PLOS

Check for
updates

G OPEN ACCESS

Citation: Rivera C, Hofmann D, Nemenman |
(2021) Inferring phenomenological models of first
passage processes. PLoS Comput Biol 17(3):
€1008740. https://doi.org/10.1371/journal.
pchi.1008740

Editor: James R. Faeder, University of Pittsburgh,
UNITED STATES

Received: August 12, 2020
Accepted: January 25, 2021
Published: March 5, 2021

Copyright: © 2021 Rivera et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All synthetically

generated data sets are available at https://figshare.

com/articles/dataset/Inter-spike_intervals_of
Purkinje_Cells/13489629.

Funding: This work was supported by James S.
McDonnell foundation Grant No. 220020321 (IN)
https://www.jsmf.org/ and by the National Science
Foundation Grants No. 1410978, 1806833,
1822677. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

RESEARCH ARTICLE

Inferring phenomenological models of first
passage processes

1,2 1,2,3

Catalina Rivera®'*, David Hofmann , lya Nemenman

1 Department of Physics, Emory University, Atlanta, Georgia, United States of America, 2 Initiative in Theory
and Modeling of Living Systems, Emory University, Atlanta, Georgia, United States of America, 3 Department
of Biology, Emory University, Atlanta, Georgia, United States of America

* catarivera8 @ gmail.com

Abstract

Biochemical processes in cells are governed by complex networks of many chemical species
interacting stochastically in diverse ways and on different time scales. Constructing micro-
scopically accurate models of such networks is often infeasible. Instead, here we propose a
systematic framework for building phenomenological models of such networks from experi-
mental data, focusing on accurately approximating the time it takes to complete the process,
the First Passage (FP) time. Our phenomenological models are mixtures of Gamma distribu-
tions, which have a natural biophysical interpretation. The complexity of the models is
adapted automatically to account for the amount of available data and its temporal resolution.
The framework can be used for predicting behavior of FP systems under varying external
conditions. To demonstrate the utility of the approach, we build models for the distribution of
inter-spike intervals of a morphologically complex neuron, a Purkinje cell, from experimental
and simulated data. We demonstrate that the developed models can not only fit the data, but
also make nontrivial predictions. We demonstrate that our coarse-grained models provide
constraints on more mechanistically accurate models of the involved phenomena.

Author summary

Building microscopically accurate models of biological processes that offer meaningful
information about the behavior of these systems is a hard task that requires a lot of prior
knowledge and experimental data that are not available most of the time. Here instead we
propose a mathematical framework to infer phenomenological models of biochemical sys-
tems, focusing on approximating the probability distribution of the time it takes to complete
the process. We apply the method to study statistical properties of spiking in morphologi-
cally complex neurons, Purkinje cells, and make nontrivial predictions about this system.

Introduction

Processes in living cells are governed by complex networks of stochastically interacting bio-
chemical species. Understanding such processes holistically does not necessarily imply having
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a detailed description of the system at a microscopic, mechanistic level. Indeed, many micro-
scopic networks can result in equivalent experimentally observable behaviors [1], so that dis-
tinguishing alternative networks may be impossible. Even if competing models are not exactly
equivalent, they may approximate each other in many key measurable behaviors [2]. Thus a lot
of ink has been expended on developing methods for constructing reduced, coarse-grained
models of biological processes as alternatives to unidentifiable mechanistically accurate ones
[3-17]. This is usually a challenging task, requiring construction of a (possibly inaccurate)
detailed mechanical model as an intermediate step. In this paper, we focus on an alternative
approach of refining phenomenological models of stochastic biological processes rather than
coarse-graining mechanistic ones. Our approach optimally adapts the level of complexity to
match the amount and quality of the experimental observations while accurately predicting
specific macroscopic properties of the processes.

A large number of biological processes—and the sole focus of this work—can be viewed
as First Passage (FP), or completion processes [18-22]: certain molecules must interact,
certain compounds must be created, or certain states must be visited, before an event of
interest occurs. For such systems, one is often interested in when the final event occurs (i.e.,
what the FP time is), rather than in details of which molecules got created or which states
were visited in the process. Thus such systems represent a fruitful field for coarse-grained
modeling. Crucially, often the available experimental data are sufficiently precise to allow
investigation of the whole probability distribution of the FP time, and the fact that the
time is stochastic and often broadly distributed can have important functional effects [19,
23-25].

A natural approach to characterizing the FP distribution based strictly on the statistical
information contained in the samples of the FP time involves progressively estimating its
higher order cumulants. However, this approach suffers from a well-known problem that
such cumulant expansions cannot be truncated at any order but the second, and still give
rise to a proper probability distribution [26]. Here we propose a different method for sys-
tematically inferring phenomenological models of first passage distributions from empirical
data. The approach does not strive for the mechanistic accuracy. Instead, following ideas
from [27], we develop a family of models of FP processes, whose complexity can be grown
adaptively as data requires, to fit arbitrary FP time distributions. We then choose the opti-
mal model of the appropriate complexity within the family using Bayesian model selection
[28-33].

Our model family consists of mixtures of Gamma distributions. As we will show, in the
context of the FP kinetics, this represents models with multiple independent paths from the
start to completion. In the well-sampled regime, this representation allows us to infer mech-
anistic constraints on the underlying kinetics using fits within our model family [34]. Spe-
cifically, the element of the mixture that dominates the passage for short times, sets the
minimal number of internal states that a mechanistically accurate stochastic process would
need to generate the data. Furthermore, our approach provides a framework to study effects
of external perturbations or experimental conditions on the first passage statistics in a sys-
tematic way. Specifically, by doing model selection simultaneously on all data sets across
multiple experimental conditions, we can obtain a single phenomenological model that
explains all of the available data, relating parameters of such global model to the values char-
acterizing the perturbations. Notice that Bayesian parameter inference and model selection
has been applied multiple times in computational biology [35-38], however it has not been
applied previously to phenomenological inference for FP processes, and especially across
multiple data sets.
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We test the utility of our approach on neurophysiological data sets. Most neurons are too
complex to be modeled mechanistically with molecular accuracy, so that any model will
involve some element of phenomenology, making this a good testing ground for our approach.
Indeed, spontaneous activity of neurons of different types is often modeled under the assump-
tion that the spike trains can be described by renewal processes [39-45]. An important charac-
terization of such spike trains is the distribution of times between successive spikes,
also known as the inter-spike intervals (ISIs). In such renewal process models, all ISIs are inde-
pendent and identically distributed, and the spike generation can be specified fully by the ISI
distribution, which, in turn, can be seen as produced by a FP process. It has long been under-
stood that changes of the ISI distribution are biologically interesting since they are informative
of changes in biophysical states of neurons or neural networks they form [46]. For instance,
whether a network is in a normal or an epileptic state is reflected by ISI distributions of the
involved neurons [47]. As another example, ISI distributions of otherwise similar neurons can
change systematically with the anatomical location, such as within the cochlear nucleus [48],
or within the somatosensory cortex [49]. While one usually models the ISI distribution as a
Gamma distribution [43, 50], more complex constructions are often warranted [51, 52]. In
such cases, having a model—such as ours—that can describe ISI distributions for simple as
well as complex neurons is crucial for the assessment of the relationship between neuronal bio-
physics and the ISI distributions in a systematic way.

