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ABSTRACT
The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily
dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes
between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and
artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often crit-
icized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we
propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular sim-
ulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in
chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or
how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demon-
strate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the
system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular
simulations.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0038198., s

I. INTRODUCTION

Rapid advances in computational power have made molecular
dynamics (MD) a powerful tool for studying systems in biophysics,
chemical physics, and beyond. However, there are still at least two
open questions in this area: first, how to make use of the deluge of
data generated from MD simulation understandable for a human;
second, how to further extend timescales that can be reached in
MD. The unifying aspect to overcoming both these difficulties is to
efficiently uncover a low-dimensional manifold (parameterized by a
reaction coordinate or RC) on which the dynamics of the system can
be projected.1

Over the past decades, various approaches have been developed
to learn the RC from trajectory data. It has been argued that for given
two states, the committor, defined next, is a perfect candidate for the
RC as it provides a quantitative description of the dynamics along
a trajectory.2,3 Let A and B denote the reactant and product states;

then, the committor probability pB(x) is defined as the probability
of the trajectories that reach state B prior to the state A from a con-
formation X. Through the analysis of the committor distribution,
much insight has been obtained in a variety of phenomena rang-
ing from ion solvation to biomolecular isomerization.2,4–6 A range
of approaches have been proposed over the years to obtain the com-
mittor. Transition path sampling (TPS), which focuses on sampling
the pathways connecting metastable states, is a powerful tool to ana-
lyze the committor.3,7,8 Based on it, some physically meaningful RC
can then be identified through a genetic algorithm9 or a likelihood
maximization approach.10,11

Another approach to obtaining the RC is to learn the relevant
slow modes of dynamics. Coifman, Kevrekidis et al. first used a dif-
fusion map to determine collective reaction coordinates for macro-
molecular dynamics.12–14 Thereafter, Noé and co-workers pro-
posed the variational approach to conformation dynamics (VAC)
and combined it with the time-lagged independent component
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analysis (TICA) to identify the optimal “slow subspace” from a large
set of prior order parameters.15,16 More recently, a generalized ver-
sion called VAMPnets was developed by the same group leverag-
ing the power of neural networks.17 In a similar spirit, the SGOOP
method by Tiwary and Berne used an iterative approach to find RC
through a maximum path entropy framework.18 Though all these
slow-mode based methods are highly interpretable, the optimiza-
tion can usually be difficult unless some simplifications are made.
For instance, in TICA and SGOOP, these simplifications could
include learning the RC as linear combinations of pre-selected order
parameters.16,18

Besides these approaches, other statistical approaches have also
been developed to learn RC through a more flexible framework, such
as VDE19 and RAVE.20,21 In the RAVE approach, for instance, the
RC is interpreted as a bottleneck or a low-dimensional space that
predicts the most important features of the simulated trajectories.
Such a RC can then be learned by making a trade-off between predic-
tion and model complexity through an objective function. Typically,
a variational Bayesian approach is employed to allow these methods
to parameterize the objective function using a neural network and
achieve highly efficient training.22,23 However, these approaches can
be uninterpretable1 and therefore unreliable since the relationship
between the statistics-based RC and the traditional physics-based RC
is still unclear.

In this work, we develop a State Predictive Information Bottle-
neck (SPIB) framework that allows us to efficiently and accurately
learn a RC from MD trajectories. Most importantly, we demon-
strate rigorously how the slow bottleneck variable learnt in RAVE
and related deep learning based methods can qualify as a good RC
with the same attributes as expected from the committor. Similar
to RAVE,20,21 we also assume that RC should carry only the min-
imal information of the past to still be able to reliably predict the
future state of the system. The key feature that makes SPIB stand
out is that a discrete-state representation of this system is learned
on-the-fly during the training process and guides our RC to focus
only on the motion related to the state-to-state transitions. We show
analytically and numerically that the RC learned by our algorithm is
related to the committor and demonstrate that it can capture the
important information from the trajectory to identify the correct
transition state. Moreover, we demonstrate how our algorithm can
automatically figure out the metastable states in a complex system
and generate an accurate but still highly understandable description
of their inter-conversion dynamics. Given these promising proper-
ties, we believe that our algorithm can be a powerful tool to analyze
generic complex systems.

II. METHOD
A. Information bottleneck

The Information Bottleneck (IB) principle provides a general
framework to learn a concise representation z of an input source X
that is maximally informative about some target y.23,24 Here, typ-
ically the representation z has much smaller dimensionality than
the source X, while the target y can be of low or high dimension-
ality depending on the task at hand. The IB principle postulates that
the desired representation z should use minimal information from
the input X to predict the target y. Mathematically, such a learning

process can be formulated as maximizing the objective function,

LIB ≡ I(z, y) − βI(X, z). (1)

Here, the function I(x, y) ≡ ∫ dxdy p(x, y) log p(x,y)
p(x)p(y) denotes

the mutual information between any two random variables. The
trade-off between the prediction capacity I(z, y) and model com-
plexity I(X, z) is controlled by a hyper-parameter β ∈ [0, ∞).
Unfortunately, the direct optimization of the information bottleneck
shown in Eq. (1) is impractical as the calculation of mutual informa-
tion, in general, is computationally expensive.21,23 Thus, following
Ref. 23, we can obtain a variational lower bound on the original
objective function from Eq. (1),

LIB ≥ −
1
N

N

∑
n=1
∫ dz[−p(z∣Xn) log q(yn∣z)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
distortion

