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Spatially heterogeneous dynamics of cells in a
growing tumor spheroid: comparison between
theory and experiments

Sumit Sinha, a Abdul N. Malmi-Kakkada,b Xin Li, b Himadri S. Samantab and

D. Thirumalai*b

Collective cell movement, characterized by multiple cells that are in contact for substantial periods of

time and undergo correlated motion, plays a central role in cancer and embryogenesis. Recent imaging

experiments have provided time-dependent traces of individual cells, thus providing an unprecedented

picture of tumor spheroid growth. By using simulations of a minimal cell model, we analyze the

experimental data that map the movement of cells in a fibrosarcoma tumor spheroid embedded in a

collagen matrix. Both simulations and experiments show that cells in the core of the spheroid exhibit

subdiffusive glassy dynamics (mean square displacement, D(t) E ta with a o 1), whereas cells in the

periphery exhibit superdiffusive motion, D(t) E ta with a 4 1. The motion of most of the cells near the

periphery is highly persistent and correlated directional motion due to cell doubling and apoptosis rates,

thus explaining the observed superdiffusive behavior. The a values for cells in the core and periphery,

extracted from simulations and experiments, are in near quantitative agreement with each other, which

is surprising given that no parameter in the model was used to fit the measurements. The qualitatively

different dynamics of cells in the core and periphery is captured by the fourth order susceptibility,

introduced to characterize metastable states in glass forming systems. Analyses of the velocity

autocorrelation of individual cells show remarkable spatial heterogeneity with no two cells exhibiting

similar behavior. The prediction that a should depend on the location of the cells in the tumor is

amenable to experimental testing. The highly heterogeneous dynamics of cells in the tumor spheroid

provides a plausible mechanism for the origin of intratumor heterogeneity.

1 Introduction

Collective cell movement, involving a group of cells that

are spatially adjacent and display coherent motion for long

periods, controls many processes such as embryogenesis,

tumorigenesis, and wound healing.1,2 A number of factors,

including intercellular interactions, cell division and apoptosis,

regulate the collective movement of cells.1–8 In particular, the

breakdown of strict cellular homeostasis between cell division

and apoptosis, which regulates tissue development and main-

tenance, could be a root cause of a number of cancers.9,10

Cancer metastasis is driven by migration of cells from the

location of the primary tumor to secondary sites.5 There could

be multiple mechanisms underlying the migratory or invasive

potential of cells.1 However, elucidation of these mechanisms

is difficult because of the highly coordinated and many body

nature of their movement.2,11 To decipher the migration of

tumor cells into the surrounding matrix, experimentalists have

studied individual cell dynamics in an evolving three-

dimensional (3D) growing spheroid in vitro12–15 using a variety

of imaging techniques. Typically, the spheroid is embedded in a

collagen or extracellular matrix to mimic in vivo conditions.15–19

These experiments have given direct glimpses of cell dynamics,

which could be exploited to develop and test theoretical concepts

in describing collective motion.

A number of theoretical studies have reported different

scenarios for the dynamics of cell motion. A pioneering

study,20 treating tissues using continuum elasticity theory

supplemented by simulations showed that if the rates of cell

division and apoptosis are equal in the steady state, then the

long time dynamics is diffusive. In other words, the cell mean

square displacement (MSD), which is measurable using imaging

data, grows linearly with time. More recently, this prediction was

confirmed using detailed computer simulations performed in

two dimensions, which established fluid-like behavior if the

birth and apoptosis rates are balanced in the steady state.21
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Thus, under these conditions, the cells undergo fluid-like

diffusion in the long time limit in contrast to the dynamics

in confluent tissues in which cell division and apoptosis are

prohibited.22

A completely different scenario arises, due to non-

equilibrium effects, if there is an imbalance between cell birth

(kb) and apoptosis (ka) rates. Recently, we used simulations and

theory to investigate the dynamics of cells in a growing three

dimensional (3D) tumor in which kb and ka are unequal.
23,24 To

model cancer tumor growth, we used
kb

ka
� 20. In addition to ka

and kb and an appropriate short range cell–cell interaction, the

cell dynamics depends on the microenvironment. In our

model, the sensitivity to the microenvironment is expressed

in terms of a dormancy criterion, determined by the local

pressure (pi) on the ith cell. If pi exceeds a critical pre-

assigned value pc, the cell becomes dormant until a time

when pi o pc. The dormancy criterion serves as a mechanical

feedback that limits the growth of the tissue.25–28 We predicted

that for this model, the dynamics of the cells is spatially

heterogeneous. The cells exhibit highly persistent super-

diffusive dynamics near the tumor periphery and subdiffusive

glass-like dynamics in the core.

