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Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels —
interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical
treatments. The latter two scenarios can also increase the risk of developing drug resistance.
Although the existence of tumor heterogeneity has been known for two centuries, a clear un-
derstanding of its origin is still elusive, especially at the level of intratumor heterogeneity (ITH).
The coexistence of different subpopulations within a single tumor has been shown to play crucial
roles during all stages of carcinogenesis. Here, using concepts from evolutionary game theory
and public goods game, often invoked in the context of the tragedy of commons, we explore how
the interactions among subclone populations influence the establishment of ITH. By using an
evolutionary model, which unifies several experimental results in distinct cancer types, we
develop quantitative theoretical models for explaining data from in vitro experiments involving
pancreatic cancer as well as in vivo data in glioblastoma multiforme. Such physical and
mathematical models complement experimental studies, and could optimistically provide new
ideas for the design of efficacious therapies for cancer patients.
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1. Introduction

Cancer is frequently described as a genetic disease arising through clonal evolution of
cells. It is well appreciated that cancer is not just one but a group of diseases. Based
on the original cell types and organs, cancer has been classified into more than 100
different types.! From the latest statistics in the United States (see Table 1), it is
estimated that there are more than 1.5 million people diagnosed as cancer patients,
and over one third of them would die in 2019.2 Cancer is the second leading cause of
death worldwide, and it also leads to the highest economic loss, which is estimated at
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approximately $1.16 trillion in 2010.3>* Therefore, cancer has become not only a
major public health issue, but also imposes a great economic burden on the society.

However, we still do not have any effective cure or even the ability to control most
cancer types, although significant breakthroughs have been achieved in the past few
decades for cancer prevention, understanding and even treatment in certain cases.!®
The difficulty in the war against cancer is due to the complexity of this fatal disease,
which exists in many different forms. Furthermore, the highly variable evolutionary
properties also make it extremely difficult to treat.’® In addition, cancer is a mas-
sively heterogeneous disease at different levels.”® Even within the same tumor, it can
contain many different subpopulations with either genetic or epigenetic variations.®
Another aspect which makes the disease even more difficult to study is that cancer
cells are not independent moieties but rather should be viewed as an evolving eco-
system.!® Each cancer cell competes with others for limited resources and space
subject to Darwinian evolution.®*! Also, it is frequently found that different cancer
cell subpopulations cooperate with each other to overcome many biological con-
straints during their development.'® Therefore, we might need new methods and
models to understand the complexity of cancer at single cell level (um size) to tumor
(several milli meters), and finally at the scale of an individual (meters).

In this paper, we first briefly review the complexity of cancer and discuss some
progress in modeling cancer progression with particular emphasis on intratumor
heterogeneity (ITH). Then, illustrate the use of the mathematical model to explain
the phenomena of ITH observed in vitro experiments on pancreatic cancer and an
in vivo study on glioblastoma multiforme (GBM). The theoretical study also pro-
vides some potential insights into cancer treatment methods.

2. Complexity of Cancer
2.1. Cancer types

A recent compilation shows that there are about 40 types of cancers based on the site
of origin, such as lung, kidney, colon cancers and so on (see Table 1).2 Due to the
coexistence of different cell types in some organs, cancers can be further classified as
carcinoma (epithelial cells), sarcoma (connective tissue), myeloma (plasma cells),
leukemia (bone marrow), and lymphoma (cells of the lymph system), blastoma
(precursor cells), etc. If we take kidney cancer as an example, there are renal cell
carcinoma, transitional cell carcinoma, nephroblastomas, and renal sarcoma. The
renal cell carcinoma (RCC) is the most common kidney cancer, contributing to
90% of the cases, and it can be classified into a few subgroups (clear cell RCC,
Papillary RCC, Chromophobe RCC, duct RCC and others) according to the
phenotype of cancer cells.!?!® Indeed, it is quite astonishing that there are more
than 100 different types of cancer known at present (see the full cancer list in
https : | Jwww.cancer.gov/types#k),114
broad principles that drive the origin and evolution of these diseases. Yes, we are
facing not a single disease but hundreds of them. Although all of these diseases share

which explains the difficulty in determining
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Table 1. Cancer types, estimated number of new cancer cases and deaths in
United States, 2019.2