− β 1
N

N

∑
n=1
∫ dz[p(z∣Xn) log

p(z∣Xn)
r(z) ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rate

+H(y) = L, (2)

where q(y|z) and r(z) are variational approximations to the true
probability distributions p(y|z) and p(z), respectively. Note that the
entropy of the targets H(y) ≡ −∫dyp(y)log p(y) in Eq. (2) is indepen-
dent of the optimization process and hence can be ignored. From a
coding theory perspective,25 as z can be interpreted as a latent rep-
resentation or a code, we usually refer to p(z|X) as a probabilistic
encoder and q(y|z) as a probabilistic decoder. Interestingly, one can
easily obtain from Eq. (2) the objective function used in variational
autoencoders by assuming β = 1 and requiring the representation
z to reconstruct the input X instead of predicting a target y.22,23

Based on rate–distortion theory,26,27 the first term in Eq. (2) can
be interpreted as the distortion, which measures the ability of our
representation to predict the desired target, while the second term
can be interpreted as the rate, which measures the number of bits
per data sample to be transmitted. Thus, maximizing L can also be
viewed as the problem of determining the minimal number of bits, as
measured by the rate, that should be communicated from a source
through a channel so that the receiver can reconstruct the original
signal without exceeding a desired value of the distortion.

There are many possible choices for the encoder p(z|X), the
decoder q(y|z), and the approximate prior r(z), depending on the
particular application domain. We point out here that all these three
probability distributions can depend collectively on some model
parameters θ, which are learned during the training process. There-
fore, in Secs. II B–II E, we will add a subscript θ to all these three
distributions {pθ(z∣X), qθ(y∣z), rθ(z)}.

B. State predictive information bottleneck
The generic IB framework introduced in Sec. II A leaves ample

scope for the specific flavor of implementation in many different
ways, as, for instance, we demonstrated in our past publications
through the RAVE family of methods,20,21 and it has been dis-
cussed more generally in Ref. 28. Based on the general IB framework,
in this section, we advance our RAVE family of methods with a
State Predictive Information Bottleneck (SPIB) framework. Similar
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to existing RAVE formulations, here as well we aim to learn an accu-
rate reaction coordinate (RC) for generic molecular systems, but we
make RAVE significantly more robust in many aspects and draw rig-
orous and useful connections between the past–future information
bottleneck and the committor-based definition of the RC in theoret-
ical chemistry.2 However, unlike RAVE, where the aim is to predict
a time-delayed version of the entire input molecular configuration,
here we set as target y in Eq. (1) its future state, which is drawn from
a dictionary of indices for possible metastable states. The target y
is relatively much lower in dimensionality than the exact molecu-
lar configuration. In this way, we require our RC to only predict
which state the system will stay in after a time delay Δt, instead
of its exact configuration. Typically, the number and location of
such states are not available a priori, and our work makes it possi-
ble to estimate these robustly and on-the-fly, as we demonstrate in
Sec. II D.

The main advantage of such a simplification of the prediction
task is that only the motion related to the transitions between dif-
ferent states will be captured by the learnt RC, while the fluctuations
inside any metastable state will be ignored. Thus, for a given unbi-
ased trajectory {X1, . . ., XM+s} and its corresponding state labels
{y1, . . ., yM+s} with large enough M, the objective function of SPIB
can be formulated as

L ≈ 1
M ⋅ L

M

∑
n=1

L

∑
l=1
[log qθ(yn+s∣z(n,l)) − β log

pθ(z(n,l)∣Xn)
rθ(z(n,l)) ], (3)

where z(n , l) is sampled from pθ(z|Xn) and the time interval between
Xn and Xn+s is the time delay Δt.

In SPIB, the trajectory {Xn} is usually expressed in terms of
many order parameters or features, while the state labels {yn} are
mutually exclusive and expressed in terms of one-hot vectors, i.e.,
a binary vector with a single high (1) bit and all the others low (0).
To implement this, we use a deep feed forward neural network with
softmax outputs in our decoder qθ(y|z),

log qθ(yn+s∣zn) =
D

∑
i=1

yn+s
i logDi(zn; θ), (4)

where the state label y is a one-hot vector of D dimensions and the
decoder function D is the D-dimensional softmax output of a neural
network.

Given that we expect the learnt RC should demarcate between
different metastable states, it is natural to assume a multi-modal
distribution for the prior rθ(z). In our algorithm, we employ the
variational mixture of posteriors prior (VampPrior) to obtain such
a multi-modal prior distribution.29 Here, the approximate prior
rθ(z) is a weighted mixture of different posteriors pθ(z|X) with
pseudo-inputs {uk}Kk=1 in lieu of X,

rθ(z) =
K

∑
k=1

ωk pθ(z∣uk), (5)

where K is the number of pseudo-inputs, uk is a vector that has the
same dimension as input X, and ωk represents the weight of pθ(z|uk)
under the constraint∑kωk = 1. The pseudo-inputs {uk} and weights
{ωk} can be thought of the parameters of the prior, which are learned
through backpropagation of the objective function [Eq. (3)]. In prin-

ciple, the number of pseudo-inputs should be equal to the number
of metastable states in the system. In practical settings, however, for
real-world applications to complex molecular systems, the number
of metastable states is unknown a priori. To deal with such cases, the
simple and powerful solution is to choose a large enough K, making
the prior more flexible.

Finally, for simplicity, we take the encoder pθ(z|X) in Eq. (5) as
a neural network with a multivariate Gaussian output,

log pθ(zn∣Xn) = logN(zn;μ, σI), (6)

where the mean μ and variance σ2 are outputs of a neural net-
work whose input is Xn. I is the identity matrix. Then, we can use
the reparameterization trick22 to write pθ(zn|Xn)dzn = p(ϵ)dϵ and
zn = μ(Xn) + σ(Xn) ⋅ ϵ = E(Xn, ϵ; θ), where ϵ ∼ N(0, I) and the
encoder function E is a deterministic nonlinear function parameter-
ized by a neural network.

