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Spatially heterogeneous dynamics of cells in a
growing tumor spheroid: comparison between
theory and experiments
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Collective cell movement, characterized by multiple cells that are in contact for substantial periods of
time and undergo correlated motion, plays a central role in cancer and embryogenesis. Recent imaging
experiments have provided time-dependent traces of individual cells, thus providing an unprecedented
picture of tumor spheroid growth. By using simulations of a minimal cell model, we analyze the
experimental data that map the movement of cells in a fibrosarcoma tumor spheroid embedded in a
collagen matrix. Both simulations and experiments show that cells in the core of the spheroid exhibit
subdiffusive glassy dynamics (mean square displacement, A(t) ~ t* with o < 1), whereas cells in the
periphery exhibit superdiffusive motion, A(t) ~ t* with o« > 1. The motion of most of the cells near the
periphery is highly persistent and correlated directional motion due to cell doubling and apoptosis rates,
thus explaining the observed superdiffusive behavior. The o values for cells in the core and periphery,
extracted from simulations and experiments, are in near quantitative agreement with each other, which
is surprising given that no parameter in the model was used to fit the measurements. The qualitatively
different dynamics of cells in the core and periphery is captured by the fourth order susceptibility,
introduced to characterize metastable states in glass forming systems. Analyses of the velocity
autocorrelation of individual cells show remarkable spatial heterogeneity with no two cells exhibiting
similar behavior. The prediction that o should depend on the location of the cells in the tumor is
amenable to experimental testing. The highly heterogeneous dynamics of cells in the tumor spheroid
provides a plausible mechanism for the origin of intratumor heterogeneity.

2,11

nature of their movement.”"" To decipher the migration of

tumor cells into the surrounding matrix, experimentalists have

Collective cell movement, involving a group of cells that
are spatially adjacent and display coherent motion for long
periods, controls many processes such as embryogenesis,
tumorigenesis, and wound healing."> A number of factors,
including intercellular interactions, cell division and apoptosis,
regulate the collective movement of cells."”® In particular, the
breakdown of strict cellular homeostasis between cell division
and apoptosis, which regulates tissue development and main-
tenance, could be a root cause of a number of cancers.”'°
Cancer metastasis is driven by migration of cells from the
location of the primary tumor to secondary sites.” There could
be multiple mechanisms underlying the migratory or invasive
potential of cells." However, elucidation of these mechanisms
is difficult because of the highly coordinated and many body
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studied individual cell dynamics in an evolving three-
dimensional (3D) growing spheroid in vitro'> "> using a variety
of imaging techniques. Typically, the spheroid is embedded in a
collagen or extracellular matrix to mimic in vivo conditions.">™*°
These experiments have given direct glimpses of cell dynamics,
which could be exploited to develop and test theoretical concepts
in describing collective motion.

A number of theoretical studies have reported different
scenarios for the dynamics of cell motion. A pioneering
study,>® treating tissues using continuum elasticity theory
supplemented by simulations showed that if the rates of cell
division and apoptosis are equal in the steady state, then the
long time dynamics is diffusive. In other words, the cell mean
square displacement (MSD), which is measurable using imaging
data, grows linearly with time. More recently, this prediction was
confirmed using detailed computer simulations performed in
two dimensions, which established fluid-like behavior if the
birth and apoptosis rates are balanced in the steady state.>'
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Thus, under these conditions, the cells undergo fluid-like
diffusion in the long time limit in contrast to the dynamics
in confluent tissues in which cell division and apoptosis are
prohibited.?*

A completely different scenario arises, due to non-
equilibrium effects, if there is an imbalance between cell birth
(kp) and apoptosis (k,) rates. Recently, we used simulations and
theory to investigate the dynamics of cells in a growing three
dimensional (3D) tumor in which &, and k, are unequal.**** To
model cancer tumor growth, we used Ko ~ 20. In addition to k,

a

and kp, and an appropriate short range cell-cell interaction, the
cell dynamics depends on the microenvironment. In our
model, the sensitivity to the microenvironment is expressed
in terms of a dormancy criterion, determined by the local
pressure (p;) on the ith cell. If p; exceeds a critical pre-
assigned value p., the cell becomes dormant until a time
when p; < p.. The dormancy criterion serves as a mechanical
feedback that limits the growth of the tissue.**>® We predicted
that for this model, the dynamics of the cells is spatially
heterogeneous. The cells exhibit highly persistent super-
diffusive dynamics near the tumor periphery and subdiffusive
glass-like dynamics in the core.

