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Highlights

e MAKR2 is co-expressed with PIN2 and regulates the pace of
root gravitropism

e MAKRZ2 controls PIN2 asymmetric accumulation at the root
level during gravitropism

e MAKR2 binds to and is a negative regulator of the TMK1
receptor kinase

e Auxin antagonizes the MAKR2 inhibition of TMK1 by
delocalizing MAKR2 in the cytosol
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In Brief

Marqués-Bueno, Armengot et al. show
that the unstructured protein MAKR2
controls the dynamics of the root
gravitropic response by acting as a
negative regulator of the TMK1 receptor
kinase. In addition, the MAKR2 inhibitory
effect on TMK1 signaling is antagonized
by auxin itself, which triggers rapid
MAKR2 membrane dissociation in a
TMK1-dependent manner.
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SUMMARY

Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root ar-
chitecture.” Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribu-
tion of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin
distribution back to the original pre-gravistimulation situation.'= Differential auxin accumulation during the
gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux car-
riers.’™ In particular, the timing of this dynamic response is regulated by PIN2,% but the underlying molec-
ular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGU-
LATOR2 (MAKRZ2) controls the pace of the root gravitropic response. We found that MAKR2 is required for
the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling medi-
ated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).27~'° Furthermore, we show that the
MAKR?2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 mem-
brane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic
response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface.

RESULTS AND DISCUSSION perception, BRI1 phosphorylates BKI1 on a conserved tyrosine

within the membrane hook,'* triggering an electrostatic switch

Receptor-like kinases (RLKs) are involved in all aspects of plant
life, including development, immunity, reproduction, and envi-
ronmental interactions.”” Yet we are still lacking mechanistic de-
tails on how those receptors are activated and regulated.
Notably, the functions and mechanisms of RLK negative regula-
tion have rarely been addressed, although it is established that
receptor inhibition plays a critical role in signaling and diseases
in metazoans. ' BRI1 KINASE INHIBITOR1 (BKI1) is a plant-spe-
cific unstructured protein that negatively regulates the activity of
the plant steroid receptor BRASSINOSTEROID INSENSITIVE1
(BRI1).">"® BKI1 acts through two evolutionarily conserved
linear motifs: a C-terminal alpha helix of 20 residues that binds
the BRI1 kinase domain and inhibits the interaction between
BRI1 and its co-receptor BRI1 ASSOCIATED KINASE1
(BAK1),"*'® and a cationic membrane hook, which targets
BKI1 to the plasma membrane.'*'” Upon brassinosteroid
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that releases BKI1 from the plasma membrane into the
cytosol'”"® and allowing the transphosphorylation of BRI1/
BAK1 kinases and subsequent activation of the pathway.'®
The presence of both the cationic membrane hook and the
BRI1-binding peptide at the C terminus defines a novel family
of proteins named MEMBRANE ASSOCIATED KINASE REGU-
LATOR (MAKR) composed of 7 members (BKI1 and MAKR1-
MAKRS).'* Like BKI1, these proteins are unstructured cytosolic
proteins that are targeted to the plasma membrane via electro-
static interactions.'” However, with the exception of MAKR1,
they are unable to bind to BRI1 kinase and thus they likely control
different signaling pathways.'*?%2" For example, the auxin-
inducible MAKR4 is involved in lateral root formation,”’ whereas
MAKRS5 is involved in protophloem differentiation.? The latter
acts as a positive downstream effector of the leucine-rich-repeat
(LRR) RLK BARELY ANY MERISTEM3 (BAM3), suggesting that
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MAKR proteins may act as positive or negative regulators of RLK
signaling.?%2

Here, we addressed the function of MAKR2, a so far uncharac-
terized member of the MAKR family. We raised MAKR2 gain- and
loss-of-function transgenic Arabidopsis lines via overexpression
and artificial microRNA (@miMAKR2), respectively. To monitor
protein accumulation and localization, we fused MAKR2 at its
C terminus with either the red fluorescent protein 2xmCHERRY
(2x35Sprom::MAKR2-2Ch, hereafter designated as MAKR2-
Ox1) or the yellow fluorescent protein mCITRINE (2x35Sprom::
MAKR2-mCit, hereafter designated as MAKR2-Ox2). Quantita-
tive RT-PCR and confocal analyses of tagged proteins
confirmed the overexpression of MAKR2 in MAKR2-Ox lines
and its downregulation in each independent artificial microRNA
line (Figures 1A, S1A, and S1C). The roots overexpressing
MAKR?2 did not grow vertically, as manifested by an increased
gravitropic index (Figure 1B). Analysis of the synthetic auxin
output reporter DR5prom::GUS showed an arrow-like pattern
of GUS accumulation at the root tip of MAKR2-Ox1 lines with
an increased signal on both flanks of the lateral root caps (Fig-
ure 1C). This DR5 arrow-like pattern at the root tip is typically
observed in pin2 loss-of-function alleles.?®** Consistent with a
potentially impaired PIN-FORMED2 (PIN2) activity, MAKR2
overexpression inhibited the establishment of the asymmetric
patterns observed after 5 h of gravistimulation in both
DR5prom::GUS and DR5prom::GFP reporter lines (Figures 1C
and S1B). Quantitative analyses of root bending following grav-
istimulation showed that MAKR2-Ox lines reoriented slowly to
the new gravity vector (Figure 1D). In contrast, three independent
amiMAKR?2 lines had the opposite phenotype, displaying fast
gravitropic bending (Figures 1D and S1C). To validate the spec-
ificity of our amiMAKR?2 lines, we created a crispr allele (makr2-
7). This allele led to a truncated protein of 37 residues,
comprising only the first 8 residues of MAKR2 and an additional
29 random residues. The amiMAKR?2 lines and the makr2-1 allele
had identical gravitropic phenotypes (Figure S1D). Both the
MAKR2-Ox and amiMAKR2.1 lines had slightly shorter primary
roots than the wild type (Figure S1E); however, they had opposite
gravitropic phenotypes (Figure 1D). Furthermore, we found no
correlation between root length (Figure S1E) and the strength
of the agravitropic phenotypes of the MAKR2-Ox1 and
MAKR2-Ox2 lines (Figure 1D). Together, these data suggest
that primary root growth is unlikely to explain the gravitropic phe-
notypes of MAKR2 gain- and loss-of-function mutants.

The pace of root gravitropism is regulated by Rho GTPase of
Plants 6 (ROP6), with the roots of ROPE6 loss-of-function mutants
responding slowly to gravistimulation and the roots of ROP6
gain-of-function mutants (e.g., ROP6-0Ox) responding faster
than wild-type roots.®°?° Because the loss- and gain-of-func-
tion mutants of both MAKR2 and ROP6 have opposite pheno-
types, we hypothesized that MAKR2 may act as a negative regu-
lator of the ROP6 signaling pathway. To test this, we first
assessed whether MAKR2 is expressed in the same tissues as
ROP6 using a transcriptional reporter line, MAKR2prom::VE-
NUSM-S, and translational fusion lines, MAKR2prom::MAKR2-
tdYFP, MAKR2prom::MAKR2-GUS, and ROP6prom::mCitrine-
ROP6. MAKR2 was expressed in the root meristem in the
epidermis and cortex cell layers, as well as in the quiescent cen-
ter and surrounding initials (Figures 2A and S2A-S2C). As
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reported with the GFP-ROP6 reporter lines,®?%?” we found
that our mCit-ROP6 reporter was expressed in the root tip
epidermis and cortex cells, albeit to a lower level than in internal
tissues (Figure 2B). Therefore, MAKR2 and ROP6 expression
partially overlap. Next, we addressed the genetic relationship
between ROP6 and MAKR2 by crossing a ROP6-Ox line with
our MAKR2-0Ox1 line, which show fast- and slow-gravitropic re-
sponses, respectively. ROP6-Ox;MAKR2-Ox1 double trans-
genics showed a wild-type-like response, suggesting that
ROP6 overexpression mitigates the strong agravitropic pheno-
type induced by MAKR2 overexpression (Figure 2C).

ROP®6 has been proposed to mediate root gravitropic bending
by regulating the trafficking of the auxin-efflux carrier PIN2.%*8:°
In particular, ROP6 mediates PIN2 accumulation in the epidermis
on the gravity-stimulated side of the root (lower side of the root,
facing the new gravity vector).” We therefore analyzed whether
MAKR2 could control PIN2 dynamics during gravitropism. First,
we raised a MAKR2prom::MAKR2-2Ch line and crossed it with a
PIN2prom::PIN2-GFP line to monitor their co-expression and
localization. We found that MAKR2 and PIN2 were co-expressed
and co-localized at the plasma membrane of root epidermis and
cortex cells (Figure S2D). Next, we crossed the MAKR2-Ox1 and
amiMAKR2.1 lines with the PIN2prom::PIN2-GFP reporter and
followed PIN2-GFP accumulation during gravitropism using a
vertical stereomicroscope setup.?® High-resolution time-lapse
analyses validated the slow- and fast-gravitropic response of
MAKR2-Ox1;PIN2prom::PIN2-GFP  and  amiMAKR2;PIN2-
prom::PIN2-GFP, respectively (Figure S2E; Videos S1 and S2).
Using time-lapse analysis, we noticed that each root had slightly
different gravitropic dynamics (Figure S2E), which made it
difficult to pool the quantification of PIN2-GFP fluorescence be-
tween replicates. We thus decided to trace PIN2-GFP fluores-
cence in individual roots shown as independent replicates in Fig-
ure 2D. Importantly, although we observed some root-to-root
variations in PIN2-GFP dynamics, the overall trend was never-
theless robust from replicate to replicate (Figure 2D). Quantita-
tive measurements of PIN2-GFP fluorescence on the upper
and lower sides of the root confirmed that PIN2-GFP is retained
on the lower side of the root longer than on the upper side (Fig-
ure 2D; Videos S1 and $2).229°? In particular, PIN2-GFP signal at
the lower part of the wild-type root initially increased before
decreasing (Figure 2D). Such signal increase was not observed
at the upper part of the root, which instead showed a steady
decrease of fluorescence (Figure 2D). The differential PIN2-
GFP accumulation between the upper and lower parts of the
root was abolished in the MAKR2-Ox1-overexpressing line (Fig-
ure 2D; Video S1). By contrast, PIN2-GFP accumulation at the
lower part of the root in the amiMAKR2 line was more pro-
nounced and lasted longer than in the wild type (Figure 2D; Video
S2). Together, these results indicate that MAKR2, like ROPS, is
required for dynamic PIN2 accumulation during root gravitrop-
ism, which could explain the relative gravitropic phenotypes of
the MAKR2-Ox and amiMAKR?2 lines.