To make our analysis more concrete, we focus on building models describing the ISI distri-
bution of a certain type of neurons, called Purkinje cells (PCs). These cerebellar neurons form
conditional associations, and they are among the most morphologically complex neurons in
mammalian brains. They have a highly elaborate dendritic arbor that forms a nearly 2-dimen-
sional layer, which receives inputs from hundreds of thousands of other neurons. This input
can lead to simple spikes (SS) or complex spikes (CS). The former are conventional action
potentials fired at high frequencies in the range of 50Hz. They are caused by the input from
parallel fibers, which are the axons of granule cells. The latter, on the other hand, are highly
stereotyped bursts of decrementing spikes that occur in response to synaptic input from the
climbing fibers. They are typically fired at a much lower frequency, in the range of a few Hz.
CSs are driven in part by the large voltage-gated calcium conductance in the dendrites of Pur-
kinje neurons [53]. Both CSs and SSs have been modeled as renewal processes. For example,
an early study investigated their ISIs as a superposition of Poisson processes, where each pro-
cess is attributed to a ‘firing zone’ that corresponds to a limited area of the dendritic arbor
[54]. More complex mixtures of Gamma processes, two each for CSs and SSs were also
explored [55]. The model family we introduce here is more general and contains both of these
stochastic models as special cases, allowing us to tune the complexity of the models systemati-
cally. We will show, in particular, that a mixture of 5 or 6 Gamma distributions (many more
than just two) are needed to accurately described the experimental ISI distributions of PCs
of a Rhesus monkey. At the same time, we will show even the most detailed computational
model of the same cells can be described by just 4 terms in the mixture, hinting at a room for
improvement of biophysical models.

We conclude this article with a discussion of other applications where our method may be
useful.

Results
The model family

The simplest possible stochastic model to represent a FP process is a two state system as shown
in Fig 1A. With a constant transition time 7 between the initial and the absorbing state, we get
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Fig 1. Simple FP processes. A: Exponential completion, with k = 1/7. B: Multi-step completion, with the Erlang-
distributed completion time.

https://doi.org/10.1371/journal.pcbi.1008740.9001

A

an exponentially decaying completion time probability distribution P(t) = exp(—t/7)/7. A natu-
ral extension is a multi-step activation process, where the system irreversibly passes through a
number of intermediate states before reaching the absorbing state, see Fig 1B. A simple induc-
tion shows that the completion probability distribution in this case is given by the Erlang dis-
tribution, Eq (1):

L-1

P, ) = gy & (~4/7). (1)

where L corresponds to the number of intermediate states before FP and 7 is the average tran-
sition time between the intermediate states, which we take to be the same for all states for sim-
plicity and, as we show later, without the loss of generality. Notice that when L is a positive real
number, Eq (1) becomes a Gamma distribution. This simple model is commonly used to
describe neural ISI distributions. However, often times neural spikes exhibit more complex ISI
distributions [56-61]. Motivated by these empirical findings, we built a set of models that are
hierarchically organized, so that their complexity can be adapted to the quality and the quan-
tity of empirical data by adding additional Gamma-distributed completion paths as schemati-
cally shown in Fig 2A.

The mathematical expression of our model with M different completion paths is:

P(t | ga M) = P]P(thnLl) +P2P(t|723L2) +.. +p1\/1P(t|TM7LM)a

_ 1 _ X,
= Tt s, Pl 1, (2)
Xu
Pu= T
M L+x,+...4+x,
where 6 = (ty,Ly5%y, Ty, Lo - . .3 X, Typs Ly ) are parameters to be fitted and P(t|t;, L;) are

defined as in Eq (1). Notice that when there is only one completion path, M = 1, with only one
non-absorbing state L; = 1, we recover the exponential distribution function with the decay
time 7;. Fig 2B shows examples of FP time distributions that can emerge from models with
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Fig 2. Hierarchical set of models. A: Kinetic schemes of the first three models in the hierarchical set. Each next model in the hierarchy is built by
adding another completion path, where k; = 1/7; is the transition rate between intermediate states, and p; is the probability of completion through the
path i. B: Examples of FP probability densities that can be generated with the corresponding models with different parameter values.

https://doi.org/10.1371/journal.pcbi.1008740.g002

different small values of M by changing parameter values. These distributions can approximate
processes, such as neuronal bursts, which have multiple characteristic time scales.

We will call the union of all models P(t|§, M), withM =1, ..., oo, the multi-path model
family of FP distributions. We will focus on Bayesian inference of phenomenological models
of FP processes within this family for the rest of this work. One would like such statistical infer-
ence to be consistent, so that, in the limit of infinite data, one would recover the true model if it
belongs to the model family being used in the inference. For an infinite model family to allow
such consistent statistical inference using Bayesian approaches, it is sufficient for the family to
be nested and complete [62]. Nestedness (or hierarchy) means that models within the family
can be ordered in such a way that the set of solutions of a given model is contained in the set of
solutions of the next model in the hierarchy. Completeness means that every data set can be fit-
ted arbitrarily well by some (possibly very complex) model in the hierarchy.