Here, we analyze imaging data of a growing 3D spheroid"’
using our theoretical framework. We show that predictions of
our model quantitatively capture the salient features noted in
the experiment. There is a marked difference in the dynamics
of cells in the core of the solid tumor compared to those at the
periphery. Typically, the cells in the core exhibit a glass-like
dynamics characterized by subdiffusive motion (MSD increases
sub linearly with time) while those at the periphery undergo
superdiffusive motion (MSD increases as a power law with an
exponent that is greater than unity). More importantly, the
simulation results allow us to show that the dynamics
of individual fibrosarcoma cells imaged in experiments also
exhibit spatially heterogeneous dynamics across the entire
tumor. The extent of heterogeneity varies both spatially and
temporally. This is also reflected in the length scale dependent
fourth order susceptibility, introduced in the context of spin
glasses and structural glasses,>® showing a peak for cells in the
periphery whereas such a peak is absent for cells in the core of
the tumor or it appears at extremely long times. The velocity
correlations for the cells in the core persist over multiple cell
divisions. Remarkably, the massive heterogeneity is manifested
in the velocity correlation of individual cells, which renders
averages meaningless. This key finding has implications for
observation of intratumor heterogeneity.**> Comparison
between experimental data and simulations, which were per-
formed without adjusting the model to fit the data, clearly
shows that collective cell motion exhibits a high degree
of spatial heterogeneity. We argue that massive spatial and
temporal heterogeneity could be a universal characteristic in
collective cell dynamics, determined only by an imbalance in
birth and apoptotic rates and mechanical feedback-driven
tumor evolution provided the interactions between cells are
short-ranged.
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2 Methods

Experimental data

We analyzed the imaging data of the fibrosarcoma cells"®
growing in a collagen matrix using simulations of a minimal
model for tumor growth.>*** It is important to describe briefly
the relevant experimental details in order to appreciate that the
model used in our simulations (explained in the next section) is
adequate to provide insights into the experimental data. In the
experiments, a HT 1080 (human fibrosarcoma cell line) spher-
oid, with an initial radius of 174 um, was embedded in a three-
dimensional collagen matrix to mimic in vivo conditions. The
spheroids were grown over 7 days and the trajectories of a few
cells (10% cells were labelled with enhanced green fluorescent
protein) were tracked. The equatorial plane of the spheroid was
imaged at low magnification (10x) with a Nikon swept field
microscope, and the cells were tracked every 14 minutes for
8 hours (using Metamorph image recognition software) on day
3, 5 and 7 of spheroid growth. The number of cells tracked on
day 3, 5 and 7 was 145, 157 and 150 respectively. The data
comprise the 2D projection of the 3D cell trajectory with the
assumption that motion is isotropic in all directions. We were
given only the x,y coordinates of individual cell trajectories.
For this work, we analyzed the data mainly for day 7 unless
mentioned explicitly. The fibrosarcoma cells divide every
Tfip = 21 hours, which implies that the tumor spheroid grew
over 8 cell cycles. At the end of day 7, the radius of the tumor,
R,, was approximately 3 mm.

Simulations

We briefly describe the simulation methods, which we
developed previously.?*** We simulated a 3D growing tumor
using an off-lattice model adopted from previous studies®*=>*
where cells are considered as interacting soft deformable
spherical particles that grow stochastically in time and divide
into daughter cells on reaching a critical radius. The two body
interactions between the cells are short ranged, consisting of
two terms, a repulsion one (elastic force) and an attraction one
(adhesion). The magnitude of the elastic force (£5/) between two
cells of radii R; and R; is given by

]1,‘]'3/2

el
) 1—u,-2+1—y,-2 L1 '
4 E; E,‘ R[(l) R,‘(l)

where E; and v; are the elastic modulus and Poisson ratio of the
ith cell. The overlap distance between the two cells is denoted
by k. The adhesive interaction (F§) is given by

(1)

Pyt = dy g+ i), @
where 4;; is the overlap area between the two interacting cells and
f29 determines the strength of the adhesive bond (cj*° = ¢/® = 1).
The net force (F;) on the ith cell is the vectorial sum of elastic
and adhesive forces that the neighboring cells exert on it. We
performed overdamped dynamics simulations without thermal
noise because the matrix viscosity is assumed to be large.
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Therefore, the equation of motion is taken to be i; = —, where y
Y

is the friction term that models the matrix as a thick gel and r;
is the position of the ith cell.

In the simulations, the cells grow stochastically and divide
on reaching a critical radius. The growth of the ith cell is
dependent on the microenvironment, which is determined by
the pressure p; exerted by neighboring cells. If p; is smaller than
a pre-assigned critical value, p., the cell grows in size. However,
if p; > p., the ith cell becomes dormant. The cell can switch
between the dormant and growth mode depending on the ratio

of 2. The cell volume grows stochastically in time and it divides
Pe

into two daughter cells (volume is conserved during cell divi-
sion) on reaching a critical size. The growth of a cell is
controlled by cell cycle time (tjin), which was taken to be
15 hours. Apoptosis can also take place in the simulations
where a cell is randomly removed. The apoptosis rate is given

1 . . .
by k. =10"°s™". Because k, < ——, we are simulating a growing

Tmm
system. Note that the cell cycle times in experiments (tg, =

21 hours) and simulations (7, = 15 hours) are comparable.
It should be stressed that neither t,,;, nor any other para-
meter was tweaked to obtain agreement with the experimental
data.