We next investigated whether MAKR2 may also regulate the
activity of an RLK upstream of ROP6 activation. In the context
of pavement-cell-shape morphogenesis, ROP6 acts down-
stream of the LRR RLKs from the TRANSMEMBRANE KINASE
(TMK) family, which were proposed to operate as a relay for
perception of extracellular auxin.>’>' We thus wondered
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Figure 1. MAKR2 Regulates the Pace of the Root Gravitropic Response

(A) gRT-PCR analyses of MAKR2 expression in 2x35Sprom::MAKR2-2xmCherry (MAKR2-Ox1), 2x35Sprom::MAKR2-mCitrine (MAKR2-Ox2), and amiMAKR2. 1
lines relative to MAKR2 expression in wild-type seedlings (mean + SEM).

(B) Pictures showing the root phenotypes of the genotypes indicated at the bottom and related quantification of the horizontal growth index (Tukey boxplot).
Plants were grown at a 45° angle with respect to the vertical axis. Scale bars represent 5 mm.

(C) DR5prom::GUS accumulation pattern in the absence and after 5 h of gravistimulation at a 135° angle in wild-type and MAKR2-Ox1 plants and related
quantification (Tukey boxplot). The white asterisks indicate the arrow-like pattern observed in MAKR2-Ox1 lines; the white arrow indicates the asymmetric GUS
signal observed after gravistimulation in the wild type. Scale bars represent 50 um.

(D) Representative pictures of the root gravitropic curvature 48 h after reorienting seedlings at a 135° angle and related quantification of root gravitropic bending
over time (mean + SEM). Scale bars represent 2 mm. See Figure S1F for a statistical comparison.

For the horizontal gravitropic index and the kinetics of the gravitropic response, a linear model was fitted on measurements from wild-type plants and the different
mutants using Im() function from stats package available in R software (https://www.r-project.org/). This model estimates a weight for each variable (wild-type
and mutant plants) and the associated probability that such weight is different from zero based on a t test. The probability derived from the t test is the p value in
this comparison and significant differences were considered when p < 0.05. See also Figure S1.

whether TMKs may also participate in root gravitropism. TMKs  double mutant showed a reduced root gravitropic response (Fig-
form a family of redundant receptors, with single mutants having  ure S3A). Although consistent with the notion that TMK receptors
no or subtle root phenotypes,®” whereas higher-order mutants may be involved in root gravitropic bending, the tmk1;tmk4
have strong pleiotropic developmental defects.®® The tmk7;tmk4 mutant also had stunted root growth,®* making it difficult
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and expression pattern at the root tip. Left: yellow
fluorescent protein (YFP) channel; right: overlay
between YFP channel (yellow) and membranes
counterstained by FM4-64 (red).

(B) Confocal pictures of the complemented
ROP6prom::mCitrine-ROP6/rop6-2 line showing the
mCit-ROP6 localization and expression pattern at
the root tip.
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to conclude whether its gravitropic phenotype was a primary or
secondary phenotype. A transcriptional reporter line,
TMK1prom::2ChN™S, confirmed that TMK1 is expressed in all
the tissues of the root meristem, including the epidermis and cor-
tex, where MAKR2, PIN2, and ROP6 are also expressed (Fig-
ure S3B). We therefore analyzed the phenotype of TMK1 overex-
pression by generating a TMK1-2xmCherry line driven under the
control of the ubiquitous promoter of the UBIQUITIN10 gene
(UBQ10prom::TMK1-2Ch, hereafter referred to as TMK1-Ox).
Similar to the ROP6-Ox and amiMAKR2 lines, the TMK1-Ox
line displayed a fast root gravitropic response (Figure 3A).
Together, the tmk1;tmk4 loss-of-function and TMK7-Ox gain-
of-function phenotypes suggest that TMK1 may act upstream
of ROP6 signaling both for pavement cell morphogenesis in
leaves and in root gravitropism. Interestingly, TMK7-Ox;
MAKR2-0Ox2 double transgenics had a wild-type-like root gravi-
tropic response (Figure 3A). This genetic analysis shows that
overexpression of MAKR2 is able to counteract the phenotypic
effects of TMK1 overexpression, suggesting that MAKR2 may
act as a negative regulator of TMK1, upstream of ROP6
activation.

We next tested whether MAKR2 interacts with TMK1. We
found that Flag-Halo-MAKR2 directly interacted with the isolated
cytosolic domain of TMK1 in vitro (TMK1%'-HA; hemagglutinin),
whereas Flag-Halo-mCitrine did not (Figure 3B). This interaction
was specific for the cytosolic domain of TMK1, as the cytosolic

minutes after gravistimulation

cence value (time 0 min).
Scale bars represent 30 um.
See also Figures S1 and S2 and Videos S1 and S2.

domain of HAESA-LIKE1 (HSL1%¥-HA), which has a related ki-
nase domain to TMK1, did not interact with Flag-Halo-MAKR2
(Figure S3D). Furthermore, full-length TMK1 (TMK1-3HA), but
not a kinase-deleted version (TMK124K"3Se_3HA), co-immunopre-
cipitated with MAKR2-mCit when co-expressed in protoplasts
(Figure 3C). One hour of auxin treatment (1 uM indole 3-acetic
acid; IAA) did not have a strong effect on the interaction between
TMK1-3HA and MAKR2-mCit in this protoplast assay (Figure 3C).
Next, we tested whether MAKR2 interaction with TMK1 was
dependent upon its kinase activity and whether TMK1 may phos-
phorylate MAKR2. To this end, we co-expressed in bacteria HA-
MAKR2 with the isolated cytosolic domain of TMK1 in its wild-
type or kinase-dead form (6His-Flag-TMK1°¥! and 6His-Flag-
TMK1YKE18R *regpectively). We purified both TMK1 proteins
on a nickel column and identified potential interacting proteins
by mass spectrometry. We found MAKR2 to be the only protein
represented by more than one peptide to co-purify with both
active and inactive TMK1 kinase domains. In each case, we
recovered 13 unique peptides in MAKR2, representing a 42%
peptide coverage (63% coverage for both TMK1%¥' and
TMK1YK618R) (Figure 3D). These results indicate that MAKR2
directly interacts with the kinase domain of TMK1 in vitro, irre-
spective of its kinase activity. We next assessed the phosphory-
lation status of each peptide recovered during the mass
spectrometry experiments. Such analysis of the phosphosites
revealed that the MAKR2 C terminus was phosphorylated
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See also Figure S3.

on 5 serines when it was co-expressed and co-purified with
TMK19¥! (Figure 3D). By contrast, we found no phosphorylation
sites when MAKR2 was co-expressed and co-purified with
TMK1YYKE16R — Altogether, our results suggest that MAKR2
directly interacts with and is phosphorylated by TMK1 in vitro,
and interacts with full-length TMK1 in vivo.
MAKR2prom::MAKR2-tdYFP expression was too low to
follow its localization during the gravitropic response, which
provides an endogenous auxin treatment on the lower (i.e., grav-
istimulated) side of the root. As an alternative, we followed
MAKR2 localization after exogenous auxin treatments. We
found a time- and dose-dependent effect of the synthetic auxin
1-naphthaleneacetic acid (NAA), which induced the relocaliza-
tion of MAKR2prom::MAKR2-tdYFP into the cytosol as early as
5 min post treatment (Figure 4A). This rapid effect of auxin treat-
ment was also observed after 5 min of IAA application (Figure 4A).
In addition, microfluidics, coupled with time-lapse imaging of
MAKR2prom::MAKR2-tdYFP localization, confirmed that this ef-
fect was rapid (i.e., within 2 min following either NAA or IAA treat-
ment) (Figures 4B and S4A; Video S3).>°> MAKR2 released into
the cytosol was independent of protein translation, as shown
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by pretreatment with the protein synthesis inhibitor cyclohexi-
mide (CHX) (Figure S4B). Furthermore, inhibition of protein
degradation by the proteasome inhibitor MG-132, which is
required for auxin-mediated gene expression regulation by the
TIR1 family,*® had no effect on auxin-triggered MAKR2 plasma
membrane dissociation (Figure S4B). This suggested that the
MAKR2 plasma-membrane-to-cytosol localization switch was
regulated by a potential “non-transcriptional” arm of auxin
signaling at or close to the plasma membrane, rather than by a
TIR1-mediated regulation of transcription.” Accordingly, the
auxin antagonist PEO-IAA, known to inhibit TIR1-mediated nu-
clear activity but not the non-transcriptional arm of auxin
signaling,?®*" efficiently displaced MAKR2 away from the
plasma membrane (Figure S4C). By contrast, 5-F-IAA, an auxin
analog that is able to activate TIR1-mediated gene expression
but not the ROP6 pathway,?®*” had little effect on MAKR2 local-
ization (Figure S4C). Furthermore, benzoic acid (BA), an inactive
auxin analog with a pKa similar to that of NAA, and brassinolide
had no effect on MAKR2prom::MAKR2-tdYFP localization (Fig-
ure S4D). To address whether this auxin effect was dependent
upon the TMK receptors and to bypass the problem due to
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Figure 4. Auxin Triggers MAKR2 Plasma Membrane Dissociation in a TMK1-Dependent Manner to Antagonize MAKR2 Inhibitory Activity
(A) Confocal pictures of the MAKR2prom::MAKR2-tdYFP line following NAA or IAA treatment for the time and concentration indicated in each panel and related
quantification. n indicates the number of cells counted. A pairwise comparison between mock plants and plants subjected to different treatments was performed
using a t test with Welch'’s correction to account for unequal variances using R software (https://www.r-project.org/). The probability derived from the t test is the
p value in this comparison and significant differences were considered when p < 0.01.