The multi-path model family is trivially nested: if we set ps; = 0, then the model with
M paths reduces to the one with M — 1. The proof of completeness is a bit more subtle, see
Materials and methods. With that, we know that estimating the posterior probability of the
model within the family given the observed data D, and then choosing M that maximizes the
posterior probability P(M | D), will typically result in consistent inference and in “selection” of
the most probable model. Specifically, we need to evaluate the following integral

—

P(M | D) x /P(D | 0,M)P(06 | M)dO, (3)
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where

P(D| 0.M) = [TPu(1/0). (4)

and ¢; is the ’th completion time in the experimental data set being fitted. Eq (3) comes from
Eq (9) in Materials and methods, were we assumed that prior probabilities of each model in
the family are the same, P(M) = const. This makes the prior unnormalized if we allow arbitrary
M. This is not a serious practical complication. One way to interpret this is to say that, for the
data sets of realistic sizes, we do not expect to explore M > 10 or so. This is especially true
since we seek phenomenological, interpretable models, while interpreting models with a
dozen of paths would be complicated, necessitating other modeling approaches. Then our
method is equivalent to having a uniform prior over M with a finite and not too large support,
where the detailed upper cutoff on the model complexity does not matter, in practice.
Unfortunately, as M grows in Eq (3), the involved integral becomes high-dimensional,
and it is very difficult to estimate reliably. One usually assumes that the integrand is strongly

peaked near the maximum likelihood value 50, which maximizes P(D | 0, M). A variety of
approximate methods exist for the evaluation [28, 29, 63-66], which make different assump-

tions about the structure of the integrand near its maximum likelihood argument é(,. We

observed that, for most data sets we tried, P(D | 0, M) were far from Gaussian, thus prohibit-
ing the use of the simple Laplace approximation to evaluate the integral [28, 63]. Therefore, we
used importance sampling [64, 67] to evaluate Eq (3), see Materials and methods.

Experimental data is usually quantized in units of the experimental time resolution. To fit
such data we, therefore, transform Eq (2) into its discrete time version by integrating FP prob-
abilities over a time discretization window At. That is, Eq (2) becomes

t
Pyt 0.M) = p, / P, L)
t—At

t t
+p2/ P(t\rQ,LQ)dt+~--+pM/ P(t|ty,, L,,)dt
t t—At

—At

~ p,P(t|ty, L,)At + p,P(t[ty, Ly)At + - - - + py P(t]ty, L, )At.

The code to implement the multi-path model family for FPP is available at https://github.
com/criver9/Inferring-FPP.git. Data generated to implement this method can be found at
https://figshare.com/articles/dataset/Inter-spike_intervals_of Purkinje_Cells/13489629.

Model for interspike intervals for Purkinje cells

Purkinje Cells (PCs) are neurons present in the cerebellum of vertebrate animals, which partic-
ipate in learning. They have large and intricate dendritic arbors and produce complex action
potentials with a multiscale distribution of the interspike intervals (ISIs). Due to the complex-
ity of the cells, their typical models involve many dozens of compartments, each described by a
handful of biophysical parameters [68-72]. Crucially, the process of generating a spike can be
seen as a FP process, where the neuron goes through a set of different effective states, not nec-
essarily in a simple sequence, before crossing a certain voltage threshold (the absorbing state
that results in a spike generation). Thus here we ask whether the ISI distribution for PCs,
indeed, requires so many features to model well, or if, in contrast, the structural complexity

of PCs does not result in a similarly high complexity of the spike generation. To answer this,
we use ISIs of PCs corresponding to simple spikes of a Rhesus monkey (Macaca mulatta),
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Fig 3. Best fit models, M = 1. . .7, for Purkinje cells ISI distribution. Dots indicate the histogram of the real data, and
the grey band denotes the standard error of every dot. Color lines show the average fit line sampled from the posterior
distribution of each of the first seven models in the hierarchy, error bands (too narrow to see) on these fits where
estimated using the standard deviation from the sampled curves (see Materials and methods). The legend illustrates
how the cross-entropy between the data distribution and the model fits decreases with the model complexity towards
the entropy of the data distribution itself. Note that the horizontal axis is logarithmic. Inset: same data, but on log-log
axes.

https://doi.org/10.1371/journal.pcbi.1008740.g003

obtained from [61], and we search for the best phenomenological model of this distribution
using our approach.

Fig 3 shows the best fits for each of the model in our hierarchy, M < 7, to the PC ISI distri-
bution data. The figure and Table 1 suggest that the simplest phenomenological model of
the process contains about M = 5 effective independent paths (for this data set, we cannot

Table 1. Model selection results for ISI probability distribution of experimental PC. Natural logarithm of the mar-
ginal likelihoods of the first seven models in the hierarchy are shown for N = 28966 spikes (the full data set). Numbers
following the + sign are the standard deviation of the marginal likelihood, estimated using importance sampling (see
Materials and methods). Since we show log likelihoods instead of likelihoods, the standard deviations transform into
asymmetric errors around the mean, and both asymmetric errors are shown. The model with the highest marginal like-
lihood, M =5, is highlighted. Note that the model with M = 6 cannot be ruled out, as it has very similar marginal
likelihood.

M InP(D | M)

1 —180379.2 +/- (0.1/0.1)

2 —-176368.516 +/- (0.001/0.001)

3 —175826.323 +/- (0.008/0.008)

4 —-175694.65 +/- (0.02/0.02)

5 —175649.89 +/- (0.08/0.08)

6 ~175651.7 +/- (0.3/0.5)

7 ~175655.5 +/- (0.6/1.5)

https://doi.org/10.1371/journal.pcbi.1008740.t001
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Table 2. Model selection as a function of the number of samples. First row shows the size of the data set, 1000. . .28966, and the rest of the table shows the logarithm of
the marginal likelihood of each model in the family for these data. Error bars on the log-marginal likelihoods are in S1 Table. As the number of samples increases, more
complex models are required to explain the details of PC spiking, but the complexity eventually saturates, presumably having matched the complexity of the real cells

observed at the given experimental accuracy.

M 1000
1 -6192
2 -6133
3 -6134
4 -6143
5 -6155
6 P
https://doi.org/10.1371/journal.pcbi.1008740.t002

InP(D | M)

5000 10000 15000 20000 28966
-30901 -61775 -92835 -124017 -180379
-30427 -60673 -91189 -121736 -176368
-30369 -60536 -90915 -121356 -175826
-30349 -60487 -90859 -121262 -175694
-30354 -60482 -90842 -121230 -175649
-30362 -60491 -90850 -121236 -175651

discriminate between models with M = 5, 6 based on the values of P(D | M)). Notice that, by
gradually adding additional completion paths, we can approximate not only the right tail of
the distribution, but also the left tail—the behavior at early times. We measure this quality of
fit by showing, in Fig 3, the entropy of the probability distribution, H, = — 3", p,In p, (evalu-
ated using the Bayesian entropy estimator [73]), of the data being fitted, as well as the cross-

entropy, Hy, = — S0, p;InP,,(t, | g, M ), between the data and each of the best fit models
with different M (this corresponds to minus the normalized value of the log-likelihood, Eq
(4)). To the extent that Hy; approaches H, for larger M, the fits are quite good. And since Hy,
~ Hjy, , for large M, the fits stop becoming much better, so that the Bayesian Model Selection
[33] then penalizes models with large M. The model with M = 5 turns out to have the highest
marginal likelihood, though the models with M = 6, 7 are close.

