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P H Y S I C S

Programming active cohesive granular matter 
with mechanically induced phase changes
Shengkai Li1†, Bahnisikha Dutta2†, Sarah Cannon3, Joshua J. Daymude4, Ram Avinery1, 
Enes Aydin1, Andréa W. Richa4, Daniel I. Goldman1, Dana Randall5,6*

At the macroscale, controlling robotic swarms typically uses substantial memory, processing power, and coordina-
tion unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating 
intelligent textiles, and designing nanocomputers. To develop principles that can leverage physical interactions 
and thus be used across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing parti-
cle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital 
electronic computation and communication, using minimal (or no) sensing and control. As predicted by theory, as 
interparticle attraction increases, the collective transitions from dispersed to a compact phase. When aggregated, 
the collective can transport non-robot “impurities,” thus performing an emergent task driven by the physics under-
lying the transition. These results reveal a fruitful interplay between algorithm design and active matter robophys-
ics that can result in principles for programming collectives without the need for complex algorithms or capabilities.

INTRODUCTION
Self-organizing collective behaviors are found throughout nature, 
including shoals of fish aggregating to intimidate predators (1), fire 
ants forming rafts to survive floods (2), and bacteria forming bio-
films to share nutrients when they are metabolically stressed (3). 
Inspired by such systems, researchers in swarm robotics and pro-
grammable active matter have used many approaches toward en-
abling ensembles of simple, independent units to cooperatively 
accomplish complex tasks (4–6). Both control theoretic and distrib-
uted computing approaches have achieved some success, but often 
rely critically on robots computing and communicating complex 
state information, requiring relatively sophisticated hardware that 
can be prohibitive at small scales (7, 8). Alternatively, statistical 
physics approaches model swarms as systems being driven away 
from thermal equilibrium by robot interactions and movements 
[see, e.g., (9, 10)]. Tools from statistical physics such as the Langevin 
and Fokker-Planck equations can then be used to analyze the meso-
scopic and macroscopic system behaviors (11). Current approaches 
present inherent trade-offs, especially as individual robots become 
smaller and have limited functional capabilities (12, 13) or approach 
the thermodynamic limits of computing and power (14).

To apply to a general class of micro- or nanoscale devices with 
limited capabilities, we focus on systems of autonomous, self-
actuated entities that use strictly local interactions to induce macroscale 
behaviors. Two behaviors of interest are dynamic free aggregation, 
where agents gather together without preference for a specific ag-
gregation site [see section 3.2.1 of (5)], and dispersion, its inverse. 
These problems are widely studied, but most work either considers 
robots or models with relatively powerful capabilities—e.g., per-
sistent memory for complex state information (15, 16) or long-range 

communication and sensing (17–19)—or lacks rigorous mathemati-
cal foundations explaining the generality and limitations of their 
results as sizes scale (20–22). Recent studies on active interacting 
particles (23) and inertial, self-organizing robots (24) use physical 
models to treat aggregation and clustering behaviors, but neither 
prove behavior guarantees that scale with system size and volume. 
Supersmarticle ensembles (25) are substantially more complex, ex-
hibiting many transient behavioral patterns stemming from their 
many degrees of freedom and chaotic interactions, making them 
less amenable to rigorous algorithmic analysis.

Here, we take a two-pronged approach to understanding the 
fundamental principles of programming task-oriented matter that 
can be implemented across scales without requiring sophisticated 
hardware or traditional computation that leverages the physics of 
local interactions. We use a theoretical abstraction of self-organizing 
particle systems (SOPS), where we can design and rigorously ana-
lyze simple distributed algorithms to accomplish specific goals that 
are flexible and robust to errors. We then build a new system of 
deliberately rudimentary active “cohesive granular robots” (which, 
to honor granular physics pioneer Robert Behringer, we call “BOBbots” 
for Behaving, Organizing, Buzzing robots) to test whether the theoretical 
predictions can be realized in a real-world damped driven system. 
The lattice-based equilibrium model quantitatively captures the 
aggregation dynamics of the robots. With a provable algorithmic 
model and even simpler BOBbots capturing the algorithm’s essen-
tial rules, we next explore how contact stress sensing—a capability 
that is readily available in the robotic platform but not easily com-
putable by a strictly local, distributed algorithm—can enhance ag-
gregation performance, as suggested by insights from the theoretical 
model. This complementary approach demonstrates a fruitful integra-
tion of the fields of distributed algorithms, active matter, and granu-
lar physics that navigates a translation from theoretical abstraction 
to practice, using methodologies inherent to each field.

RESULTS
Aggregation algorithm
While many systems use interparticle attraction and sterical exclu-
sion to achieve system-wide aggregation and interparticle repulsion 
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to achieve dispersion, these methods typically use some long-range 
sensing and tend to be nonrigorous, lacking formal proofs guaran-
teeing desirable system behavior. To better understand these collec-
tive behaviors, the abstract model of SOPS allows us to define a 
formal distributed algorithm and rigorously quantify long-term 
behavior. Particles in a SOPS exist on the nodes (or vertices) of a 
lattice, with at most one particle per node, and move between nodes 
along lattice edges. Each particle is anonymous (unlabeled), inter-
acts only with particles occupying adjacent lattice nodes, and does 
not have access to any global information such as a coordinate sys-
tem or the total number of particles.

In earlier work, Cannon et al. (26) analyzed a distributed SOPS 
algorithm for aggregation and dispersion under the assumption 
that the particle system remained simply connected (i.e., the system 
forms a single connected cluster with no holes). This SOPS algo-
rithm defines a finite Markov chain with local moves that connect 
the state space of all simply connected configurations of particles. 
Moves are defined so that each particle, when activated by its own 
Poisson clock (i.e., after a delay chosen at random from a Poisson 
distribution with constant mean), chooses a random neighboring 
node and moves there with a probability that is a function of the 
number of neighbors in the current and new positions provided 
that the node is unoccupied and the move satisfies local conditions 
that guarantee that the configuration stays simply connected. In 
particular, for configurations  and  differing by the move of a sin-
gle particle p along a lattice edge, the transition probability is de-
fined as P(, ) ∝ min (1, n′−n), where  > 0 is a bias parameter that 
is an input to the algorithm, n is the number of neighbors of p in , 
and n′ is the number of neighbors of p in . These probabilities arise 
from the celebrated Metropolis-Hastings algorithm (27, 28) and are 
defined so that the Markov chain converges to a unique Boltzmann 
distribution  such that () is proportional to E(), where E() is 
the number of nearest neighbor pairs in  (i.e., those pairs that are 
adjacent on the lattice).

It was shown in (26) that the connected SOPS ensemble prov-
ably aggregates into a compact conformation when  > 3.42 and 
expands to a conformation with nearly maximal (linear) perimeter 
when  < 2.17 with high probability, i.e., with a probability of failure 
that is exponentially small in N, the number of particles. However, 
despite rigorously achieving both aggregation and dispersion, this 
distributed algorithm has two notable drawbacks that make it infea-
sible for direct implementation in a physical system of simple robots: 
the connectivity requirement that tethers the particles together and 
the “look ahead” requirement used to calculate transition probabil-
ities ensuring convergence to the desired Boltzmann distribution.

