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Abstract: In deterministic evaluations, liquefaction triggering potential is assessed by comparing the computed factor-of-safety (FS) against
liquefaction triggering to some minimal acceptable FS. While some guidelines are available for selecting the minimal acceptable FS, there is
no standard value. Herein, Receiver Operating Characteristic (ROC) analyses are used to develop an approach for selecting the optimal
minimal acceptable FS (i.e., optimal FS) for a project based on the relative costs of mispredictions. Utilizing different liquefaction triggering
models and their associated case-history databases, relationships are established between the optimal FS and the ratio of the cost of a false-
positive prediction to the cost of a false-negative prediction (i.e., cost ratio, CR). Also, by combining the FS data from different models, a
“generic” FS-CR relationship is developed that “averages out” the degree of conservatism inherent to the individual triggering models.
Similarly, relationships relating the optimal probability of liquefaction triggering (PL) to CR are developed for the probabilistic variants
of the triggering models, as well as a generic PL-CR curve. DOI: 10.1061/(ASCE)GT.1943-5606.0002511. © 2021 American Society of
Civil Engineers.

Introduction

The main objective of this paper is to develop an approach for relat-
ing the optimal minimal acceptable factor-of-safety against lique-
faction triggering (FS) to the cost of mispredicting liquefaction
triggering. “Optimal” herein should be understood as “optimal for
decision making,” such that remedial action is judicious when the
computed FS falls below the optimal value. To this end, the pro-
posed relationships can be used to select the optimal minimal
acceptable FS (i.e., “optimal” FS) for a project based on the costs
of liquefaction risk-mitigation schemes, relative to the costs asso-
ciated with the consequences of liquefaction. While this paper
focuses on FS, the framework proposed herein is also used to relate
the optimal probability of liquefaction triggering (PL) to the rela-
tive costs of mispredicting liquefaction triggering.

The stress-based “simplified” model is the most widely used
approach for predicting liquefaction triggering at a site. This model
was originally developed by Whitman (1971), and Seed and Idriss
(1971) for the Standard Penetration Test (SPT) and has been sub-
sequently updated for use with other in situ testing methods such as
the Cone Penetration Test (CPT) and small-strain shear wave veloc-
ity (Vs) (e.g., Robertson and Wride 1998; Cetin et al. 2004, 2018;

Moss et al. 2006; Idriss and Boulanger 2008, 2010; Kayen et al.
2013; Boulanger and Idriss 2012, 2014; Green et al. 2019; among
others). Moreover, both deterministic and probabilistic variants of
the simplified model have been proposed, where the latter explicitly
quantifies and accounts for uncertainties in the model and its input
parameters. In a deterministic liquefaction triggering model, the
normalized cyclic stress ratio (CSR�), or the seismic demand,
and the normalized cyclic resistance ratio (CRRM7.5), or lique-
faction capacity, are used to compute an FS against liquefaction
triggering

FS ¼ CRRM7.5

CSR� ð1Þ

where CSR� has been normalized to an M7.5 event and corrected
for effective overburden stress and initial static shear-stress; and
CRRM7.5 has been normalized to the same conditions as CSR�
and is computed using a semiempirical relationship based on in situ
measurements. These measurements include normalized/corrected
SPT blow count (N1,60cs), CPT tip resistance (qc1Ncs), and Vs (Vs1).
Liquefaction is predicted to trigger when FS ≤ 1 (i.e., when the
demand equals or exceeds the capacity).