Here, we analyze imaging data of a growing 3D spheroid15

using our theoretical framework. We show that predictions of

our model quantitatively capture the salient features noted in

the experiment. There is a marked difference in the dynamics

of cells in the core of the solid tumor compared to those at the

periphery. Typically, the cells in the core exhibit a glass-like

dynamics characterized by subdiffusive motion (MSD increases

sub linearly with time) while those at the periphery undergo

superdiffusive motion (MSD increases as a power law with an

exponent that is greater than unity). More importantly, the

simulation results allow us to show that the dynamics

of individual fibrosarcoma cells imaged in experiments also

exhibit spatially heterogeneous dynamics across the entire

tumor. The extent of heterogeneity varies both spatially and

temporally. This is also reflected in the length scale dependent

fourth order susceptibility, introduced in the context of spin

glasses and structural glasses,29 showing a peak for cells in the

periphery whereas such a peak is absent for cells in the core of

the tumor or it appears at extremely long times. The velocity

correlations for the cells in the core persist over multiple cell

divisions. Remarkably, the massive heterogeneity is manifested

in the velocity correlation of individual cells, which renders

averages meaningless. This key finding has implications for

observation of intratumor heterogeneity.30–32 Comparison

between experimental data and simulations, which were per-

formed without adjusting the model to fit the data, clearly

shows that collective cell motion exhibits a high degree

of spatial heterogeneity. We argue that massive spatial and

temporal heterogeneity could be a universal characteristic in

collective cell dynamics, determined only by an imbalance in

birth and apoptotic rates and mechanical feedback-driven

tumor evolution provided the interactions between cells are

short-ranged.

2 Methods
Experimental data

We analyzed the imaging data of the fibrosarcoma cells15

growing in a collagen matrix using simulations of a minimal

model for tumor growth.33,34 It is important to describe briefly

the relevant experimental details in order to appreciate that the

model used in our simulations (explained in the next section) is

adequate to provide insights into the experimental data. In the

experiments, a HT 1080 (human fibrosarcoma cell line) spher-

oid, with an initial radius of 174 mm, was embedded in a three-

dimensional collagen matrix to mimic in vivo conditions. The

spheroids were grown over 7 days and the trajectories of a few

cells (10% cells were labelled with enhanced green fluorescent

protein) were tracked. The equatorial plane of the spheroid was

imaged at low magnification (10�) with a Nikon swept field

microscope, and the cells were tracked every 14 minutes for

8 hours (using Metamorph image recognition software) on day

3, 5 and 7 of spheroid growth. The number of cells tracked on

day 3, 5 and 7 was 145, 157 and 150 respectively. The data

comprise the 2D projection of the 3D cell trajectory with the

assumption that motion is isotropic in all directions. We were

given only the x,y coordinates of individual cell trajectories.

For this work, we analyzed the data mainly for day 7 unless

mentioned explicitly. The fibrosarcoma cells divide every

tfib = 21 hours, which implies that the tumor spheroid grew

over 8 cell cycles. At the end of day 7, the radius of the tumor,

Ro, was approximately 3 mm.

Simulations

We briefly describe the simulation methods, which we

developed previously.23,35 We simulated a 3D growing tumor

using an off-lattice model adopted from previous studies33,34

where cells are considered as interacting soft deformable

spherical particles that grow stochastically in time and divide

into daughter cells on reaching a critical radius. The two body

interactions between the cells are short ranged, consisting of

two terms, a repulsion one (elastic force) and an attraction one

(adhesion). The magnitude of the elastic force (Felij ) between two

cells of radii Ri and Rj is given by

Fel
ij ¼

hij
3=2

3

4

1� ni
2

Ei

þ
1� nj

2

Ej

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

RiðtÞ
þ

1

RiðtÞ

r ; (1)

where Ei and ni are the elastic modulus and Poisson ratio of the

ith cell. The overlap distance between the two cells is denoted

by hij. The adhesive interaction (Fadij ) is given by

Fad
ij ¼ Aij f

ad1

2
creci c

lig
j þ c

lig
i crecj

� �

; (2)

where Aij is the overlap area between the two interacting cells and

f ad determines the strength of the adhesive bond (creci = cligi = 1).

The net force (Fi) on the ith cell is the vectorial sum of elastic

and adhesive forces that the neighboring cells exert on it. We

performed overdamped dynamics simulations without thermal

noise because the matrix viscosity is assumed to be large.
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Therefore, the equation of motion is taken to be _ri ¼
Fi

g
, where g

is the friction term that models the matrix as a thick gel and ri
is the position of the ith cell.

In the simulations, the cells grow stochastically and divide

on reaching a critical radius. The growth of the ith cell is

dependent on the microenvironment, which is determined by

the pressure pi exerted by neighboring cells. If pi is smaller than

a pre-assigned critical value, pc, the cell grows in size. However,

if pi 4 pc, the ith cell becomes dormant. The cell can switch

between the dormant and growth mode depending on the ratio

of
pi

pc
. The cell volume grows stochastically in time and it divides

into two daughter cells (volume is conserved during cell divi-

sion) on reaching a critical size. The growth of a cell is

controlled by cell cycle time (tmin), which was taken to be

15 hours. Apoptosis can also take place in the simulations

where a cell is randomly removed. The apoptosis rate is given

by ka = 10
�6 s�1. Because ka �

1

tmin

, we are simulating a growing

system. Note that the cell cycle times in experiments (tfib =

21 hours) and simulations (tmin = 15 hours) are comparable.