We next check how the selected model depends on the amount of data being fitted. As seen
in Table 2, increasing the number of spikes in the data set from 1000 to ~30000 allows us to
identify finer details in the data which require more accurate models to be fitted. Thus the
most likely model has M = 2 for a small data set, gradually increasing to M = 5 for full data.
Since the last three-fold increase in the amount of data does not result in a further growth of
the best M, we conclude that the phenomenological model likely has reached the complexity
needed to explain the system, and the model with M = 5 is, in some sense, equivalent to the full
complexity of simple spike generation of a real Purkinje cell.

This analysis illustrates two crucial points. First, a relatively simple model with M ~ 5 is
able to explain the experimental ISI distribution from a complex neuron, so that much of the
physiological complexity of the cell does not translate into a functional complexity, at least at
the scale of a simple spike generation. Second, quantitatively fitting the data favors models
with M > 5 by a factor of ~ 10*°. Indeed, from Table 1, we see that the difference of log-likeli-
hoods of models with M = 5and M = 4 is = 17695 — 17650 = 45, which translates into the
ratio of likelihoods of ~ ¢**> ~ 3.5 - 10'°. In other words, PC spiking is not trivially simple, and
guessing this ISI model without the automated inference procedure developed here would
likely be impossible.

Model for ISI of synthetic PC

One of our interests is to develop phenomenological models that are able to predict the change
in the FP distributions for a system under the influence of various external perturbations. We
would like to illustrate this using PCs. However, we are not aware of readily available large,
precise data sets measuring the ISI distribution in PCs under external perturbations. Thus
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instead we focus on synthetic data, generated using a biophysically realistic, multi-compart-
mental model that resembles the morphologically complex structure of PCs, the Miyasho et al.
model [69], which is a modified version of the earlier De Schutter and Bower model [68]. To
illustrate the complexity of the Miyasho model, we point out that it uses 1087 compartments
to describe the dendritic arbor of a PC and one compartment for the soma. Additionally, the
dynamics are defined by around 150 parameters that specify 12 different types of voltage-gated
ion channels [69].

We used this model to simulate the behavior of the membrane potential dynamics of a PC,
affected by different electric currents injected into the soma. White noise currents with stan-
dard deviation 0 = 3 nA and mean values I = 0.1, 0.5, 0.7, 1, 2, 3 nA where injected, thus gener-
ating six different data sets, with which to explore the ISI probability distributions of the PC
model. Following the procedure described earlier, we selected the simplest phenomenological
model that can explain the ISI statistics of the PC model, but in this case we focus on optimiz-
ing the marginal likelihood over all stimulus values simultaneously. Fig 4 shows the best model
fits for two different injected currents which produce qualitatively different ISI distributions.
Fits for other current values can be found in S1 Fig. To build the optimal model for all injected
currents simultaneously, we estimate the marginal likelihood of each model in the family for
M < 5 for each of the synthetic data sets, see Table 3. Since for different currents, the ISI gener-
ated are independent of each other, the log-likelihood for the entire data set is simply the sum
of log-likelihoods for each I. As always, we choose the optimal model as the one with the largest
overall log-likelihood.

Table 3 shows that, for our data sets, M = 4 effective independent paths are enough to
explain simultaneously the PCs behavior under six different injection currents. As can be
seen in S2 Fig, when the injected current increases the cell goes from the non-bursting to the
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Fig 4. Best fits for different models in the model family for the distribution of ISIs of synthetic PCs. Color lines and color bands show the mean
and standard deviation respectively of different models sampled from the posterior distribution of each of the first five models in the family (see details
in Materials and methods). The legend shows how the cross entropy decreases with the model complexity towards its minimum value of the entropy of
the histogram of the observed data. According to Table 3, 4 paths are needed to explain the ISI characteristics of synthetic PCs under different external
conditions. A: injected current I = 0.1 nA, and B: I = 3 nA. Insets in both panels show the same data, but on log-log axes.

https://doi.org/10.1371/journal.pcbi.1008740.g004
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Table 3. Model selection results for ISI of synthetic PCs. Marginal likelihood of the first five models in the family for each data set, corresponding to the six different
injected currents. Error bars on the log-marginal likelihoods are in S2 Table. Last column shows that a model with 4 completion paths is optimal over the combined data.
Asterisk marks those cases where the optimal parameter values fell at the boundary of the search space, usually because there were paths with near-zero flux through them
(see Materials and methods). Note that the numbers in the first two columns increase monotonically with M, so that the best model in the family is not found for M < 5.
We chose to truncate the exploration at M = 5 since we are interested in the overall maximum of the log-likelihood for all I, which is reached at M = 4 (last column).

M
1
2
3
4

5

In P(D|M)

I=0.1nA I=0.5nA I=0.7nA I=1.0nA I=2.0nA I=3.0nA Total
-75436 -71282 -66821 -66309 -64654 -64488 -408992
-74070 -70034 -65283 -63578 -58932 -56462 -388359
-74019 -70001 -65238 -63520 -58773 -56211 -387762
-74003 -69990 -65239 -63518 -58794 -56213 -387757
-73994 -69976 -65251* -63530" -58806* -56226* -387784

https://doi.org/10.1371/journal.pcbi.1008740.t003

bursting state, and the entropy of the completion time distribution decreases (see Fig 4 and S1
Fig). Table 3 indicates that higher entropy distributions, corresponding to I = 0.1, 0.5 nA need
M > 5 completion paths to be properly explained. Lower entropy distributions, on the other
hand, not only require fewer paths, but also more deterministic paths, as can be observed from
the coefficient of variation estimates in Fig 5. This suggests, that under low external stimulus
(I <0.5nA), spike generation in the cell can happen through multiple pathways. Instead,
when a certain current threshold is reached (I > 0.5 nA), only a few of these pathways get acti-
vated. Nonetheless, more than one pathway is needed even for high currents, since, at least,
two time scales are required to explain the bursting activity.