Estimated new cases  Estimated deaths

All sites 1,762,450 606,880
Tongue 17,060 3,020
Mouth 14,310 2,740
Pharynx 17,870 3,450
Other oral cavity 3,760 1,650
Esophagus 17,650 16,080
Stomach 27,510 11,140
Small intestine 10,590 1,590
Colon 101,420 51,020
Rectum 44,180

Anus, anal canal, and anorectum 8,300 1,280
Liver and intrahepatic bile duct 42,030 31,780
Gallbladder and other biliary 12,360 3,960
Pancreas 56,770 45,750
Other digestive organs 7,220 2,860
Larynx 12,410 3,760
Lung and bronchus 228,150 142,670
Other respiratory organs 5,880 1,080
Bones and joints 3,500 1,660
Soft tissue (including heart) 12,750 5,270
Skin (excluding basal and squamous) 104,350 11,650
Breast 271,270 42,260
Uterine cervix 13,170 4,250
Uterine corpus 61,880 12,160
Ovary 22,530 13,980
Vulva 6,070 1,280
Vagina and other genital, female 5,350 1,430
Prostate 174,650 31,620
Testis 9,560 410
Penis and other genital, male 2,080 410
Urinary bladder 80,470 17,670
Kidney and renal pelvis 73,820 14,770
Ureter and other urinary organs 3,930 980
Eye and orbit 3,360 370
Brain and other nervous system 23,820 17,760
Endocrine system 54,740 3,210
blood cancer 176,200 56,770
Other and unspecified primary sites 31,480 45,140

some similar hallmarks as summarized in the landmark reviews,'*® there appears to
be no universal treatment (nor will there be in the near future) for these diseases due
to the lack of understanding of the underlying mechanisms of cancer evolution.

2.2. FEvolution of cancer

In addition to the many faces of cancer that appear in different organs, another
challenge for cancer treatment comes from tumor evolution. As proposed by Nowell
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in 1976, cancer is now widely viewed as a clonal evolutionary process.%!! Due to the
imperfect genome replication process, environment exposures and heredity, a normal
cell can transform into a cancer cell by acquiring genetic mutations, which occur on
the time scale of a few decades.'%!! During cancer progression, tumor cells constantly
face the selective pressures derived from their complex microenvironment, such as
competition from the surrounding healthy cells for nutrients and space for growth.'”
In addition, hypoxia, pH change, immune surveillance and other potential factors all
threaten the survival and growth of tumor cells.!®2° Therefore, tumor cells generate
new traits through continuous evolution, which is just one of the major reasons for
the failure of chemotherapy, radiotherapy and other widely applied methods used to
treat cancer patients.5!!

We have gained considerable knowledge from studies of tumor evolution through
animal models.?"'?2 The advent of many modern techniques, such as next generation
sequencing, has helped us get a deeper understanding for the genetic basis of can-
cer.'® However, it is still very difficult to study tumor evolution in humans due to the
inaccessibility of tumor biopsies from patients at different time points. Instead, the
tumor evolutionary history obtained in most studies is derived from patient samples
at a single time point based on assumptions, which are frequently violated as the
tumor evolves.?? Hence, a clear and complete picture about tumor evolution has not
emerged. Many models have been proposed to describe the tumor evolution process,
such as the linear sequential model, branched, neutral and punctuated evolution of
tumors (see Fig. 1).2*?* One common feature in all these models is that different
subpopulations could appear and coexist in a tumor, which is the cause of pervasive
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Fig. 1. (Color online) Four tumor evolution models. (a) Linear evolution: Cells accumulate driver
mutations (with selective advantage for the cancer cells) sequentially during which selective sweeps occur.
(b) Branching evolution: New mutations appear before selective sweeps are completed and divergent
subclones emerge from the same ancestor. (¢) Neutral evolution: Only passenger mutations (without any
selective advantage) accumulate stochastically in tumor cells. (d) Punctuated evolution: Most of the
detectable subclonal mutations occur in short bursts of time at early stages of cancer evolution. Different
colors represent subclones with different mutations.

cancer heterogeneity.
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2.3. Cancer heterogeneities

Cancer is driven by accumulation of genetic mutations especially the “driver
mutations,” which convey selective advantage to cancer cells. With the advent of
sequencing technology, genome-wide association studies (GWAS) is affordable, thus
giving us a powerful tool to search for cancer driver genes. The list of cancer driver
genes is continuously growing and the number has reached around 300 recently.?*25
A few cancer genes such as TP53 appear in many cancers while each cancer type
usually has its own specific driver mutations. Therefore, different cancer patients
have distinct tumor evolutionary processes, which leads to the interpatient hetero-
geneity (see Fig. 2).® Personalized cancer medicine has been proposed, and is
necessary due to this type of heterogeneity.?”