C. Dependence of SPIB on Δt
In RAVE21 as well as in this algorithm, the time delay Δt plays

an important role in the simplification of the learning process. A
time delay Δt = 0 is tantamount to ignoring the dynamics com-
pletely and simply clustering the input configuration into different
states, while Δt > 0 can filter out all the fast modes, helping us ignore
unnecessary details of the dynamical processes. Given its critical
importance, in this section, we analyze Δt in detail.

Given a Markov processXt , if the initial probability distribution
is given by ρ0, the corresponding probability distribution after a lag
time τ is

ρτ(X) = ∫ ρ0(X′)Pτ(X∣X′)dX′ ≡ P(τ)ρ0, (7)

where the time evolution of the probability density is governed by
a linear operator P(τ), called the propagator for the process Xt . To
explain the role of the time delay Δt in our algorithm, we can derive a
spectral decomposition for this operator P(τ) by assuming that the
dynamics is reversible,30

ρτ = v1 +
∞

∑
i=2

ai(ρ0)λi(τ)vi, (8)

where {vi} are the propagator’s eigenfunctions and λi = exp(−kiτ)
are the eigenvalues that decay exponentially in time with rates ki.
ai(ρ0) are coefficients depending on the initial density ρ0. In prin-
ciple, SPIB will ignore the dynamical processes whose timescale
ti = 1/ki is comparable to or even smaller than the time delay Δt,
as its corresponding component in Eq. (8) will decay exponentially.
Thus, we interpret the time delay Δt as the minimal time resolution
that we seek to maintain for the dynamical system.

As discussed in Subsection II B, SPIB predicts from the present
configuration Xn the future state yn+k instead of the exact configu-
ration Xn+k. A subtle assumption made to justify this simplification
is that the fluctuation inside each metastable state should be much
faster than the transitions between different states. Such a timescale
separation allows us to rewrite Eq. (8) as a sum of the stationary state
eigenvector v1 and two other parts,
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ρτ = v1 +
m

∑
i=2

ai(ρ0)λi(τ)vi +
∞

∑
i=m+1

ai(ρ0)λi(τ)vi

= v1 +
m

∑
i=2

ai(ρ0)λi(τ)vi + Pfast(τ)ρ0. (9)

The first m slow processes {vi}mi=1 correspond to the state-to-state
transitions that we are interested in, while the fast processes Pfast(τ)
represent the motions related to the molecular relaxation within
these states. Therefore, an appropriate time delay Δt should satisfy
tm+1 < Δt≪ tm in order to screen out all the fast processes. In prac-
tice, this can be checked by examining the robustness of the results
against different values of Δt, as we show in Sec. III.

D. Discrete-state representation
and iterative retraining algorithm

The SPIB framework introduced thus far requires a prior
knowledge of states in the system, which is usually intractable espe-
cially for complex systems. To surmount this limitation, here we
introduce an iterative technique to obtain a converged discrete-state
representation based on the selected time delay Δt we described in
Sec. II C. The central idea is that if one configuration was located at
state i at a certain time, then after time delay Δt, it should still have
the largest probability to be found at state i, since Δt is much shorter
than the typical escape time from a metastable state.

Given a set of initial state labels {yn}, we can write down the
optimal predictor ŷ∗ by assuming ergodic dynamics and setting it
equal to a vector of probabilities K∗ = {K∗i (X;Δt)},

K∗i (X;Δt) = 1
ρ(X) lim

T→+∞

1
T ∫

T

0
hi(Xt+Δt)δ(X − Xt)dt

where

ρ(X) = lim
T→+∞

1
T ∫

T

0
δ(X − Xt)dt. (10)

Here, h(X) = {hi(X) for i ∈ [1,D]} is the state label function that
maps the trajectory {Xn} to the D-dimensional state labels {yn}, and
ρ(X) represents the equilibrium density ofX.K∗i (X;Δt) can be inter-
preted as the probability that the system starting from X will be
found in state i after a time delay Δt. As it is a function of the input
configuration X and represents a state-transition probability, we call
the function K∗(X; Δt) as the state-transition density.

With this setup, we now introduce a simple iterative scheme
that is at the heart of our SPIB approach, as it allows us to learn the
number and location of states on-the-fly with minimal human inter-
vention. We start with an arbitrary set of labels {1, . . ., D} for the
system, where both the number and location of labels are some initial
guess. If the system initiated from a certain high-dimensional config-
uration X has the largest probability to be found after time delay Δt
in some state i from these initial labels, then the label of the config-
uration X will be refined and updated to state i. We can denote the
deterministic output of SPIB as ŷ = K(X;Δt, θ) ≡ D(μ(X);Δt, θ),
which tries to approximate the best predictor ŷ∗ = K∗(X;Δt). Then,
a set of new state labels can be generated by

hi(X) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 (i = argmax
j

Kj(X;Δt, θ))

0 (otherwise)
for i = 1, . . . ,D. (11)

FIG. 1. (a) Network architecture used for SPIB. Generalizing Ref. 21, both
the encoder and decoder are nonlinear deep neural networks. (b) A flowchart
illustrating SPIB.

This label refinement step might very well lead to null assignments
for some of the labels we started with, as shown in Sec. III for actual
test cases.

Based on Eqs. (10) and (11), an iterative retraining can be
performed and the whole algorithm is summarized through Fig. 1
and Algorithm 1. Thus, as illustrated above, we expect that such a
converged discrete-state representation h(X), by this self-consistent
design, should only depend on the dynamic properties of the sys-
tem and the time delay Δt. Moreover, on account of the screening
property of the time delay Δt, the final representation will automat-
ically ignore transient intermediate states and only figure out those
long-lived metastable states. This, in fact, offers us a powerful tool to
obtain a dynamics-based coarse-grained description of the complex
system.

E. State-transition density and committor
Recently, a few methods have been proposed to calculate

the committor through the construction of Markov state models
(MSMs).31–35 By constructing an efficient MSM, the committor can

ALGORITHM 1. SPIB.