We initiated the simulations by placing 100 cells whose x,
Y, z coordinates were chosen from a normal distribution with
zero mean and a standard deviation of 20 um. The simulated
tumor spheroid was evolved for 600000 s or 11.1 tTy,;,. The
trajectories of all the cells were recorded and analyzed in order
to calculate dynamical observables that shed light on the
heterogeneity.

Classification of core and periphery

We arbitrarily classified cells as belonging to the core (periphery)
if their distance from the center, R., is less (greater) than
1.5 mm (2 mm). Similarly, in simulations, cells with R. <
30 pm are classified as belonging to the core whereas cells with
R. > 60 pm, are assumed to be in the periphery. The only
purpose of performing this analysis is to show that, on average,
the cell dynamics changes from the core to periphery.

3 Results

Sub-diffusive core and super-diffusive periphery

We first discuss our analysis of the experimental data. Given the
small number of cells (150) imaged in the experiment,'® we
divided the cells into two parts based on their distances from the
center of the spheroid (R.) (see the left inset in Fig. 1a). We
classified cells as belonging to the core (periphery) if their
distance from the center, R, is less (greater) than 1.5 mm
(2 mm). Since, imaging the cells in the core of a spheroid is
technically difficult, there are fewer cells (27) in the core com-
pared to those in the periphery (100). Mean Squared Displace-
ment (MSD), A(¢), is one of the metrics that can be readily
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evaluated from single particle trajectories.’® We evaluated
At — t;t;) using

Alt—t,t;) = Nii[fk(f) — (1)), (3)
C k=1

where N, is the number of cells that belong to either the
periphery or the core, and r(¢) is the position of cell k at
time . We denote ¢; as the time when measurement of the cell
trajectory begins, and ¢ represents the time of spheroid growth.
In calculating A(¢), we did not perform any time average
because the spheroid is far from equilibrium, which could
imply that the behavior of A(¢f) might depend on the type of
averaging performed.®’

In general, we expect that A(¢) ~ ¢*. If « < 1, then the
dynamics is subdiffusive, which could be suggestive of glass-
like behavior. For a fluid-like motion, o = 1. If o exceeds unity,
then the dynamics would be superdiffusive. Fig. 1a shows that
cells in the tumor core undergo subdiffusive dynamics with
o = 0.66. In contrast, fibrosarcoma cells in the peripheral region
undergo superdiffusive dynamics with o = 1.34 (see the right
inset of Fig. 1a for fits to log(A(¢)) vs. log(¢), the slope of which
determines «).

In order to understand the spatially heterogeneous anom-
alous diffusion in a growing spheroid (Fig. 1a), we simulated a
freely expanding cell colony in 3D using the methods described
elsewhere.”>*** We divided the simulated tumor spheroid
into the core and periphery. In the simulated tumor, cells with
R. < 30 um are classified as belonging to the core whereas cells
with R. > 60 pm are assumed to be in the periphery. There
exists a substantial length scale difference in what we define as
periphery and core in simulations as compared to experiments
because the size of the spheroid is on the order of mm in
experiments whereas the simulated spheroid reaches sizes on
the order of ~0.2 mm. However, the simulations capture the
experimental findings well. For the two spatial regions, we
calculated A(t) for cells as was done for the experiments
(Fig. 1a). Fig. 1b shows that in the limit ¢ > 7, the MSD
for cells in the interior is subdiffusive with o = 0.58, whereas
the cells at the periphery exhibit superdiffusive behavior with
o = 1.52. The plot was generated by tracking cells that
were present in the simulation (note that cells can undergo
apoptosis in simulations) between initial time ¢; & 7., and the
final time ¢ &~ 11.17.;, Where T, = 54 000 s. We averaged the
calculations over 50 such simulations. The o values extracted
from simulations are in near quantitative agreement with
experiments, which is remarkable given that no parameter in
the model was adjusted to describe the experiments. Both
experiments and simulations show that the cells at the tumor
core display glass-like behavior (« < 1) and those in the
periphery exhibit superdiffusive (« > 1) behavior.