As the cancer cells escape the primary site and seed other sites of the body, they
finish the transition into the last and fatal stage, referred to as cancer metastasis —
responsible for 90% of cancer patient death.?® Whether new driver mutations are
required for the cancer metastasis is unresolved.?*32 However, distinct new muta-
tions can appear both at the primary and metastatic sites after the spatial isolation is
established among cells at different sites.?* It leads to the next level of heterogeneity,
intrapatient heterogeneity which is one of the reasons for cancer recurrence after
treatment (see Fig. 2).

In addition to the two types of cancer heterogeneities described above, the
intratumor heterogeneity (ITH, see Fig. 2), which refers to the coexistence of dif-
ferent subpopulations in a single tumor, has been found in many cancers.?34 0 ITH
plays a crucial role in almost all stages of cancer such as tumor progression, me-
tastasis, drug resistance and recurrence of cancer.*'™? Therefore, understanding the
ITH is a major step in investigating cancer heterogeneity because it can help design
better therapy to avoid drug resistance and cancer recurrence.

Interpatient Intrapatient Intratumor
heterogeneity heterogeneity heterogeneity

Fig. 2. (Color online) Cancer heterogeneity. Three levels of cancer heterogeneity: interpatient,
intrapatient, and intratumor heterogeneity. Different color dots represent varied tumors or tumor cells
with different genetic mutations.
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The evolutionary models mentioned above all point to the possibility that dif-
ferent subpopulations (with distinct mutations) can coexist in a single tumor. In
these models, the subpopulations interact with each other mainly through cell
competition irrespective of the selective action under linear and branched models or
the drift effect in neutral and punctuated models. However, increasing experimental
evidence found that the cooperation among distinct cell subpopulations in a tumor is
essential for tumor maintenance,** enhanced tumor growth,*® and even cancer me-
tastasis. #3647 Surprisingly, a minor subpopulation is sufficient to support the whole
tumor growth and determine the clinical course.*®°° Hence, the different types of cell-
cell interactions have to be considered to better understand the mechanisms of ITH,
which is often neglected in many theoretical models. The lack of understanding of ITH
greatly impairs the progress of developing more effective therapies for cancer patients.

3. Mathematical Models of ITH
3.1. The multistage model of cancer evolution

In the past few decades, many innovative mathematical models have been proposed
to study the cancer evolutionary process, including cancer initiation, progression,
and metastases.’! A simple multistage model that cancer is driven by a number of
driver mutation events was proposed to explain the age-dependent cancer incidence
rate more than 60 years ago.’> The Moran process accounts for the cell division,
apoptosis, and mutation process in tumor evolution for a fixed cell population size. It
has been widely used to investigate the accumulation of mutations and cancer ini-
tiation.?®®7 Other models which further include the spatial structure of tumors and
its related microenvironment such as the oxygen and nutrient concentrations are
considered to investigate the growth dynamics of tumor by using partial differential
equations or an agent-based model.?362

3.2. ITH under competition and cooperation

Evolutionary models have also been used to study ITH,%3766

results have been obtained from these studies, such as the extent of ITH and factors
influencing ITH. There are two crucial assumptions in these theoretical studies. The
genetic mutations only confer fitness advantage to the cell itself (cell-autonomous
effect), and tumor cells interact with each other through competition. However, there
is increasing evidence that tumors cannot overcome the microenvironmental con-
straints only through autonomous increase of the cell growth rate.®”"° In contrast,
enhancement of survival and proliferation rates through non-cell-autonomous effects

and many insightful

by factors such as metalloproteinases and cytokines are critical for tumor progres-
sion.® Therefore, these factors secreted by certain tumor/normal cells (‘producer’)
can bring cooperation among different cell subpopulations instead of competition.
Such a cooperation can in principle accelerate tumor progression. Instead of one
population accumulating all the mutations required for cancer development,® a few
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partially transformed subpopulations with each containing one or two mutations can
realize this procedure through their cooperation.®!