In Fig 5, we explore how the properties of the model selected in Table 3 (M = 4) change as a
function of the injected current, I. Each independent path is described by specifying its average
completion time T, = t,L,, the coefficient of variation CV’ = 1/L,, and the probability p; of
completion along this path, and these three quantities are plotted for each path for different
values of I. There is a sharp change in these features when the PC transitions from a non-burst-
ing to a bursting state, between I = 0.5 and 0.7 nA. For example, completion times and coeffi-
cient of variation for all paths drop drastically at this point. In particular, S3 Fig shows that the
paths with the longest completion time explain very different aspects of the non-bursting and
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Fig 5. Properties of completion paths change as a function of the external parameter for the best model selected across all experiments. A:
Average completion times for each of the M = 4 independent paths are plotted as a function of the injected current in the soma, I. Color (same in (B)
and (C)) identifies paths according to how long they take to complete the process on average. B: Coefficient of variation and C: probability of taking
each of the independent paths of the model as a function of I.

https://doi.org/10.1371/journal.pcbi.1008740.9005
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the bursting ISI distributions. For the non-bursting cases, these paths help to fit mostly the
tails. Instead, for the bursting cases, these paths explain the intra-burst time interval, which
happens to be a much more deterministic process, as can be seen from the behavior of the
coefficients of variation, Fig 5.
To test whether the phenomenological model correctly captures the time scales of the
underlying biophysical processes, we predict the ISI distribution for input currents that the
model was not exposed to during fitting. To achieve this we first need to determine a relation-
ship between model parameters and the input current means, which we can then use to infer
model parameters for currents different from the ones used for fitting the model. As our test
case, we employed the model with M = 4 and tracked the dependence of its parameters on the
current as shown in Fig 5. A priori it is unclear how to build correspondence between the four
model paths for separate input currents. In our example in Fig 5, we chose to establish the cor-
respondence by ordering the paths according to their completion time, thus relating the model
paths with the smallest completion time, then the second to smallest and so on. This ordering
provides relationships between input currents and all model parameters, based on which we
can infer parameter values for new current values using linear interpolation (for currents that
fall between two fitted values) or linear extrapolation (for currents outside of the fitted range).
We note that the choice to relate parameter values by completion time rather than another
parameter is arbitrary. Indeed there are many possibilities to create the pathway correspon-
dence for different current values. Besides ordering based on average completion time (con-
front Fig 5) we also tested ordering based on the coefficient of variation or the probability path
which led to no improvement over the presented case (not shown). While it is possible that
other orderings can lead to better predictions we leave a more systematic exploration of this

aspect for future work.

To validate our predictions, we generated new data for mean currents I = 2.5, 3.3, and 3.5
nA and compared predicted ISI distributions to the simulation results (see Fig 6). The pre-
dicted model for I = 2.5 nA was obtained by linearly interpolating the statistical properties
shown in Fig 5 between the known values at I = 2.0 and 3.0 nA. Then we used the following
relations to infer the parameters of the model: L, = 1/CV7, 1, = T,/L, and x; = p,/p,. Fig 6A
shows that the predicted model is almost indistinguishable from the fitted one. Similarly, the

predicted model for I = 3.3 and I = 3.5 nA, is obtained by linearly extrapolating the statistical
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Fig 6. Predicted PDFs for non-measured values of the injected current. Predicted model (in red) was obtained by interpolating parameter values
from Fig 5. It is compared with the model (in blue) fitted directly to data. (A) Prediction for I = 2.5 nA (interpolation). (B) and (C) Prediction for I = 3.3

and I = 3.5 nA respectively (extrapolation).

https://doi.org/10.1371/journal.pcbi.1008740.9006
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properties from the last two known values at I = 2.0 and 3.0 nA. These showed very good
agreement with the respective simulated data (Fig 6B and 6C).

To quantify the accuracy of these predictions, we need to calculate their quality with respect
to some baseline. We chose the Jensen-Shannon Divergence (JSD) [74] as a measure of the
quality of fit, and we measure it relative to two baselines. First, we quantify how an extrapo-
lated or an interpolated prediction compares to the fit done directly on a data set; certainly the
fit is expected to outperform the prediction. Second, we check how two statistically equivalent
realizations of data fit each other; this should be the ceiling, which neither the fit nor the pre-
diction can outperform (if both are not overfitted). Both of these baselines depend on the spe-
cific data set used, and thus one needs to estimate probability distributions of the relevant
JSDs, rather than their single values. However, generating data from the PC model takes hours
even on a modern computer, and hence we generate only a single additional, validation, data
set beyond the training and the testing sets, which we then additionally bootstrap (resample
with replacement) to produce statistics of the JSDs. Specifically, Fig 7 plot histograms of (i) the
JSD between the test data and the bootstrapped versions of the validation data (this is the sta-
tistics that requires us to have two independent samples, test and validation, to remain unbi-
ased), (ii) the JSD between the bootstrapped validation data and fits to these data, and (iii) the
JSD between the prediction and the bootstrapped validation data. Our first observation is that
all three JSD distributions are very close to each other, indicating very good fits and predic-
tions. For I = 2.5 nA, the fits/predictions have smaller JSD than different realizations of data
have with themselves, which is consistent a very good fit, and suggests, as expected, that the
variability across bootstrapped data sets is somewhat larger than would have been across inde-
pendent samples. As I increases, and interpolation gives way to extrapolation, the prediction
quality deteriorates (still remaining only a few percent worse than the fits).

Inferring mechanistic constraints

Our approach to modeling FP time probability distribution is purely phenomenological. How-
ever, the multi-path model family allows us additionally to constrain mechanistic, biophysical
models of the underlying processes. Specifically, we can make predictions for the minimal num-
ber of intermediate states that a mechanistic model requires to explain the data. Indeed, for any
EP problem, the short-time behavior of the completion probability density provides information
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Fig 7. Quantifying quality of the predictions. We plot the histograms of the JSD between the test data set and the bootstrapped samples from the
validation data set (in black), the JSD between the bootstrapped validation data sets and models fitted to each of these data sets (in blue), and the JSD
between the bootstrapped data and the prediction based on interpolating or extrapolating the model parameters fitted to the original data (in red). To
the extent that the distributions are close, predictions are good. A-C: Data for I = 2.7, 3.3, 3.5 nA, respectively. The first is interpolation, the other two
are extrapolations.

https://doi.org/10.1371/journal.pcbi.1008740.9007
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about the length of the shortest completion path [34, 75]. That is, assume that the process starts
in a state i and ends at the absorbing state j of an arbitrary Markovian chemical reaction network.
Then, at short times, the completion probability density can be approximated as p;; oc t™, where
m is the number of intermediate states of the shortest path connecting states i and j [75]. In prin-
ciple, this means that by estimating the exponent of the power law that fits the left tail of the com-
pletion time distribution, one can put a lower limit on the number of intermediate states in a
mechanistic model. Then any candidate model with a fewer number of steps can be rejected.