Input: a long unbiased trajectory {Xn}, a set of initial state labels
{yn}, RC dimensionality d, the number of pseudo-inputs K,
time delay Δt

1: repeat
2: for i from 0 to m-1 do
3: Sample a minibatch {Xn} and {yn}
4: Calculate the objective function L
5: Update the neural network parameters θ, pseudo-inputs
{uk}Kk=1, pseudo-weights {ωk}Kk=1

6: end for
7: Update the state labels {yn} by Eq. (11)
8: until convergence of RC, state-transition density, and state labels
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be calculated directly from the transition matrix by solving a system
of linear equations.32 However, this usually requires a large num-
ber of discrete states in order to estimate the MSM transition matrix
and thus the committor accurately,33–35 thereby severely diminish-
ing the interpretability of the model. This also means requiring a
very well sampled trajectory moving accurately and capturing tran-
sitions between the large number of different states, which might
be hard to achieve.36 As we will show in this section, our SPIB
approach can efficiently estimate the transition density by relegat-
ing the need to know the exact transition probabilities within the
metastable states of the system. In other words, we will demonstrate
that SPIB can learn the approximate committor and identify correct
transition state regions even with a small number of discrete states
relative to MSM type approaches.

As discussed in the Sec. II C, the timescale separation between
the state-to-state transitions and the fluctuations inside each
metastable state allows the factorization of the transition density
PΔt(X|X0) into two parts,

PΔt(X∣X0) ≈
D

∑
i=1

Pi(X)K∗i (X0;Δt)

where

Pi(X) =
ρ(X)hi(X)

∫ hi(X)ρ(X)dX
. (12)

In Eq. (12), the first part Pi(X) represents the equilibrium probabil-
ity density for any state i ∈ [1,D], while the second part K∗i (X0;Δt)
is exactly the state-transition density defined in Eq. (10). Given the
definition of two states A and B whose committor attracts our inter-
est, the committor pB(X) then can be obtained by solving following
linear integral equations:

pB(X) = ∫ pB(X′)PΔt(X′∣X)dX′ if X ∉ A ∪ B,

pB(X) = 1 if X ∈ B,
pB(X) = 0 if X ∈ A.

(13)

However, instead of solving Eq. (13) explicitly and tabulating config-
urations where pB(X) ≈ 0.5, the transition state ensemble (TSE) can
also be identified using this state-transition density directly. If a set
of trajectories starting from some X have the largest, approximately
equal probabilities of transitioning to two different states after time
delayΔt, thenX can be considered to belong to the TSE. Through the
numerical examples in Sec. III, we will illustrate that this new defini-
tion of transition states is, in fact, as valid as the original committor-
based definition. Besides, we would also like to highlight that based
on this definition and Algorithm 1, the ensemble of transition states
will eventually form the boundaries of the finally converged discrete
states. Therefore, the state-transition density K∗(X; Δt) provides us
with an accurate but intuitive way to characterize the transitions
between different metastable states.

Overall, we believe that such a state-transition density finally
generated by our algorithm is a reasonable substitute for the com-
mittor as it can quantitatively describe the dynamical behaviors of
every states along a trajectory and further identify the correct tran-
sition states. Thus, the most informative representation z given by
the encoder pθ(zn|Xn) about this state-transition density learned by
SPIB should naturally serve as a reasonable RC approximating the

committor. However, for simplicity, in the following discussion,
our RC will refer specifically to the deterministic part or the mean
value μ of the representation z to better compare with traditional
deterministic prescriptions.

III. RESULTS
A. Model systems

To demonstrate our SPIB approach, in practice, here we bench-
mark it for different model potentials, including two analytical
potentials and the small biomolecule alanine dipeptide in vacuum.
The first analytical potential UDW(x, y) comprises a double well in
two dimensions, shown in Fig. 2. The second potential is made of
four wells also in two dimensions, shown in Fig. 5. The governing
potentials are given by

UDW(x, y) = (x2 − 1)2 + y2 (14)

and

UFW(x, y) = 2[x8 + 0.6e−80x2

+ 0.2e−80(x−0.5)2

+ 0.5e−40(x+0.5)2

] + (x2 − 1)2 + y2. (15)

The trajectories for these two potentials were generated using
Langevin dynamics simulation37 with the integration time step of
0.001 units, inverse temperature (kBT)−1 = 3.0, and friction coeffi-
cient γ = 4.0, where kB is Boltzmann constant. For either potential,
we used a long equilibrium trajectory equaling 60 000 time units with
a temporal resolution of 0.01 units.

For the study of conformation transitions in alanine dipeptide
in vacuum, the simulation was performed with the software GRO-
MACS 5.0,38,39 patched with PLUMED 2.4.40 The temperature was
kept constant at 450 K using the velocity rescaling thermostat,41 and
the integration time step was 2 fs. An 800 ns trajectory with a tem-
poral resolution of 0.01 ps was employed to train and test our algo-
rithm. Through this 800 ns trajectory, a total of about 500 transitions
are observed between Ceq and Cax defined in Fig. 9(b). However,
only about 30 transitions are through the TS region [also defined
in Fig. 9(b)].

B. Neural network architecture and training
In this paper, both the encoder and decoder are nonlinear and

parameterized by fully connected neural networks with two hidden

FIG. 2. Double-well analytical potentials projected along the x-axis (a) and its cor-
responding probability P(x, y) distribution of the generated trajectory (b), plotted
as the free energy −kBT log P(x, y).
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layers, as shown in Fig. 1(a). Each hidden layer in both the encoder
and decoder has 16 nodes for the two analytical potentials and 64
nodes for alanine dipeptide. All these hidden layers use a rectified
linear unit (ReLU) as the activation function.