(B) Successive confocal pictures of the MAKR2prom::MAKR2-tdYFP line before and after 1 min of benzoic acid (BA; control) or IAA treatment (Video S3). White
arrows indicate MAKR2 plasma membrane localization, whereas the yellow arrowheads show MAKR2 disappearance from the plasma membrane upon IAA but
not BA treatment.

(legend continued on next page)
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functional redundancy between the four TMK family members,
we used a dominant-negative strategy, by overexpressing a ki-
nase-dead version of full-length TMK1 (TMK1K616R)7.38
TMK1K618R overexpression severely impaired the auxin-induced
MAKR2-mCit release from the plasma membrane, whereas
overexpression of the wild-type version of TMK1 did not (Figures
4C and S5A). Note that TMK1467"-mCH-overexpressing plants
had a mosaic expression and that the inhibition of MAKR2-mCit
released from the plasma membrane into the cytosol following
auxin treatment was only observed in cells expressing
TMK1K818R_mCh (Figure S5B). Together, these results suggest
that auxin rapidly regulates MAKR2 localization, via a non-tran-
scriptional, TMK-dependent mechanism.

We next addressed the functional impact of the MAKR2 local-
ization switch on root gravitropism. To this end, we first quantified
the relative plasma membrane and cytosolic localization of
MAKR2 in the MAKR2-Ox1 and MAKR2-Ox2 lines (Figure S5C).
We found that MAKR2 in MAKR2-Ox1, which is less expressed
than in the MAKR2-Ox2 line (Figure 1A), had a more pronounced
localization in the cytosol and accumulated less at the plasma
membrane (Figure S5C). This result is consistent with a model
in which MAKR2 inhibits the activity of TMK1, which itself triggers
the relocalization of MAKR2 in the cytosol. Indeed, according to
this model, a strong MAKR2 overexpression would lead to a
strong inhibition of TMK1 activity, which would not be able to
induce the efficient release of MAKR2 into the cytosol. By
contrast, a mild overexpression of MAKR2 would lead to a milder
inhibition of TMK1, which would be able to trigger more MAKR2
release from the plasma membrane into the cytosol. To further
test this model, we engineered MAKR2 mutant versions that
are constitutively localized at the plasma membrane or in the
cytoplasm. To lock MAKR2 at the plasma membrane, we added
a C-terminal geranylgeranylation sequence (MAKR2-mCitSESE),
MAKR2-mCit®E4E was exclusively found at the plasma mem-
brane, by comparison with MAKR2-mCit, which localized both
to the plasma membrane and in the cytosol (Figure 4E). Lines
overexpressing MAKR2-mCit®E%E had a strong agravitropic
phenotype, similar to or even stronger than the MAKR2-Ox2 lines
(Figures 4F and 4G), whereas their expression levels were much
lower (Figure 4D). This result indicates that a MAKR2 protein
constitutively localized at the plasma membrane is extremely
potent to inhibit root gravitropism. We previously showed that
MAKR?2 interacts with anionic lipids in vitro and relies on plasma
membrane electrostatics for plasma membrane localization in
yeast and Arabidopsis."” To inhibit MAKR2 membrane-binding
ability, we mutated the 11 lysine and arginine residues within its
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putative membrane hook (Figure 3D) into neutral glutamines
(MAKR2''9-mCit). MAKR2"®-mCit was cytosolic (Figure 4E),
confirming that MAKR2 likely localizes to the plasma membrane
through electrostatic interactions with anionic lipids. Importantly,
unlike MAKR2-Ox2, MAKR2''%-mCit-overexpressing lines did
not have an elevated horizontal gravitropic index even when ex-
pressed at similar levels (Figures 4D-4G). Together, these results
suggest that MAKR2 inhibits gravitropism at the plasma mem-
brane, likely through its interaction with the TMK1 receptor, and
that auxin, via the activity of the TMK1 receptor itself, antagonizes
this inhibition by triggering the relocalization of MAKR2 into the
cytosol.

Altogether, our results suggest that MAKR2 acts as an up-
stream negative regulator of ROP6 during the gravitropic
response by directly interacting with the TMK1 kinase domain.
However, the exact mechanism by which TMK1/MAKR2 regu-
late ROP6 activity remains unresolved. Both TMK1 and ROP6
have been shown to be involved in fast non-transcriptional
auxin response,’ %?>%? although the exact mode of auxin
perception at or near the cell surface is still unclear.” We pro-
pose that the MAKR2-mediated negative regulation of TMK1
activity is counterbalanced by auxin itself, which triggers
MAKR2 relocalization from the plasma membrane into the
cytosol. It is possible that this relocalization is induced by
TMK1-mediated phosphorylation. However, it is unlikely that
the phosphorylation sites that we uncovered in the MAKR2
C-terminal tail are directly involved in the regulation of
MAKR2 localization, because they are far away from the
MAKR2 membrane hook and their exact function remains to
be experimentally determined.

Although BKI1 and MAKR5 appear to essentially work as in-
hibitor and activator, respectively, of the BRI1 and BAM3
signaling pathways,>?° our results suggest a parallel mode of
action of MAKR2 and BKI1 in downregulating TMK1 and BRI1
signaling at the cell surface, respectively. We propose that
MAKR2/TMK antagonist activity allows finely tuning ROP6
signaling during the gravitropic response and thereby regulates
the timing of root bending in response to gravity. Together, our
results emphasize the importance of RLK negative regulation,
which appears critical to determine the strength and dynamics
of the output signal.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

(C) Confocal pictures showing MAKR2-mCit localization (MAKR2-Ox2) in UBQ10prom::TMK1-2xmCherry (TMK1-Ox) and UBQ10prom::TMK1X6"¢R_2xmCherry
(TMK1X676R_0x, kinase dead) in the absence or presence of NAA at the indicated time and concentration.
(D) Anti-GFP western blots showing the relative accumulation of MAKR2-mCit (in the MAKR2-Ox2 line) and two independent transgenic lines overexpressing

MAKR2-mCit®EGE and MAKR2''@-mCit. CBB, Coomassie brilliant blue.

(E) Confocal pictures comparing the localization of 2x35Sprom::MAKR2-mCit (MAKR2-0Ox2), 2x35Sprom::MAKR2-mCit®c®E (MAKR2-mCit®E®E, constitutively
tethered to the plasma membrane), and 2x35Sprom::MAKR2""®-mCit (MAKR2''®-mCit, constitutively cytoplasmic).

(F and G) Pictures showing the root phenotypes of the genotypes indicated at the top (F) and related quantification of the horizontal gravitropic index (G).
Statistical comparison with the wild type (WT) is in blue and with MAKR2-Ox2 is in yellow. In (G), a linear model was fitted on measurements from wild-type plants
and the different mutants using Im() function from stats package available in R software (https://www.r-project.org/). This model estimates a weight for each
variable (wild-type and mutant plants) and the associated probability that such weight is different from zero based on a t test. The probability derived from the
t test is the p value in this comparison and significant differences were considered when p < 0.05.