Spatial variations in the cell motilities

The quantitative agreement of o values with experiments allows
us to use simulations to provide nuanced analyses of the cell
trajectories. We sub-divided the simulated tumor spheroid into
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Fig. 1 Spatial variation in dynamics. (a) Mean squared displacement (A(t)) as a function of time for experimentally tracked cells in the core (blue) and
periphery (orange) of a growing spheroid. The measurements'® were performed on day 7 of the growth. A schematic of the core and periphery in terms of
Rc is shown in the upper left. The blue line shows the MSD for cells in the core (R. < 1.5 mm) and the orange line depicts the MSD for cells in the periphery
(Re > 2 mm). The inset shows the plot for log(A(t)) vs. log(t) for cells in the core and periphery, where the periphery MSD has been multiplied by a factor of
10 for clarity. The slope of the curve log(A(t)) vs. log(t), is the value of « in the equation A(t) ~ t*. The black (red) line in the inset shows the power law fit
yielding o = 1.34 (0.66). (b) Same as (a) except A(t) has been calculated using simulations. The orange line shows the MSD of the periphery cells (R, > 60 pm)
whereas the blue line corresponds to the MSD of the cells in the core (R < 30 um). The values of « are in black (red) for cells in the periphery (core). (c) MSD
of cells in different layers in the growing spheroid calculated using simulations. From bottom to top, the MSD curves are for cells whose distance from the
center of the spheroid (R.) is O pm < Rc < 25um, 25 um < Re < 50 um, 50 pm < R < 75 pumand 75 um < R. < 100 um. The curves were fitted by dividing
time into two intervals: the first corresponds to 10° s < t < 2.5 x 10° s, and the second covers 3 x 10°s < t < 5.5 x 10° s. The effective exponent values

R
(oret) Were calculated using A(t) & t*eff. The values of o are given next to the curves. (d) Plot showing occh‘f“ for T4 and occh‘f“ for T2 as a function of R—C (Rois

0

the radius of the tumor defined in the text) for experiments (red disks) and simulations (blue diamond for the shorter time interval, and green diamond for the
longer time interval). The dashed black line is the line where o = 1 below (above), which denotes sub-diffusive (super-diffusive) motion.

four layers arbitrarily, and calculated A(¢) for cells in each layer. the tumor increases. (b) The exponent values (Fig. 1c caption)
The thickness of each layer is roughly 25 um. We performed ;. , given layer decrease (%fogz < oceTf‘g") as time advances
statistical averages using cells that were in the simulations

between time 7y, and 117,,. In Fig. 1c, the time dependencies
of A(t) are plotted for 4 layers. The results in Fig. 1c reveal two
interesting aspects of the nature of cell motility inside a
growing spheroid. (a) The A(f) curves exhibit a non-uniform
curvature on the timescale (& 107,,;,). Nevertheless, to illustrate
the spatial variations in the cell motilities, we fit the A(¢) curves
by a power law by dividing the total time into two intervals. One
spans Ty = 10° s < t < 2.5 x 10° s and the other covers T, =
3 x10°s < t < 5.5 x 10° s. The fits in both the time intervals
reveal an enhancement in the cell motility as one moves

because a cell in the periphery at a given time becomes part
of the core at a later time. Thus, the values of o.¢ are themselves
time dependent, and their utility is to merely illustrate qualita-
tively the nature of the dynamics of the cells in an
evolving tumor.

The calculated exponents ocevaf” and oceTf}Vz (obtained by fitting
A(f) ~ " in the first and second time window of Fig. 1c) are
shown in Fig. 1d. We scaled the x-axis by R,, which is the
approximate radius of the tumor spheroid. In experiments,
R, ~3 mm and for simulations, R, ~0.1 mm. The prediction

from core to periphery. The extracted effective exponents
(ocz;“;l and ocCTf”;Q) show that the cell motility changes from sub-

diffusive to super-diffusive as the distance from the center of

Soft Matter

that the effective diffusion exponent varies spatially as the dis-
tance from the spheroid center increases can be tested in experi-
ments if the number of imaged cells is increased. We believe that
light sheet microscopy methods could be used to test our

This journal is © The Royal Society of Chemistry 2020
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predictions that the dynamics would change continuously from
being jammed to exhibiting super-diffusive behavior."’"**

The van Hove function is non-Gaussian

The anomalous nature of the diffusion of cells inside the tumor
spheroid can be gleaned by calculating the van Hove function
(P(Ax,5t)), which gives the distribution of Ax obtained from

Ax,' = xl{t + St) — x,-(t), (4)

where x(¢) is the x coordinate of the ith cell at time ¢. Fig. 2
shows P(Ax,0t), in which Ax has been time and ensemble
averaged, for the cells tracked in experiments (8¢ = 28 min)

10° T T T T
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—Gaussian Fit
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Fig. 2 Non-Gaussian behavior of cell displacements. (Top) van Hove
function, (P(Ax)), for cells tracked in the experiments. The red (blue) line
shows P(Ax) for cells in the experiments. The green line is the Gaussian fit.
(Bottom) P(Ax) for cells tracked in simulations where the red (blue) line
represents cells in the periphery (core). The green line is the Gaussian fit.
There is a striking similarity, except for the length scale, between the
simulation and experimental results.
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and simulations (8¢ = 10 min). If the cells exhibited liquid-like
dynamics, then P(Ax,3t) would be a Gaussian function.*® This
expectation is in sharp contrast with the nature of cell move-
ment seen in Fig. 2. For cells in both the regions, P(Ax,dt)
exhibits a fat tail in the distributions deviating substantially
from Gaussian behavior. However, cells near the periphery take
longer jumps, indicating the fast movement of these cells
compared to cells in the core. As discussed elsewhere, this is
a manifestation of dynamic heterogeneity.*™*>