Using probabilistic variants of these models, PL is generally
computed as a function of the predictor variables that correlate
to the capacity of the soil (e.g., N1,60cs; qc1Ncs; or Vs1), the demand
imposed by shaking (e.g., CSR�), as well as the uncertainties in
the triggering model. For reasons that will not be discussed here,
deterministic CRRM7.5 curves often correspond to PL ≈ 15%
(e.g., Cetin et al. 2004; Moss et al. 2006; Boulanger and Idriss
2014). Although probabilistic liquefaction triggering models are
central to performance-based engineering frameworks, the deter-
ministic model (i.e., FS) still represents the current standard-of-
practice for predicting liquefaction triggering. Although in theory,
liquefaction should not trigger for FS > 1, FS ranging from 1 to
1.5 are generally used as the minimum acceptable value (or as a
decision threshold) for design, typically based on “rules of thumb.”
While such rules of thumb are generally guided by factors such as
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the uncertainty in the triggering evaluation process, importance of
the structure, and consequences of liquefaction, they have been
based largely on heuristic approaches. Due to the lack of a stand-
ardized method for selecting FS, various guidelines have been pro-
posed in the literature. For example, according to the 2009 NEHRP
recommended seismic provisions by the Building Seismic Safety
Council (BSSC 2009), FS of 1.1–1.3 is “usually appropriate”
for building sites. The use of FS > 1 is to account for the chance
that liquefaction occurred at depth at some “no liquefaction” case-
history sites used to develop the triggering models, but no surficial
liquefaction manifestations resulted (e.g., Green et al. 2018). More-
over, they refer to Martin and Lew (1999) (e.g., Table 1) for addi-
tional guidance on selecting FS, which considers different ground
failure mechanisms (i.e., “settlement,” “surface manifestation,” and
“lateral spreading”), as well as the postliquefaction strain potential
of soils having an associated penetration resistance (e.g., N1,60cs).

In any engineering project, the choice of the minimal acceptable
FS (i.e., the desired degree of conservatism) should account for the
consequences, or costs, of mispredicting liquefaction. However,
existing guidelines for selecting the minimal acceptable FS do not
explicitly account for such misprediction costs. These include the
costs of false-negative predictions (i.e., liquefaction occurs, but was
not predicted in the design event), which are the costs associated
with liquefaction-induced damage (e.g., property damage, recon-
struction and rehabilitation costs, etc.); and the costs of false-
positive predictions (i.e., liquefaction is predicted, but did not occur
in the design event), which could be those associated with the
unnecessary or overdesigned liquefaction risk-mitigation schemes
(e.g., ground improvement, stronger foundation design and con-
struction, etc.). Clearly, these costs can vary among different
engineering projects. For example, the costs associated with mis-
predicting liquefaction beneath a one-story residential building will
be likely very different than those for a similar misprediction
beneath a large earthen dam. As such, the optimal FS for a project
should be selected based on the associated costs of mispredicting
liquefaction triggering.

Accordingly, this paper uses a quantitative, standardized ap-
proach to select the optimal FS for a project, based on the costs
of mispredicting liquefaction triggering. Toward this end, Receiver
Operating Characteristic (ROC) analyses are performed on five
liquefaction triggering models, using the field case-history data-
bases from which the respective models were developed. Specifi-
cally, for each model, the ROC analyses are used to relate the
optimal FS to the ratio of false-positive costs to false-negative
costs. This ratio is referred to herein as the cost ratio (CR). In ad-
dition, this paper also derives relationships between misprediction
costs and optimal PL.

In the following, an overview of the liquefaction triggering
models and the associated databases are presented first, which is
followed by an overview of the ROC analysis and a demonstra-
tion of how it can be used to derive the optimal FS as a function
of CR. Next, the optimal FS-CR relationships specific to different

liquefaction triggering models, as well as a generic optimal FS-CR
relationship, are presented and discussed. Similar relationships are
derived for PL from the FS-CR relationships. Finally, a discussion
is presented on how the developed relationships can be used in
practice.

Data and Methodology

Liquefaction Triggering Models and Associated
Databases Used

In this paper, five different liquefaction triggering models based on
three different in situ testing methods are analyzed using the field
case-history databases from which the respective models were de-
veloped. These include the SPT-based models of Boulanger and
Idriss (2014) (BI14-SPT) and Cetin et al. (2018) (Cea18-SPT),
CPT-based models of Boulanger and Idriss (2014) (BI14-CPT) and
Green et al. (2019) (Gea19-CPT), and Vs-based model of Kayen
et al. (2013) (Kea13-Vs). Each of these studies present both deter-
ministic and probabilistic variants of the CRRM7.5 curve, except for
Gea19-CPT, which only presents the former.