It should be stressed that neither tmin nor any other para-

meter was tweaked to obtain agreement with the experimental

data.

We initiated the simulations by placing 100 cells whose x,

y, z coordinates were chosen from a normal distribution with

zero mean and a standard deviation of 20 mm. The simulated

tumor spheroid was evolved for 600 000 s or 11.1 tmin. The

trajectories of all the cells were recorded and analyzed in order

to calculate dynamical observables that shed light on the

heterogeneity.

Classification of core and periphery

We arbitrarily classified cells as belonging to the core (periphery)

if their distance from the center, Rc, is less (greater) than

1.5 mm (2 mm). Similarly, in simulations, cells with Rc o

30 mm are classified as belonging to the core whereas cells with

Rc 4 60 mm, are assumed to be in the periphery. The only

purpose of performing this analysis is to show that, on average,

the cell dynamics changes from the core to periphery.

3 Results
Sub-diffusive core and super-diffusive periphery

We first discuss our analysis of the experimental data. Given the

small number of cells (150) imaged in the experiment,15 we

divided the cells into two parts based on their distances from the

center of the spheroid (Rc) (see the left inset in Fig. 1a). We

classified cells as belonging to the core (periphery) if their

distance from the center, Rc, is less (greater) than 1.5 mm

(2 mm). Since, imaging the cells in the core of a spheroid is

technically difficult, there are fewer cells (27) in the core com-

pared to those in the periphery (100). Mean Squared Displace-

ment (MSD), D(t), is one of the metrics that can be readily

evaluated from single particle trajectories.36 We evaluated

D(t � ti,ti) using

D t� ti; tið Þ ¼
1

Nc

X

Nc

k¼1

rkðtÞ � rkðtiÞ½ �2; (3)

where Nc is the number of cells that belong to either the

periphery or the core, and rk(t) is the position of cell k at

time t. We denote ti as the time when measurement of the cell

trajectory begins, and t represents the time of spheroid growth.

In calculating D(t), we did not perform any time average

because the spheroid is far from equilibrium, which could

imply that the behavior of D(t) might depend on the type of

averaging performed.37

In general, we expect that D(t) E ta. If a o 1, then the

dynamics is subdiffusive, which could be suggestive of glass-

like behavior. For a fluid-like motion, a = 1. If a exceeds unity,

then the dynamics would be superdiffusive. Fig. 1a shows that

cells in the tumor core undergo subdiffusive dynamics with

a = 0.66. In contrast, fibrosarcoma cells in the peripheral region

undergo superdiffusive dynamics with a = 1.34 (see the right

inset of Fig. 1a for fits to log(D(t)) vs. log(t), the slope of which

determines a).

In order to understand the spatially heterogeneous anom-

alous diffusion in a growing spheroid (Fig. 1a), we simulated a

freely expanding cell colony in 3D using the methods described

elsewhere.23,33,34 We divided the simulated tumor spheroid

into the core and periphery. In the simulated tumor, cells with

Rc o 30 mm are classified as belonging to the core whereas cells

with Rc 4 60 mm are assumed to be in the periphery. There

exists a substantial length scale difference in what we define as

periphery and core in simulations as compared to experiments

because the size of the spheroid is on the order of mm in

experiments whereas the simulated spheroid reaches sizes on

the order of E0.2 mm. However, the simulations capture the

experimental findings well. For the two spatial regions, we

calculated D(t) for cells as was done for the experiments

(Fig. 1a). Fig. 1b shows that in the limit t 4 tmin, the MSD

for cells in the interior is subdiffusive with a = 0.58, whereas

the cells at the periphery exhibit superdiffusive behavior with

a = 1.52. The plot was generated by tracking cells that

were present in the simulation (note that cells can undergo

apoptosis in simulations) between initial time ti E tmin and the

final time tf E 11.1tmin where tmin = 54 000 s. We averaged the

calculations over 50 such simulations. The a values extracted

from simulations are in near quantitative agreement with

experiments, which is remarkable given that no parameter in

the model was adjusted to describe the experiments. Both

experiments and simulations show that the cells at the tumor

core display glass-like behavior (a o 1) and those in the

periphery exhibit superdiffusive (a 4 1) behavior.

Spatial variations in the cell motilities

The quantitative agreement of a values with experiments allows

us to use simulations to provide nuanced analyses of the cell

trajectories. We sub-divided the simulated tumor spheroid into
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four layers arbitrarily, and calculated D(t) for cells in each layer.