Superdiffusive exponent is invariant under time translation

A growing spheroid is a non-equilibrium system, which means
that the values of any physical observable could depend in
principle on the time of measurement. To test whether the
MSD exponent o depends on the observation time when cell
trajectories are measured, we calculated the time averaged
MSD, A(tg4), on day 3, day 5 and day 7 of spheroid growth. Time
averaged MSD is defined as

%Z [l‘, td+t 7rl(t)}2>/7 (5)

where N denotes the total number of cells tracked and (...),
refers to the time average. Fig. 3b shows A(¢4) measurements on
days 3, 5 and 7. To our surprise, the exponents are independent
of time with o &~ 1.4. This might mean that the tumor cells have
not aged on the experimental time scale.

To ascertain if our simulations are in accord with the analysis of
the experimental data, we calculated the time averaged MSD during
different time periods of spheroid growth. Fig. 3a shows the snap-
shots of simulations at ¢ = 37.in, £ = 5Tminy £ = 7Tmin aNd ¢ = 117, In
the simulations, we considered cell trajectories for three time periods
as done in experiments. The three periods were 3tin < ¢t < 4Tmin,
5Tmin < ¢t < 6Tmin and 7Tmin < ¢ < 8Tmin. The averaging was
performed over all the cells that were present both at the beginning
and at the end of measurement. Fig. 3c shows the behavior of time
averaged MSD during the three time intervals. Our simulations show
the same behavior as obtained in experiments, with « = 1.37 for
measurements during the three time intervals.

Self-overlap function and fourth order susceptibility

The extent of spatially heterogeneous dynamics can be further
quantified using the self overlap function (Q(1,tq))**"**

Q1. 1) = zsz (1 10), (©)

where N, is the number of cells in the core or periphery of the
tumor spheroid, ¢4 is the delay time, and [ is the characteristic
length scale associated with the overlap function Q(l,¢4). The
overlap function for the ith cell is given by

QfLta) = (QiLta,t))s, 7

where (---), is an average over time. We calculated Q([tq4,t)
using
Qi(l,td,t) = @(Z — |1'1'(t + td) — l‘i(t)l). (8)
Soft Matter
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Fig. 3 The long time MSD exponent is approximately independent of time in a growing spheroid. (a) Snapshots from the simulations showing the growth
of the tumor spheroid. The leftmost snapshot is taken at t = 37,,i, (* 500 cells), followed by t = 51y, (21200 cells), t = 7t min (22200 cells) and t = 11tmin
(~ 6000 cells). The black line below denotes the time axis with labels denoting the time of the snapshot. (b) Time averaged A(t) for experimentally tracked
cells on days 3, 5 and 7. The blue line corresponds to day 3, the red line corresponds to day 5 and the green line corresponds to day 7. The black and red
lines show power law exponents of 1.41 and 1.48, respectively. (c) Time averaged A(t) of simulated cells for 3 observation times. The blue line corresponds
to the observation time of 3tmin < t < 4tmin red corresponds to the observation time of 5ty < t < 67min and green corresponds to the observation
time of 7tmin < t < 81min. The black line corresponds to the power law exponent of 1.375.

The length, [, serves as the cutoff distance for which the
Heaviside function (O( — |rft + tq) — r{t)|)) is equal to unity
(zero), if  is greater (smaller) than |r,(t + tq) — 1,(t)|. Thus, Q(/,t4)
measures the degree of movement of cells in the time #3. We
first calculated Q(lty) using the experimental imaging data.
Fig. 4a shows the difference in the decay of Q(1,¢4) of the cells in
the core (R, < 1.5 mm) and the periphery (R. > 2 mm). The
value of [ was chosen as 100 um because on this length scale,
the difference between the dynamics of the interior and per-
iphery cells are vivid (see Fig. 1a). Fig. 4a shows the stark
difference in the dynamics of cells in the core, which exhibit a
slow dynamics compared to cells near the tumor boundary,
which is also reflected in Fig. 1a. The plot of Q([,t4) for cells in

!
the periphery was fitted to an exponential function (Aef7d>,

which yielded © = 0.37gp, (tgp is the cell doubling time of the
fibrosarcoma cells).

. . . 10

We also calculated Q(/,t4) from simulations using / = — pm,

which is small compared to / = 100 um, due to the difference in

spheroid sizes. However, the length scale, /, in both experi-
. . - o / /

ments and simulations satisfies the criterion | — | = |—| ,

Ry /g R,/

where R, is the radius of the tumor, and the subscripts E and S

refer to experiments and simulations, respectively. With this

criterion, the experimental and simulation results could be

compared on an equal footing. As mentioned earlier, R,

for experiments is 3 mm and for simulation, it is 0.1 mm.