In practice, making use of this result is hard because it requires data with very high tempo-
ral resolution, and a very well sampled left tail. However, our multi-path representation allows
for an extension of the approach to the case where the sampling is good, but the time resolu-
tion may not be sufficient for simpler methods. Once the most probable model in the model
family is selected and fitted, we propose to determine if the first few fastest events can be
explained by a single independent path i of length L, We use 50 events in our analysis, which
provides for a sufficient number of the events to seek a power law fit, and yet is small enough
so that only the very end of the left tail is explored. Since at short time scales the Cumulative
Distribution Function (CDF) of the FP time probability density is & ¢ (from Eq (1)), one can
insist that any mechanistic model built to describe the data will need at least L; states, establish-
ing a lower bound on the size of the network.

For concreteness, the short time behaviors of the CDFs obtained from the best model,

M = 4, describing the ISIs of PCs under six different injected currents are shown in Fig 8. Only
for I = 0.7 nA the first 50 events (0.5% of sample size) can be explained by a single path with
~20 intermediate states, while for larger values of I, the distribution can be fitted by one or
more of such paths. In all of these cases, it is thus clear that any realistic biophysical model of a
PC must include, at least, ~20 internal states.

Discussion

In this study, we developed a mathematical structure (multi-path model family) to infer
phenomenological models describing FP time distributions for biological processes. As an
example of application of our approach, we show that this representation allows us to build
models capable of describing the complexity of the ISI distributions of PCs by successfully
explaining not only the bulk, but also the tails of the distribution. Our results show that the
process of a spike generation in PCs is more complex than a simple renewal process with a
Gamma-distributed completion time, which is typically used in the field. For simple spikes,
M > 5 independent Gamma-distributed paths are required. We also showed that only M ~ 4
paths (11 independent parameters) are needed to explain the behavior of synthetic PCs over all
injected current values I > 0.5 nA. This illustrates that (i) morphological complexity of PCs
notwithstanding, their dynamics is not very complex at the level of the FP time distribution,
and (ii) our fully phenomenological approach can, nonetheless, point out when biophysically-
realistic models are inconsistent with features of experimental data. By identifying how param-
eters of the inferred model change with the external stimulus and extrapolating or interpolat-
ing them, we can predict the FP time distribution of the system in response to novel stimulus
values. These predictions focus not just on the mean and the variance, but on the entire com-
pletion time distribution, and we have shown that the predictions are remarkably accurate, as
compared to statistical fluctuations in the data themselves. Finally, we showed how our purely
phenomenological approach can establish the minimum size of a mechanistically accurate bio-
chemical network underlying the system, at least for well-sampled data sets.

Intriguingly, our data driven approach, which suggests 4-6 gamma processes to model PC
spiking, produces models that are more complex than the hand-crafted model by Shin et al.,
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which suggests 2 Gamma processes for simple spikes [55]. Thus we suggest that our modeling
approach can be used to validate mathematical models by investigating relationships between
the time-scales of neuronal spiking and detailed biophysical properties of PCs, such as particu-
lar types of ion channels, or morphological properties. Future studies could use a morphologi-
cally complex model, such as [69] which we used here, to investigate time-scales by altering
specific properties and re-fitting our phenomenological model family. The resulting model
complexities for the altered and original mechanistic model can be compared to assess the influ-
ence of particular biophysical and morphological properties on the time-scales of spike trains.
Ours is certainly not the first attempt at reconstructing kinetic diagrams of a process using
FP data [76, 77]. However, previous approaches have focused on mechanistic models and did
not consider general complete and nested model families, unlike our proposed multi-path
model family. This family has additional useful properties: (i) Models in this family result in
FP distributions that are positive and normalized, unlike polynomial or Fourier expansions
of the distribution, or various simple moment closure techniques. (ii) This family results in
true FP distributions—that is, distributions that have support only on positive real values
of the completion time. (iii) Some very complex FP processes, with multiple steps within a
completion path, are described by simple models in our hierarchy. The last observation, we
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think, is the most important feature that allowed our model family to successfully model the
spike generation of highly complex neurons, the Purkinje cells. While the multi-path family
certainly works well, it is only one of many possible hierarchies that satisfies nestedness and
completeness properties, and hence can be used within our framework. Different hierarchies
may be better suited for phenomenological modeling of different biological processes [27],
and the quality of fit within a family may reveal which family better matches salient properties
of the modeled processes. We hope to develop such additional model families and explore
their pros and cons in subsequent papers.

Within our model, we assumed that every completion time is independent and identically
distributed. This is a strong assumption, which is not necessarily realized. For example, serial
correlations of ISIs violate this assumption. Early studies found no serial correlation in ISIs of
PCs [54], however, more recently it was suggested that, while complex spikes do not show
serial correlations, simple spikes do [55]. Additionally, if each spike within a complex spike,

i. e., a burst, is treated like any other spike, successive ISIs further exhibit a dependence (i.e.,
within a burst, a short ISI is usually followed by another short ISI). In the future, it should be
possible to extend our approach to model such processes by either modeling the statistics of
FP time for a sequence of events, or by extending the model family to incorporate a latent vari-
able that controls the dependence among subsequent completion events.

Our models offer only limited understanding of the mechanistic details of the modeled bio-
logical process. Nonetheless, there are many advantages to our approach, and phenomenologi-
cal modeling, in general. Indeed, the complexity that biological processes have acquired over
eons of evolution oftentimes makes building detailed microscopic models an extremely chal-
lenging task. And yet the functional properties of the behavior might be rather simple, with the
structural complexity existing, for example, to ensure robustness of the function to various per-
turbations. Then focusing on the phenomenological model allows us to elucidate, predict, and
eventually use properties of the functional behavior even if microscopic details of the mecha-
nisms used to produce it remain unclear. Our specific approach to phenomenological modeling
is different from many others in that it does not coarse-grain a microscopic model (requiring a
laborious task of building one as an intermediate step), but rather it refines phenomenological
models, adding progressively more details until the functional behavior is well approximated.
Bayesian model selection is used to find the optimal point in the refinement hierarchy. The
computational advantages of taking such an adaptive, refining approach can be huge, especially
when the studied complex system exhibits a simple behavior. The computational complexity of
our approach is dominated by searching for optimal fits, which scales linearly with the data set
size, and exponentially with the model complexity. However, the latter is rarely more than a few
dozen parameters even for very complex systems, such as the PCs, at least for realistic experi-
mental resolution and data set sizes. Thus we expect our approach to be useful for modeling any
biological system for which (i) the quantity that we need to predict is the completion time, (ii)
the underlying biophysics is very complex, with microscopic details not always affecting the
macroscopic completion properties, and where (iii) large, high quality experimental data sets
are available for different experimental conditions, requiring (iv) to predict the behavior of the
system as a function of these conditions, for their yet-untested values.

