be the one that maximizes the timescale separation between slow
and fast processes. This fundamental notion of timescale separa-
tion was implemented on the basis of maximum caliber- or path-
entropy-based method, SGOOP.54,55 We would like to emphasize
that our approach and spectral gap based optimization, in gen-
eral,54 might have as of yet unexplored connections with the Vari-
ational Approach for Markov Processes (VAMP).103 The framework
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developed here should be applicable to many recent methods
(Ref. 37 and references therein), which involve iterating between
MD and AI for sampling and learning, respectively. Here, we
demonstrate its usefulness through our recent integrated AI-MD
algorithm RAVE.40 We illustrate the applicability of our algorithm
through three illustrative examples, including the complex prob-
lem of capturing the energetic landscape of GB1 peptide folding
in all-atom simulations. In this last case, we started from a library
of four order parameters that are generic for folding/unfolding
processes and demonstrated how to semi-automatically learn a
two-dimensional RC, which we then used in a well-tempered
metadynamics protocol to obtain folding/unfolding trajectories.
This directly allows us to gain atomic level insight into different
metastable states relevant to the folding/unfolding process. We thus
believe that our method marks a useful and much needed step for-
ward in increasing the utility of machine learning and AI-based
methods in the context of enhanced sampling, and one can expect
that such an approach could be applicable to molecular simula-
tions in general, although this is purely speculative at this point and
remains to be verified.

SUPPLEMENTARY MATERIAL

See the supplementary material for simulation details, neural
network architecture, unbiased/biased MD trajectories, and other
numerical details.104–107
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