Soft Matter

Fig. 4b shows the difference in the overlap function of
cells in the interior (R, < 30 pum) and the periphery region
(R. > 60 pm) for the simulated tumor spheroid. The behavior
of the overlap function calculated in simulations qualitatively
matches with the experiments for the core cells. The exponen-

12
tial fit for the decay of Q(L,t4) (A&Td) yielded 7, = 0.6Ty,;, and

Te = 3.2Tmin for the cells in the core and periphery, respectively.
The decay time, 7, for the cells in the periphery, obtained using
simulations (t, = 0.6Tmin) is in good agreement with the
experiments (t = 0.3gp). However, it is difficult to compare the
behavior of Q(1,¢4) for cells in the core between experiments and
simulations because the cells were not imaged for a sufficient
time in the experiments (the Q(/t4) curve does not decay
substantially). For cells in the core, the relaxation time t. =
3.2Tmin (see Fig. 4b obtained from simulations) is six times
longer than 7, C—c ~ 6). Hence, we hypothesize that the ima-
p

ging needs to be performed for at least six times longer than the
current observation time to observe the relaxation of Q(/,t4) for
cells in the core.

Spatial variations in Q(I,t4)

We sub-divided the tumor spheroid into multiple layers and
calculated Q(I,¢4) for cells in a given layer. Fig. 4c shows the
dependence of Q(l,¢4) as a function of distance from the center
of the spheroid. The cells in the inner most layer exhibit very

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 (a) Self-overlap function (Q(Lt4)) for experimentally tracked cells as a function of delay time t4 with [ = 100 um. The orange line shows the overlap
function for cells near the periphery (R. > 2 mm) and the blue line represents cells in the core (R. < 1.5 mm). The black line is an exponential fit. (b) Self-

10
overlap function for simulated cells as a function of delay time tq with / = 3 um. The orange line shows Q(l,ty) for periphery cells (R. > 60 pm) whereas

the blue line corresponds to Q((,ty) for cells in the core (R. < 30 um). (c) Time dependence of Q(l,ty) for cells in different layers of the spheroid. From top
to bottom, Q([,ty) curves are for cells whose distance from the center of spheroid (R.) is 10(i — 1) um < R. < 10i um, for all i = {1,2,...,10}. The dashed
arrow indicates the decreasing distance from the center of the tumor spheroid along its direction (R.|).

slow glass-like dynamics compared to those in the outermost
layer. In order to further distinguish between the slow and fast
dynamics in different layers in the spheroid, we calculated the
fourth order susceptibility (y4(L,tq)),>°

X4(litd) = Nc[<Qi(l;td)t)2> - <‘Qi(litd7t)>2]' (9)

Fig. 5a and b show y4(1,¢4) as a function of ¢4 for cells in the core
and periphery in experiments and simulations, respectively.
Both figures show qualitatively identical behavior with cells in
the periphery exhibiting a peak in y4(l,¢4). We should note that
in simulations, y4(l,¢t4) for cells in the core exhibits a peak,
which is absent in the experiments. As explained earlier, this is
because the peak in y4(l¢q), which usually appears when

1 . .
Q1 tyear) = " for cells in the core would occur at longer time

scales (T—C = 6).
Tp

To understand the behavior of y4(1,¢4) as a function of R., we
sub-divided the simulated tumor spheroid into several layers.
Fig. 5¢ shows the behavior of y,(l,¢4) for cells as a function of
distance from the center of the spheroid (R.). We note two
interesting aspects from the behavior of y4(/,t4). Firstly, the
position of the peak in y4(/,tq), which corresponds to the

This journal is © The Royal Society of Chemistry 2020

maximal heterogeneity in the movement of cells on the length
scale [, shifts to the right due to the slow dynamics as we
approach the center of the tumor spheroid. Secondly, the
amplitude of the peak in y4(/,t4), which corresponds to the
growing dynamical correlation length,*® initially increases (see
inset of Fig. 5¢) and then decreases as a function of distance
from the spheroid.