The networks were trained using the Adam optimizer42 with a
learning rate of 0.001 and a batch size of 2048 for all the numeri-
cal examples. The state labels are refined every 1000 training steps
for analytical potentials and every 2000 training steps for alanine
dipeptide.

C. Double-well analytical potential
We first demonstrate SPIB for the double-well analytical poten-

tial. For this first example, we assume that we already know the
system relatively well by setting the RC dimension d = 1, the num-
ber of pseudo-inputs K = 2, and the dimension of state labels
D = 2. In Secs. III D and III E, we remove the need for making
any such assumptions and show how SPIB still works very well.
For this double-well system, in order to generate an initial guess of
state labels, the samples are labeled as state A if x < b and B other-
wise. Here, the initial boundary point b can be changed to test the
robustness of SPIB.

The final converged results are shown in Fig. 3. Figure 3(a)
illustrates that SPIB can learn the correct state labels, where the
boundary is located at around x = 0. In Fig. 3(b), as the y-direction is
pure noise, the learned RC is almost independent of the y-direction,
suggesting that SPIB is able to distinguish important features from
noise. In addition, Fig. 3(b) also shows that as desired, the fluctua-
tions inside each state are not captured by SPIB, as they are almost
mapped to a single point in RC. Figures 3(c) and 3(d) present the
state-transition density learned by our algorithm, which is highly
correlated with our RC.

FIG. 3. The results of SPIB for the double-well potential. (a) The converged state
labels A and B. (b) Different values of the RC illustrated in the x–y plane. (c) and (d)
are the state-transition density learned by SPIB, where (c) represents the transition
density to state A and (d) represents the transition density to state B.

We now further demonstrate that our results obtained above
are robust to the initial boundary demarcating parameter b and the
time delay Δt. As shown in Fig. 4, a large range of b and Δt values can
result in the same state definition. The fractional population of state
A is defined by the ratio of the number of samples finally labeled
as state A to the total number of samples (fA = ∑N

j=1 y
j
A/N). For the

initial boundary point b, the only constraint is that it should not be
large than 1 or smaller than −1; otherwise, state A and state B will be
regarded as one state by our algorithm. Δt can be anywhere between
the molecular relaxation timescale (Δt ≳ 0.5) and the interconver-
sion timescale between state A and B, which is around the implied
timescale of t1 = 54 shown in the supplementary material.

Here, all the results are obtained by setting the hyper-parameter
β = 0.03 in Eq. (3) [not to be confused with the inverse temperature
(kBT)−1], which can be determined by choosing the turning point
on the rate–distortion plot (see the supplementary material). How-
ever, as long as β is not too large, we found that our results are still
very robust to the selection of β.

D. Four-well analytical potential
We now apply SPIB to a four-well analytical potential where

we do not assume any prior knowledge about the system such as the
number of metastable states. In this case, we arbitrarily discretized
the input data space into sufficiently fine grids as our initial state
labels, shown in Fig. 6(a). We set the RC dimension d = 1, the
number of pseudo-inputs K = 10, and the dimension of state labels
D = 10. In other words, here we have deliberately taken K and D to
be arbitrarily large relative to the true number of metastable states.
In order to let the RC only contain the important information, we
chose β = 0.01 (see the supplementary material).

Figure 6 shows the state labels and RC learned by SPIB using
different time delays Δt. There are several interesting observations
that can be made here. First, in Fig. 6(b), we find that SPIB can
still obtain the correct state labels by choosing an appropriate time
delay (Δt = 0.5) without any prior information. This is very promis-
ing for practical problems as a precise state definition or even the
number of states is usually unavailable in complex systems. Sec-
ond, we also find that a dynamically truthful discrete-state repre-
sentation can be obtained by SPIB using different time delays Δt.
When the time delay increases (Δt = 2.0), the original state C and
state D shown in Fig. 5(a) cannot be distinguished by SPIB any

FIG. 4. The robustness of SPIB in the double-well analytical potential. The x axis
represents the initial boundary point b, while y axis represents the converged frac-
tional population of state A (∑N

j=1 y
j
A/N). The lines start to overlap especially when

Δt ≳ 0.5.
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FIG. 5. Four-well analytical potentials projected along the x axis (a) and its corre-
sponding probability P(x, y) distribution of the generated trajectory (b), plotted as
the free energy −kBT log P(x, y).

more [Fig. 6(c)]. If we further increase the time delay (Δt = 10),
even the original state A and state B will become indistinguishable
[Fig. 6(d)]. The time dependence of state labels can be explained by
the different timescales of transitions between states (Fig. 7). These
results unequivocally shed light into the role of the time delay Δt
in our algorithm—it filters out the fast modes of dynamics and pro-
vides a dynamics-based coarse-gained understanding of the complex

FIG. 7. The implied timescales (a) and corresponding eigenvectors (b) for the four-
well analytical potential. (a) The converged values of the implied timescales are
t2 = 151.7 (red), t3 = 5.3 (green), and t4 = 1.5 (yellow). The gray area under the
black line represents the timescale that is smaller than the lag time τ. (b) The first
eigenvector (blue line) represents the stationary probability distribution; the second
eigenvector (red line) mainly represents the transition between state A and state
D; the third eigenvector (green line) represents the transition between state A and
state B; the last eigenvector (yellow line) represents the transition between state
C and state D.

system. We also point out that although our results depend on the
selection of time delay, they are, in fact, still very robust to changes
of Δt. Figure 8 shows that a broad range of Δt can result in the same
discrete-state representation.