3.3. Evolutionary game theory

The evolutionary game theory (EGT) provides a novel and unique avenue for in-
vestigating ITH accounting for the interactions among subpopulations of tumor or
between cancer and normal cells.”” 7" The EGT is a subfield of game theory (GT),
which provides mathematical models for studying the strategic interaction among
individuals.”®™ An individual (‘player’) receives a payoff during the game depending
on both the player and also the behavior (‘strategy’) of others. For EGT in cancer
research, the players are cancer or normal cells, and the payoff is their fitness while
the strategies are phenotypes adopted by players.” The advantage of EGT is that it
can describe the time-dependent evolution of the relative abundance of each cell
type, determine the equilibrium conditions and the stability of phenotype that
coexist.’! Here, we briefly describe the EGT. The evolutionary games for two cells of
different types A, and B are frequently represented by the pay-off matrix

A B
A Waa | Wap
B Wpa | Wap

where W;;(I,J = A, B) represents the fitness of the cell type I interacting with
the cell type J. The cell—cell interaction can be direct or indirect and its effect can
also be competition or cooperation due to the influences of space, nutrients, infor-
mation, growth factors and other microenvironmental factors.!”789 Therefore, the
fitness function W;; of the cells can also be expressed by very different mathematical
formula.”™ As the two different cell populations, instead of just two cells, are well-
mixed with each other,® the average fitness (w4, wg) of the two cell types may be
described as

wy = faWaa + (1= fa)Wayp, (1)
wp = (1~ fp)Wpa + f5Wss, (2)

where f,, and fp are the fractions of the cell type A, and B in the population,
respectively. From the fitness functions of the cells, the time-(in)dependent proper-
ties of the cell population as mentioned above can be calculated.

In a few latest studies,®"®? the EGT has been adopted to explain ITH in
pancreatic cancer starting from the simplest case with only two different types
of cancer cells. One cell type can produce a growth factor while the other does not.
The growth factor (often called “public goods”) can be consumed by both cell
types and promote their proliferation. Qualitative conclusions are obtained for the
coexistence of two cell subpopulations which are consistent with experimental
observations.
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4. Public Goods Game

In a recent study,” we investigated the ITH through the “public goods game” among
cancer cells quantitatively. Instead of assuming a constant population size, and ideal
fitness functions, we consider a growing cell population, and took cell growth rate as
the fitness function. Both these quantities can be measured from experiments di-
rectly. In the following, we will briefly introduce the model and discuss some of the
most important results that we discovered.

The public goods game is an economic model, which has extensive applications in
many areas, such as microbial colonies, and insect communities, and even cancer
research.®378875 There are two players in this model based on whether they produce
the public goods (called ‘producer’) or not (‘non-producer’). Both of them derive
benefits from the public goods while the producer usually has to pay a cost for the
public goods production. We investigate the underlying mechanism of ITH during
cancer progression within the framework of public goods game. We will give two
examples to show how cooperation among cancer cell subpopulations can lead to the
establishment of a stable ITH, which could be applicable to many other cancers.

4.1. Models

We cousider two types of cancer cells with one of them producing a public good (see
Fig. 3). In the insightful in vitro experiment,®* the public good is the insulin-like
growth factor II (IGF-II). First, we focus on this experiment and then, we apply the
same idea to describe the ITH observed in an in vivo experiment on glioblastoma

0 Producer Non-Producer '

@ Public goods

Fig. 3. (Color online) Schematic figure for the public goods game of two cell types. The producers
(cyan cells) generate public goods (small blue spheres) which are shared among producer and non-producer
cells (dark red cells). The public goods promote the proliferation of both cell types. The inset rectangle: A
detailed picture shows the circuit of public goods production and the feedback for the proliferation of
producer and non-producer.
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multiforme.?” In the first experiment, both cell types are taken from cancer cells
of mice with insulinomas (a type of pancreatic cancer). One cell type can produce
IGF-II (the producer (+/4)) while the non-producer (—/—) cells have IGF-II gene
deleted, which means they can no longer produce IGF-II but can still consume it from
the environment.