Cells in the periphery undergo directed and highly persistent
motion

The massively heterogeneous nature of cell motility within a
single tumor spheroid can be highlighted using the time-
dependent changes in the trajectories of individual cells. We
first analyzed the directionality of individual cell movement as
a function of distance from the center of spheroid (R.) by
calculating the straightness index (SI),*®

LN () = w1y
SI (R.) _ﬁgiz YOl (10)

The numerator in the above equation is the magnitude of the
net displacement of the ith cell between time ¢; and time ¢.
The denominator is the total length of the trajectory of the ith
cell, and N; is the number of cells between R. and R. + OR..
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Fig. 5 (a) Fourth order susceptibility (y4((,ty)) determined by the variance in Q(l,ty) for experimentally tracked cells. y4(l,ty) for cells in the core (periphery) is
shown in blue (orange). (b) y4(l,tq) for cells tracked in simulations. Blue (orange) line shows y4(l,ty) for cells in the core (periphery). (c) Layer by layer fourth
order susceptibility (y4((,tq)) determined by variance in Q(,t4). From top to bottom (except the innermost layer shown in sky blue), y4(l,tq) curves for cells
whose distance from the center of spheroid (R.) is 10( — 1) um < R. < 10i pm, for allj = {4,...,8}. The innermost layer corresponds to 80 um < R. < 100 um. In
the inset, the black (blue) curve corresponds to y4(l,ty) for 20 um < Rc < 30 pm (0 pm < R. < 20).

OR 1)
For experiments, z ° = 0.14 whereas
0 0

SIis unity, then the cells move along a perfectly straight trajectory.
Fig. 6a, which displays the straightness of trajectories of cells
calculated using experimental data in a growing spheroid on day 7
during 8 hours of imaging, shows clearly that straightness of the
trajectory increases as the distance of the cell from the spheroid
core increases. We also evaluated SI (R.) (see Fig. 6b) in the
simulations using ¢; = T, and ¢ = 11.17y,;,. The behavior of SI
(R.) agrees well with the trends observed in the experiments. The
cells in the core (periphery) have SI — 0 (SI — 1).

C

= 0.1 for simulations. If

Massive spatially heterogeneous dynamics

To further illustrate the difference in the directed motility of
cells in the periphery and the core, we calculated the persis-
tence of individual cell movements in both experiments and
simulations. We defined persistence (P(¢4)) using the velocity of
the cells as

Ne

Plig) = 000+ 1a) 30, (1)
Ci=1

In eqn (11), ¥(¢) is the unit velocity vector of the ith cell at time ¢,
N, is the number of cells in the spheroid core or the periphery,
tq is the delay time, and (---), refers to the time average.

Soft Matter

Fig. 6¢c and d show the P(¢4) curves as a function of ¢4 calculated
from experimental data and simulations, respectively. We
calculated P(tg) from simulations using the cells that were
present during the time interval of 107, and 11.17.,;,. Cells
in the periphery move in a highly persistent (directed motion
with hardly any decay in P(t4) as t4 changes) manner compared
to cells in the interior. The results in these figures show
dramatically that there are substantial cell-to-cell variations in
P(t4) with no two cells exhibiting similar behavior. In particular,
there is widespread heterogeneity in trajectories of individual
cells (see P(ty) for individual cells, which are denoted by thin
lines). This finding is also reminiscent of glassy systems,
characterized by large subsample to subsample fluctuations
within a single large sample of glass.*” The results in Fig. 6¢c
and d imply that averages, shown in dark colors, have no
physical meaning, and could provide misleading information.
The massively spatially heterogeneous dynamics of individual
cells during collective movement might be a plausible mecha-
nism for the origin of intratumor heterogeneity.**>*

4 Discussion

We have used simulations of a minimal model®® to analyze
experimental results™® where individual cell trajectories were

This journal is © The Royal Society of Chemistry 2020
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Fig. 6 (a) Straightness index (Sl) of cells as a function of distance from the center of the spheroid R—“ obtained using the experimental data. The inset

0

R . o - . . .
shows the scatter plot of Sl vs. = for all cells tracked. The plot in the main figure was generated by binning the data in the inset. (b) SI for the simulated

0

cells as a function of distance. The inset shows the Sl for all the cells. The data in the inset were binned to generate the main figure. (c) Persistence (P(ty))
function defined as (¥(t + tq)-U(t) ), for experimentally tracked cells. The red line depicts P(ty) for cells in the periphery (R > 2 mm) and blue line shows the
P(ty) for cells in the core (R. < 1.5 mm). The red and blue thin lines are P(ty) for individual cells. (d) P(ty) for simulated cells. The red (blue) line depicts P(ty)
for cells in the periphery (core). The red (blue) thin lines are P(ty) for individual cells in the periphery (core). (d) P(ty) for simulated cells with red line for cells
in the periphery (R. > 60 pm) whereas blue line is for cells in the core (R. < 30 um). The red and blue thin lines are P(ty) for individual cells. In both

experiments and simulations, there are substantial heterogeneities among individual cells.