Scale bars represent 20 um (A), 10 um (B, C, and E), and 5 mm (F).
See also Figures S4 and S5 and Video S3.
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Mouse monoclonal anti-HA clone 12CA5 Sigma-Aldrich Cat#11583816001; RRID: AB_514505

Mouse monoclonal anti-GFP HRP clone
GG4-2C2.12.10

Miltenyi Biotec

Cat#130-091-833; RRID: AB_247003

Rat monoclonal anti-HA High Affinity clone Sigma-Aldrich Cat#11867423001; RRID: AB_390918
3F10

Bacterial and Virus Strains

Agrobacteirum tumefaciens C58 GV3101 N/A N/A

Escherichia coli DH5alpa N/A N/A

Escherichia coli BL21 (DE3) Rosetta 2 Sigma-Aldrich Cat#69450
Novagen

Chemicals, Peptides, and Recombinant Proteins

Cycloheximide (CHX) Sigma-Aldrich Cat#C1988
MG-132 VWR Cat#474790-5
NAA Sigma-Aldrich Cat#N0640

IAA Sigma-Aldrich Cat#l2886
5-F-IAA Goldbiotech Cat#F-160-5
PEO-IAA Sigma-Aldrich Cat#CDS013406
Brassinolide Sigma-Aldrich Cat#B1439
Benzoid Acid (BA) Sigma-Aldrich Cat#242381
Experimental Models: Cell Lines

Arabidopsis suspension culture (PSB-L) N/A N/A

Experimental Models: Organisms/Strains

Arabidopsis: MAKR2-Ox1 This manuscript NASC #N2110134
(2x35Sprom::MAKR2-2xmCHERRY)

Arabidopsis: MAKR2-Ox2 17 NASC #N2110135

(2x35Sprom::MAKR2-mCITRINE)
Arabidopsis: amiMAKR2

Arabidopsis: DR5::GUS

Arabidopsis: DR5rev::GFP

Arabidopsis: DR5::GUS;MAKR2-Ox1
Arabidopsis: DR5rev::GFP;MAKR2-Ox1
Arabidopsis: makr2-1 (crispr)

Arabidopsis: MAKR2prom::MAKR2-tdYFP
Arabidopsis: MAKR2prom::MAKR2-GUS
Arabidopsis: MAKR2prom::VENUSN-S

Arabidopsis: MAKR2prom::MAKR2-
2xmCHERRY

Arabidopsis: PIN2prom::PIN2-GFP

Arabidopsis: PIN2prom::PIN2-
GFP;MAKR2-Ox1
Arabidopsis: PIN2prom::PIN2-
GFP;amiMAKR2

Arabidopsis: ROP6prom::mCITRINE-ROP6
in rop6-2

This manuscript
39

40
This manuscript
This manuscript
This manuscript
This manuscript
This manuscript
This manuscript
This manuscript

41
This manuscript
This manuscript

25
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NASC #N2110142 and #N2110143
N/A

NASC #N9361

N/A

N/A

NASC #N2110144

NASC #N2110140
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NASC #N2110141

N/A

N/A
N/A

N/A

NASC #N2109740
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Arabidopsis: MAKR2-Ox1;ROP6-0Ox This manuscript N/A

Arabidopsis: TMK1-Ox This manuscript NASC #N2110145
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Arabidopsis: MAKR2-Ox2; TMK1-Ox This manuscript N/A

Arabidopsis: tmk1-1;tmk4 98 SALK_01360 Wiscseq_DsLox377-
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Arabidopsis: TMK1prom::2xmCHERRYN-S This manuscript N/A
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Arabidopsis: MAKR2?"®-mCit

This manuscript
This manuscript
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Primer: tdYFP-B3
GGGGACAACTTTGTATAAT
AAAGTTGCTCACTTATACAGTTCGT
CCATCCCC

Primer: TMK1-B1 F GGGGACAAGTTT
GTACAAAAAAGCAGGCTTAA
CCATGAAGAAAAGAA
GAACCTTTCTTCT

Primer: TMK1-B2 R GGGGACCACTTTG
TACAAGAAAGCTGGGT
ATCGTCCATCTACT
GAAGTGAATGACT

Primer: tdYFP-B2R
GGGGACAGCTTTCTTGTA
CAAAGTGGCTATGGTAT
CCAAAGGTGAAGAAGACA

Primer: tdYFP-B3 GGGGACAACTTTGTA
TAATAAAGTTGCTCACTTATACAGTTCG
TCCATCCCC

Primer: TMK1prom-Fw GTATAGAAAAG
TTGCTGTGGAATTTTA
ATCTTAATTAAGGGAAGC

Primer: TMK1prom-Rev TTTTTTGT
ACAAACTTGCAGCTTGA
AGAAACAGAGGATTGAAGAAGAAACAG
Primer: p5'-open-Fw
CCTCTGTTTCTTCAAGCTGCAAGTTT
GTACAAAAAAGTTGAACG

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(Continued on next page)
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Primer: p5'-open-Rev
TTAAGATTAAAATTCCACAGCAACTTTT
CTATACAAAGTTGG

Primer: TMK1%P(K616R)-F
ATTGCGGTTAGGAGAATGGAGAATGGA
GTTATTGCTGG

Primer: TMK1*P(K616R)-R
CCATTCTCCATTCTCCTAACCGCAAT
CTTCGTTCCATC

Primer: TMK1-FL-B1 GGGGACAAGTTTG
TACAAAAAAGCAGGCTCAAT
GAAGAAAAGAAGAACCTTTC

Primer: TMK1-FL-B2-R GGGGACCAC
TTTGTACAAGAAAGCTG
GGTCTCGTCCATCTACTGAAGTGAAT

Primer: TMK1-4KD-B2-R GGGGACCAC
TTITGTACAAGAAAGCTGGGTCGTTGTT
AGTCACAGAACGAAG

Primer: F1 gRNA3
ATATATGGTCTCGATTGCTTTCAGTCTC
CTTAACTACGTT

Primer: FO gRNA3
TGCTTTCAGTCTCCTTAACTACGTTTTA
GAGCTAGAAATAGC

Primer: RO gRNA4
AACGCGGAGTAACGGCAAAGAGACA
ATCTCTTAGTCGACTCTAC

Primer: R2 gRNA4

ATTATTGGTCTCGAAACGCGGAGTAAC
GGCAAAGAGACAA

Primer: MAKR2 qPCR F
CAACAAGATAGTATTCAAAGTGCCA
Primer: MAKR2 qPCR R
GAGGAAGGTTCACTCACCGA
Primer: EF1 alpha gPCR F
TGAGCACGCTCTTCTTGCTTTCA
Primer: EF1 alpha gPCR R
GGTGGTGGCATCCATCTTGTTACA
Primer: GAPDH F
GAATCCGAAGGCAAACTCAA
Primer: GAPDH R
AAACTTGTCGCTCAATGCAA

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Recombinant DNA

Empty gateway destination vector:
pB7m34GW

Empty gateway destination vector:
PH7mM34GW

Empty gateway destination vector:
pLOK180_FR7m34GW

Empty gateway destination vector:
pMDC32

Empty gateway destination vector: pTNT-
HA-GW

42

42

Gift from Lothar Kalmbach, Cambridge

43

44
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Empty gateway destination vector:
pIX:HALO:ccdB-CmR

Expression plasmid: pET28-duet

Entry gateway vector
P1R

Entry gateway vector:
pDONR4-P1R

Entry gateway vector:
PENTRS5’

Entry gateway vector
PDONRP4-P1R

Entry gateway vector
pDONR221

Entry gateway vector:
pDONR221

Entry gateway vector
pDONR221

Entry gateway vector
pDONR221

Entry gateway vector
noSTOP/pDONR221

Entry gateway vector:
pDONR221

Entry gateway vector

: 2x35prom/pDONR4-

: UBQ10prom/

: MAKR2prom/

: TMK1prom/

: MAKR2gnoSTOP/

: MAKR2wSTOP/

: TMK1noSTOP/

: TMK1X61®RnoSTOP/

: MAKR2(CDS)

: MAKR2''®noSTOP/

: 2xmCHERRY-

4xMyc/pDONRP2R-P3

Entry gateway vector:
pDONRP2R-P3

Entry gateway vector
pDONRP2RP3

Entry gateway vector:
pDONRP2R-P3

Entry gateway vector
Entry gateway vector:

Entry gateway vector:
pDONR221

Entry gateway vector
pDONR221

: MCITRINE/
: tdYFP/
: mCITRINESECE/

: TMK1%Y/pDONR221
: HSL1%Y/pDONR221
: mCITRINEWSTOP/

- TMK1 Akinase/

Destination expression vector: TMK1%YY

PTNT-HA-GW

Destination expression vector: HSL1YY/

PTNT-HA-GW

Destination expression vector: mCITRINE/

pIX-HA-GW

Destination expression vector: MAKR2/pIX-

HA-GW

Expression vector: MAKR2-TMK1%¥Y/

PET28-duet

Expression vector: MAKR2-TMK1¥tKe16R,

PET28-duet

Destination vector: UBQ10prom::TMK1-

3HA/pB7m34GW
Destination vector:

UBQ10prom::TMK14kinase_giA/

pB7m34GW

45

This manuscript
46

46

This manuscript

This manuscript

17

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

14

This manuscript

17

This manuscript
47

46

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

This manuscript

ABRC #CD3-1742

N/A
NASC #N2106316

NASC #N2106315
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
NASC #N2106292
NASC #N2106288
N/A
N/A

N/A
ABRC #N1928440Ze_K
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A

(Continued on next page)
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Destination vector: 2x35Sprom::MAKR2- This manuscript N/A
2xmCHERRY/pH7m34GW

Destination vector: 2x35Sprom::MAKR2- This manuscript N/A
mCitrine/pB7m34GW

Destination vector: amiMAKR2/pMDC32 This manuscript N/A
Destination vector: amiMAKR2/pB7WG2 This manuscript N/A
Destination vector: MAKR2prom::MAKR2- This manuscript N/A
2xmCHERRY/pH7m34GW

Destination vector: MAKR2prom::MAKR2- This manuscript N/A
tdYFP/pB7m34GW

Destination vector: UBQ10prom::TMK1- This manuscript N/A
2xmCHERRY-/pH7m34GW

Destination vector: This manuscript N/A
UBQ10prom:: TMK1X675R_oxmCHERRY-/

PH7mM34GW

Destination vector: 2x35S::MAKR2- This manuscript N/A
mCit®ECE/pB7m34GW

Destination plasmid: 2x35S::MAKR2"74- This manuscript N/A
mCit/pLOK180_pFR7m34GW

Destination vector: MAKR2prom::MAKR2- This manuscript N/A
GUS

Destination vector: This manuscript N/A
MAKR2prom::VENUSN-S

Destination vector: This manuscript N/A

TMK1prom::2xmCHERRYN-S

Software and Algorithms

ImageJ NIH*® https://imagej.nih.gov/ij/
R R project https://www.r-project.org/
Excel Microsoft https://www.microsoft.com/
Other

Plant/Fungi RNA Purification Kit Sigma-Aldrich Cat#E4813

Reverse transcriptase SuperScript IV VILO Thermofisher Cat#11756050

Master Mix

Gateway BP clonase Thermofisher Cat#11789100

Gateway LRIl plus clonase Thermofisher Cat#12538120

TnT Coupled Wheat Germ Extract System Promega / Thermofisher Cat#L5030

Halo-tag magnetic beads Promega / Thermofisher Cat#7281

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yvon

Jaillais (yvon.jaillais@ens-lyon.fr).