Underlying each liquefaction triggering model is the case-
history database from which the model was derived. Figs. 1(a–e)
contains the probabilistic CRRM7.5 curves [except Fig. 1(d) for
Gea19-CPT, which only contains their deterministic CRRM7.5
curve] and the associated liquefaction case-history data for BI14-
SPT, Cea18-SPT, BI14-CPT, Gea19-CPT, and Kea13-Vs. More-
over, Table 2 summarizes the number of “liquefaction,” “no
liquefaction,” and “marginal” cases in the database associated with
each model. Note that, in this paper, the “marginal” case histories
are treated as “liquefaction” cases. The deterministic CRRM7.5
curves recommended by BI14-SPT, BI14-CPT, and Kea13-Vs cor-
respond to a PL of approximately 15%. However, Cea18-SPT
recommend their median (i.e., PL ¼ 50%) CRRM7.5 curve to be
used as their deterministic curve. The deterministic CRRM7.5 for
each of the preceding models are indicated in Figs. 1(a–e).

ROC analyses were performed on each triggering model using
their associated case-history database to relate the optimal FS and
PL to the relative costs of mispredicting liquefaction triggering,
which is expressed as CR. The following section presents an over-
view of ROC analysis and how it can be used to derive such
relationships.

Overview of ROC Analysis

ROC analysis is a widely adopted tool to evaluate the performance
of diagnostic tests. While ROC analysis has seen extensive use in
medical diagnostics (e.g., Zou 2007), its use in geotechnical engi-
neering is relatively limited (e.g., Oommen et al. 2010; Maurer
et al. 2015a, b, c, 2017a, b, 2019; Green et al. 2015; 2017; Zhu
et al. 2017; Upadhyaya et al. 2018, 2019). In particular, in cases
where the distribution of “positives” (e.g., liquefaction cases) and
“negatives” (e.g., no liquefaction cases) overlap when plotted as a
function of diagnostic test results [e.g., FS values; see Fig. 2(a)],
ROC analyses can be used to (1) identify the optimum diagnostic
threshold (e.g., minimal acceptable FS); and (2) assess the rela-
tive efficacy of competing diagnostic models, independent of the
thresholds used. A ROC curve is a plot of the True Positive Rate
(RTP) (i.e., liquefaction triggered, as predicted) versus the False
Positive Rate (RFP) (i.e., liquefaction is predicted to trigger, but did
not) for varying threshold values (e.g., minimal acceptable FS).
A conceptual illustration of ROC analysis, including the relation-
ship among the distributions for positives and negatives, the thresh-
old value, and the ROC curve, is shown in Fig. 2.

Table 1. Factors of safety (FS) for liquefaction hazard assessment

Consequences of liquefaction N1,60cs FS

Settlement ≤15 1.1
≥30 1.0

Surface manifestation ≤15 1.2
≥30 1.0

Lateral spreading ≤15 1.3
≥30 1.0

Source: Data from Martin and Lew (1999).
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In ROC space, a diagnostic test that has no predictive ability
(i.e., a random guess) results in a ROC curve that plots as 1:1 line
through the origin. In contrast, a diagnostic test that has a perfect
predictive ability (i.e., a perfect model) plots along the left vertical
and upper horizontal axes, connecting at the point (0,1) and indi-
cating the existence of a threshold value that perfectly segregates
the data sets (e.g., all cases with liquefaction have FS below this
value and all cases without liquefaction have FS above this value).
The area under the ROC curve (AUC) is equivalent to the proba-
bility that “liquefaction” cases have a lower computed FS than

Fig. 1. Case-history data plotted together with the CRRM7.5 curves for different probabilities of liquefaction: (a) BI14-SPT; (b) Cea18-SPT;
(c) BI14-CPT; (d) Gea19-CPT (deterministic); and (e) Kea13-Vs. The deterministic CRRM7.5 curves are shown as the dashed lines in (a), (c),
and (e), and as the solid lines in (b) and (d).