The thickness of each layer is roughly 25 mm. We performed

statistical averages using cells that were in the simulations

between time tmin and 11tmin. In Fig. 1c, the time dependencies

of D(t) are plotted for 4 layers. The results in Fig. 1c reveal two

interesting aspects of the nature of cell motility inside a

growing spheroid. (a) The D(t) curves exhibit a non-uniform

curvature on the timescale (E10tmin). Nevertheless, to illustrate

the spatial variations in the cell motilities, we fit the D(t) curves

by a power law by dividing the total time into two intervals. One

spans Tw1 = 105 s o t o 2.5 � 105 s and the other covers Tw2 =

3 � 105 s o t o 5.5 � 105 s. The fits in both the time intervals

reveal an enhancement in the cell motility as one moves

from core to periphery. The extracted effective exponents

a
Tw1

eff and a
Tw2

eff

� �

show that the cell motility changes from sub-

diffusive to super-diffusive as the distance from the center of

the tumor increases. (b) The exponent values (Fig. 1c caption)

in a given layer decrease a
Tw2

eff o a
Tw1

eff

� �

as time advances

because a cell in the periphery at a given time becomes part

of the core at a later time. Thus, the values of aeff are themselves

time dependent, and their utility is to merely illustrate qualita-

tively the nature of the dynamics of the cells in an

evolving tumor.

The calculated exponents a
Tw1

eff and a
Tw2

eff (obtained by fitting

D(t) B taeff in the first and second time window of Fig. 1c) are

shown in Fig. 1d. We scaled the x-axis by Ro, which is the

approximate radius of the tumor spheroid. In experiments,

Ro E3 mm and for simulations, Ro E0.1 mm. The prediction

that the effective diffusion exponent varies spatially as the dis-

tance from the spheroid center increases can be tested in experi-

ments if the number of imaged cells is increased. We believe that

light sheet microscopy methods could be used to test our

Fig. 1 Spatial variation in dynamics. (a) Mean squared displacement (D(t)) as a function of time for experimentally tracked cells in the core (blue) and

periphery (orange) of a growing spheroid. The measurements15 were performed on day 7 of the growth. A schematic of the core and periphery in terms of

Rc is shown in the upper left. The blue line shows the MSD for cells in the core (Rc o 1.5 mm) and the orange line depicts the MSD for cells in the periphery

(Rc 4 2 mm). The inset shows the plot for log(D(t)) vs. log(t) for cells in the core and periphery, where the periphery MSD has been multiplied by a factor of

10 for clarity. The slope of the curve log(D(t)) vs. log(t), is the value of a in the equation D(t) E ta. The black (red) line in the inset shows the power law fit

yielding a = 1.34 (0.66). (b) Same as (a) except D(t) has been calculated using simulations. The orange line shows the MSD of the periphery cells (Rc 4 60 mm)

whereas the blue line corresponds to the MSD of the cells in the core (Rc o 30 mm). The values of a are in black (red) for cells in the periphery (core). (c) MSD

of cells in different layers in the growing spheroid calculated using simulations. From bottom to top, the MSD curves are for cells whose distance from the

center of the spheroid (Rc) is 0 mmo Rco 25 mm, 25 mmo Rco 50 mm, 50 mmo Rco 75 mm and 75 mmo Rco 100 mm. The curves were fitted by dividing

time into two intervals: the first corresponds to 105 s o t o 2.5 � 105 s, and the second covers 3 � 105 s o t o 5.5 � 105 s. The effective exponent values

(aeff) were calculated using D(t) E taeff. The values of aeff are given next to the curves. (d) Plot showing a
Tw1
eff for Tw1 and a

Tw2
eff for Tw2 as a function of

Rc

Ro

(Ro is

the radius of the tumor defined in the text) for experiments (red disks) and simulations (blue diamond for the shorter time interval, and green diamond for the

longer time interval). The dashed black line is the line where a = 1 below (above), which denotes sub-diffusive (super-diffusive) motion.
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predictions that the dynamics would change continuously from

being jammed to exhibiting super-diffusive behavior.17,38

The van Hove function is non-Gaussian

The anomalous nature of the diffusion of cells inside the tumor

spheroid can be gleaned by calculating the van Hove function

(P(Dx,dt)), which gives the distribution of Dx obtained from

Dxi = xi(t + dt) � xi(t), (4)

where xi(t) is the x coordinate of the ith cell at time t. Fig. 2

shows P(Dx,dt), in which Dx has been time and ensemble

averaged, for the cells tracked in experiments (dt = 28 min)

and simulations (dt = 10 min). If the cells exhibited liquid-like

dynamics, then P(Dx,dt) would be a Gaussian function.39 This

expectation is in sharp contrast with the nature of cell move-

ment seen in Fig. 2. For cells in both the regions, P(Dx,dt)

exhibits a fat tail in the distributions deviating substantially

from Gaussian behavior. However, cells near the periphery take

longer jumps, indicating the fast movement of these cells

compared to cells in the core. As discussed elsewhere, this is

a manifestation of dynamic heterogeneity.40–42

Superdiffusive exponent is invariant under time translation

A growing spheroid is a non-equilibrium system, which means

that the values of any physical observable could depend in

principle on the time of measurement. To test whether the

MSD exponent a depends on the observation time when cell

trajectories are measured, we calculated the time averaged

MSD, D(td), on day 3, day 5 and day 7 of spheroid growth. Time

averaged MSD is defined as

DðtdÞ ¼
1

N

X

N

i¼1

½ri td þ tð Þ � riðtÞ�
2

� �

t
; (5)

where N denotes the total number of cells tracked and h. . .it
refers to the time average. Fig. 3b shows D(td) measurements on

days 3, 5 and 7. To our surprise, the exponents are independent

of time with aE 1.4. This might mean that the tumor cells have

not aged on the experimental time scale.