To address these issues, we define a modified aggregation and 
dispersion algorithm MAGG where particles can disconnect and 
moves rely only on the current state. Here, particles occupy nodes 
of a finite region of the triangular lattice, again moving stochastical-
ly and favoring configurations with more pairs of neighboring par-
ticles. Each particle has its own Poisson clock and, when activated, 
chooses a random adjacent lattice node. If that node is unoccupied, 
then the particle moves there with probability −n, where n is the 
number of current neighbors of the particle, for bias parameter  > 0. 
Thus, rather than biasing particles toward nodes with more neigh-
bors, we instead discourage moves away from nodes with more 
neighbors, with larger  corresponding to a stronger ferromagnetic 
attraction between particles (Fig. 1A). This new chain MAGG con-
verges to the same Boltzmann distribution () ∝ E() over particle 

system configurations  as the original SOPS algorithm. Details of 
the proofs can be found in Materials and Methods.

Let  be the set of configurations with N particles within our 
bounded lattice region. We will use the following definition to quan-
tify aggregation for particles that can be disconnected, capturing 
both the size and compactness of aggregates.

Definition 1. For  > 0 and  ∈ (0,1/2), a configuration  ∈  is 
(, ) aggregated if there is a subset R of lattice nodes such that 1)At 
most ​ ​√ 

_
 N ​​ edges have exactly one end point in R; 2)The density of 

particles in R is at least 1 − ; and 3)The density of particles not in R 
is at most .

Here,  is a measure of how small the boundary between R and 
its complement ​​   R ​​ must be, measuring the compactness of the ag-
gregated particles, and  is a tolerance for having unoccupied nodes 
within the cluster R or occupied nodes outside of R. We say that a 
configuration is dispersed if no such (, ) exist.

By carefully analyzing the stationary distribution of ℳAGG, which 
is the desired Boltzmann distribution, we establish conditions that 
provably yield aggregation when the particles are confined to a 
compact region of the triangular lattice (Fig. 1B). The proof uses 

Fig. 1. The self-organizing particle systems (SOPS). (A) A particle moves away from 
a node where it has n neighbors with probability −n, where  > 0. Thus, moves from 
locations with more neighbors are made with smaller probability than those with 
fewer (e.g., in the insets, p1 = −3 < p2 = −2 < p3 = 1). (B) Time evolution of a simulated 
SOPS with 1377 particles for  = 7.5 showing progressive aggregation (movie S1). The 
bulk of the largest connected component is shown in blue, and its periphery is shown 
in light blue. (C) Time evolution of NMC, the size of the largest connected component, 
showing dispersion for  = 1.5 and aggregation for  = 12. The simulations use 400 
particles. (D) Phase change in  space for the aggregation metric ​AG​G​ MC​​  = ​ N​ MC​​ /  
(​k​ 0​​ ​P​ MC​​ ​√ 

_
 N ​)​, where k0 is a scaling constant, PMC is the number of particles on the 

periphery of the largest component, and N is the total number of particles. This 
phase change is qualitatively invariant to the system’s size.



Li et al., Sci. Adv. 2021; 7 : eabe8494     23 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 12

arguments from Cannon et al. (29); see Materials and Methods for 
details.

Theorem 2. Let configuration  be drawn from the stationary 
distribution of ℳAGG on a bounded, compact region of the triangu-
lar lattice, when the number of particles N is sufficiently large. If  > 
5.66, then with high probability, there exist  > 0 and 0 <  < 1/2 
such that  will be (, ) aggregated. However, when 0.98 <  < 1.02, 
the configuration  will be dispersed with high probability.

Varying values of  in simulation gives strong indication that 
dispersion persists for larger values of , and the aggregation algo-
rithm undergoes a phase transition whereby the macroscopic behav-
ior of the system suddenly changes from dispersion to aggregation 
(Fig. 1, C and D, and movie S1), mimicking the fixed magnetization 
ferromagnetic Ising model, which motivated our Markov chain al-
gorithm. Nonetheless, our proofs demonstrate that our system has 
two distinct phases of behavior for different ranges of  for a suffi-
ciently large number of interacting particles, which is enough for 
our purposes.

BOBbots: A model active cohesive granular matter system
Next, to test whether the lattice-based equilibrium system can be 
used to control a real-world swarm in which there are no guarantees of 
detailed balance or Boltzmann distributions, we introduce a collec-
tive of active cohesive granular robots that we name BOBbots (Fig. 2, 
A to C, and fig. S1)—Behaving, Organizing, Buzzing robots—whose 
design physically embodies the aggregation algorithm. Driven gran-
ular media provide a useful soft matter system to integrate features 
of the physical world into the toolkit for programming collectives. 
This builds upon three decades of work understanding how forced 
collections of simple particles interacting locally can lead to re-
markably complex and diverse phenomena, not only mimicking 
solids, fluids, and gasses (30–32)—e.g., in pattern formation (33, 34), 
supercooled and glassy phenomena (35, 36), and shock waves 
(37)—but also displaying phenomena characteristic of soft matter 
systems such as stress chains (38) and jamming transitions (39, 40). 
While cohesive granular materials are typically generated in situa-
tions where particles are small (powders, with interactions domi-
nated by electrostatic or even van der Waals interactions) or wet 
(with interactions dominated by formation of liquid bridges be-
tween particles) (41, 42), we generate our cohesivity using magnets.

The movement and interactions between BOBbots were de-
signed to capture the salient features of the abstract stochastic algo-
rithm while replacing all sensing, communication, and probabilistic 
computation with physical morphology and interactions. Each 
BOBbot has a cylindrical chassis with a base of elastic “brushes” that 
are physically coupled to an off-center eccentric rotating mass vi-
bration motor (ERM). The vibrations caused by the rotation of the 
ERM are converted into locomotion by the brushes (Fig. 2C). Be-
cause of asymmetry in our construction of this propulsion mecha-
nism, the BOBbots traverse predominantly circular trajectories (43) 
that are randomized through their initial conditions but, unlike the 
SOPS particles, are inherently deterministic with some noise and oc-
cur at a constant speed per robot distributed as v0 = 4.8 ± 2.0 cm/s. 
See Materials and Methods for further details.

Analogous to the modified transition probabilities in the aggre-
gation algorithm that discourage particles from moving away from 
positions where they have many neighbors, each BOBbot has loose 
magnets housed in shells around its periphery that always reorient 
to be attractive to nearby BOBbots (Fig. 2C). The probability that a 

BOBbot detaches from its neighbors is negatively correlated with 
the attractive force from the number of engaged magnets, approxi-
mating the movement probabilities given by the algorithm that 
scale inversely and geometrically with the number of neighbors. We 
subsequently verify this assertion experimentally (see section S5 for 
details). The strength of the magnets FM0 determines whether the 
system aggregates or disperses in the long run, analogous to  in the 
algorithm.