One critical element in using the concept of the public goods game is how to define
the payoff function. Often a rather complex, frequency-dependent function is
assigned to both players.3*®! Here, we use the growth rate as the fitness functions for
both the cell types as they can be measured in experiments directly. A nonlinear
growth function® is found for the growth rate (w_) of the non-producer cells as a
function of IGF-II concentration (c¢), which is well described by the Hill-like function

w_ = ay + M\ c¥/(ad + ), (3)

where a; = 2.0, \; = 18.9, a = 0.7, and a, = 3.2.™* Although it has not been mea-
sured, we expect that the producer cells also have a similar functional form as Eq. (3)
for their fitness (w, ), which leads to

wy = g(c) — po, (4)
where g(c) is the same Hill-like function as in Eq. (3), and p, is the cost paid by
producer cells due to the IGF-II production. The IGF-II concentration (¢) has two
sources once two cell types are mixed with each other. One is from the production of
the producer cells, and the other is supplied exogenously (in the culture medium).
The IGF-II produced by the producer will depend on the fraction f, in the popu-

lation. Therefore, the IGF-II concentration (c, ) available for the producer can be
written as

Cy = af+ + Co, (5)

where a is the coefficient for the allocation of IGF-II produced by +/+ cells, and
co represents the exogenous supply of IGF-II. Similarly, the available IGF-II (c_)
for the non-producer is given by

c_ = bf+ + ¢y (6)

The parameter b is the coefficient of allocation of IGF-II produced by +/+ cells. We
use different parameters a, b to indicate that the producer and non-producer can get
different fraction of IGF-II that are produced by the former cells.

The evolution of the fraction f, (f_) of producers (non-producers) can be derived
from the replicator equations

of, _
= (wy = ) ™

and,

of-
=~ )
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where the average fitness (w) is
(W) =wy fr +w_f, (9)

with f, + f_ =1 being the normalization condition. Let the number of producers
and non-producers be NV, , and N_, respectively. The whole population size, N, is the
sum of NV, and N_. The system size, N, is a time-dependent quantity, which is often
neglected in other models for simplicity.®"?° Here, we describe the time-dependent
changes in the system size, IV, through

ON

ot
Then, we can study the conditions for the coexistence of producers and non-
producers from the equations above.

=w, N, +w_N_=(w)N. (10)

4.2. Unequal allocation of public goods results in stable ITH

The first important result derived using our model is that the emergence of a
stable ITH requires an unequal allocation of public goods between producer and non-
producer cells. The allocation of the public goods produced by the producers is
determined by the ratio, b/a, in Eqgs. (5) and (6). A unity for the value of b/a means
that the two cell types share the public goods equally. Therefore, the two cell types
will have the same fitness function, except for a constant shift p, due to the cost paid
by the producer (see Egs. (3) and (4) and Fig. 4(a)). There is only one stable state
under this condition (see the filled blue dot in Figs. 4(a) and 4(d)), a homogeneous
state consisting of only non-producer would be expected as long as the initial fraction
f+(0) < 1. On the other hand, given b/a = 0 which means producers do not share
any public good with the non-producer. Then, the fitness of the non-producer does
not depend on the fraction of the producer any more. There is a heterogeneous state
but it is unstable under this condition (see the open circle in Fig. 4(a) and the
evolution of f, in Fig. 4(e)). However, we find a stable heterogeneous state if 0 <
b/a <1 (see the filled blue dots in Figs. 4(c) and 4(f)), which indicates that the
producer maintains a higher fraction of the public goods produced. There is a neg-
ative feedback mechanism close to this stable coexisting state, which can be observed
from Fig. 4(c).