Table 2. Summary of number of “liquefaction,” “no liquefaction,” and
“marginal” case histories in the databases used in developing different
liquefaction triggering models

Triggering
model

Number of cases

Liquefaction No liquefaction Marginal Total

BI14-SPT 133 116 3 252
Cea18-SPT 113 95 2 210
BI14-CPT 180 71 2 253
Gea19-CPT 180 71 2 253
Kea13-Vs 287 124 4 415
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“no liquefaction” cases. As such, higher AUC indicates better
predictive capabilities (e.g., Fawcett 2005). To put this into per-
spective, a random guess returns an AUC of 0.5, whereas a perfect
model returns an AUC of 1.

The optimum operating point (OOP) in a ROC analyses is
defined as the threshold value (e.g., minimal acceptable FS) that
minimizes the misprediction cost, where cost is computed as
(Maurer et al. 2015c)

cost ¼ CFP × RFP þ CFN × RFN ð2Þ
where CFP and RFP are the cost and rate of false-positive predic-
tions, respectively, and CFN and RFN are the cost and rate of false-
negative predictions, respectively. Normalizing Eq. (2) with respect
to CFN , and equating RFN to 1 − RTP, cost may alternatively be
expressed as:

costn ¼
cost
CFN

¼ CR × RFP þ ð1 − RTPÞ ð3Þ

where CR is the cost ratio defined as CR ¼ CFP=CFN (i.e., the ratio
of the cost of a false-positive prediction to the cost of a false-
negative prediction).

As may be surmised, Eq. (3) plots as a straight line in ROC
space with a slope of CR and represents a contour of equal perfor-
mance (i.e., an iso-performance line). Thus, each CR corresponds
to a different iso-performance line. One such line, with CR ¼ 1
(i.e., false positive costs are equal to false-negative costs) is shown
in Fig. 2(b). The point where the iso-performance line is tangent
to the ROC curve corresponds to the OOP (e.g., the optimal FS
corresponding to a given CR). Thus, by varying the CR values,
a relationship between the optimal FS and CR can be developed.

Results and Discussion

Optimal FS versus CR Relationships

ROC analyses were performed on the distributions of FS shown
in Fig. 3 for “liquefaction” and “no liquefaction” case histories
for each of the five liquefaction triggering models used in this
paper (i.e., BI14-SPT, Cea18-SPT, BI14-CPT, Gea19-CPT, and
Kea13-Vs). As shown in Fig. 3, lognormal distributions were fit
to the “liquefaction” and “no liquefaction” FS histograms for each

of the liquefaction triggering models. The expected value (or mean)
and standard deviation of the FS’s natural logarithm (i.e., μlnFS and
σlnFS) for each distribution are listed in Table 3. The ROC curves
computed using these distributions are shown in Fig. 4(a). Using
each of these ROC curves, optimal values of FS were determined
in conjunction with Eq. (3) for CR values ranging from 0.001 to 2.
A CR of 0.001 corresponds to a scenario in which the costs of
liquefaction are 1,000 times greater than the costs of mitigation
(e.g., a critical facility), in which case the minimal acceptable FS
should be relatively high. In contrast, a CR of 2 corresponds to a
scenario in which the costs of liquefaction are half the costs of mit-
igation (e.g., an open-air parking lot), in which case the minimal
acceptable FS should be relatively low. The relationships between
CR and optimal values of FS for BI14-SPT, Cea18-SPT, BI14-
CPT, Gea19-CPT, and Kea13-Vs are shown in Fig. 4(b).

As may be observed from Fig. 4(b), the optimal FS is inversely
proportional to CR, such that the lower the CR, the higher the
optimal FS (i.e., the appropriate degree of conservatism increases).
Moreover, the optimal FS-CR relationships are specific to the
liquefaction triggering model and associated case-history database.
In other words, for a given CR, the optimal FS is specific to the
liquefaction triggering model being used. For example, forCR ¼ 1,
the optimal FS for BI14-SPT, Cea18-SPT, BI14-CPT, Gea19-CPT,
and Kea13-Vs are 0.86, 1.13, 0.77, 0.78, and 0.77, respectively
[e.g., Fig. 4(b)].