Materials Availability

There is no restriction of the material generated in this study (plasmids and Arabidopsis transgenic seeds).

Data and Code Availability

This study did not generate any unique datasets or code.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and Growth conditions

In all the experiments, wild-type Col-0 ecotype of Arabidopsis thaliana was used as a control and all transgenic lines were produced in
Col-0 background. Plants were grown in continuous light on MS supplemented with vitamins (Duchefa) and 1% sucrose. The following
transgenic lines have been described before: 35S::GFP-ROP6 (ROP6-Ox);?” DR5prom::GUS;*® DR5rev-prom:GFP;*° PIN2::PIN2-
GFP;*" ROP6prom::mCitrine-ROP6g/rop6-2,°° tmk1-1 (SALK_016360) and tmk1tmk4 mutants (tmk4: Wiscseq_DsLox377-380D21.1).%°

Plant Transformation and Selection

Each construct was transformed into C58 GV3101 Agrobacterium tumefaciens strain and selected on YEB media (5g/L beef extract;
1g/L yeast extract; 5g/L peptone; 5g/L sucrose; 15 g/L bactoagar; pH 7.2) supplemented with antibiotics (Spectinomycin, Gentamy-
cin). After two days of growth at 28°C, bacteria were collected using a single-use cell scraper, re-suspended in about 200 mL of trans-
formation buffer (10mM MgCI2; 5% sucrose; 0.25% silweet) and plants were transformed by dipping. Plants from the Columbia-
0 (Col0) accession were used for transformation.

Primary transformants (T1) were selected in vitro on the appropriate antibiotic/herbicide (glufosinate for mCITRINE, hygromycin for
mCHERRY-tagged proteins or using the FastRed screening method). Approximately 20 independent T1s were selected for each line.
Inthe T2 generation at least 3 independent transgenic lines were selected using the following criteria when possible: i) good expression
levelinthe root for detection by confocal microscopy, ii) uniform expression pattern, iii) single insertion line (1 sensitive to 3 resistant segre-
gationratio). Lines were rescreened in T3 using similar criteria asin T2 with the exception that we selected homozygous lines (100% resis-
tant/fluorescent). At this step, we selected one to three transgenic line(s) that was(were) used for further analyses and crosses.

METHOD DETAILS

Cloning and characterization of transgenic lines

The cloning for the transgenic lines production was performed using the multi-site gateway system (thermofisher).

Cloning of promoters into gateway entry vectors

The MAKR2 promoter was amplified from Col-0 genomic DNA using MAKR2prom-topoF/MAKR2prom-topoF (Key Resources Table)
and cloned into the pENTR 5'-TOPO TA vector by TOPO TA Cloning (thermofisher) to give MAKR2prom/pENTR5'. The TMK1 pro-
moter was amplified from Col-0 genomic DNA using TMK1prom-Fw and TMK1prom-Rev and cloned into pDONRP4-P1R using
Gibson cloning, with pDONRP4-P1R having been amplified using the p5’-open-Fw and p5’-open-rev primers, to give TMK1prom/
pDONRP4-P1R. 2x35Sprom/pDONRP4P1R and UBQ10prom/pDONRP4P1R were described previously.'**®

Cloning of genes into gateway entry vectors

The MAKR2 genomic fragment was amplified from Col-0 genomic DNA using MAKR2-B1/MAKR2-B2 primers and introduced into
the pDONR221 by BP recombination to give MAKR2gnoSTOP/pDONR221. TMK1 was amplified from Col-0 cDNA using TMK1-B1/
TMK1-B2 primers and recombined into pDONR221 by BP cloning to give TMK1noSTOP/pDONR221. MAKR2(CDS)noSTOP/
pDONR221 was previously described.'” TMK1*P*¢"5R)noSTOP/pDONR221 was obtained by site directed mutagenesis by ampli-
fying TMK1noSTOP/pDONR221 with the TMK1XP-K616F/TMK1XP-K616R primer pair.

The MAKR2''? (CDS) no STOP sequence was synthesized by IDT technologies in the pUCIDT-AMP vector and subsequently re-
combined into pDONR221 by BP reaction to obtain MAKR2''? (CDS) no STOP/pDONR221. In the MAKR2"'? sequence, the 11 posi-
tively charged residues (lysine -K- or arginine -R-) of the cationic region were mutated to the neutral amino acid glutamine (Q) as
follows:

> MAKR2

780 gag aaa cga ttc gtg atg atg caa aag tac tta aag aag gta aaa cca ctt tac atc aga
E K RFVMMAQIKYLKI KV KPLY I R

gtt tca cgt cgt tac ggc gag aaa tta cga cac 870

VS R RY G E KLR H

> MAKR2'"@

780 gag caa caa ttc gtg atg atg caa cag tac tta cag cag gta caa cca ctt tac atc caa
EQ QFVMMQQYLQQV QP LY I Q

gtt tca caa cag tac ggc gag caa tta caa cac 870

VS Q QY G E QL QH

Cloning of artificial microRNAs into gateway entry vectors

Artificial microRNAs were designed using web microRNA designer (http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). The following
sequence was synthesized by IDT technologies and subsequently recombined into pPDONR/Zeo by BP recombination to give ami-
MAKR2/ pDONR/Zeo:
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> amiMAKR2
acaagtttgtacaaaaaagcaggctcaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttaggaatatatatgtagatatgtaaa
gtggttttacctatcacaggtcgtgatatgattcaattagcttccgactcattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcg
gtagacaaattggatcattgattctctitgataggtaaaaccactttacatatctctctttigtattccaattttctigattaatctttcctgcacaaaaacatgcttgatccactaagtga
catatatgctgccttcgtatatatagttctggtaaaattaacattttgggtttatctttatttaaggcatcgccatgacccagctttcttgtacaaagtggt

Attb1 and Attb2 for gateway cloning
amiMAKR2/ pDONR/Zeo was transferred by LR recombination into pMDC32*° or pB7WG2.*

Cloning of reporters into gateway entry vectors:

tdYFP is a tandem dimer of dlanYFP (from Branchiostoma lanceolatum).*° The following sequence was codon optimized for Ara-
bidopsis and synthetized by IDT (https://eu.idtdna.com/site):

> tdYFP:
atggtatccaaaggtgaagaagacaatatggcatcattacctgcaacccatgagcttcacatctttggtt
cgtttaatggagtagattttgatatggttggaagagggacaggtaaccctaacgacggttatgaagaact
taaccttaaatctaccaagggagatctccaattctctccttggattttggtcccacagattggttatggt
tttcatcagtatttgccatttcccgacggaatgtctccattccaagcagccatgaaagacggetcgggct
accaggttcacagaacaatgcaatttgaagatggtgcaagtctcacttctaactatcgttatacgtatga
aggaagtcatattaaaggcgaatttcaggtaaagggaactggatttcctgccgacggaccagttatgaca
aattcattgactgcagcagattggtgtgtgacaaagatgttatatccaaacgacaagactatcatctcaa
cttttgattggacttacactacgggtaatggaaaaaggtatcaaagcacggcaagaaccacttacacatt
cgccaagccaatggcagcaaacatactaaagaaccagccaatgttcgtttttagaaagacagagctcaag
cattcaaagactgaacttaacttcaaagaatggcaaaaagcattcaccgatgtgatgggtcatggaactg
gatctacgggatctggctcaagtggaacagcaagttctgaagataataatatggcatcgetgcctgcaac
ccatgaacttcatatatttgggtctttcaatggagtcgattttgacatggtaggacgaggtacaggtaat
cctaacgatgggtacgaggagttgaacctaaagagtactaagggagacctccagttcagtccctggattt
tagtaccgcaaatcggttatggattccaccagtatttaccatttccggacggaatgtcgecctttcagge
ggcgatgaaagacggctctggatatcaggttcatagaaccatgcaatttgaggacggagcatctctgacg
tccaactatagatatacttatgaaggctcgcacattaaaggagagtttcaggtgaagggaactggattcc
ctgctgacggcecctgtcatgacaaatagccttactgctgcggattggtgtgttaccaaaatgctctacce
taatgacaagactatcatcagtacttttgactggacttatactactggaaacgggaagcgatatcagtcc
acggcaagaactacatacacctttgccaaacctatggcagccaacatcttgaaaaaccaaccaatgtttg
tgttcaggaagactgaacttaaacactcaaaaaccgaactgaatttcaaagagtggcagaaagctttcac
agatgttatggggatggacgaactgtataagtga

The synthetic tdYFP gene was subsequently amplified using the tdYFP-B2R/tdYFP-B3 primer pair and cloned into pDONRP2R-P3
using BP recombination. mCITRINE/pDONRP2RP3, mCITRINEnoSTOP/pDONR221, mCITRINESESE/pDONRP2RP3, 2xmCHERRY-
4xMyc/pDONRP2RP3, GUS/pDONRP2R-P3, VENUSN-S/pDONR221 and mock/pDONRP2RP3 were described previously. '#17:46:50

All primers used for cloning are indicated in the Key Resources Table.