To validate our conclusion that it is the unequal allocation of public goods leading
to the establishment of a stable coexist state, we calculated the internal equilibrium
fractions (0 < f%{ < 1) of +/+ cells at different concentrations of serum (c;) which
has been detected in experiments. The +/+ cell fraction is measured after five days
co-culture of +/+ and —/— cells under eleven different initial fractions of cells (with
fo(t=0) almost evenly distributed between 0 and 1) and different amounts of
serum.®! There are three free parameters in our model, a, b, and p,. From the equal
fitness (= 14.4) of producer and non-producer cells and the +/+ cell fraction
approaching 1 at the stable internal state under cy; = 0 observed in the experi-
ments,® the parameter b ~ 8 is obtained from Egs. (3) and (6). Similarly, we can
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Fig. 4. (Color online) (a)—(c): The growth rates of producer (+/+) and non-producer (—/—) cells as a
function of the +/+ cell fraction (f,) at different allocation strategies of IGF-II generated by the +/+
cells. (a) The IGF-II are shared equally between two cell types (b = a = 8), (b) +/+ cells do not share any
IGF-II with —/— cells (b = 0, and a = 8), (c) +/+ cells only share a small fraction of IGF-II with —/— cells
(b =8, and a = 80). The parameter value ¢y = 1 and py = 4.65. The growth rate of +/4(—/—) cells
are shown in solid red (dash-dotted blue) lines. The stable or unstable fixed points are represented by filled
or empty circles, respectively. (d)—(f): The fraction f, () of +/+ cells as a function of time at different
initial conditions corresponding to figures (a)—(c) on the left, accordingly. The growth rate is derived
from the cell’s relative density change at the log phase.®! The time unit is in days. Figure is adopted
from Ref. 74.

derive the values of a and p,; based on the experimental results of internal equilibrium
states. We find that our theoretical model captures the experimental observations
very well (see the upper panel in Fig. 5). No quantitative explanations have been
reached for similar experiments from other models at present. Interestingly, the ratio
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Fig. 5. (Color online) Upper panel: The producer fraction fi, (i = s or us, with s for stable and us for
unstable state) at internal equilibrium states (observed on day 5 under different initial fractions of f (t =
0) in experiments) as a function the levels of serum. The red squares (blue circles) represent stable
(unstable) states. The error bars indicate the upper and lower boundaries observed in experiments. Our
theoretical predictions are illustrated by the solid lines. The parameter values: a = 80, and p, = 4.65.
Lower panel: The time dependence of f, (¢) (the fraction of +/+ cells) at 3% of serum under various initial
conditions. The inset is a zoom in for f,(¢) with f, (0) = 0.05. Figure is adopted from Ref. 74.

of b/a obtained through the comparison between our theoretical results and
experiments is 0.1 which is just located at the interval, we proposed above for the
formation of a stable ITH (see the low panel of Fig. 5 for the illustration of one stable
ITH state).

4.3. Cost py influence cell cooperation

Another important result is that the cost p, paid by producers has a strong influence
on cell cooperation. As the fitness of producers is reduced by p, due to the production
of the public goods, we investigate whether this parameter has any influence on the
cooperation of different subpopulations. From the diagram of the internal equilib-
rium fraction f% of the producer as a function of the exogenous resource level at
varied values of p, (see Fig. 6), we found a critical concentration for exogenous
resources above which there is only one stable homogeneous state consisted of non-
producers. And this critical concentration increases as the value of p, decreases. A
second critical value (see the star symbols in Fig. 6(a)) is observed for exogenous
resources as p, takes small values. There is no stable heterogeneous states after the
exogenous resource level is lower than this critical value.

To better understand the influence of p, on cell cooperation, we calculated a phase
diagram in terms of the initial fraction f, (0) and percentage of serum (see Figs. 6(b)
and 6(c)). There are three distinct phases represented in different colors (pink, blue,
and purple). Two stable homogeneous states consist of either producers (pink region)
or non-producers (blue region). The third phase corresponds to a stable heteroge-
neous state consisted of both subpopulations (purple region). The area of the three
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Fig. 6. (Color online) (a) The producer fraction f, (i = s, us) at internal equilibrium states as a function
of the serum level at different values of py. The red (blue) lines indicate stable (unstable) equilibrium
fractions f,. Arrows and purple stars indicate the two critical serum concentrations. (b) and (c) Phase
diagrams in terms of the initial fraction f,(0) and % of serum. The values of p, in (b) and (c) are 4.65
and 4.00, respectively. There are three stable phases in these two figures. (i) A homogeneous phase
with producers only (see the region in pink color). (ii) A heterogeneous phase with both producers and
non-producers (purple color). The red dashed line indicates the stable equilibrium fraction of producers.
(iii) A homogeneous phase with non-producers only (see the blue color). The red and blue spheres labeled by
+/4 and —/— represent the producer and non-producer cells, respectively. Figure is adopted from Ref. 74.