To ascertain if our simulations are in accord with the analysis of

the experimental data, we calculated the time averaged MSD during

different time periods of spheroid growth. Fig. 3a shows the snap-

shots of simulations at t = 3tmin, t = 5tmin, t = 7tmin and t = 11tmin. In

the simulations, we considered cell trajectories for three time periods

as done in experiments. The three periods were 3tmin o t o 4tmin,

5tmin o t o 6tmin and 7tmin o t o 8tmin. The averaging was

performed over all the cells that were present both at the beginning

and at the end of measurement. Fig. 3c shows the behavior of time

averagedMSDduring the three time intervals. Our simulations show

the same behavior as obtained in experiments, with a = 1.37 for

measurements during the three time intervals.

Self-overlap function and fourth order susceptibility

The extent of spatially heterogeneous dynamics can be further

quantified using the self overlap function (O(l,td))
43,44

O l; tdð Þ ¼
1

Nc

X

Nc

i¼1

Oiðl; tdÞ; (6)

where Nc is the number of cells in the core or periphery of the

tumor spheroid, td is the delay time, and l is the characteristic

length scale associated with the overlap function O(l,td). The

overlap function for the ith cell is given by

Oi(l,td) = hOi(l,td,t)it, (7)

where h� � �it is an average over time. We calculated Oi(l,td,t)

using

Oi(l,td,t) = Y(l � |ri(t + td) � ri(t)|). (8)

Fig. 2 Non-Gaussian behavior of cell displacements. (Top) van Hove

function, (P(Dx)), for cells tracked in the experiments. The red (blue) line

shows P(Dx) for cells in the experiments. The green line is the Gaussian fit.

(Bottom) P(Dx) for cells tracked in simulations where the red (blue) line

represents cells in the periphery (core). The green line is the Gaussian fit.

There is a striking similarity, except for the length scale, between the

simulation and experimental results.
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The length, l, serves as the cutoff distance for which the

Heaviside function (Y(l � |ri(t + td) � ri(t)|)) is equal to unity

(zero), if l is greater (smaller) than |ri(t + td)� ri(t)|. Thus, Oi(l,td)

measures the degree of movement of cells in the time td. We

first calculated O(l,td) using the experimental imaging data.

Fig. 4a shows the difference in the decay of O(l,td) of the cells in

the core (Rc o 1.5 mm) and the periphery (Rc 4 2 mm). The

value of l was chosen as 100 mm because on this length scale,

the difference between the dynamics of the interior and per-

iphery cells are vivid (see Fig. 1a). Fig. 4a shows the stark

difference in the dynamics of cells in the core, which exhibit a

slow dynamics compared to cells near the tumor boundary,

which is also reflected in Fig. 1a. The plot of O(l,td) for cells in

the periphery was fitted to an exponential function Ae�
td
t

� �

,

which yielded t = 0.3tfib (tfib is the cell doubling time of the

fibrosarcoma cells).

We also calculated O(l,td) from simulations using l ¼
10

3
mm,

which is small compared to l = 100 mm, due to the difference in

spheroid sizes. However, the length scale, l, in both experi-

ments and simulations satisfies the criterion
l

Ro

� �

E

¼
l

Ro

� �

S

,

where Ro is the radius of the tumor, and the subscripts E and S

refer to experiments and simulations, respectively. With this

criterion, the experimental and simulation results could be

compared on an equal footing. As mentioned earlier, Ro

for experiments is 3 mm and for simulation, it is 0.1 mm.

Fig. 4b shows the difference in the overlap function of

cells in the interior (Rc o 30 mm) and the periphery region

(Rc 4 60 mm) for the simulated tumor spheroid. The behavior

of the overlap function calculated in simulations qualitatively

matches with the experiments for the core cells. The exponen-

tial fit for the decay of O(l,td) Ae�
td
t

� �

yielded tp = 0.6tmin and

tc = 3.2tmin for the cells in the core and periphery, respectively.

The decay time, t, for the cells in the periphery, obtained using

simulations (tp = 0.6tmin) is in good agreement with the

experiments (t = 0.3fib). However, it is difficult to compare the

behavior of O(l,td) for cells in the core between experiments and

simulations because the cells were not imaged for a sufficient

time in the experiments (the O(l,td) curve does not decay

substantially). For cells in the core, the relaxation time tc =

3.2tmin (see Fig. 4b obtained from simulations) is six times

longer than tp
tc

tp
� 6

� �

. Hence, we hypothesize that the ima-

ging needs to be performed for at least six times longer than the

current observation time to observe the relaxation of O(l,td) for

cells in the core.