Destination vectors and plant transformation

Arabidopsis stable transformation and selection were performed as described.®’ Final destination vectors for plant transformation
were obtained using the LR recombination system (http://www.thermofisher.com/) using the pB7m34GW** (basta resistant),
PH7m34GW*? (hygromycin resistant), pB7WG2 (basta resistant),*? pLOK180_pFR7m34GW (gift from Lothar Kalmbach, Cambridge,
similar backbone as pB7m34GW but with the basta resistance replaced by a FASTRED cassette for selection of transgenic seeds via
red fluorescence) or pMDC32*° (hygromycin resistant) destination vectors.

The following Gateway LR reactions were set-up to generate the corresponding destination vectors (the name of the correspond-
ing transgenic line is highlighted in bold):

2x35Sprom::MAKR2-2xmCHERRY/pH7m34GW (MAKR2-Ox1) was obtained by recombining 2x35Sprom/pDONR4-P1R,
MAKR2gnoSTOP/pDONR221, 2xmCHERRY-4xMyc/pDONR2R-P3, and pH7m34GW.
2x35Sprom::MAKR2-mCITRINE/pB7m34GW (MAKR2-Ox2) was obtained by recombining 2x35Sprom/pDONR4-P1R,
MAKR2gnoSTOP/pDONR221, mCITRINE/pDONR2R-P3, and pB7m34GW.

2x35Sprom::amiMAKR2/pMDC32 (amiMAKR2.1 and amiMAKR2.3) 2x35Sprom::amiMAKR2/pB7WG2 (amiMAKR2.2) were
obtained by recombining amiMAKR2/pDONR221, with pMDC32 or pB7WG2, respectively.
MAKR2prom::MAKR2-2xmCHERRY/pH7m34GW (MAKR2::MAKR2-2Ch) was obtained by recombining MAKR2prom/
pDONR4-P1R, MAKR2gnoSTOP/pDONR221, 2xmCHERRY-4xMyc/pDONR2R-P3, and pH7m34GW.
MAKR2prom::MAKR2-tdYFP/pB7m34GW (MAKR2::MAKR2-tdYFP) was obtained by recombining MAKR2prom/pDONR4-P1R,
MAKR2gnoSTOP/pDONR221, tdYFP/pDONR2R-P3, and pB7m34GW.
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MAKR2prom::MAKR2-GUS/pK7m34GW (MAKR2::MAKR2-GUS) was obtained by recombining MAKR2prom/pDONR4-P1R,
MAKR2gnoSTOP/pDONR221, GUS/pDONR2R-P3, and pK7m34GW.

MAKR2prom::VENUSN-5/pB7m34GW (MAKR2:VENUSN-S) was obtained by recombining MAKR2prom/pDONR4-P1R, VE-
NUSN-S/pDONR221, mock/pDONR2R-P3, and pB7m34GW.

TMK1prom::CHERRYN-S/pH7m34GW (TMK1::2ChNS) was obtained by recombining TMK1prom/pDONR4-P1R, mCHERRYno-
STOP/pDONR221, mCHERRYN-S/pDONR2R-P3, and pH7m34GW.

UBQ10prom::TMK1-2xmCHERRY/pH7m34GW (TMK1-Ox) was obtained by recombining UBQ10prom/pDONR4-P1R,
TMK1noSTOP/pDONR221, 2xmCHERRY-4xMyc/pDONR2R-P3, and pH7m34GW.

UBQ10prom: TMK1X61®R_2xmCHERRY/pH7m34GW (TMK1X¥¢'®R.0x) was obtained by recombining UBQ10prom/pDONR4-
P1R, TMK1K61®"noSTOP/pDONR221, 2xmCHERRY-4xMyc/pDONR2R-P3, and pH7m34GW.
2x35Sprom::MAKR2-mCITRINE®ESE/pB7m34GW (MAKR2-mCit®E®E) was obtained by recombining 2x35Sprom/pDONR4-
P1R, MAKR2(CDC)/pDONR221, mCITRINEGESE/pDONR2R-P3, and pB7m34GW.
2x35Sprom::MAKR2-mCITRINE®ESE/pLOK180_pFR7m34GW (MAKR2''®-mCit) was obtained by recombining 2x35Sprom/
pDONR4-P1R, MAKR2''%(CDC)P/pDONR221, mCITRINE/pDONR2R-P3, and pLOK180_pFR7m34GW.

Cloning and characterization of makr2 crispr allele

The makr2-1 crispr allele (Col0) was generated using the egg cell-specific promoter (pEC17.2) CRISPR/Cas9 system described in
Wang et al.°> Two single guide RNAs (sgRNA) were originally used in the construct: sgRNA3 5-CTTTCAGTCTCCTTAACTAC-3’
and sgRNA4 5'-TCTCTTTGCCGTTACTCCG-3' but mutations were only found in the sgRNAS target sequence. Primers containing
the sgRNA sequences and the Bsal restriction site were designed (F1 gRNA3: ATATATGGTCTCGATTGCTTTCAGTCTCCTTAAC
TACGTT; FO gRNA3:TGCTTTCAGTCTCCTTAACTACGTTTTAGAGCTAGAAATAGC; RO gRNA4: AACGCGGAGTAACGGCAAAGA
GACAATCTCTTAGTCGACTCTAC; R2 gRNA4: ATTATTGGTCTCGAAACGCGGAGTAACGGCAAAGAGACAA) and a fourth primer
PCR was performed using the pCBC-DT1T2 vector as a template. The PCR fragment containing the sgRNAs was introduced to
the binary vector pHEE401E by golden gate cloning using Bsal restriction sites. Plants were transformed and T1 plants selected
by hygromicin resistance. Plants carrying mutations were selected by sequencing and, homozygous mutant plants depleted of
the T-DNA were counterselected in T2. The makr2-1 mutant carries a frameshift mutation (1 nucleotide (A) insertion) at position 25
relative to the MAKR2 start ATG. The resulting predicted short MAKR2 protein comprises 37 amino acids. The first 8 amino acids
correspond to MAKR2 wt sequence, and amino acids 9 to 37 represent an aberrant amino acid sequence.

Gravitropism experiments

The horizontal gravitropic index was quantified using imageJ as indicated in Platre et al.”” and Grabov et al.” Plants were grown on
plates with a 45° angle. The horizontal growth index was calculated on 7-day-old seedlings using the “segment line” tool on FIJI.
Briefly, to calculate the gravitropic indexes, two length are considered, L and Lx.*® L is the total length of the roots (from base of hy-
pocotyl to root tip), while Lx is the abscissa of the root tip (considered from the point of view of the base of hypocotyl). The horizontal
growth index (HGI) corresponds to the ratio Lx/L. The experiments were performed 3 times and at least 21 plants of each genotype
were quantified in every independent experiment.

Gravitropic experiments were performed either on 5 to 6-days-old seedlings grown in MS media containing 1% sucrose. In order to
align the roots, one hour prior to the experiment, seedlings were transferred in a new vertical plate. An angle of 135° was applied in
darkness and the same plates were scanned after 3 or 4 hours, 6 hours, 12 hours, 24 hours or 48 hours. The angle of the root bending
at each time point was quantified using ImagedJ.*® The experiment was performed 3 independent times and at least 30 plants of each
genotype were quantified.

Kinetics of the PIN2 dynamics during gravitropism was performed as follows: 5-days-old seedlings were transferred and aligned in
new 1/2 MS Petri dishes one hour prior to the experiment. In this case, an angle of 90° was applied and fluorescent images were taken
every five minutes during six hours. The angle of the root bending was quantified using ImageJ.

|.25 |.53

Quantitative RT-PCR (qPCR)

Total RNA was isolated using the Plant/Fungi RNA Purification Kit (sigma) and quantified using Nanodrop 1000 (Thermo Scientific,
http://www.nanodrop.com/). 1 ng of total RNA was reverse transcribed and amplified using the SuperScript IV VILO Master Mix
(Thermofisher). Transcripts levels were measured by gPCR using amplified cDNA. The relative amount of each transcript was calcu-
lated with the 272°T method®* using EF7-alpha and GADPH transcripts as housekeeping for data normalization. Each experiment was
performed in at least three biological replicates. The gPCR primers used are described in the table below.

Drugs and hormones treatments

Drugs and hormones treatments were performed in liquid 1/2 MS on 5 days-old-seedlings. Cycloheximide (CHX) (stock 50 mM in

DMSO) and MG-132 (stock 25 mM in DMSO) treatments were carried out at 50 pM during two hours before the NAA treatment.
NAA treatments were done at 1 uM or 10 uM during 5 or 30 minutes, as indicated in the experiment. The auxin analogs

5-F-IAA (stock 10 mM in ethanol), PEO-IAA (stock 10 mM in ethanol) and benzoic acid (BA) (stock 10 mM in ethanol) were

diluted in 1/2 MS at 10 uM during 30 minutes. Brassinolide (stock 10 mM in DMSQ) treatments were performed at 10 uM during

30 minutes.

Current Biology 317, 228-237.e1-e10, January 11, 2021 €8
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Each treatment was repeated in at least three independent experiments and quantifications were performed on at least 14 roots.
The number of cells quantified is indicated in the corresponding graphs.