To allow for study of larger BOBbot ensembles and more com-
prehensive sweeps of parameter space, we also performed discrete 
element method (DEM) simulations of the BOBbots (see Fig.  2, 
D to F, and Materials and Methods for more details). The motion of 
an individual BOBbot is modeled as a set of overdamped Langevin-
type equations governing both its translation and rotation subject 
to its diffusion, drift (44), magnetic attraction, and sterical exclu-
sion with other BOBbots. The translational drift corresponds to the 
speed from the equilibrium of the drive and drag forces, while 
the rotational drift corresponds to the circular rotation. Similar 

E

F

A B

D

C

Fig. 2. BOBbots and their collective motion. (A) Schematic of experimental set-
up. BOBbots are placed in a level arena with airflow gently repelling them from the 
boundaries. (B) A close-up of the experimental platform. (C) Mechanics of the BOBbots. 
Loose magnetic beads housed in the BOBbots’ peripheries can reorient so that 
BOBbots always attract each other. The vibration of the ERM motor and the 
asymmetry of bristles lead to the directed motion. The light sensor activates the 
motion. (D) DEM simulation setup. (E) BOBbot-boundary interactions: airflow re-
pulsion fA, BOBbot-boundary friction fBW, and normal force FBW, n. (F) Inter-BOBbot 
interactions: attraction between magnetic beads FM, inter-BOBbot friction fBB, and 
sterical exclusion FBB, n. Photo credit: Bahnisikha Dutta and Ram Avinery, Georgia 
Institute of Technology.
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methods have been used to understand macroscale phenomena 
emerging from collectives of microscopic elements (11) and to 
model particle motion in active matter (45).

Mitigating the effects of the arena’s fixed boundaries in both ex-
periments and simulations presented a design challenge. BOBbots 
can persist along the boundary or in corners, affecting system dy-
namics by, for example, enabling aggregates to form where they 
would not have otherwise or hindering multiple aggregates from 
integrating. To address these issues, uniform airflow was used to 
gently repel BOBbots away from the boundary, and similar effects 
were implemented in simulation. More details about the exper-
imental apparatus and protocol can be found in Materials and 
Methods.

Clustering dynamics explained by algorithm analysis
Since the critical elements of the SOPS algorithm can be physically 
embodied by robots as simple as our BOBbots, to test whether the 
SOPS model could quantitatively capture collective dynamics, we 
next investigated the degree to which collectives of BOBbots aggre-
gate as a function of their peripheral magnet strength FM0 in both 
robotic experiments and DEM simulations. (For convenience, we 
use gram-force (gf) as the unit for the magnetic force where 1 gf = 
1 gram × 9.81 m/s2 when using the unit of gram.) The experimental 
protocol begins with placing magnets of a particular strength FM0 
into the BOBbots’ peripheral slots. The BOBbots are positioned and 
oriented randomly in a rectangular arena and are then actuated uni-
formly for a fixed time during which the BOBbots’ positions and the 
size of the largest connected component are tracked (Fig. 3, A to C). 
These trials are conducted for several FM0 values with repetition. 
We followed the same protocol in simulations.

In experiment and DEM simulation, we observe an abrupt, rapid 
rise and then saturation in the size NMC of the largest connected com-
ponent as the magnetic attraction FM0 increases (Fig. 3D). These 
curves resemble those in Fig. 1D, with the magnetization FM0 play-
ing a role analogous to the bias parameter . Given this correspon-
dence, we explored whether the equilibrium SOPS model could be 
used to make quantifiable predictions in the robot experiments. 
First, we designed a test to examine how force and  scale. Recall 
that in the SOPS algorithm, the force acting on each particle is pro-
portional to n, where n is the particle’s current number of neigh-
bors. In the experiments, BOBbots cannot count their neighbors, 
but the magnets are expected to provide a similar force that also 
increases geometrically when more magnets are engaged.

To estimate the relationship between force and , we investigate 
the rate at which a BOBbot loses or gains neighbors over a fixed 
amount of time. Viewing a BOBbot’s completion of half its circular 
motion as analogous to a particle moving to a new lattice node in 
the SOPS algorithm and using this time interval to evaluate the 
transition, simulation data show that a BOBbot’s transition proba-
bility from having a higher number of neighbors n to a lower num-
ber n′ closely follows the algorithm’s P(, ) ∝ min  (1, n′−n) 
transition probabilities (Fig. 4A and fig. S10). Further, we evaluated 
the BOBbots’ effective bias parameter eff as a function of FM0 and 
found an exponential relation eff = exp (FM0), where  is a con-
stant representing inverse temperature (Fig.  4B). The BOBbots’ 
transition probabilities can then be approximated as P(, ) = 
exp(− (ϵn − ϵn′)), where  is the inverse temperature of the system 
and ϵn = n · FM0 can be interpreted as the energy contributed by a 
BOBbot’s n neighbors.

With the relation between FM0 and eff established, we next com-
pare the aggregation behaviors exhibited by the SOPS algorithm 
and the BOBbot ensembles. Figure 4C shows the fraction of particles/
BOBbots in the largest component NMC/N observed in both the 
SOPS algorithm and BOBbot simulations after converting with re-
spect to eff; the algorithm does capture the maximum cluster frac-
tion observed in the simulations. Notably, the aggregated and 
dispersed regimes in  space established in Theorem 2 provide a 
rigorous understanding of these BOBbot collective behaviors. For 
instance, the proven dispersed regime 0.98 <  < 1.02 gives a clear 
explanation for why agents will not aggregate even in the presence 

A

D

C

B

Fig. 3. Evolution of BOBbot clusters. (A) Time evolution snapshots of both exper-
iment (movie S3) and (B) simulation (movie S4) for a system of 30 BOBbots with 
different magnet strengths: FM0 = 5 gf (left) where we observe dispersion, and 
FM0 = 19 gf (right) where we observe aggregation. Experimental images have been 
processed with a low-pass filter for better visual clarity. (C) Time evolutions of the 
size of the largest component NMC in experiment and simulation for a system of 30 
BOBbots with FM0 = 5 gf (magenta) and FM0 = 19 gf (blue). (D) Scaling of cluster size 
versus magnetic strength for a system of 30 BOBbots showing an increase in NMC as 
the magnet strength FM0 increases. The yellow plot line shows the mean and SD of 
NMC in the 150 simulation runs for each magnetic strength FM0 between 1 and 35 gf, 
with a step size of 1 gf. Experimental data are shown in red, with error bars showing 
the SD of the largest cluster size NMC and the uncertainty of FM0 due to empirical 
measurement.
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of mutual attraction. Further, it also helps establish the magnitude 
of attraction needed to saturate the aggregation.