FIG. 6. The time delay dependent
discrete-state representation of the four-
well potential model. The initial state
labels are shown in (a), while the con-
verged results for different time delays
are presented in (b)–(g). The middle row
shows the state labels for different time
delays, while the bottom row shows the
corresponding RC. The state labels and
RC were learned using the time delay 0.5
(b) and (e), 2 (c) and (f), and 10 (d) and
(g), respectively.
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FIG. 8. The robustness of SPIB on the four-well analytical potential can be seen
by plotting the fractional population of different states (fi = ∑N

j=1 y
j
i/N for

i = 0, . . . , 9). With different time resolutions (or time delays Δt), the system is
coarse grained into four states, three states, and two states.

E. Alanine dipeptide in vacuum
Finally, we employ SPIB to study conformation transitions in

the small biomolecule alanine dipeptide. The trajectory here was
expressed in terms of four dihedral angles ϕ, ψ, θ, and ω, illustrated
in Fig. 9. Here, we discretized the input data space along ϕ into ten
grids as our initial state labels, as shown in Fig. 10(a), and set the
RC dimension d = 2, the number of pseudo-inputs K = 10, and the
dimensionality of state labels D = 10. β = 0.01 was chosen to generate
the most informative RC.

Similar to our previous results for the four-well analytical
potential, in Fig. 10(b), we show how SPIB can still learn successfully
the state labels corresponding to the three well-known free energy
minima in the ϕ–ψ space shown in Fig. 9(b). When the time delay
Δt = 2 ps, the two free energy minima located in the top-left corner of
the ϕ-ψ space [Fig. 9(b)] become indistinguishable from a dynamical
perspective, given that the interconversion times between these two
metastable states is now close to Δt (Fig. 12). Thus, only two states
are obtained in Fig. 10(c). We then further demonstrate in Fig. 11
that such a coarse-grained understanding obtained by SPIB is still
very robust in alanine dipeptide, as the same state labels are obtained
with a broad range of Δt.

The 2D RC so learnt through SPIB is presented in Figs. 10(d)–
10(g). The free energy surface in the RC space shown in Figs. 10(f)

FIG. 9. (a) Alanine dipeptide molecule illustrated along with four dihedral angles: ϕ
(C–N–Cα–C), ψ (N–Cα–C–N), θ (O–C–N–Cα), andω (Cα–C–N–C). (b) The gener-
ated free energy surface of alanine dipeptide in vacuum at 450 K along the dihedral
angles ϕ and ψ. The regions described in boxes are usually defined as state Ceq:
(−150○ ≤ ϕ ≤ −30○, 0○ ≤ ψ ≤ 180○), Cax : (30○ ≤ ϕ ≤ 130○, −180○ ≤ ψ ≤ 0○),
and approximate TS: (−30○ ≤ ϕ ≤ 20○, −80○ ≤ ψ ≤ −30○).2

FIG. 10. The time-dependent discrete-state representation of alanine dipeptide
in vacuum. The initial state labels are shown in (a). A three-state representation
was learned by using the time delay Δt = 0.5 ps (b), (d), and (f), and a two-state
representation was obtained by using the time delay Δt = 2 ps (c), (e), and (f). (b)
and (c) in the second row are the state labels projected to ϕ–ψ space. The color
(or state label) in each grid corresponds only to the state label with the highest
fraction of samples for the respective grid point. (d) and (e) in the third row are the
state labels learned in the 2D RC space. (f) and (g) in the fourth row shows the
free energy surface [−kBT log P(RC0, RC1)] in the 2D RC space.

and 10(g) indicates that the barrier between Ceq and Cax defined in
Fig. 9(b) is much higher than the barrier between the two local min-
ima [state 0 and state 2 in Figs. 10(b) and 10(d)] within Ceq. This
also explains why different interconversion timescales are obtained
in Fig. 12. From these results, we can see that a 1D RC is enough if
we just want to identify the transitions between Ceq and Cax. Thus,
we reran the analysis of Δt = 2 ps with the RC dimension d = 1 and
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FIG. 11. The robustness of SPIB on alanine dipeptide through the fractional pop-
ulation of different states (fi = ∑N

j=1 y
j
i/N for i = 0, . . . , 9). With different time

resolutions (or time delays Δt), the system is coarse grained into three states (e.g.,
f 0 = 0.61, f 2 = 0.37, and f 6 = 0.02 at Δt = 0.5 ps) and two states (e.g., f 0 = 0.98
and f 6 = 0.02 at Δt = 2 ps). Although it might appear that there is a flip between
the state label 0 and 2 when Δt > 2 ps, the same metastable states are obtained.

show the new RC so-obtained in Fig. 13(a). Such a 1D RC can be
easily used to identify the transition state, which has the same state-
transition probability to two different metastable states. In Fig. 13(a),
the transition state corresponds to RC = −1.92. To test whether our
RC can identify the correct transition states, we chose to focus on
the states located in the TS region shown in Fig. 9(b). By doing a
traditional, detailed committor analysis, we obtained the reference
committor. For this, we launched 50 1-ps trajectories with random
initial Maxwell–Boltzmann velocities for each configuration in the
vicinity of the TS under the constraint −2.22 < RC < −1.62, and
then calculated their committor function PCax based on the fraction
of trajectories reaching Cax prior to Ceq. This committor probabil-
ity distribution is shown in Fig. 13(b), where it can be seen clearly
that the probability of pCax is characterized by a single peak centered
at pCax ∼ 0.5. This shows that the RC from SPIB indeed meets the
traditional expectations from a RC.2

We now show in Figs. 13(c) and 13(d) our learned state-
transition density to the Cax state projected in the ϕ–ψ plane and
ϕ–θ plane. Figure 13(c) shows that the transition states in the TS
region are aligned almost parallel to the ψ axis, suggesting that they
are, in fact, almost irrelevant to ψ. Figure 13(d), however, indicates

FIG. 12. The implied timescales (a) and corresponding eigenvectors (b) of alanine
dipeptide. (a) The converged implied timescales t2 = 79 ps (red) and t3 = 4.2 ps
(green). The gray area under the black line represents the timescale that is smaller
than the lag time τ. (b) The first eigenvector (blue line) represents the stationary
probability distribution; the second eigenvector (red line) mainly represents the
transition between state Cax (state 6) and state Ceq (state 0/2); the third eigenvec-
tor (green line) represents the transition inside state Ceq (or between state 0 and
state 2).