Microscopy

The experiments were performed using either the LSM710 confocal microscope using a 40X Plan-apochromatic objective (numerical
aperture 1.2, oil immersion) (Zeiss) or inverted Zeiss microscope (AxioObserver Z1, http://www.zeiss.com/) equipped with a spinning
disk module (CSU-W1-T3, Yokogawa, http://www.yokogawa.com/) and a ProEM+ 1024B camera (Princetoninstrument, http://www.
princetoninstruments.com/) using a 40X C-Apochromat objective (numerical aperture 1.1, water immersion).

tdYFP and mCitrine were exited at 512 nm and mCherry was excited at 550 nm. FM4-64 stainning were performed as described in
Marqués-Bueno et al.*®

MAKR2-Ox1 imaging was performed using a FV 1000 confocal microscope (Olympus, Tokyo, Japan) mCherry was excited at
550 nm and using 40X oil objective.

Microfluidic experiments were performed using a vertical ZEISS LSM700 confocal microscope with a 20x/0.8 Plan-Apochromat
M27 objective.®” In this case, tdYFP was exited at 488 nm and images were taken every minute, during six minutes. First, three im-
ages of roots in liquid MS media without hormones were acquired and afterward NAA 10uM or IAA 10 uM or benzoic acid 10uM were
added and three additional pictures were taken.

The kinetics of the PIN2 dynamics was performed using a verticaly mounted Olympus MVX10 macroview fluorescence stereomi-
croscope,”® setting up the automated filterwheels to allow fluorescence imaging for GFP and using 5x magnification. (http:/www.
olympusamerica.com). For the time lapse imaging, “Process Manage” function in Cellsens Dimension software (Olympus) was
used. After finishing the acquisition, the images were saved as a video and analyzed using ImageJ software.

6-days-old seedlings of MAKR2prom::MAKR2-GUS, DR5prom::GUS or MAKR2ox1-DR5prom::GUS were fixed in cold 90%
acetone on ice during 20 minutes, then washed three times with 50 mM NaHPO4 buffer (pH 7.2) and stained over night with
2 mM X- Gluc staining buffer at 37 C in the darkness. Afterward, roots were washed with ethanol series from 30%, 50%, 70%
20 min each step and then finally 100%. Finally, the roots were mounted with chloralhydrate and pictures were obtained using
the Leica DM6 (Leica, Germany) epifluorescence vertical microcroscope equiped with a Normansky optics and using either 20x
or 40x magnification. Quantifications were done using region-of-interests drawn in the upper and lower part of the root tip and
GUS/GFP intensity were quantified using the mean intensity tool from ImageJ.

In the case of DR5prom::GUS, the analyses were made on 60 roots and three independent experiments (20 roots per replicate),
and 42 roots and three independent experiments (14 roots per replicate) for DR5prom::GFP.

In vitro Halo-pull down

The cytoplasmic domains of TMK1 and HSL1 cloned into pDONR221 was recombined by LR reaction into pTNT-HA-GW.** The
HSL1%" clone was ordered to ABRC."” mCITRINEwSTOP/pDONR221 and MAKR2wSTOP/pDONR221 were recombined by LR re-
action into pIX:Halo:ccdb.*® The TnT Coupled Wheat Germ Extract System from Promega were used for cell free expression. 4 pg of
both plasmids were added to the reaction mix following the commercial protocol. The reactions were incubated at 25°C for 2 hours.
The equivalent of 10 pl of dry Halo-tag magnetic beads from Promega were added and the samples were incubated at room tem-
perature for 30 minutes on an orbital shaker. The supernatant was discarded and the beads were incubated for 3 minutes in
PBS + 0,05% Tween20. The solution was discarded. This wash was repeated 3 times. The beads were then resuspended in
SDS-PAGE loading buffer, separated by SDS-PAGE and subjected to immunoblotting using anti-Flag antibody (clone M2, F1804,
Sigma) and Anti-HA antibody (12CA5, Sigma-Aldrich).

Co-expression, purification and mass-spectrometry

To generate the backbone plasmid for co-expression in bacteria, pET28a+ and pACYC-duet were digested using Xba1 and Xho1.
The MCS cassette of pACYC-duet was inserted into pET28a+ leading to the generation of pET28-duet. MAKR2 and TMK1 were
amplified by PCR from Col-0 cDNA. The tags and restriction sites were added by PCR. MAKR2 PCR fragment was cloned into
PET28-duet between Nde1 and Xho1 and TMK17 PCR fragment between Nhe1 and Not1. Mutation to generate a dead kinase
version of TMK1 was done by PCR. The resulting plasmids were transformed in Escherichia coli BL21 (DE3) Rosetta 2 from No-
vagen that were spread on LB + 100 pg/uL kanamycin plates. Several colonies were picked and transferred into 100ml of 2xTY +
100 pg/puL kanamycin and incubated overnight at 37C under 180rpm shaking. The day after, a 250ml culture of 2xTY + 100 pg/uL
kanamycin was inoculated with the preculture to reach a 0.1 ODggg and incubated at 37°C under 180 rpm shaking until ODggq 0.6.
Then 0.5 mM IPTG was added and the samples were incubated for 75 minutes at 37°C. The cultures were pelleted through a 5000
rcf centrifuge for 20 minutes. The pellets were resuspended in 15 mL of resuspension buffer (20 mM Tris pH8, NaCl 150mM and
20mM imidazole). The resuspended pellets were flash freezed and stored at —20°C. The pellets were unfrozen, 5 mM beta-mer-
captoehanol was added, then sonicated and centrifuged at 15000 rcf for 40 minutes at 4°C. The soluble fraction was applied on
0.5 mL of IMAC-nickel resin. The resin was washed with 10 column volumes of resuspension buffer, then 5 column volumes of
resuspension buffer + 40 mM imidazole. The proteins were eluted within 2 column volumes of Tris 20mM pH8, NaCl 150mM
and 400 mM imidazole. The samples were analyzed by mass spectrometry (ESI/MS/MS) by PSF platform of SFR Biosciences
(UMS3444/CNRS, US8/Inserm, ENS de Lyon, UCBL).
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Co-immunoprecipitation Assay

Co-immunoprecipitation assays were performed in the Arabidopsis suspension culture (PSB-L) protoplast system. Protoplast were iso-
lated and transfected or co-transfected with 15 pg of plasmid DNA (UBQ10:TMK1-3HA, UBQ10:TMK14kn3se_3HA  2x35S::MAKR2-
mCitrine) according to the method described previously.*® After transfection, protoplasts were incubated for 16 hours in the dark to
allow gene expression, treated with either DMSO or 1uM IAA dissolved in DMSO for 1 hour, collected and frozen in liquid nitrogen.
For coimmunoprecipitation (Co-IP) assay, 5x10° transfected protoplasts were lysed with 50 pl of extraction buffer (50 mM Tris HCI
pH 7.5, 150 mM NaCl, 10 mM MgCl,, 1% (w/v) Triton X-100, 5 mM DTT, PhosSTOP phosphatase inhibitor cocktail (Roche), 1x
EDTA free-Complete Protease Inhibitor Cocktail (Roche). After vortexing vigorously for 30 s, the samples were centrifuged at
14,000 x g for 10 min at 4°C and supernatants were collected. Prior to the Co-IP assay, 25 pl of collected supernatants were analyzed
by immunoblot assay to determine Co-IP input. To perform the Co-IP assay, 75 pl of extraction buffer without Triton X-100 were added
to remaining 25 pl of supernatants, followed by incubation with GFP-Trap Magnetic Agarose (ChromoTek) for 1 hour at 4°C, three
washing steps with washing buffer (50 mM Tris HCI pH 7.5, 200 mM NaCl, 1 mM EDTA, 0.1%Triton X-100), once with 50 mM Tris-HCI
pH 7.5 and elution step with 2x-SDS-sample buffer for 10 min at 95°C. Samples were separated by SDS-PAGE and subjected to immu-
noblotting using anti-GFP-HRP antibody (Miltenyi Biotec) and Anti-HA-Peroxidase, High Affinity (3F10) (Roche).

To generate UBQ10:TMK1-3HA, UBQ10::TMK14K"3®_3HA constructs, the TMK1full length/ TMK14¥3%¢ (amino acid 1-587)
cDNA without stop codon were amplified by RT-PCR from WT total RNA using TMK1-FL-B1-F and TMK1-FL-B2-R/TMK1-AKD-
B2-R primers, Key Resources Table), respectively, and inserted into the pDONR221 vector by BP recombination reaction. Next,
PDONR P4-P1R-UBQ10prom, pDONR P2R-P3-3xHA and pDONR221-gTMK1/gTMK14K"3%¢ \yere cloned into pB7m34GW vector,
respectively, by MultiSite Gateway LR recombination reaction.

Image Quantification

The quantification of PIN2-GFP fluorescence during gravitropism was performed as followed. Using ImagedJ software (https://imagej.
nih.gov/ij/), we draw a line (1px in width and 200px in length) on both sides of the root (upper and lower side) at each time point and
used the mean intensity fluorescence tool from ImagedJ for quantification. Afterward, the ratio between t/t0 (t0 being the initial fluo-
rescence intensity at the beginning of the experiment) was applied to be able to follow the difference of fluorescence. Each graph in
Figure 2 were made from three independent roots.

Quantifications of MAKR2 translocation from the PM to the cytoplasm was carried as described in Simon et al."” Briefly, we scored,
in a double-blind set-up, the number of cells in which MAKR2-tdYFP or MAKR2-mCit was associated or not with the plasma mem-
brane. A cell was counted as positive for plasma membrane labeling when the cell outline was at least twice as fluorescent as the
cytosol. All the results are expressed as a percentage of the number of cells with MAKR2 at the plasma membrane over the total
number of cells counted. The number of cells (n) counted in each case is indicated on the corresponding figure. Each experiment
was repeated three time and at least 14 independent roots were counted.