We additionally test the SOPS prediction that the maximum 
cluster should not only be large but also compact, occupying a 
densely packed region. The results from Cannon et al. (29) that we 
apply here for aggregation suggest the following relationship be-
tween the size of the largest component NMC and its perimeter PMC. In 
dispersed configurations, PMC should scale linearly with NMC, mean-
ing that most BOBbots lie on the periphery of their components. In 
aggregated configurations, however, PMC should scale as ​​N​MC​ 1/2 ​​, ap-
proximating the minimal perimeter for the same number of BOBbots 
by at most a constant factor. We test these scaling relationships in 
simulations with 400 BOBbots (Fig. 5A) and find that the theory’s 
predictions hold in the dispersed regime; however, the 0.66 ± 0.07 
sublinear scaling power for the aggregated case is slightly higher 
than the theory’s prediction of 0.5. This discrepancy may, in part, be 
due to boundary and finite-size effects—in fact, DEM simulations 
with periodic boundaries show a scaling power of 0.59 ± 0.18 that is 
closer to the SOPS theory (fig. S17)—but is also affected by nonre-
versibility inherent in the BOBbots’ circular trajectories. To make 
quantitative comparison that captures when components are both 
large and compact, we track ​AG​G​ MC​​  = ​ N​ MC​​ / (​k​ 0​​ ​P​ MC​​ ​√ 

_
 N ​)​, where 

k0 is a scaling constant defined such that AGGMC = 1 when the 
system is optimally aggregated, achieving the minimum possible 

perimeter. Physically, AGGMC is reminiscent of the surface tension 
for which energy minimization leads to a smaller interface (in our 
setting, smaller perimeter PMC), yielding an AGGMC closer to 1. We 
obtain agreement between the SOPS and DEM simulations with re-
spect to this metric as well (Fig. 4D), further validating the theory’s 
prediction, although the DEM simulations yield slightly smaller 
AGGMC than the SOPS algorithm for large .

We noticed that the size of the largest component NMC grows 
roughly proportional to t1/2 over time (Fig. 3C). Since the perimeter of 
the largest cluster PMC scales proportional to ​​N​MC​ 0.66​  ≈ ​ N​MC​ 2/3 ​​ (Fig. 5A), 
this implies that the length scale grows like t1/3. This is reminiscent 
of coarsening in a broad class of systems described by the Cahn-
Hilliard equation ∂u/∂t = ∇2(′(u) − ∇2u), where order parameter u 
takes continuous values in (−1,1), where −1 and 1 are analogous to 
empty and occupied nodes in the SOPS lattice, respectively. To 
bridge the SOPS algorithm with the Cahn-Hilliard equation, we 
first observe that the SOPS algorithm with bias parameter  can be 
exactly mapped to an Ising model with fixed magnetization (46, 47) 
with coupling strength ​J = ​  1 _ 2​ log ​, where  is the inverse tempera-
ture (see section S7 for details). As shown by Penrose (48), the fixed 
magnetization Ising model with coupling strength J can be mapped 
to the surface tension  of the Cahn-Hilliard equation as  = J. Thus, 
the SOPS and BOBbot ensemble behaviors map to the Cahn-Hilliard 
equation with ​  = ​ 1 _ 2​ log  ∝ ​ F​ M0​​​. This suggests that, in the limit, the 
SOPS and BOBbot aggregation behavior should display a second-
order phase transition at a critical c corresponding to the critical 
surface tension  in the Cahn-Hilliard equation. The corresponding 
critical value c = e2/7 ≈ 1.33 on the hexagonal lattice lies within the 

C

D

A B

Fig. 4. Algorithmic interpretation of BOBbot clustering. (A) Diagram showing 
how the effective bias parameter eff is evaluated from the DEM simulation. 
(B) Dependence of eff on the magnetic attraction force FM0. (C) Maximum cluster 
fraction NMC/N and (D) aggregation metric AGGMC for different values of  in both 
the SOPS algorithm (blue) and physical simulations (red). The green and blue shaded 
regions show the dispersed and aggregated regimes proved from theory, respectively.

A

B

Fig. 5. Perimeter scaling of BOBbot clusters. (A) Log-log plot showing the scal-
ing relationship between the largest component’s size NMC and perimeter PMC in 
number of BOBbots for simulated systems of 400 BOBbots with FM0 = 5 gf (magen-
ta) and 19 gf (cyan) for fixed boundary conditions. Each data point is the average of 
20 simulations. While the SOPS predicts a scaling power of 0.5 for the aggregated 
case (cyan), the data show a slightly larger, but still sublinear, power of 0.66 ± 0.07. 
(B) Final snapshot of the collective motion of 400 BOBbots with FM0 = 5 gf (left) and 
19 gf (right). BOBbots shown in black belong to the largest connected component; 
those outlined in red are on its periphery.
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c ∈ (1.02,5.66) range proven by the SOPS theory (see section S8 for 
details). Thus, we obtain agreement between the SOPS theory for a 
finite lattice system and the Cahn-Hilliard equation for an active 
matter system at the continuum limit. This mapping gives further 
confirmation of the universality of our results and provides another 
perspective for “programming” active collectives.

Enhancing clustering via local stress sensing
We have demonstrated that the BOBbot ensembles mimic a lattice 
model that can provably aggregate for large enough , correspond-
ing physically to highly attractive interaction that favors large com-
ponents with small perimeter. We now ask whether we can achieve 
rudimentary collective intelligence determining, for example, how 
robots could tune their responses to enhance or dampen aggrega-
tion, thereby achieving a more tightly clustered or dispersed state. 
In particular, we explore whether such tuning can help counteract 
some ways the system deviates from the theory, such as variations in 
the BOBbots’ speeds and magnetic attraction, improving the fidelity 
to the original algorithm. While the BOBbots remain unable to 
count neighbors or estimate the Gibbs probabilities directly as pre-
scribed by the algorithm, we take advantage of physical effects of the 
BOBbot ensembles to “program” desirable behavior without using 
any traditional computation.

The first effect relies on observations that for a fixed magnet 
strength, the size of the largest component NMC decreases with in-
creasing BOBbot speed v0 (fig. S9); a full investigation of the behav-
ior of BOBbot collectives at varying uniform speeds will be the 
subject of a separate study. We further observe that NMC scales linear-
ly with z, the average number of neighbors per BOBbot at equilibri-
um (Fig. 6A, inset). Thus, BOBbot speed v0 is inversely correlated 
with the average number of neighbors per BOBbot z. This arises 
from v0 being a proxy for −1 in the effective attraction eff. Conse-
quently, we can mimic enhanced aggregation via increased magnet 
strength by reducing a BOBbot’s speed as a function of its number 
of neighbors.