Spatial variations in X(l,td)

We sub-divided the tumor spheroid into multiple layers and

calculated O(l,td) for cells in a given layer. Fig. 4c shows the

dependence of O(l,td) as a function of distance from the center

of the spheroid. The cells in the inner most layer exhibit very

Fig. 3 The long time MSD exponent is approximately independent of time in a growing spheroid. (a) Snapshots from the simulations showing the growth

of the tumor spheroid. The leftmost snapshot is taken at t = 3tmin (E500 cells), followed by t = 5tmin (E1200 cells), t = 7tmin (E2200 cells) and t = 11tmin

(E6000 cells). The black line below denotes the time axis with labels denoting the time of the snapshot. (b) Time averaged D(t) for experimentally tracked

cells on days 3, 5 and 7. The blue line corresponds to day 3, the red line corresponds to day 5 and the green line corresponds to day 7. The black and red

lines show power law exponents of 1.41 and 1.48, respectively. (c) Time averaged D(t) of simulated cells for 3 observation times. The blue line corresponds

to the observation time of 3tmin o t o 4tmin, red corresponds to the observation time of 5tmin o t o 6tmin and green corresponds to the observation

time of 7tmin o t o 8tmin. The black line corresponds to the power law exponent of 1.375.
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slow glass-like dynamics compared to those in the outermost

layer. In order to further distinguish between the slow and fast

dynamics in different layers in the spheroid, we calculated the

fourth order susceptibility (w4(l,td)),
29

w4(l,td) = Nc[hOi(l,td,t)
2i � hOi(l,td,t)i

2]. (9)

Fig. 5a and b show w4(l,td) as a function of td for cells in the core

and periphery in experiments and simulations, respectively.

Both figures show qualitatively identical behavior with cells in

the periphery exhibiting a peak in w4(l,td). We should note that

in simulations, w4(l,td) for cells in the core exhibits a peak,

which is absent in the experiments. As explained earlier, this is

because the peak in w4(l,td), which usually appears when

O l; tpeak
	 


¼
1

e
, for cells in the core would occur at longer time

scales
tc

tp
� 6

� �

.

To understand the behavior of w4(l,td) as a function of Rc, we

sub-divided the simulated tumor spheroid into several layers.

Fig. 5c shows the behavior of w4(l,td) for cells as a function of

distance from the center of the spheroid (Rc). We note two

interesting aspects from the behavior of w4(l,td). Firstly, the

position of the peak in w4(l,td), which corresponds to the

maximal heterogeneity in the movement of cells on the length

scale l, shifts to the right due to the slow dynamics as we

approach the center of the tumor spheroid. Secondly, the

amplitude of the peak in w4(l,td), which corresponds to the

growing dynamical correlation length,45 initially increases (see

inset of Fig. 5c) and then decreases as a function of distance

from the spheroid.

Cells in the periphery undergo directed and highly persistent

motion

The massively heterogeneous nature of cell motility within a

single tumor spheroid can be highlighted using the time-

dependent changes in the trajectories of individual cells. We

first analyzed the directionality of individual cell movement as

a function of distance from the center of spheroid (Rc) by

calculating the straightness index (SI),46

SI Rcð Þ ¼
1

Nr

X

Nr

i¼1

jri tfð Þ � riðtiÞj
P

jdriðtÞj
: (10)

The numerator in the above equation is the magnitude of the

net displacement of the ith cell between time ti and time tf.

The denominator is the total length of the trajectory of the ith

cell, and Nr is the number of cells between Rc and Rc + dRc.

Fig. 4 (a) Self-overlap function (O(l,td)) for experimentally tracked cells as a function of delay time td with l = 100 mm. The orange line shows the overlap

function for cells near the periphery (Rc 4 2 mm) and the blue line represents cells in the core (Rc o 1.5 mm). The black line is an exponential fit. (b) Self-

overlap function for simulated cells as a function of delay time td with l ¼
10

3
mm. The orange line shows O(l,td) for periphery cells (Rc 4 60 mm) whereas

the blue line corresponds to O(l,td) for cells in the core (Rc o 30 mm). (c) Time dependence of O(l,td) for cells in different layers of the spheroid. From top

to bottom, O(l,td) curves are for cells whose distance from the center of spheroid (Rc) is 10(i � 1) mm o Rc o 10i mm, for all i = {1,2,. . .,10}. The dashed

arrow indicates the decreasing distance from the center of the tumor spheroid along its direction (Rck).
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For experiments,
dRc

Ro

¼ 0:14 whereas
dRc

Ro

¼ 0:1 for simulations. If

SI is unity, then the cells move along a perfectly straight trajectory.

Fig. 6a, which displays the straightness of trajectories of cells

calculated using experimental data in a growing spheroid on day 7

during 8 hours of imaging, shows clearly that straightness of the

trajectory increases as the distance of the cell from the spheroid

core increases. We also evaluated SI (Rc) (see Fig. 6b) in the

simulations using ti = tmin and tf = 11.1tmin. The behavior of SI

(Rc) agrees well with the trends observed in the experiments. The

cells in the core (periphery) have SI - 0 (SI - 1).

Massive spatially heterogeneous dynamics

To further illustrate the difference in the directed motility of

cells in the periphery and the core, we calculated the persis-

tence of individual cell movements in both experiments and

simulations. We defined persistence (P(td)) using the velocity of

the cells as

P tdð Þ ¼
1

Nc

X

Nc

i¼1

v̂i tþ tdð Þ � v̂iðtÞh it: (11)

In eqn (11), v̂i(t) is the unit velocity vector of the ith cell at time t,

Nc is the number of cells in the spheroid core or the periphery,

td is the delay time, and h� � �it refers to the time average.