For the microfluidic experiments, the quantification was performed by drawing a line at the plasma membrane and in the cytoplasm
and quantifying the mean average intensity of both (Imaged). With these values, the ratio of the fluorescence between the plasma
membrane and the cytoplasm was applied and represented in the graphs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phenotyping

For the horizontal gravitropic index and the kinetics of the gravitropic response, a linear model was fitted on measurements from wild-
type plants and the different mutants using Im() function from stats package available in R software (https://www.r-project.org/). This
model estimates a weight for each variable (wild-type and mutant plants) and the associated probability that such weight is different
from zero based on a t test. The probability derived from the t test is the p value in this comparison and significant differences were
considered when the p value was lower than 0.05.

Cell biology experiments
For translocation of MAKR2 from the plasma membrane to the cytoplasm a pairwise comparison between mock plants and plants
subjected to different treatments was performed using a t test with Welch correction to account for unequal variances using R soft-
ware (https://www.r-project.org/). The probability derived from the t test is the p value in this comparison and significant differences
were considered when the p value was lower than 0.01.

All the graphs were drawn using excel software (Microsoft, https://products.office.com/) except for the boxplots which were drawn
either with excel or the R software (https://www.r-project.org/).
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Figure S1. Characterization and phenotyping of MAKR?2 gain- and loss-function mutants. Related to
Figure 1 and 2. A) confocal picture showing the expression and localization of MAKR2-2Ch (MAKR2-Ox1
line) and MAKR2-mCit (MAKR2-Ox2 line). Scale bars: 30 um. B) Quantification of DR5::GFP asymmetry
(ratio of lower/upper) before and after 5 hours gravistimulation at a 135° angle and related representative
fluorescent images after 5 hours of gravistimulation. The white arrow indicate the accumulation of the
DR5rev::GFP signal on the lower part (gravistimulated side) of the root in the wild type. Scale bars: 50 pm. C)
Kinetics of root gravitropic bending after reorienting seedlings of the genotypes indicated in the top left corner at
a 135° angle. See S1F for a statistical comparison of each mutant genotype with the wild type at each time point.
The inset represents qRT-PCR analyses of MAKR?2 expression in wild-type and two additional independent
amiMAKR?2 lines (amiMAKR2.2 light green and amiMAKR2.3 dark green). D) Kinetics of root gravitropic
bending after reorienting seedlings of the genotypes indicated in the top left corner at a 135° angle. See figure
S1F for a statistical comparison of each mutant genotype with the wild type at each time point. E) Quantification
of the primary root length of the indicated genotypes. All quantitative measurements presented in different
graphs have been treated as independent experiments (e.g. different wild-type). F) Tables showing the p-value,
corresponding to the statistical comparison of each mutant genotype with the wild type at each time point of the
gravitropic kinetics presented in Figure 1D, Figure S1C, SID and Figure 2C. Signif. codes: 'n.s.' p>0.05, '*'
0.05>p>0.01, "**' 0.01>p>0.001, "***' 0.001>p.
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Figure S2. Analysis of MAKR?2 expression pattern in the root. Related to Figure 2. Microscopy pictures of
roots showing the expression pattern of (A) MAKR2prom::MAKR2-GUS, scale bars: 100 pm and (B)
MAKR2prom::VENUSYS, scale bar: 50 pm. C) Schematic representation of the results from single cell RNAseq
for MAKR?2 expression in the root, showing that cells expressing MAKR? cluster together in a group of cells
corresponding to quiescent center and young meristem cells. The graphic representation is from the Bio-
Analytical Resource for Plant  Biology (BAR, Toronto, https://bar.utoronto.ca/efp/cgi-
bin/efpWeb.cgi?dataSource=Single_Cell) and the data are from [1]. D) Left: single channel (grey scale) of
MAKR2prom::MAKR2-2Ch and PIN2prom::PIN2-GFP together with the corresponding overlay (MAKR2-2Ch
in magenta, PIN2-GFP in green and colocalization in white). Right: line scan analysis of the fluorescent
intensities in each channel. Note the overlapping pics, likely corresponding to the accumulation of both proteins
at the plasma membrane. E) High resolution kinetics of the gravitropic response of PIN2prom::PIN2-GFP,
PIN2prom::PIN2-GFPxMAKR2-Ox1 and PIN2prom::PIN2-GFP,xamiMAKR?2.1 lines. Each graph shows the
response of individual roots. See also Video S1 and S2.
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Figure S3. Quantitative analysis of the gravitropic phenotypes of tmkl;tmk4 double mutant, expression
pattern of TMKI and Halo-pull down with additional controls. Related to Figure 3. A) Kinetics of root
gravitropic bending after reorienting seedlings of the genotypes indicated in the top left corner at a 135° angle.
B) Confocal picture (left) and corresponding bright field image (right) showing the expression profile of TMK/
in the TMKIprom:2Ch™'S transcriptional reporter line. Scale bar: 50 pm. C) Table showing the p-value at each
time point of the gravitropic kinetics presented in Figure S3A and Figure 3A. Data for WT, MAKR2-Ox2 and
TMK 1-Ox are the same in graphs S3A and 3A. Signif. codes: 'n.s.' p>0.05, "*' 0.05>p>0.01, "**' 0.01>p>0.001,
#%%10.001>p. D) Pull-down assay using in vitro transcribed/translated proteins and Halo-tag purification. Co-
purified proteins were visualized using an anti-HA antibody (labelled as Halo pull-down). The inputs (labelled
Inputs) and supernatant (labelled Sup) were tested to show the relative amounts of Halo- and HA-tagged proteins
and the binding efficiency to HaloLink magnetic beads (as described in [2]). TMK 19" and HSL1¢" correspond to
the isolated cytoplasmic domains and TMK1 and HSL1, respectively.
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Figure S4. Time lapse analysis of MAKR2 membrane release upon auxin treatment and quantification of
CHX, MG132, PEO-IAA, 5-F-IAA, BA, and BL effects on MAKR2-tdYFP localization. Related to Figure
4. A) Quantification of the MAKR?2 localization at the plasma membrane and the cytosol after the application of
NAA, TAA or benzoic acid (BA) treatment. Y-axis represents the ratio between the relative fluorescence at the
plasma membrane at time t over the fluorescence at the plasma membrane at time t0 and the X-axis represents
the time in minutes. The first four minutes shows the localization before the treatment and after either 10 uM
NAA, 10 puM TAA or 10 uM benzoic acid was applied. Note that because we used a vertical confocal
microscope with 20X objective with a low NA and a 488nm laser (rather than the high NA 40X objective and



515nm laser used in the rest of the experiments), we had to use a higher laser intensity accounting for increased
background (i.e. fluorescence in intracellular bodies) and faster photobleaching. Comparison between the
quantification of the NAA/IAA and the BA treatments allowed us to evaluate the extent of photobleaching vs
auxin effect. See also Video S3. B) Confocal pictures and related quantifications of the MAKR2prom::MAKR2-
tdYFP line pretreated for 120 min with the protein synthesis inhibitor cycloheximide (CHX at 50 uM) or the
proteasome inhibitor MG132 (25 pM) and followed by a 30 min NAA/CHX or NAA/MG132 co-treatment at the
indicated concentration of NAA. Scale bars: 10 pm. C) Confocal pictures of the MAKR2prom::MAKR2-tdYFP
line following a 30 min treatment with EtOH (mock), NAA (10 uM), PEO-IAA (10 uM) and 5-F-IAA (10 pM)
and related quantifications of the percentage of cells with MAKR2-tdYFP signal at the plasma membrane over
the total number of cells. Scale bars: 10um. D) Confocal pictures and related quantifications of
MAKR2prom::MAKR2-tdYFP lines following a 30min treatment with either benzoic acid (BA) or brassinolide
(BL). Scale bars: 10pum. n in each graph indicates the total number of cells counted.
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Figure S5. Quantification of TMK1-Ox and TMK1X¢16R_Ox effect on MAKR2-mCit localization. related to
Figure 4. A) Confocal pictures of roots coexpressing UBQIOprom::TMKI-2xmCherry (TMKI-Ozx, left) and
2x35Sprom::MAKR2-mCitrine  (MAKR2-Ox2, right) (left) and UBQIOprom::TMKI*5!R 2xmCherry
(TMK I%%15R_QOx, kinase dead, left) and 2x35Sprom::MAKR2-mCitrine (MAKR2-Ox2, right) (right) according to
the NAA treatment indicated on the left and related quantification. n indicates the number of cells counted. Note
that the MAKR2-mCit picture for mock and NAA 10 pM 30 min are the same than in Figure 4C. Scale bars: 10
um. B) Confocal pictures of roots coexpressing 2x35Sprom::MAKR2-mCitrine (MAKR2-mCit) and
UBQI0prom:: TMKI¥0'%R 2xmCherry (TMKI¥6'%R_Ox, kinase dead) showing the mosaic expression of
TMK 1X61R The white asterisks indicate cells which express TMK1K6R "and in which MAKR2-mCit does not
relocalize to the cytosol following a 30-min treatment with 10 uM NAA. By contrast, the white arrows indicate
cells which does not express TMK1X61R and in which MAKR2-mCit is cytosolic after a 30-min treatment with
10 uM NAA. Scale bars: 20 um (left), 5 um (right). C) Quantification of the fluorescence ratio of MAKR2
plasma membrane over cytosolic signal in MAKR2-Ox1 and MAKR2-Ox2 overexpression lines. Note that the
relative amount of MAKR?2 at the plasma membrane correlates with the level of expression (see Figure 1A) and
with the respective phenotypes of these lines (see Figure 1B and 1D).
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