Without adapting a BOBbot’s speed based on its number of neigh-
bors, a BOBbot collective actuated uniformly at a speed v converges to 
an average of zstd(v) neighbors per BOBbot at equilibrium (Fig. 6A, 
red); any point in speed-neighbor space deviating from zstd(v) is tran-
sient. To enhance aggregation, we engineer reduced speeds veng(z) that 
a BOBbot with z neighbors should adapt to (Fig.  6A, blue). These 
slowed speeds allow the collective to reconverge to a new steady state 
with a larger number of average neighbors per BOBbot (Fig. 6A, ar-
rows). This feedback between the engineered speeds veng and the 
steady-state average number of neighbors zstd iterates until reaching 
the fixed point in speed-neighbor space where the steady-state and 
engineered behaviors meet as z = zstd(veng(z)).

While adapting speeds based on numbers of neighbors would be 
relatively straightforward to implement in more complex robots ca-
pable of counting neighbors [e.g., optically as in (15, 16, 49, 50)], 
implementing such a scheme in the deliberately simple BOBbots is 
challenging given their lack of such sensing. Here, we use a second 
physical effect: Inspired by the correlation of particle density and 
stress on individual particles in granular systems (51), we propose 
that monitoring local contact stress can function as a proxy for count-
ing numbers of neighbors. An immediate benefit of such a scheme is 
that it can be implemented on the existing robots via custom, low-
cost, analog surface stress sensors (see Fig.  6B and Materials and 
Methods for details). The implemented stress sensors function such 

that for sufficiently large stress (e.g., when in a cluster), motor speed 
is decreased by 70% (Fig. 6C).

We implemented this “physical algorithm” on BOBbot ensem-
bles with weakly attractive magnets (movie S6). In experiments with 
ensembles of 10 BOBbots in a circular arena, adapting BOBbot 
speeds in response to stress sensing increases the average number 
of neighbors per BOBbot (Fig. 7A). Further, there is a quantitative 
match in the final average number of neighbors per BOBbot between 
the experiments and the fixed points predicted in Fig. 6A, validating 
our control strategy for enhancing aggregation. Simulations using 
the same arena and stress-mediated response reproduce the experi-
mental results (Fig. 7A, inset). In simulations of 400 BOBbots with 
FM0 = 7 gf, we observe that BOBbots with more neighbors experience 
higher stress and thus have the slower speeds (Fig. 7B). This stress-
mediated decrease in speed enables large aggregates to form that 
would not have existed otherwise in the weakly attractive regime. The 
use of stress sensing opens an interesting avenue for collectives of 
rudimentary robots to incorporate higher-order information with-
out complex vision systems; further, contact stress provides insights 
(e.g., closeness to a jamming transition) that could be valuable in 
densely packed clusters (52).

A

CB

Fig. 6. Design and implementation of stress sensing for enhanced aggrega-
tion. (A) Effect of the engineered, adaptive speeds (blue) on the steady-state aver-
age number of neighbors per BOBbot (red) for FM0 = 3 gf. Without adapting speeds, 
BOBbots actuated at a given speed vi would obtain an average of zi neighbors per 
BOBbot at equilibrium (initial point i). With the adaptive speeds, an average of zi 
neighbors per BOBbot causes the average speed to slow (i → 1), which, in turn, 
enables convergence to the steady-state response with more neighbors per 
BOBbot (1 → 2). This feedback iterates until the steady-state and engineered re-
sponses coincide at final point f = (vf, zf), where vf < vi and zf > zi. Inset: The mapping 
between the maximum cluster size NMC and the average number of neighbors per 
BOBbot z indicates that the stress-sensing control strategy will increase compo-
nent sizes. (B) BOBbot equipped with a stress sensor and schematic top-view 
sketch of the triggered and not triggered states. (C) BOBbot’s response to stress. 
Top: Speed of a BOBbot when its sensor is and is not triggered. Bottom: Rate of 
sensor triggering as a function of the stress applied. Photo credit: Ram Avinery, 
Georgia Institute of Technology.
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Object transport in the aggregated phase
Encouraged by the close connections between the physical system 
and the underlying theoretical model along with the successful con-
trol scheme for enhanced aggregation using stress sensing, we sought 
to test whether aggregated BOBbots could collectively accomplish a 
task. In particular, could an aggregated BOBbot collectively “recog-
nize” the presence of a nonrobot impurity in its environment and 
cooperatively expel it from the system? Typically, such collective 
transport tasks—e.g., the cooperative transport of food by ants 
(53, 54)—either manifest from an order-disorder transition or rely 
heavily on conformism between agents for concerted effort and 
alignment of forces. With our BOBbot collectives, we instead aim to 
accomplish transport via mechanics and physical interactions emer-
gently controlling global behavior without complex control, com-
munication, or computation.

By maintaining a high magnetic attraction FM0, we remain in the 
aggregated regime where most BOBbots connect physically and can 
cumulatively push against untethered impurities (e.g., a box or 
disk) introduced in the system (Fig. 8A and movie S7). The BOBbot 
collective’s constant stochastic reconfiguration grants it the ability 
to envelop, grasp, and dislodge impurities, as their individual forces 
additively overcome the impurities’ friction, leading to large dis-
placement in the aggregated regime (Fig. 8B, right) with a median 
displacement of 7.9 cm over 12 min. On the contrary, we find that 
systems with weak magnetic attraction (i.e., those in the dispersed 
regime) can typically only achieve small impurity displacement 
(Fig. 8B, left) with a median displacement of 0.9 cm over 12 min 
(see fig. S11 for distributions). We observe infrequent anomalies in 
which dispersed collectives achieve larger displacement than aggre-
gated ones, but these outliers arise from idiosyncrasies of our 

rudimentary robots (e.g., an aggregated cluster of BOBbots may 
continuously rotate in place without coming in contact with an im-
purity due to the BOBbots’ individual orientations in the aggregate; 
see movie S7).

Characterizing the impurity’s transport dynamics as mean squared 
displacement over time <r2() > = v reveals further disparities be-
tween the aggregated and dispersed BOBbot collectives (Fig. 9A). 
On a log-log plot, the intercept indicates log (v), where v is the char-
acteristic speed of the impurity’s transport; we observe that, in all 
but one fringe case, the strongly attractive collectives achieve trans-
port that is orders of magnitude faster than those of the weakly at-
tractive ones (Fig.  9B). The slope of each trajectory indicates the 
exponent  that characterizes transport as subdiffusive ( < 1), dif-
fusive ( = 1), or superdiffusive ( > 1). While all the strongly at-
tractive collectives immediately achieve nearly ballistic transport 
(with  = 1.85 ± 0.11 for  < 20 s), indicating rapid onset of cluster 
formation and pushing, the weakly attractive collectives initially ex-
hibit mostly subdiffusive transport (with  = 0.89 ± 0.56 for  < 20 s) 
caused by intermittent collisions from the dispersed BOBbots (Fig. 9C). 
When the slight heterogeneous distribution of the dispersed BOBbots 
remains unchanged for a sufficiently long time, the accumulation of 
displacement in a persistent direction can cause a small drift, lead-
ing to ballistic transport at a longer time scale. These results are in 
accord with the predictions of a simple model combining subdiffusive 
motion with small drift (fig. S12). Nonetheless, the transport speeds 
achieved by the dispersed collectives are two orders of magnitude 
smaller than those of the strongly attractive ones.