Materials and methods
Completeness

Here we show that the model family studied in this work, Eq (5), is complete. That is, any data
set describing the distribution of the completion times of the first passage process can be
approximated arbitrarily well by a gamma mixture model with sufficient complexity.
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We note that experimentally measured and numerically simulated completion times are
constrained by finite resolutions which essentially discretizes the time axis. Thus we can write
the completion time likelihood as a multinomial

= = ny _n N—nj—ng—..ng_

LG | ) =75 (1= gy =gy — g )", (6)
where n; counts how often the completion time falls into the ith out of K time interval bins

(t; — At, t;], N is the total number of completion time events, and g; is the probability of comple-

tion in the time interval defined by bin i, given by g, = P, (¢, | g, M) (see Eq (5)). Trivially, the
maximum of L(§ | #) is achieved when ¢q; = n1/N, g, = ny/N, .. .qx = ng/N. Therefore, our aim
must be to construct a model that can bring 4 arbitrarily close to this maximum. The rational
of the proof is to have a path per time bin whose average waiting time is the center of the
respective time bin and whose variance can get arbitrarily small, effectively approximating
a delta function. That is, we want to construct a model such that for any € > 0, we have
n/N—e<P,(t|06,K) <n/N+e

To prove this we set the parameters in Eq (5) to what follows. For the probability of every
gamma path take p; = /N, with expected completion time given by T;=L; 7, =t; — At/2 and

. . . 9 a2 . P .
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where we used Chebyshev’s inequality (Pr(|t — T}| > ao,) < 5, witho = 1/,/€;) to seta
bound to all the integrals but the ith. For the ith integral we note that, since most of the proba-
bility mass falls in this bin, it reaches close to one and is naturally bounded by one. This con-
cludes the upper bound on the g;. For the lower bound we simply subtract one from both sides
of the Chebyshev inequality and multiply by negative one to get Pr(|t — T}| < ag,) > 1 — 4.

This gives a bound for the ith integral of Eq (7):

t
Pt 58) 2 % [ PG L)z R - o) = T ®)
A N N
showing that this model family can approximate any sufficiently smooth distribution arbi-
trarily well. In real applications, we may not need to have as many paths as there are bins to
achieve a high approximation accuracy, so the construction above is the worst case scenario.

Model selection

To choose the most likely model from the family, we evaluate and maximize the marginal
probability of each model M:

P(D | M)P(M)

P(M | D) ===

x P(D | M), )
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where we assumed that all models in the hierarchy are a priori equally likely. The likelihood
P(D | M) is given by:

P(D | M) = / P(D | 8, M)P(F | M)dT, (10)
where the likelihood of the data set and the prior are chosen to be:

K

P(D| 0, M) = [[Py(t, | 6,M)", (11)

Pl | M) = — ﬁex}j(_%) eXp(_%). (12)

Here P, (t | 0, M) is given by Eq (5), and #; is the number of events with completion time
between (¢; — At, t;). The priors over L; and 7; are chosen to be exponential, ~exp(-L;/Z;) and
~exp(-1j/Z,), respectively. The values of Z; and Z, must then be set in such a way that the pri-
ors are wide compared to the measured time scales, so that 7L can be as small as the temporal
resolution or larger than the longest completion times observed. Throughout our study we set
them to Z; = 20 and Z, = 20 ms. The prior over x; is chosen to be uniform between 0 and Z,,
which was set to Z, = 10°. This allows each path to be sufficiently dominant over the others so
that even distinguishing the existence of other paths given the data set sizes we explore is hard.
In the limit of a large number of paths, priors over multinomial distributions p; are known to
concentrate probabilities in just a few of the possible outcomes, depending on the properties
of the prior used [73]. This could be problematic, and may be addressed by using a Dirichlet
prior on p; (instead of the uniform prior on x;) and then choosing the hyperparameters of the
prior with Bayesian model selection as well [73]. However, since we never considered more
than 7 paths, the effects of the priors are not dramatic, and our choice is easier computation-
ally. Finally, we note that our choice of the priors means that the parameters are a priori uncor-
related among themselves.

In most cases, the integration in Eq (10) is analytically intractable. A typical approach in such
a case is to use the Laplace approximation to compute the integral. However, in our problems,
the posterior distributions fall much slower than Gaussians, ruining the quality of the Laplace
approximation. Thus we used importance sampling [67, 78] instead. Specifically, we sampled

from the multi-variate normal distribution G(0) = det(27Z) * exp (— O -0z (0 - 5*))
centered at the optimal value 6" of the integrand F(6):=P(D | 6, M)P(6 | M) with the covari-

—

ance matrix X is defined by the Hessian of F(0):

_ &logF

—1 _ _ 7 = -
(£7); = (—Hess logF|5.), = 90,00,

y

(13)

i
This way we ensured that G(g ) > 0for F (5) > 0, at least around the domain of the local

optimum at 0*. See below for details of how we estimated the covariance matrices. Then the
importance sampling estimate of the integral in Eq (10) is

P(D| M) ~ 3 7

1 ZP(D ‘ 01‘7M)P(0i | M), (14)
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where 51. ~N (g*, ) and we used N = 10° samples to achieve the desired accuracy. Since the
likelihood values exceeded numerical resolution, we instead computed the In P(D | M):

InP(D | M) ~ InF(6") + In <i eXp(IOgF(z"(%; IOgF(é*))> — InN. (15)

Furthermore, the associated variance of the estimation of the marginal likelihood can be
estimated by reusing the same samples as follows:

Var(P(D | M)) ~ %Var (Z g(&-))
LI (EG)\ (1 F@))
N <N;<G(ai>> (N;G@})) )

Because the variance is small, as seen in Table 1 and S1 and S2 Tables, we conclude that the

importance sampling has converged [78].