regions is strongly influenced by the value of p, (see Figs. 6(b) and 6(c)). A het-
erogeneous phase is established at modest levels of exogenous resources and higher
f+(0). We also find that a higher cost paid by the producers actually helps the
establishment of a heterogeneous system (see the change of the purple region in
Figs. 6(b) and 6(c)).

4.4. Cooperation among cancer subpopulations in Glioblastoma
multiforme

Cooperation among different cell types has been found in several types of cancer such
as breast cancer,™ prostate cancer?’ and Glioblastoma multiforme (GBM).% Here,
we take GBM, which is the most aggressive and fatal brain cancer” as an example, to
show how the same model based on public goods explains equally well the mechanism
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of ITH in GBM. Two types of cancer cells are frequently found in GBM with different
expressions of epidermal growth factor receptor (EGFR).?® Apparently, the coexis-
tence of the two cell types in GBM promotes the cancer progression and leads to a
worse prognosis of the patients.?*% Several studies found that the GBM cells with
rearrangement of EGFR gene (A cells) can secrete factors (Interleukin-6 and Leu-
kemia inhibitory factor) to enhance cell proliferation and inhibit its apoptosis.5%:96

A recent study investigated the interactions between GBM cells with amplified
levels of EGFR (referred to as WT cells) and A cells systematically.®® A fixed amount
of cancer cells (2 x 10° cells) with different initial fractions of the two cell types are
injected into athymic nude mice (four to five weeks old). Then, the size of the
established tumors was measured at different times (see the different symbols in
Fig. 7). It is difficult for the WT cells alone to induce a new tumor in the mice (see the
pink upside down-triangles in Fig. 7) while a tumor can be quickly generated by the
A cell alone (see the blue squares in Fig. 7). Meanwhile, a faster tumor growth rate is
found as the initial fraction of A cells increases until it reaches 90% (see the inset of
Fig. 7). However, the maximum growth rate is found at the mixture of 10% WT and
90%A cells but not 100%A cells which seems to indicate a cooperative relation
between these two cell types.

We applied the public goods model to explain the non-trivial experimental
observations summarized above. The WT and A cells are considered to be the non-
producer and producer, respectively. The IL-6 and/or LIF secreted by A cells is the
public goods. We used a simple fitness function (w_) for the WT cell as above which
is given by

w_ =bf,/(1+bf). (11)
-ﬂ’E‘zooo
20004 w wt(100%) ?“"
1 WH(50%) + A (50%)| 3 f
15001 o § w0 ,'%
10004 = DT_'_'_'_'— f’
P 0 5 1 15 20 25”
E 5004 T\me(days)—}‘
g o e e
£ 0 5 10 15 20
o
>
‘g— 2000 A wt(90%)+ A (10%)
5 1500 @ wt(10%) + A (90%)
T T ’

T
0 5 10 15 20
Time (days)

Fig. 7. (Color online) The evolution of the tumor volume. The GBM tumor volume as a function of
time at different initial fractions of WT and A cells. The experimental data are represented by symbols.
The data from the upper panel are used to obtain the three free parameter values (a = 68.4,b = 0.946 and
po = 0.651) in the model. The purple and green curves at the lower panel are theoretical predictions. Error
bars indicate the standard error. The inset gives the complete experimental data. Figure is adopted from
Ref. 74.
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The fitness function (w,) for A cells is
wy =afi/(1+afy) = po. (12)

The different parameters a and b indicate that the public goods (produced by the A
cells) can be shared unequally between the two cell types. There are only three free
parameters in our model, which can be calculated in the following way. The average
fitness of the population is given by (w) = w, as it contains only producer cells with
fi =1 (see Eq. (9)). Therefore, the population size, N, can be calculated from
Eq. (10) which increases exponentially, N = Nye*+!. From the growth curve (see the
blue square in the upper panel of Fig. 6) of the A cells measured in experiments, we
obtain
a
1+a