Additionally, the deterministic CRRM7.5 curves (i.e., FS ¼ 1)
for BI14-SPT, Cea18-SPT, BI14-CPT, Gea19-CPT, and Kea13-Vs
have associated CR of ∼0.47, 1.57, 0.36, 0.33, and 0.36, respec-
tively. This is indicative of the degree of conservatism inherent
to the positioning of the deterministic CRRM7.5 curve for each
model, as well as differences in the range of scenarios represented
in the liquefaction case-history databases from which the respective
triggering models were derived. As shown, the associated CR for
FS ¼ 1 are significantly lower than one for BI14-SPT, BI14-CPT,
Gea19-CPT, and Kea13-Vs, suggesting that these models implicitly
treated the cost of false negatives to be significantly higher than
the cost of false positives. On the other hand, the associated CR
for FS ¼ 1 for Cea18-SPT is greater than one (i.e., CR ¼ 1.57 at
FS ¼ 1), suggesting that Cea18-SPT implicitly assumes that the
cost of false negatives to be lower than the cost of false positives.
However, because Cea18-SPT recommend their median (i.e., PL ¼
50%) curve as the deterministic CRRM7.5 curve, it might be
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expected that CR ≈ 1 for FS ¼ 1 (i.e., the cost of false negatives
and false positives are approximately equal). The reason this is not
the case is due to the limited number of case histories in the case-
history database and the way sampling bias was accounted for by
Cetin et al. (2018) in regressing their CRRM7.5 curves (i.e., the way
the overrepresentation of liquefaction case histories versus no
liquefaction case histories in the database, as compared to the true
distribution of these cases in a region impacted by an earthquake,
is accounted for).

As discussed in the Introduction, the choice of the optimal FS
for any engineering project should be guided by the associated
costs (or consequences) of mispredicting liquefaction. As such,
the optimal FS-CR relationships derived herein can be used to

Fig. 3. Distributions of FS for the case-history databases used to develop: (a) BI14-SPT; (b) Cea18-SPT; (c) BI14-CPT; (d) Gea19-CPT; and
(e) Kea13-Vs. The lighter gray bars indicate the overlapping of the histograms of liquefaction and no liquefaction case histories.

Table 3. Expected value (or mean) and standard deviation of the FS’s
natural logarithm (i.e., μlnFS and σlnFS) for the “liquefaction” and “no
liquefaction” case histories distributions for the databases used in
developing the liquefaction triggering models

Triggering
model

Liquefaction No liquefaction

μlnFS σlnFS μlnFS σlnFS

BI14-SPT −0.548 0.364 0.259 0.457
Cea18-SPT −0.456 0.443 0.712 0.813
BI14-CPT −0.701 0.422 0.116 0.584
Gea19-CPT −0.647 0.377 0.098 0.536
Kea13-Vs −0.817 0.451 0.259 0.764
Combined −0.706 0.425 0.203 0.610
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determine triggering model-specific optimal FS for a project.
However, selecting a value for FS for a project that depends on
the triggering model being used will likely cause confusion, despite
a general understanding of the assumptions inherent to each trig-
gering model having different associated levels of conservatisms.
Accordingly, the FS data for the triggering models were combined,
with the exception of the data for Cea18-SPT, and an optimal
FS-CR relationship was derived for this combined case-history
database. The reason that the Cea18-SPT case-history data was ex-
cluded is because their deterministicCRRM7.5 corresponds to PL ¼
50% (i.e., median CRRM7.5 curve), as opposed to PL ≈ 15% used
by the other models.