Fig. 6c and d show the P(td) curves as a function of td calculated

from experimental data and simulations, respectively. We

calculated P(td) from simulations using the cells that were

present during the time interval of 10tmin and 11.1tmin. Cells

in the periphery move in a highly persistent (directed motion

with hardly any decay in P(td) as td changes) manner compared

to cells in the interior. The results in these figures show

dramatically that there are substantial cell-to-cell variations in

P(td) with no two cells exhibiting similar behavior. In particular,

there is widespread heterogeneity in trajectories of individual

cells (see P(td) for individual cells, which are denoted by thin

lines). This finding is also reminiscent of glassy systems,

characterized by large subsample to subsample fluctuations

within a single large sample of glass.47 The results in Fig. 6c

and d imply that averages, shown in dark colors, have no

physical meaning, and could provide misleading information.

The massively spatially heterogeneous dynamics of individual

cells during collective movement might be a plausible mecha-

nism for the origin of intratumor heterogeneity.30–32

4 Discussion

We have used simulations of a minimal model23 to analyze

experimental results15 where individual cell trajectories were

Fig. 5 (a) Fourth order susceptibility (w4(l,td)) determined by the variance in O(l,td) for experimentally tracked cells. w4(l,td) for cells in the core (periphery) is

shown in blue (orange). (b) w4(l,td) for cells tracked in simulations. Blue (orange) line shows w4(l,td) for cells in the core (periphery). (c) Layer by layer fourth

order susceptibility (w4(l,td)) determined by variance in O(l,td). From top to bottom (except the innermost layer shown in sky blue), w4(l,td) curves for cells

whose distance from the center of spheroid (Rc) is 10(i� 1) mmo Rco 10i mm, for all i = {4,. . .,8}. The innermost layer corresponds to 80 mmo Rco 100 mm. In

the inset, the black (blue) curve corresponds to w4(l,td) for 20 mm o Rc o 30 mm (0 mm o Rc o 20).
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monitored using fluorescence microscopy in a tumor spheroid

embedded in a 3D collagen matrix. Remarkably, without

adjusting any parameter in the model to obtain agreement

with the experiment, the exponents characterizing the mean

square displacement of cells in the core and periphery are in

quantitative agreement with values extracted from experi-

mental data. This allowed us to dissect the remarkable spatial

and temporal variations in the dynamics of the cells from the

center to the periphery of the tumor. Both experiments and

simulations unveil that in the peripheral region of the spher-

oid, cells exhibit highly persistent super-diffusive dynamics

whereas the motion in the tumor interior is sub-diffusive.

The sluggish cell dynamics in the core is reminiscent of

relaxation in supercooled liquids as they undergo a transition

to a glassy state.31 Using concepts from glass transition theory,

we showed that higher order susceptibility of the cells near the

tumor periphery in experiments, which are fully accounted for

in the simulations, shows a peak at t E 5.6 hours – the

approximate time at which coherent motion occurs. A similar

calculation for the interior jammed cells shows a peak that is

likely to be present at much longer time scales. The difference

in the fourth order susceptibility illustrates the spatial and

temporal heterogeneity. Fuller analyses of the simulation results

confirm that the dynamics is massively heterogeneous with

substantial cell-to-cell variations. The dynamics of individual

cells varies greatly depending on their spatial locations in the

tumor. We predict that the exponents associated with the mean

square displacement should change continuously as a function

of cell distance from the center of the spheroid. This prediction,

which already has partial support (see Fig. 1d), could be further

tested by imaging experiments that track a much larger number

than is currently possible.

The excellent agreement between simulations, which were not

intended to model the specifics of the growth of fibrosarcoma

tumor spheroid in a 3D collegen matrix, and experiments allows

us to suggest generic mechanisms that govern the growth of

spheroids. Besides the short-range cell–cell interactions, the

parameters that control tumor expansion in our simulations are

the asymmetry between cell birth (kb) and apoptosis rates (ka), and

a dormancy factor that is expressed in terms of a pressure

threshold that a cell experiences. The imbalance (kb c ka)

produces self-generated active forces48 that act in a directed

Fig. 6 (a) Straightness index (SI) of cells as a function of distance from the center of the spheroid
Rc

Ro

� �

obtained using the experimental data. The inset

shows the scatter plot of SI vs.
Rc

Ro

for all cells tracked. The plot in the main figure was generated by binning the data in the inset. (b) SI for the simulated

cells as a function of distance. The inset shows the SI for all the cells. The data in the inset were binned to generate the main figure. (c) Persistence (P(td))

function defined as hv̂(t + td)�v̂(t) it for experimentally tracked cells. The red line depicts P(td) for cells in the periphery (Rc 4 2 mm) and blue line shows the