Covariance matrix estimation. Application of our importance sampling scheme requires
knowing the maximum of the integrand and the Hessian around the optimum. The optimal
values (* were obtained using the MATLAB function fminsearchbnd. We used MATLAB
version R2017a for our analysis. Most of the optimal values obtained for different models and
data sets fell in the interior of the parameter’s domain; we mark those where the optimal values
fell at the boundary with an asterisk everywhere in the text.

We first explain how we computed the covariance matrix for the cases where the optimal
values fell in the interior of the parameters’ domain set. Using Eq (11) to estimate the Hessian,
we get

8210gF ZM: ?log (P,,(t, | 6,M))

& logP(0 | M) ’
a0, ae 96,00,

i 00,00,

0

At(ti | 57 M) 8PAt(ti | 57 K)
(t, |9 M) 0, a0,

]

Notice that the contribution to the Hessian coming from the prior in the previous expres-
sion cancels out. We then evaluated Eq 17 numerically using Eq (5).

For those cases, for which the optimal values are located at the boundary of the parameters’
domain due to the presence of a trivial completion path we use the following trick. Given that
the flux through a certain path j is zero, the likelihood P(D|6, M) stays constant for all values of
7;and L; corresponding to this trivial path. However, the prior decays exponentially and there-

1 &P P, (¢ |0 M)
P, (t, | M) 00, 80

fore F(0) also decays exponentially in the directions of 7; and L;. The optimal value of F(f)) can
be written as (¥,,x, = 0,7, = 0, L, = 0) with X, is the best fit for the previous model in the
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family, with only d — 1 completion paths. Then the covariance matrix is:

— a2 0 0
2 0 |0 o o | (18)
0 0 o2

where X, is the covariance matrix at the best fit of the previous model in the family; o is an
upper bound on the variance along the parameter controlling the probability flux through d-th
completion path estimated from the symmetric function Fy(0) = F(|6]). We used a, = 0.01 for
all the cases marked with an asterisk in Table 3. On the other hand «; and a; where estimated
using the variances of the independent exponential distributions of the prior, Eq (12), Z, = Z; =

20. We chose o2 = & = (30,)> = 3600. Notice that, along these last two directions where F(6)
decays exponentially we chose the variance of the importance distribution nine times larger in
these two directions to make sure that it contains most of the important domain of F(6).

Parameter degeneracy. The likelihoods that we obtain often have multiple modes that
correspond to parameter degeneracy, which arises by relabeling the completion paths. To
account for this degeneracy in calculating the integral to estimate the marginal likelihood, we
multiplied the likelihoods of each model with M gamma pathways by (M — 1)!. Here we use
M - 1 instead of M because the first path is different from the others: transition rate to this
path is set to one and is used as a reference.

Generalized Bayesian model selection. In order to find the model in the family that best
fits the simultaneous description of the system under s different external conditions, we need
to estimate the integral Eq (10) for s independent data sets,

—

P(D,,D,,....D, | M) :/P(D],Dz,...,Ds|§1,§2,... 0.,M)P(0,,0,,...

= H/p(pj |6, M)P(0, | M)d0,.
j=1

The last equality results from each data set having its own, independent set of parameters.
Taking the natural logarithm on both sides of Eq (19), we obtain the following result, which
we used to compute the values in Table 3:

InP(D,,D,,...,D,| M) =Y InP(D,| M) (20)
j=1

Note that Bayesian model selection helps us resolve many complications often present in
fitting models like ours. For example, one may imagine having multiple pathways with similar
parameter values, which would require very large data sets to lift the degeneracy. In such a situ-
ation, our Bayesian model selection procedure would keep just one pathway instead of two,
until there is sufficient data to explore the more complicated model.

Expected values and uncertainty of fits

The fits and the error bars for curves for all of the fitted models in all Figures are the expected
values and the standard deviations of the model curves over the posterior probability distribu-
tions. That is,

fe10) = [ f¢13,)p(F | D2, @
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Var (f(t | M)) = /(f(tl5,M)—<f(t|M)>)2P(5\D7M)d5, (22)

where f (¢ | §,M) =P, (t| §,M), and the posterior probability is

- _P(D|6,M)P(| M) F(6)
PO | D,M) = (D | M) = 5D |2’ (23)

As explained above, we used importance sampling to estimate the expectation values. For
example, notice that Eq (21) can be rewritten as

_ 0, M)F(0)d0

(f(t| M)) [ E()di (24)
Using Eq (15), this becomes
o (0183 exp (g F(F) — logF(7)
) a) ~ oo (25)
s exp (log F(0;) — log F(0"))
. G(0)

Similarly, for the variance, we have

Var (f(t | M)) — f(f(t | 07M) — (f(t | M)>) F(Q)d97 (26)

[F(6)do

which results in

s f(t] 0, M) exp (logF(0,) — logF(0"))
G(0,)

S exp (log F(6,) — log F(6"))
G(0,)

Var (f(t | M)) ~ —{feIm).  (27)

Supporting information

S1 Fig. Best fits for different models in the family to the experimental Purkinje cells inter-
spike interval data. Color lines and bands (the latter often too narrow to be seen) show the
mean and the standard deviation of different models sampled from the posterior distribution
of each of the first five models in the family. The legends illustrate the decrease of the cross
entropy with the model complexity towards its minimum value of the entropy of the histogram
of the observed data. According to Table 3, 4 paths are needed to explain the ISI characteristics
of synthetic under different external conditions. (A, B, C, D) injected currents I = 0.5, 0.7, 1.0,
2.0 nA, respectively.

(TIF)

$2 Fig. Simulated PC membrane potential using the multi-compartmental model pro-
posed in [69] for A: low (I = 0.5 nA) and B: high (I = 3 nA) values of the injected current.
(TIF)
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S3 Fig. Decomposition of the completion time PDF into contributions from different
paths for (A) I=0.1 nA and (B) I = 3.0 nA. Insets show the same data in log-log units. In (A),
the two pathways with the shortest completion time explain the bulk of the distribution while
the pathway with the longest average completion time approximate the right tail of the distri-
bution. In (B), pathways with shortest/longest completion time contribute mostly to the intra/
inter burst time scales.

(TIF)

S1 Table. Same results as in Table 2, but with likelihood error estimate using importance
sampling, see Materials and methods for details. See Table 1 for conventions used.
(PDF)

$2 Table. Same results as in Table 3, but with likelihood error estimate using importance
sampling, see Materials and methods for details. See Table 1 for conventions used.
(PDF)
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