Fig. 5(a) shows the ROC curve for the combined FS case-
history data and Fig. 5(b) shows the corresponding optimal FS-CR
curve. By combining the FS data from different models, the degree
of conservatism inherent to the associated deterministic CRRM7.5
curves is “averaged out.” Although this averaging is being “forced”

by the authors by using the combined case-history data set, the
need for this will be negated as the consistency in the case-history
databases for each of the triggering model increases (e.g., number
of liquefaction and no liquefaction cases, interpretation of the case
histories, etc.) and the consistency in how the CRRM7.5 curves are
regressed converges. As a result, the use of the generic FS-CR
curve is preferred by the authors for forward analyses over the
model-specific FS-CR curves.

Optimal PL versus CR Relationships

For each of the liquefaction triggering models used in this paper
that have probabilistic variants, there is a one-to-one relationship
between FS and PL (i.e., each FS corresponds to a certain PL),
shown in Fig. 6(a), which is a result of the constraints imposed on
the regression analyses used to develop the probabilistic CRRM7.5
curves. Accordingly, the FS-PL relationships shown in Fig. 6(a)

Fig. 4. ROC analyses of FS data for BI14-SPT, Cea18-SPT, BI14-CPT, Gea19-CPT, and Kea13-Vs: (a) ROC curves; and (b) optimal FS versus CR
curves.

Fig. 5. ROC analyses of FS data combined from BI14-SPT, BI14-CPT, Gea19-CPT, and Kea13-Vs: (a) ROC curve; and (b) optimal FS versus
CR curves.
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can be used in conjunction with the FS-CR curves shown in
Fig. 4(b) to compute PL-CR curves. The resulting PL-CR curves
for BI14-SPT, Cea18-SPT, BI14-CPT, and Kea13-Vs triggering
models are shown in Fig. 6(b).

As may be observed from Fig. 6(b), the optimal PL is directly
proportional to CR such that as CR increases, the corresponding
optimal PL increases. As with the optimal FS-CR curves, the op-
timal PL-CR curves are also specific to the probabilistic liquefac-
tion triggering models and the respective databases used in deriving
them. Accordingly, a “generic” optimal PL-CR curve is also de-
rived. Toward this end, a weighted average of the FS-PL relation-
ships shown in Fig. 6(a) is used in conjunction with the generic
FS-CR curve shown in Fig. 5(b) to compute a generic PL-CR
curve, shown in Fig. 7. The generic PL-CR curve would be used
similarly as the generic FS-CR curve.

Using the Optimal FS/PL versus CR Relationships in
Forward Analyses

To facilitate use of the optimal FS-CR curves shown in Figs. 4(b)
and 5(b), a simple equation for the curves is provided

Optimal FS ¼ c1 · CRc2 þ c3 ð4Þ

where c1, c2, and c3 = regression coefficients and are listed in
Table 4 for each of the triggering models and the combined model.
Similarly, a simple equation for the optimal PL-CR curves shown
in Figs. 6(b) and 7(b) is provided

Optimal PL ¼ d1 þ d2 · CRþ d3 · CR2 þ d4 · CR3 þ d5

· CR4 þ d6 · CR5 ð5Þ

where d1, d2, d3, d4, d5, and d6 = regression coefficients and are
also listed in Table 4 for each of the probabilistic triggering models
and the combined model.

To illustrate how an optimal FS-CR curve can be used to se-
lect an optimal FS for a project based on cost considerations,
the following simple example is presented using the generic opti-
mal FS-CR curve shown in Fig. 5(b). First, consider a site that has a
computed FS of 1 for a design earthquake scenario. If a one-story
residential building is to be built at this site, for which the CR is
estimated as 0.7, using Fig. 5(b), the optimal FS threshold for de-
cision making would be 0.87. Since the computed FS is greater
than the optimal FS for this scenario, it is more economical to leave
the site unimproved and pay for the cost of repairs due to damages
from liquefaction, if it occurs (note that liquefaction triggering and
lateral spreading generally does not pose a risk to life or safety,
e.g., Green and Bommer 2019). On the other hand, if an essential
facility (e.g., a hospital building) is to be built at the site and has
an estimated CR of 0.05, using Fig. 5(b) the optimal FS decision
threshold would be 1.49. In this case, the computed FS is lower
than the optimal FS and thus performing ground improvement
upfront is favorable.