P(td) for cells in the core (Rc o 1.5 mm). The red and blue thin lines are P(td) for individual cells. (d) P(td) for simulated cells. The red (blue) line depicts P(td)

for cells in the periphery (core). The red (blue) thin lines are P(td) for individual cells in the periphery (core). (d) P(td) for simulated cells with red line for cells

in the periphery (Rc 4 60 mm) whereas blue line is for cells in the core (Rc o 30 mm). The red and blue thin lines are P(td) for individual cells. In both

experiments and simulations, there are substantial heterogeneities among individual cells.
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manner on cells that are close to the periphery, facilitating their

persistent motion. Such forces in cells are related to myosin-

based contractile stresses, which have been argued to be a

major factor in directed growth.15 Our previous study also

suggested (see especially Fig. 14 in ref. 23) that there must be

a high degree of correlation between the movement of neigh-

boring cells at the tumor periphery. In other words, the super-

diffusive behavior is a consequence of collective correlated

motion of cells near the boundary. In an expanding tumor,

there is an outward radial stress, arising from an imbalance

between the rates of cell birth and apoptosis, which renders the

cells on the periphery superdiffusive. Because these arguments

are general, we propose that global dynamics of a growing

spheroid must exhibit the features of super-diffusive motion in

the periphery, jamming in the interior, and a high degree of

spatial heterogeneity in the movement of individual cells.

Finally, it is likely that the non-equilibrium dynamics, arising

due to kb c ka, may also be relevant in other situations such as

embryogenesis and wound healing.

A posteriori rationale for observing super-diffusive behavior is

that there is a radial flow that thrusts the cells at the boundary

outward. Although this is certainly correct, it should be noted

that the force leading to the radial velocity is not explicitly

described in the model but is self-generated by the birth and

apoptotic processes.23 Moreover, such a force, which is inherent

to the physics of tumor growth in the model, has to be persistent

in order to observe super-diffusive behavior (i.e., act over several

cell doubling times). Moreover, biologically relevant parameters

pc;
kb

ka

� �

could be chosen to entirely suppress the super-diffusive

behavior even though the tumor expands. Thus, the dynamics in

the model is a complex interplay between short range forces as

well as the criterion for dormancy, and cell birth and apoptosis

rates. It is worth emphasizing that the good agreement between

our findings and the analysis of the experimental data implies

that a similar mechanism is operative in the collective move-

ment of fibrosarcoma cells against the collagen matrix. This,

perhaps, is the major surprise in this study.

We have captured quantitatively the spatially heterogeneous

dynamics of cells in a growing tumor. Analysis of the experi-

mental data, which provide the time traces of a small number

of individual cells,15 reveals that the core cells exhibit sub-

diffusive dynamics (D(t)B ta, where a = 0.66) and those near the

periphery undergo super-diffusive dynamics (D(t) B ta, where

a = 1.34). Remarkably, without adjusting any parameter, we

predict that cells in the core (periphery) exhibit sub-diffusive

(super-diffusive) dynamics with a = 0.57(1.52). Comparison with

experiments shows that there is only one potential limitation.

Due to differences in the size of the simulated and experi-

mental tumor, we had to choose different length scales while

comparing the overlap function and fourth order susceptibility.

Nevertheless, the qualitative insights obtained from our work

provide a way to explore the dynamics of tumor evolution

by varying the parameters that are most relevant biologically

(pc, ka and kb). Using the velocity autocorrelation function, we

revealed the massive dynamical heterogeneity of cells in an

expanding tumor, which makes the notion of mean less relevant.

This cell to cell variation is an example of phenotypic heterogeneity

and our work will be important in providing a mechanism of the

origin and maintenance of intratumor heterogeneity.
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Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 20863–20868.

21 D. Matoz-Fernandez, K. Martens, R. Sknepnek, J. Barrat and

S. Henkes, Soft Matter, 2017, 13, 3205–3212.

22 D. Bi, X. Yang, M. C. Marchetti and M. L. Manning, Phys.

Rev. X, 2016, 6, 021011.

23 A. N. Malmi-Kakkada, X. Li, H. S. Samanta, S. Sinha and

D. Thirumalai, Phys. Rev. X, 2018, 8, 021025.

24 H. S. Samanta and D. Thirumalai, Phys. Rev. E, 2019,

99, 032401.

25 B. I. Shraiman, Proc. Natl. Acad. Sci. U. S. A., 2005, 102,

3318–3323.

26 K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha,

T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze

and A. Simon, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110,

14843–14848.

27 A. D. Conger andM. C. Ziskin, Cancer Res., 1983, 43, 556–560.

28 A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal,

D. K. Fygenson and B. I. Shraiman, Proc. Natl. Acad. Sci.

U. S. A., 2012, 109, 739–744.

29 T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. A: At., Mol.,

Opt. Phys., 1988, 37, 4439.

30 V. Almendro, A. Marusyk and K. Polyak, Annu. Rev. Pathol.:

Mech. Dis., 2013, 8, 277–302.

31 T. Kirkpatrick and D. Thirumalai, Rev. Mod. Phys., 2015,

87, 183.

32 X. Li and D. Thirumalai, J. R. Soc., Interface, 2019,

16, 20180820.
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