— po ~ 0.335, (13)

where 0.335 is obtained from the exponential fit. It is found that the two types of cells
grow at the same rate given f, = f_,%° which leads to

0.5a 0.50

gy 096 14
14050 2" 1%050 (14)

In addition, the evolution of N(¢) can be described by N(t) = Nye¥-! given [, = f_,
and w, = w_ as the average fitness (w) = 0.5(w, + w_) = w_. Thus, we obtain the
following expression:

0.50

——— ~0.321 1
14 0.5b 0321, (15)

from the tumor growth curve (orange dots) in the upper panel of Fig. 7. The constant
0.321 is obtained from the exponential fit (see the orange dotted line in Fig. 7).
Therefore, the three parameters in our model can be derived using Egs. (13)—(15),
which leads to, a = 68.4, b = 0.946, and py = 0.651.

To test our model, we predicted the tumor growth behavior at 10% and 90% of A
cells, and found that our predictions agree very well with experimental observations
(see the lower panel of Fig. 7). We also calculated the tumor growth rate as a
function of the fraction of A cells” and found that there is a maximum tumor growth
rate at an intermediate value (=0.77) of the A cells fraction which is consistent with
experimental observations and can be test in future experiments.

Our theory also provides some hints for the frequent observations of both WT
cells and A cells in GBM patient and its poor prognosis. From the evolution of the
fraction of A cells under different initial conditions (Fig. 8(a)), we found that the
heterogeneous state is stable even f, (0) varies from 0.1 to 0.9. Therefore, a quick
recurrence of GBM is possible if some A cells still exist in the tumor. Cooperation
between different cancer types greatly enhanced their survival and progression.
Hence, new drugs and methods should be developed to eliminate such a relation. Our
theory predicts that a rich culture medium can encourage cell competition instead of



Biophys. Rev. Lett. 2020.15:99-119. Downloaded from www.worldscientific.com

by UNIVERSITY OF EXETER LIBRARY on 07/17/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

114 X. Li & D. Thirumalai

0.04

t (days)
(a) (b)

Fig. 8. Prediction of the fraction f, () of A cells as a function of time under distinct initial conditions
(f4+(t =0)) in GBM. (a) Without external supply of public goods (¢, = 0.0); (b) With external supply of
public goods, and the total public goods becomes af, + ¢y (bf. + ¢;) for the producer (non-producer) with
¢g = 1.0. Other parameters are the same as in Fig. 7. The labels in (a) and (b) are the same. Figure is
adopted from Ref. 74.

cooperation, which might provide potential treatment strategies for GBM and other
similar cancer types (see Fig. 8(b)).

5. Discussion

In this paper, we briefly reviewed different aspects of cancer complexity from the
surprisingly long list of cancers. How to deal with such a complex evolving system
poses a big challenge for biologists, clinicians and presents new opportunities for
physicists. The ten hallmarks of cancer summarized by Hanahan and Weinberg in
2011 provide a guideline for understanding the progression of neoplastic disease.!®
Due to the ubiquitous heterogeneity present in cancer, there is no universal treat-
ment method for all cancers although the latest immunotherapy brings great hope in
this direction.”””® A deeper understanding for the cancer evolution and the hetero-
geneity at all levels is a potentially reachable goal that would enable control or even
devise effective treatment of the fatal disease in the future. One of the obstacles
slowing down progress comes from the complex interactions among cancer cells,
which leads to the formation of a complex cancer cell society, and to the emergence of
unexpected phenomena.'® This could serve as a platform for physicists to give de-
tailed and quantitative understandings of the underlying mechanisms of complex
systems using mathematical models. We have provided just one example to illustrate
the possibility of applying physical models in studying important questions in cancer
research. It is quite encouraging that a simple physical model provides a unified
description of different phenomena in pancreatic cancer and GBM in a quantitative
manner. In addition, the model can also be used to explain the origin and mainte-

nance of ITH in other cancers in which similar cell-cell interactions are present.**%!
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These ideas could be useful in microbial colonies, insect communities, human society,
and other systems.”*™1%! We expect that similar physical models and ideas from very
different fields®!!%2 could help us better understand the disease, and might also
provide new ideas and methods for more efficacious cancer therapy.
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