Simulations of impurity transport (see section S6 for details) re-
produce the experimental results (Fig. 9B, inset, and movie S7), 

A

B

Fig. 7. Adapting speed via stress sensing enhances aggregation. (A) Distribu-
tion of a BOBbot’s number of contacts over six 10-min experiments using FM0 = 3 gf. 
Each sample is an average of number of contacts over 1 s. Inset: Simulation results 
using the same conditions as the experiment. (B) A simulation demonstrating en-
hanced aggregation in an ensemble of 400 BOBbots using a weak magnet strength 
of FM0 = 7 gf. Each BOBbot’s speed decreases from 6 to 1.2 cm/s, as its stress 
s0 = Σjϵneighbors sj/FM0 ≈ z increases from 0 to 6, where z is its current number of 
neighbors. BOBbots in an aggregate’s interior experience the most stress (dark 
gray) and thus have the slowest speeds, enabling larger aggregates to form. With-
out adapting speed in response to stress, the cluster sizes retain the same magnitude 
as in the 0-min snapshot (left).

B

A

Fig. 8. Object transport using aggregation. (A) Schematic of the experimental 
setup. (B) Time evolution snapshots of box transport by a system of 30 BOBbots 
with magnet strength FM0 = 5 and 19 gf (movie S7). The box has a mass of 60 g. The 
final panel shows the object’s complete trajectory, where D denotes the Euclidean 
distance of the final displacement. Photo credit: Ram Avinery and Bahnisikha Dutta, 
Georgia Institute of Technology.
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including the rare anomalies. Seven of the 100 simulations of weakly 
attractive collectives succeeded in transporting the impurity to the 
arena boundary at slow speeds, while 76 of the 100 simulations of 
strongly attractive collectives did so ballistically. The remaining 24 simu-
lations of attractive collectives that did not achieve ballistic transport 
consistently formed an aggregate that never came into contact with 
the impurity. We found that disaggregating established aggregates 
by introducing time periods with no attraction enabled them to dis-
solve and reform for another attempt at transport. Using different 
disaggregating sequences, the attractive collectives achieved ballis-
tic transport in 15 to 20% more simulations than without disaggre-
gating (fig. S13). Physically and interestingly, in the Cahn-Hilliard 
picture, impurity transport can be interpreted as the expulsion of an 
obstacle in a continuum mixture with sufficiently high surface ten-
sion to yield phase separation. If the obstacle occupies a position 
that is later occupied by the solid phase, then the obstacle is expelled 
because of sterical exclusion; when its position is unvisited by the 
solid phase during the process of coarsening, however, it remains 
stagnant, similar to the anomalies for attractive collectives. In this 
interpretation, disaggregating effectively repeats the coarsening pro-
cess to that the probability any given position is unvisited by the 
solid phase is diminished.

DISCUSSION
In this paper, we use mathematical ideas from distributed comput-
ing and statistical physics to create task-oriented cohesive granular 
media composed of simple interacting robots called BOBbots. As 
predicted by the theory, the BOBbots aggregate compactly with 
stronger magnets (corresponding to large bias parameter ) and 
disperse with weaker magnets (or small ). Simulations capturing 
the physics governing the BOBbots’ motions and interactions fur-
ther confirm the predicted phase change with larger numbers of 
BOBbots. The collective transport task then demonstrates the utility 
of the aggregation algorithm.

There are several noteworthy aspects of these findings. First, 
the theoretical framework of the underlying SOPS model can be 
generalized to allow many types of relaxations to its assumptions, 

provided that its dynamics remain reversible and model a system at 
thermal equilibrium. For example, noting that the probability that a 
robot with n neighbors detaches may not scale precisely as −n as 
suggested by the Boltzmann weights, we can generalize the SOPS 
model to be more sensitive to small variations in these weights: The 
proofs establishing the two distinct phases can be shown to extend 
to this setting, provided the probabilities pn of detaching from n 
neighbors satisfy c1

−n ≤ pn ≤ c2
−n, for constants c1, c2 > 0.

The robustness of the local, stochastic algorithms makes the 
macroscale behavior of the collective resistant to many types of id-
iosyncrasies inherent in the BOBbots, including bias in the direc-
tions of their movements, the continuous nature of their trajectories, 
and nonuniformity in their speeds and magnet strengths. Moreover, 
our algorithms are inherently self-stabilizing due to their memory-
less, stateless nature, always converging to a desired system config-
uration overcoming faults and other perturbations in the system 
without the need for external intervention. In our context, the algo-
rithm will naturally continue to aggregate, even as some robots may 
fail or the environment is perturbed.

We find agreement not only between the BOBbot ensembles and 
the discrete SOPS model but also with continuum models. The SOPS 
algorithm for aggregation and dispersion was initially defined as a 
distributed, stochastic implementation of a fixed magnetization Ising 
model. In addition to showing that our experimental system follows 
guarantees established by the analysis of a discrete model, we also 
observe that the growth of its largest component matches the power 
law derived for the Cahn-Hilliard equation, a continuous analog of 
the Ising model (48). This mapping provides an intuitive understand-
ing of how the SOPS bias parameter , the physical inter-BOBbot 
attraction FM0, and the surface tension  in the Cahn-Hilliard equa-
tion correspond; thus, as  controls the phase change in the Cahn-
Hilliard equation, so do  and FM0 in their respective settings. This 
observation buttresses our confidence that the SOPS model pro-
vides a useful algorithmic framework capable of producing valid 
statistical guarantees for ensembles of interacting robots in contin-
uous space.

We find that the nonequilibrium dynamics of the BOBbots 
are largely captured by the theoretical models that we analyze at 
thermal equilibrium, which is in agreement with the findings of 
Stenhammar et al. (55). For example, in addition to visually observ-
ing the phase change as the magnetic strengths increase, we are able 
to test precise predictions about the size and perimeter of the largest 
connected components based on the formal definitions of aggrega-
tion and dispersion from the SOPS model. We additionally use sim-
ulations to study the transition probability of a BOBbot from having 
n neighbors to having n′ neighbors to see whether the magnetic in-
teractions conform to the theory, and we see a geometric relation 
decrease in the probability of moving as we increase the number of 
neighbors, as predicted. The resultant correspondence between the 
magnetic attraction and effective bias in the algorithm confirms a 
quantitative connection between the physical world and the ab-
stract algorithm.