The optimal PL-CR curves are used in a similar manner as the
optimal FS-CR curves (i.e., the predicted PL at a site without any
liquefaction mitigation can be compared with the optimal PL at the
CR of interest to determine whether or not liquefaction mitigation is
worth the expense). It should be noted, however, that for each of the

Fig. 7. Optimal PL versus CR curve for combined triggering models,
computed by using an average of the PL-FS relationships for the
triggering models shown in Fig. 6(a) and the combined data optimal
FS-CR curve shown in Fig. 5(b).

Fig. 6. (a) PL-FS curves for the triggering models; and (b) optimal PL-CR curves computed using the PL-FS curves and the optimal
FS-CR curves.
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liquefaction triggering models used in this paper, there is a one-to-
one relationship between FS and PL (i.e., each FS corresponds to
a certain PL), which is a result of the constraints imposed on the
regression analyses used to develop the probabilistic CRRM7.5
curves. Therefore, the optimal FS − CR curves and optimal PL −
CR curves contain similar information. Also, in current practice,
where the CRRM7.5 curve for a selected value of PL is used in de-
sign in the same manner as a deterministic liquefaction triggering
curve, there is no additional benefit from using PL, in lieu of FS, as
your decision metric. In this same vein, it is important to note that
the probabilistic liquefaction models considered herein postulate a
conditional probability of liquefaction (i.e., PL given a value of
CSR�). Alternatively, a risk-based approach can be used to obtain
an absolute value of the probability of liquefaction (e.g., Kramer
and Mayfield 2007; Green et al. 2020). However, these approaches
require a degree of sophistication, including additional input pa-
rameters that are beyond those commonly used in current practice,
and thus are outside the scope of this paper.

Finally, in the simple preceding example, the CR are simply
stated without explanation, although in general it would be ex-
pected that an essential facility would have a lower CR than a non-
essential facility. However, it can be foreseen that the selection of
the CR for a project may require broader consideration than direct
and indirect costs related to just that project alone. Recall that the
CR is the ratio of costs associated with false-positive predictions to
the costs associated with false-negative predictions. Examples of
direct and indirect costs of false-positive predictions include, for
example, the costs associated with ground improvement, increased
time to completion of the project due to implementation of ground
improvement, and more robust foundation design and construction.
Examples of the direct and indirect costs of false-negative predic-
tions could include the costs associated with property damage,
reconstruction and rehabilitation costs, and temporary housing
costs during reconstruction. Accordingly, broader-scale issues may
also need to be considered in estimating these costs. For example,
the cost of temporarily housing families while repairs are being
made to their single-family houses damaged by liquefaction does
not necessarily scale linearly with the cost associated with just one
house and family. The reason for this is that temporary housing
facilities may be overwhelmed by the large demand if the residents
in several large subdivisions need temporary housing at the same
time. The same is true for the cost of repairing multiple single-
family houses, where the demand for building supplies and skilled
tradesmen may exceed the available capacity. As a result, it is en-
visioned that the CR for a specific project would be determined
both by design engineers for the project and building regulators,
with the latter being more attuned to broader considerations. In line
with this, considerations of life-cycle costs (e.g., the response of
an infrastructure asset to earthquake motions having a range of
return periods) and limitations in the efficacy of selected ground
improvement techniques to mitigate damage could be considered

in estimating CR. Clearly, the adoption of the proposed framework
will shift discussions/debates about what optimal FS or PL should
be used for a project to what CR is most appropriate for a project.
This is more in line with a risk-type philosophy than arguing for a
higher or lower minimal acceptable FS based on heuristic-based
rules of thumb.