FIG. 13. (a) The 1D RC of alanine dipeptide learned by SPIB using Δt = 2 ps.
The red dotted line represents the transition state (RC∗ = −1.92), while the black
dotted lines shows the neighborhood in the vicinity of the transition state range
[−2.22 < RC < −1.62]. In (b), we show the committor probability distribution of
pCax under the constraint −2.22 < RC < −1.62. (c) and (d) represent the state-
transition density to Cax projected to ϕ–ψ space and ϕ–θ space, respectively. In
the bottom two rows, the figures in the right column are the zoomed plots around
the TS region defined by Fig. 9(b).

that both ϕ and θ are required in order to identify the transition
state. Both of these findings are in good agreement with previous
reports for this system.2,9,43 Thus, our results confirm that the state-
transition density generated by SPIB can be a reasonable substitute
for the committor, and the RC learned can capture the most impor-
tant dynamical information from the input trajectory to identify the
correct transition states.

IV. DISCUSSION
In this work, we have proposed a deep learning based algo-

rithm called the State Predictive Information Bottleneck (SPIB) to
learn the RC from trajectory data. SPIB builds up on the insights we
have introduced previously in the RAVE family of methods,20,21 and
by changing the nature of the information bottleneck based objec-
tive function, it allows generating a more direct connection between
artificial intelligence and notions from traditional chemical physics.
We have first showed that the time delay Δt in a past–future infor-
mation bottleneck can be interpreted as the time resolution that we
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care about in a dynamical system, and through this, we can con-
trol the degree of coarse-graining obtained by our algorithm. Once
a time delay Δt is selected, SPIB can automatically index the high-
dimensional state space into metastable states through an iterative
retraining algorithm and then characterize their dynamic behav-
iors in terms of state-transition density. This provides us with a
promising way to analyze generic complex systems and interpret the
massive data generated by MD simulations.

We have also demonstrated that the bottleneck variable learned
in SPIB tries to carry the maximum information of the state-
transition density, which, in principle, can be equivalent to the tradi-
tional committor function if there is a timescale separation between
the state-to-state transitions and the fluctuations within metastable
states. Then, through numerical tests on benchmark systems, we
confirmed that the state-transition density generated by SPIB is a
reasonable substitute for committor and demonstrated that our RC
can focus only on the motion related to state transitions and capture
the most important features from trajectories to identify the correct
transition states.

While this manuscript is a proof-of-principle and theoretical
demonstration of the ideas underlying SPIB, we finish this section
by describing some of the new avenues pertaining to SPIB that we
will explore in future work. The first one pertains to the use of SPIB
for enhanced sampling. By choosing an appropriate time delay, the
RC learned by SPIB can correctly identify different metastable states
and even the transition states among them, which can be crucial
to obtain better sampling.44 This would involve reweighting input
biased trajectories, obtained by biasing along some trial RC, for
instance. The reweighting can then be performed in the manner
described in Refs. 20 and 21. Second, it is natural to desire that the
RC learned by SPIB can be interpreted in terms of a few human-
understandable physical variables. However, unlike RAVE,21 here
we use a nonlinear deep neural network as our encoder, and thus,
the interpretation of our RC is not a trivial task. It could be possible
to use approaches in representation learning in order to deal with
this question of interpretability.45 Overall, we believe our algorithm
is a step toward a more complete understanding of complex systems
by making use of the variability offered by the information bottle-
neck framework of AI23,24,28 and should be useful to a broad range of
scientific communities.

SUPPLEMENTARY MATERIAL

See the supplementary material for other numerical details.

ACKNOWLEDGMENTS
This research was entirely supported by the U.S. Department of

Energy, Office of Science, Basic Energy Sciences, CPIMS Program,
under Award No. DE-SC0021009. The authors thank Sun-Ting Tsai
for sharing the code implementing Langevin dynamics, Luke Evans
for sharing the GROMACS script, and Yihang Wang and Zachary
Smith for in-depth discussions. This work used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE) Bridges
through Allocation Grant No. CHE180027P, which is supported by
the National Science Foundation (Grant No. ACI-1548562). We also
thank MARCC’s Bluecrab HPC cluster for computing resources.

DATA AVAILABILITY

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.
The python code of SPIB using Pytorch is available for public
use at https://github.com/tiwarylab/State-Predictive-Information-
Bottleneck.