monitored using fluorescence microscopy in a tumor spheroid
embedded in a 3D collagen matrix. Remarkably, without
adjusting any parameter in the model to obtain agreement
with the experiment, the exponents characterizing the mean
square displacement of cells in the core and periphery are in
quantitative agreement with values extracted from experi-
mental data. This allowed us to dissect the remarkable spatial
and temporal variations in the dynamics of the cells from the
center to the periphery of the tumor. Both experiments and
simulations unveil that in the peripheral region of the spher-
oid, cells exhibit highly persistent super-diffusive dynamics
whereas the motion in the tumor interior is sub-diffusive.
The sluggish cell dynamics in the core is reminiscent of
relaxation in supercooled liquids as they undergo a transition
to a glassy state." Using concepts from glass transition theory,
we showed that higher order susceptibility of the cells near the
tumor periphery in experiments, which are fully accounted for
in the simulations, shows a peak at ¢t ~ 5.6 hours - the
approximate time at which coherent motion occurs. A similar
calculation for the interior jammed cells shows a peak that is
likely to be present at much longer time scales. The difference

This journal is © The Royal Society of Chemistry 2020

in the fourth order susceptibility illustrates the spatial and
temporal heterogeneity. Fuller analyses of the simulation results
confirm that the dynamics is massively heterogeneous with
substantial cell-to-cell variations. The dynamics of individual
cells varies greatly depending on their spatial locations in the
tumor. We predict that the exponents associated with the mean
square displacement should change continuously as a function
of cell distance from the center of the spheroid. This prediction,
which already has partial support (see Fig. 1d), could be further
tested by imaging experiments that track a much larger number
than is currently possible.

The excellent agreement between simulations, which were not
intended to model the specifics of the growth of fibrosarcoma
tumor spheroid in a 3D collegen matrix, and experiments allows
us to suggest generic mechanisms that govern the growth of
spheroids. Besides the short-range cell-cell interactions, the
parameters that control tumor expansion in our simulations are
the asymmetry between cell birth (k) and apoptosis rates (k,), and
a dormancy factor that is expressed in terms of a pressure
threshold that a cell experiences. The imbalance (k, > k)
produces self-generated active forces®® that act in a directed

Soft Matter
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manner on cells that are close to the periphery, facilitating their
persistent motion. Such forces in cells are related to myosin-
based contractile stresses, which have been argued to be a
major factor in directed growth.'> Our previous study also
suggested (see especially Fig. 14 in ref. 23) that there must be
a high degree of correlation between the movement of neigh-
boring cells at the tumor periphery. In other words, the super-
diffusive behavior is a consequence of collective correlated
motion of cells near the boundary. In an expanding tumor,
there is an outward radial stress, arising from an imbalance
between the rates of cell birth and apoptosis, which renders the
cells on the periphery superdiffusive. Because these arguments
are general, we propose that global dynamics of a growing
spheroid must exhibit the features of super-diffusive motion in
the periphery, jamming in the interior, and a high degree of
spatial heterogeneity in the movement of individual cells.
Finally, it is likely that the non-equilibrium dynamics, arising
due to k, » k,, may also be relevant in other situations such as
embryogenesis and wound healing.

A posteriori rationale for observing super-diffusive behavior is
that there is a radial flow that thrusts the cells at the boundary
outward. Although this is certainly correct, it should be noted
that the force leading to the radial velocity is not explicitly
described in the model but is self-generated by the birth and
apoptotic processes.>* Moreover, such a force, which is inherent
to the physics of tumor growth in the model, has to be persistent
in order to observe super-diffusive behavior (i.e., act over several
cell doubling times). Moreover, biologically relevant parameters

Cy ka
behavior even though the tumor expands. Thus, the dynamics in
the model is a complex interplay between short range forces as
well as the criterion for dormancy, and cell birth and apoptosis
rates. It is worth emphasizing that the good agreement between
our findings and the analysis of the experimental data implies
that a similar mechanism is operative in the collective move-
ment of fibrosarcoma cells against the collagen matrix. This,
perhaps, is the major surprise in this study.

We have captured quantitatively the spatially heterogeneous
dynamics of cells in a growing tumor. Analysis of the experi-
mental data, which provide the time traces of a small number
of individual cells,’® reveals that the core cells exhibit sub-
diffusive dynamics (A(¢) ~ ¢*, where « = 0.66) and those near the
periphery undergo super-diffusive dynamics (A(f) ~ t*, where
o = 1.34). Remarkably, without adjusting any parameter, we
predict that cells in the core (periphery) exhibit sub-diffusive
(super-diffusive) dynamics with o = 0.57(1.52). Comparison with
experiments shows that there is only one potential limitation.
Due to differences in the size of the simulated and experi-
mental tumor, we had to choose different length scales while
comparing the overlap function and fourth order susceptibility.
Nevertheless, the qualitative insights obtained from our work
provide a way to explore the dynamics of tumor evolution
by varying the parameters that are most relevant biologically
(Pes ka and ky). Using the velocity autocorrelation function, we
revealed the massive dynamical heterogeneity of cells in an

ki
( —h) could be chosen to entirely suppress the super-diffusive

Soft Matter
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expanding tumor, which makes the notion of mean less relevant.
This cell to cell variation is an example of phenotypic heterogeneity
and our work will be important in providing a mechanism of the
origin and maintenance of intratumor heterogeneity.
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