Summary and Concluding Remarks

This paper demonstrates how costs of mispredicting liquefaction
triggering can be utilized in selecting an appropriate minimal ac-
ceptable FS against liquefaction (i.e., “optimal” FS) for a project.
Specifically, relationships between the optimal FS and the ratio
of false-positive prediction costs to false-negative prediction costs
(i.e., CR) were derived by performing ROC analyses on five differ-
ent liquefaction triggering models (i.e., BI14-SPT, Cea18-SPT,
BI14-SPT, Gea19-CPT, and Kea13-Vs), in conjunction with their
respective case-history databases. The optimal FS-CR relationships
were found to be specific to the liquefaction triggering models
and associated case-history databases. This is indicative of the
assumptions inherent to each triggering model having different as-
sociated levels of conservatisms, as well as differences in the range
of scenarios represented in the liquefaction case-history databases
from which the respective triggering models were derived. Conse-
quently, a “generic” optimal FS-CR was derived by combining FS
data from the specific models, which “averages out” the degree of
conservatism inherent to the associated deterministic CRRM7.5
curves for the different models. It is noted, however, that the need
for using combined liquefaction case-history data sets will be
negated as the consistency in the case-history databases for
each of the triggering models, and how the CRRM7.5 curves are
regressed increases. For now, the use of the generic FS-CR curve
is preferred by the authors for forward analyses over the model-
specific FS-CR curves.

Using PL as an alternative to FS, relationships between CR and
the optimal PL were also derived using FS-PL relationships in
conjunction with the optimal FS-CR curves. The optimal PL-CR
curves, however, do not provide any additional information over
the optimal FS-CR curves. This is because there is a direct corre-
lation between FS and PL due to the way the probabilistic trigger-
ing models are currently developed.

The costs associated with false-positive and false-negative
predictions that are used to compute CR may require broader
consideration than just the direct and indirect costs related to the
project at hand. The reason for this is these costs do not necessarily
scale linearly with the amount of infrastructure impacted. As a re-
sult, it is envisioned that the CR for a specific project would be
determined both by design engineers for the project and building
regulators, with the latter being more attuned to broader consider-
ations. In line with this, considerations of life-cycle costs (e.g., the
response of an infrastructure asset to earthquake motions having a

Table 4. Regression coefficients for simple models for optimal FS-CR curves and optimal PL-CR curves

Triggering model

Regression coefficients

c1 c2 c3 d1 d2 d3 d4 d5 d6

BI14-SPT 1.831 −0.095 −0.969 0.011040 −0.3857 2.368 −2.088 0.7640 −0.104
Cea18-SPT 8.894 −0.033 −7.762 −0.003392 0.1884 1.021 −1.049 0.4507 −0.0735
BI14-CPT 4.846 −0.045 −4.081 −0.001100 −0.1047 2.353 −2.542 1.1140 −0.1803
Gea19-CPT 4.084 −0.048 −3.308 — — — — — —
Kea13-Vs 4.846 −0.045 −4.081 −0.007239 0.2654 1.238 −1.505 0.7051 −0.1207
Combined 2.345 −0.087 −1.553 0.002455 −0.1860 2.594 −2.829 1.2500 −0.2028
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range of return periods) and limitations in the efficacy of selected
ground improvement techniques to mitigate damage can be consid-
ered in estimating CR.

Finally, the proposed relationships correlate FS and PL to CR
because FS, and less so PL, are common regulatory building re-
quirements. However, FS and PL only represent conditions at a
specific location and depth at a site and do not necessarily reflect
liquefaction damage potential, which is more of a function of the
liquefaction response of the entire soil profile. As a result, corre-
lations relating liquefaction damage potential indices, such as LPI,
LSN, and LPIish (Iwasaki et al. 1978; van Ballegooy et al. 2014;
Maurer et al. 2015d), to CR would seemingly be more appropriate
than optimal FS=PL-CR correlations. In this vein, the framework
proposed herein to develop the optimal FS=PL-CR correlations
could be readily used to develop optimal LPIish-CR correlations,
for example. However, this would require buy-in from regulators
and building code officials in adopting LPIish, for example, in lieu
of FS as a design/performance metric.
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