REFERENCES
1Y. Wang, J. M. Lamim Ribeiro, and P. Tiwary, Curr. Opin. Struct. Biol. 61, 139
(2020).
2P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. Natl. Acad. Sci. U. S. A. 97,
5877 (2000).
3P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Adv. Chem. Phys. 53,
291 (2002).
4P. L. Geissler, C. Dellago, and D. Chandler, J. Phys. Chem. B 103, 3706
(1999).
5E. Pluharova, M. D. Baer, G. K. Schenter, P. Jungwirth, and C. J. Mundy, J. Phys.
Chem. B 120, 1749 (2016).
6S. Roy, M. D. Baer, C. J. Mundy, and G. K. Schenter, J. Phys. Chem. C 120, 7597
(2016).
7C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys. 108, 1964
(1998).
8R. B. Best and G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 102, 6732 (2005).
9A. Ma and A. R. Dinner, J. Phys. Chem. B 109, 6769 (2005).
10B. Peters and B. L. Trout, J. Chem. Phys. 125, 054108 (2006).
11B. Peters, Annu. Rev. Phys. Chem. 67, 669 (2016).
12B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Appl. Comput.
Harmonic Anal. 21, 113 (2006).
13R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, Multiscale
Model. Simul. 7, 842 (2008).
14M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, J. Chem. Phys. 134,
124116 (2011).
15F. Noé and F. Nüske, Multiscale Model. Simul. 11, 635 (2013).
16J. Espinosa-Garcia and J. C. Corchado, J. Chem. Phys. 112, 5731 (2000).
17A. Mardt, L. Pasquali, H. Wu, and F. Noé, Nat. Commun. 9, 4443 (2018).
18P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016).
19C. X. Hernandez, H. K. Wayment-Steele, M. M. Sultan, B. E. Husic, and V. S.
Pande, Phys. Rev. E 97, 062412 (2018).
20J. M. L. Ribeiro, P. Bravo, Y. Wang, and P. Tiwary, J. Chem. Phys. 149, 072301
(2018).
21Y. Wang, J. M. L. Ribeiro, and P. Tiwary, Nat. Commun. 10, 3573 (2019).
22D. P. Kingma and M. Welling, arXiv:1312.6114 (2013).
23A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, arXiv:1612.00410
(2016).
24N. Tishby, F. C. Pereira, and W. Bialek, arXiv:physics/0004057 (2000).
25E. R. Berlekamp, Algebraic Coding Theory, Revised ed. (World Scientific,
2015).
26C. E. Shannon, IRE Natl. Conv. Rec. 4, 1 (1959).
27A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurus, and K. Murphy, An
information-theoretic analysis of deep latent-variable models (ICLR, 2018).
28A. A. Alemi and I. Fischer, arXiv:1807.04162 (2018).
29J. M. Tomczak and M. Welling, arXiv:1705.07120 (2017).
30Y. M. Berezansky, Z. G. Sheftel, and G. F. Us, “Spectral decomposition of com-
pact self adjoint operators. Analytic functions of operators,” in Functional Analysis
(Springer, 1996), pp. 355–384.
31W. C. Swope, J. W. Pitera, and F. Suits, J. Phys. Chem. B 108, 6571
(2004).
32F. Noé and S. Fischer, Curr. Opin. Struct. Biol. 18, 154 (2008).
33D. J. Wales, J. Chem. Phys. 130, 204111 (2009).

J. Chem. Phys. 154, 134111 (2021); doi: 10.1063/5.0038198 154, 134111-10

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0038198
https://github.com/tiwarylab/State-Predictive-Information-Bottleneck
https://github.com/tiwarylab/State-Predictive-Information-Bottleneck
https://doi.org/10.1016/j.sbi.2019.12.016
https://doi.org/10.1073/pnas.100127697
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1021/jp984837g
https://doi.org/10.1021/acs.jpcb.5b09344
https://doi.org/10.1021/acs.jpcb.5b09344
https://doi.org/10.1021/acs.jpcc.6b00443
https://doi.org/10.1063/1.475562
https://doi.org/10.1073/pnas.0408098102
https://doi.org/10.1021/jp045546c
https://doi.org/10.1063/1.2234477
https://doi.org/10.1146/annurev-physchem-040215-112215
https://doi.org/10.1016/j.acha.2005.07.004
https://doi.org/10.1016/j.acha.2005.07.004
https://doi.org/10.1137/070696325
https://doi.org/10.1137/070696325
https://doi.org/10.1063/1.3569857
https://doi.org/10.1137/110858616
https://doi.org/10.1063/1.481148
https://doi.org/10.1038/s41467-018-06999-0
https://doi.org/10.1073/pnas.1600917113
https://doi.org/10.1103/physreve.97.062412
https://doi.org/10.1063/1.5025487
https://doi.org/10.1038/s41467-019-11405-4
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1612.00410
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/1807.04162
https://arxiv.org/abs/1705.07120
https://doi.org/10.1021/jp037421y
https://doi.org/10.1016/j.sbi.2008.01.008
https://doi.org/10.1063/1.3133782


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

34T. J. Lane, G. R. Bowman, K. Beauchamp, V. A. Voelz, and V. S. Pande, J. Am.
Chem. Soc. 133, 18413 (2011).
35E. H. Thiede, D. Giannakis, A. R. Dinner, and J. Weare, J. Chem. Phys. 150,
244111 (2019).
36M. Biswas, B. Lickert, and G. Stock, J. Phys. Chem. B 122, 5508 (2018).
37G. Bussi and M. Parrinello, Phys. Rev. E 75, 056707 (2007).
38H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys.
Commun. 91, 43 (1995).
39M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,
SoftwareX 1-2, 19 (2015).

40G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi, Comput.
Phys. Commun. 185, 604 (2014).
41G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101
(2007).
42D. P. Kingma and J. Ba, arXiv:1412.6980 (2014).
43Y. Mori, K.-i. Okazaki, T. Mori, K. Kim, and N. Matubayasi, J. Chem. Phys. 153,
054115 (2020).
44G. Bussi and A. Laio, Nat. Rev. Phys. 2, 200 (2020).
45Y. Bengio, A. Courville, and P. Vincent, IEEE Trans. Pattern Anal. Mach. Intell.
35, 1798 (2013).

J. Chem. Phys. 154, 134111 (2021); doi: 10.1063/5.0038198 154, 134111-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/ja207470h
https://doi.org/10.1021/ja207470h
https://doi.org/10.1063/1.5063730
https://doi.org/10.1021/acs.jpcb.7b11800
https://doi.org/10.1103/physreve.75.056707
https://doi.org/10.1016/0010-4655(95)00042-e
https://doi.org/10.1016/0010-4655(95)00042-e
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1063/1.2408420
https://arxiv.org/abs/1412.6980
https://doi.org/10.1063/5.0009066
https://doi.org/10.1038/s42254-020-0153-0
https://doi.org/10.1109/tpami.2013.50