In summary, the framework presented here using provable dis-
tributed, stochastic algorithms to inspire the design of robust, sim-
ple systems of robots with limited computational capabilities seems 
quite general. It also allows one to leverage the extensive amount of 
work on distributed and stochastic algorithms and equilibrium 
models and proofs in guiding the tasks of inherently out-of-
equilibrium robot swarms. Preliminary results show that we likely 

A B

C

Fig. 9. Characterizing the transport. (A) Mean squared displacement of the box 
over time in log-log scale for collectives with FM0 = 5 gf (magenta) and 19 gf (blue). 
(B) Distribution of the average speed, calculated as the final displacement D (as 
shown in Fig. 7B) divided by total time. Inset: Simulation results for the overall 
transport speed. Inset: Simulation results for the overall transport speed. The two 
peaks for FM0 = 19 gf correspond to pushing to the edges and corners. (C) Distribu-
tions of the mean squared displacement exponent  at short time scale  < 20 s.
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can achieve other basic tasks such as alignment, separation (or specia-
tion), and flocking through a similar principled approach. We note 
that exploiting physical embodiment with minimal computation 
seems a critical step in scaling collective behavior to encompass 
many cutting-edge settings, including microsized devices that can 
be used in medical applications and cheap, scalable devices for space 
and terrestrial exploration. In addition, we plan to further study the 
important interplay between equilibrium and nonequilibrium dy-
namics to better solidify these connections and to understand which 
relaxations remain in the same universality classes.

MATERIALS AND METHODS
Details of the SOPS algorithm and proofs
The SOPS algorithm ℳAGG for aggregation and dispersion is given 
in Algorithm 1. The algorithm is presented as a Markov chain but 
could easily be modified to function as a distributed algorithm exe-
cuted by each particle independently and concurrently, as shown 
in (26, 29).

Recall that Theorem 2 analyzes the stationary distribution  of 
the Markov chain ℳAGG for aggregation and dispersion. In partic-
ular, Theorem 2 was shown in (29) to hold for () ∝ −b() ∝ E(), 
where b() is the number of “boundary edges” of the lattice that 
have exactly one end point occupied by a particle. So, it remains to 
show that ℳAGG converges to this stationary distribution .

Lemma 3. The unique stationary distribution of ℳAGG is () = 
−b()/Z, where Z = ∑−b() is a normalizing constant.

Proof. Let  and  be any two SOPS configurations with  ≠  
such that Pr (, ) > 0, implying that  can be reached from  by a 
single move of some particle P. Suppose P has n neighbors in  and 
has n′ in . We must show the detailed balance condition holds with 
respect to the transition probabilities

	​ Pr (,  ) ( ) = Pr (,  ) ()​	

The algorithms in (26, 29) were designed using the Metropolis-
Hastings algorithm (28), which specifies transition probabilities 
Pr (, ) = min {()/(),1} to capture the ratio between stationary 
weights of the current and proposed configurations. So, we have that 
()/() = n′−n. It is then easy to see that this ratio is unchanged by 
the modified transition probabilities where Pr (, ) = −n and Pr (, 
) = −n′, and thus, detailed balance is satisfied

	​​  Pr (, ) ─ Pr (, ) ​  = ​  ​​​ −n​ ─ 
​​​ −​n ′ ​​

 ​  = ​ ​​ ​n ′ ​−n​  = ​  () ─ 
() ​​	

Therefore, since  satisfies detailed balance and ℳAGG is an er-
godic finite Markov chain, we conclude that  is the unique station-
ary distribution of ℳAGG.

We conclude by outlining the proof of Theorem 2 that shows 
that ℳAGG achieves aggregation when  is large enough and disper-
sion when  is close to one. Our proof is a series of information-
theoretic arguments about the stationary distribution . We use ideas 
similar to Peierls arguments, which are often used in statistical phys-
ics to study phase changes in behavior space for infinite systems 
(56). In (29), it was shown that, for finite systems, particles of two 
different colors could either separate into monochromatic clusters 
or integrate, indifferent to color. This separation algorithm can be 
applied to the setting where a bounded region of the lattice is com-
pletely filled with particles that move by “swapping” places with their 
neighbors. By viewing particles of one color as “empty space” and 
particles of the other color as our particles of interest, the swap moves 
in the separation algorithm correspond to particle moves within a 
bounded area. These are precisely the moves used in our aggregation 
algorithm, where separation corresponds to aggregation and integra-
tion corresponds to dispersion. Thus, it is straightforward to leverage 
the arguments for separation and integration in (29) to show aggre-
gation and dispersion in a bounded region.

For large enough bias , we prove that aggregation occurs with 
high probability as follows. Using techniques introduced in (57), we 
define a map from any configuration without an aggregate to a con-
figuration with an aggregate by (i) choosing some scattered parti-
cles in a systematic way and (ii) rearranging them as an aggregate in 
a carefully chosen location. We then show that no aggregate config-
uration has too many preimages under this map because of the 
careful way we remove scattered particles. On the other hand, we 
show that applying this map to a dispersed configuration leads to a 
large increase in its stationary probability. Provided  is large enough 
that the probability gain outweighs the number of preimages, these 
two facts imply that aggregated configurations are much more like-
ly to occur in the stationary distribution than dispersed ones. More 
formally, the above argument shows that the stationary probability 
of being in a dispersed configuration is at most ​​(​c​ 1​​ / )​​ ​c​ 2​​​√ 

_
 N ​​​, where c1, 

c2 > 0 are constants that depend on the map described above. Thus, 
provided  is large enough, this probability of being in a dispersed 
configuration is very small, proving that aggregation is achieved 
with high probability.

When the bias  is close to one, we can prove that dispersion 
occurs with high probability. We show that there exist polynomially 
many events such that if aggregation occurs, then at least one of these 
events must also occur. These events correspond to certain regularly 
shaped subregions of the lattice being almost entirely occupied by 
particles. We then use a Chernoff-type bound to show that each of 
these events is exponentially unlikely when  is close to one. This 
implies that the stationary probability for aggregated configurations 
is at most the sum of polynomially many terms that are each expo-
nentially small, so dispersion must occur with high probability for 
this range of .

BOBbot design
The BOBbot mechanical design was developed in SolidWorks, and 
its skeleton was three-dimensionally printed in ABS (acrylonitrile 
butadiene styrene) plastic by a Stratasys uPrint SE Plus printer at 
a layer resolution of 0.254 mm and sparse density (fig. S1). Each 
BOBbot contains a lithium ion polymer battery (Adafruit Industries) 

Algorithm 1. Markov chain ℳAGG for aggregation and dispersion in SOPS

Beginning at any configuration of N particles in a bounded region, fix  > 1 
and repeat:
1: Choose a particle P uniformly at random; let 𝓁 be the lattice node it 
occupies
2: Choose an adjacent lattice node 𝓁′ and q ∈ (0,1) each uniformly at 
random.
3: if 𝓁′ is empty and q < −n, where n is the number of neighbors P has at 
𝓁 then
4: P moves to 𝓁′.

5: else P remains at 𝓁.
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that is equipped with Qi wireless charging for recharging between 
experiments (Adafruit Industries). The brushbot design is imple-
mented using an ERM (BestTong) for vibrations and two Pienoy 
dog toothbrush heads as feet, yielding noisy circular trajectories 
(movie S2). The BOBbot’s motor circuitry was assembled on a 
printed circuit board (PCB) designed in Eagle CAD (fig. S2). The 
PCBs were printed at the Georgia Tech Interdisciplinary Design 
Commons makerspace and outsourced from JLCPCB. This circuitry 
is switched and modulated by a phototransistor (Adafruit Indus-
tries), which acts as a proportional controller for motor speed. 
Grade N42 neodymium magnets (K&J Magnetics) are housed in the 
BOBbot chassis for inter-robot attraction and can be swapped for 
magnets of different strengths to modulate the BOBbots’ cohesion. A 
complete list of BOBbot components can be found in table S1.

To achieve stress sensing, each BOBbot is equipped with four 
triggers that mechanically deform and close the circuit upon colli-
sions to sense the locally exerted stress (Fig. 6B and fig. S2). These 
triggers are positioned radially in front of the permanent magnets 
in the chassis. The stress sensors function such that a robot decreases 
its motor speed for sufficiently large stress (Fig. 6C). The an-
alog circuit is designed to reduce the motor’s current in a manner 
proportional to the total number of contacts, starting with roughly 
70% reduction for a single triggered sensor (Fig. 6C, top). When multi-
ple sensors are triggered, a BOBbot’s speed is practically negligible.

Simulations
To simulate the SOPS, we execute the algorithm on a hexagonal 
lattice. The size of the lattice in Fig. 1 is chosen to be sufficiently 
large so that boundary effects are mitigated. The size of the lattice 
for Fig. 4 is chosen to match the area density and the number of 
agents in the physical evolution and algorithm. To determine the 
constant k0 in the aggregation metric ​AG ​G​ MC​​  = ​ N​ MC​​ / (​k​ 0​​ ​P​ MC​​ ​√ 

_
 N ​)​, 

we consider a hexagon with area ​​N​ MC​​  = ​ ​√ 
_

 3 ​ _ 4 ​ ​𝓁​​ 2​ · 6​ and perimeter PMC = 
6𝓁, setting k0 so that AGGMC = 1. This yields ​​k​ 0​​  =  1 / ​√ 

_
 8 ​√ 

_
 3 ​ ​​.

Beyond the information described in the main text, the DEM 
simulations faithfully represent the spherical loose magnets with 
exponentially decaying force housed in each BOBbot’s chassis slots, 
resulting in patchy magnetic interaction as the magnets move freely 
in their slots. Attraction between two simulated BOBbots is calcu-
lated on the basis of these magnetic spheres’ strength and the mini-
mum physical separation between any interacting pair, which depends 
on the relative position and orientation of the two BOBbots.

To calibrate our DEM simulations, we measure the BOBbots’ 
physical parameters and use these values for the simulated BOBbots 
(Table  1). Most parameters such as the mass and dimensions of 
each BOBbot are directly measured. For others, we use a series of 
experiments designed to isolate individual parameters. For instance, 
to avoid possible system errors such as in-plane friction when mea-
suring the magnetic force, we measured the minimum force needed 
to overwhelm the magnetic force in vertical direction (fig. S4). Oth-
er indirect measurements involve the translational and rotational 
drag (figs. S5 and S6). The key ingredient in these experiments is to 
use a known force (Earth’s gravity) to calibrate these intricate forces. 
Details can be found in section S2.

The DEM simulations use the Euler-Maruyama method with a 
time step of 1 ms to integrate the following Newton equations

	​ m​​ → r ​ ¨ ​  = ​ F​ D​​​ ̂  u ​ − ​​ → r ​  ​ + ​​ → F ​​ env​​(​ → r ​, φ ) +  ​ 
→

 ​(t)​	

	​ I​φ ¨ ​  = ​ ​ D​​ − ​​ φ​​​φ ̇ ​ + ​​ env​​(​ → r ​, φ ) +  ​​ φ​​(t)​	

As the agents are in the overdamped regime where ​∣m​​ → r ​ ¨ ​∣≪∣​​ → r ​  ̇​∣​, 
the Newton equations are equivalent to the Langevin equations for 
active Brownian particles by taking the limit m, I → 0.

	​​ ​ → r ​  ​  = ​ v​ 0​​​ ̂  u ​ + ​​ → F ​​ env​​(​ → r ​, φ ) /  + ​ 
→

 ​(t ) / ​	

​​φ ̇ ​  = ​ ​ 0​​ + ​​ env​​(​ → r ​, φ ) / ​​ φ​​ + ​​ φ​​(t ) / ​​ φ​​​

As we see from the reduced equations, in the steady state, a BOBbot 
will perform a circular motion with a saturated speed v0 = FD/ and 
a frequency of 0 = D/φ. This suggests that we can control a 
BOBbot’s speed v0 by changing its motor vibration strength, 
varying FD.

The initial placement of the BOBbots is achieved by greedy re-
jection sampling, sequentially placing BOBbots in random posi-
tions that do not overlap with the previously placed BOBbots. A cell 
list search method is used to speed up the simulation’s computation 
by subdividing the simulated arena into square cells so that, when 
integrating forces for a given BOBbot, we only consider interactions 
with BOBbots from the same or adjacent cells. The size of the cells 
is chosen such that the relative error caused by this approximation 
is within 10−3.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/17/eabe8494/DC1

Table 1. List of parameters used in physical simulations.  

Description Experiment Simulation

m BOBbot mass 0.060 kg 0.060 kg

R0 BOBbot radius 0.030 m 0.030 m

I BOBbot moment of inertia 2.7 × 10−5 kg·m2 2.7 × 10−5 kg·m2

RC
Radius of the regular circular 

motion 25 ± 5 mm 25 mm

RB0 Radius of the magnetic bead 2.3 mm 2.0 mm

RS
Thickness of the magnet 

cavity shell 2.0 mm 2.0 mm

RB
Effective radius of the 

magnetic bead 4.3 mm 4.0 mm

v0 Saturated speed 48.4 ± 20.2 
mm/s 60.0 mm/s

0
Saturated angular velocity of 

the orbit 1.94 ± 0.81 rad/s 2.4 rad/s

FD Translational drive 0.07 N 0.06 N

D Rotational drive (torque) 5 × 10−4 N·m 5.5 × 10−4 N·m

 Translational drag coefficient ∼1 kg/s 1.0 kg/s

φ Rotational drag coefficient ≤3 × 10−4 N·m·s 2.3 × 10−4 N·m·s

FM0 Magnetic force on contact 3–35 gf 3–35 gf

d0 Magnetic force decay length 1.5 mm 1.5 mm

 Bot-bot friction coefficient 0.143 0.143

W Bot-wall friction coefficient 0.143

http://advances.sciencemag.org/cgi/content/full/7/17/eabe8494/DC1
http://advances.sciencemag.org/cgi/content/full/7/17/eabe8494/DC1
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