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ABSTRACT
A single solid tumor, composed of nearly identical cells, exhibits heterogeneous dynamics. Dynamics of cells in the core is glass-like, whereas
those in the periphery undergoes diffusive or super-diffusive behavior. Quantification of heterogeneity using the mean square displacement
or the self-intermediate scattering function, which involves averaging over the cell population, hides the complexity of the collective move-
ment. Using the t-distributed stochastic neighbor embedding (t-SNE), a popular unsupervised machine learning dimensionality reduction
technique, we show that the phase space structure of an evolving colony of cells, driven by cell division and apoptosis, partitions into nearly
disjoint sets composed principally of the core and periphery cells. The non-equilibrium phase separation is driven by the differences in the per-
sistence of self-generated active forces induced by cell division. Extensive heterogeneity revealed by t-SNE paves the way toward understanding
the origins of intratumor heterogeneity using experimental imaging data.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0026590., s

Intratumor heterogeneity (ITH), a pervasive phenomenon
across cancers, is a major hurdle in developing effective treatment.1,2
ITH refers to the coexistence of genetically or phenotypically distinct
cells within a single tumor.3 A source of ITH is genetic variations.
Indeed, multi-region sequencing has revealed widespread genetic
diversity within tumors.4–9 Stochastic variations due to differences in
cancermicroenvironment, which results in vastly different dynamics
of cells in distinct regions of an evolving solid tumor, could also give
rise to ITH. Evidence for the dynamically driven ITH has emerged
recently from several imaging studies, which have mapped out the
phenotypic properties (such as the shape and size) in three dimen-
sional tumor spheroids.10–13 The growth of tumor spheroids is mon-
itored by embedding them in a collagen matrix.10–14 Direct imaging
reveals that the dynamics of cells in the tumor core differ dramat-
ically compared to cells in the periphery,11–13,15 a clear signature of
dynamical ITH, which we abbreviate as DITH. A characteristic of
DITH is that thematerial properties of the cells are unaltered, imply-
ing that heterogeneity arises solely from microenvironment fluctua-
tions. In this sense, DITH is reminiscent of dynamic heterogeneity
in supercooled liquids that undergo glass transition.16,17

Previously, we showed that the cell dynamics in a growing
multicellular spheroid (MCS) is spatially heterogeneous,15,18 which

implies that cells in the core (periphery) exhibit sub-diffusive (super-
diffusive) motion. These characteristics were first observed in imag-
ing experiments tracking the displacement of cells moving in a
collagen matrix and recently in other studies as well.12,13 How-
ever, characterizing the dynamics using conventional ensemble
average measures, such as mean squared displacement or the self-
intermediate scattering function, hides the rich dynamics, the cause
of DITH.

Can we infer DITH directly from the cell trajectories in an
evolving tumor? Computer simulations of physical models for evolv-
ing cells and, more importantly, direct imaging can be used to gen-
erate the needed trajectories. Here, we show that the t-distributed
stochastic neighbor embedding (t-SNE), a popular unsupervised
machine learning technique for analyzing big data, is ideally suited
to answer the question posed above. The t-SNEmethod is among the
best dimensionality reduction technique,19–22 allowing us to visual-
ize the emergent heterogeneous dynamics without any inherent bias
in the trajectory analysis. It has been extensively used in various
areas ranging from genomics23,24 and neuroscience25 to condensed
matter physics.26–29

We performed t-SNE on data generated using simulations of
an expanding tumor spheroid model.15,18,30,31 The results revealed
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massive dynamical heterogeneity that depends on the radial distance
from the tumor center, which accords well with the conclusions in
recent experiments.11–13 t-SNE also resolves the dynamical phase
space structure of cells in the core and periphery. Division of the
dynamical phase space structure primarily into two disjoint sets is a
consequence of differences in the persistence of self-generated active
force (SGAF), which is dynamically generated in our model due to
an imbalance in the cell division and apoptosis rates. The cells in the
periphery experience highly persistent forces that are predominantly
pointed in the radially outward direction.

t-SNE: For completeness, we provide a brief description of
the t-SNE method.19–22 Let us consider a n dimensional vector,{x1, x2, . . . , xn}, which, in our case, is the time dependent cell dis-
placement or forces experienced by the cells. Here, n is the cell iden-
tity. The components of xis are {xi ,1, xi ,2, . . ., xi ,D} with D� 1. For
our case, D = 1080 (explained later). The t-SNE projects xis onto a
low dimensional (usually 2 or 3) space yis while being faithful to the
information content in the high dimensional space.

To determine the ys, a joint probability pij in high dimensional
space, measuring the likelihood that points xi and xj are close to
each other, is constructed. Following the standard practice, we take
pij = pi�j+pj�i

2n , where the conditional probabilities pj�i ∝ exp(− �xi−xj�22σ2i
),

where ∥�∥ is a measure of distance, ∑i ,jpij = 1, and pi |i is set to
zero. The variance σ2i is chosen such that the perplexity (Pi) of the
distribution is given by

Pi = 2−∑j≠i pj�i log2 pj�i . (1)

The perplexity is independent of i (Pi = P). The maximum per-
plexity can be (n − 1), resulting in σi = ∞, which would lead to a
uniform distribution (i.e., Pj�i = 1

n−1 ). The perplexity value, which
can be interpreted as the number of effective neighbors, influences
the outcome of t-SNE.32

The joint probability qij, measuring the likelihood that points yi
and yj are in proximity, is t-distributed (i.e., qij ∝ [1 + �yi − yj�2]−1)
with qii = 0 and∑i ,jqij = 1. To compute the ys, we use the Kullback–
Leibler divergence (L = ∑i∑j pij log

pij
qij ) as a loss function (L) to

minimize the difference between pij and qij. We determine yis by
minimizing L using a gradient method. The gradient minimization
is numerically implemented using the updating scheme,

yi[t] = yi[t − 1] + η@L
@yi

+ α(t)�yi[t − 1] − yi[t − 2]�. (2)

In Eq. (2), η is the learning rate and α(t) is the momentum term
that is included to speed up the optimization. The yi[0]s are sampled
from a normal distribution of mean 0 and variance 0.0001. In order
to quantify the accuracy of tSNE plots, we made sure that L→ 0.

The parameters in the t-SNE algorithm are P, η, the momen-
tum (α), and the number of iterations. We used η = 200, α(t) = 0.5
for t ≤ 250, and α = 0.8 for t ≥ 250. We performed 2000 iterations.
The perplexity is varied depending on the situation. We projected
three large datasets onto two dimensions with coordinates tSNE1
and tSNE2.

Position data: We collected the time traces of ≈5000 cells
[r(t) = x(t), y(t), z(t)] between time interval Tw1 = τ ≤ t ≤ 11τ,
where τ = 15 h represents the cell cycle time (see Refs. 15 and 18

for details). The cell positions were recorded every 500 s. The sam-
pling rate was chosen to roughly mimic the frame rate (one per
14 min) of microscopy measurements in experiments.11,13 The tra-
jectory obtained from simulations was divided into 1080 ( Tw1

500 s ) time
windows. Each time window can be thought of as a dimension.
Therefore, the trajectories of each cell resides in 1080 dimensions. In
each time window ti, a cell is displaced by |δx(ti)| = |x(ti+1) − x(ti)|
along the x-coordinate and similarly along y and z coordinates. Here,
|�| represents the absolute sign. Thus, for each cell, we have 1080
(ti, |δxi|) pairs. One can choose any of the three (i.e., x, y, or z)
coordinates. However, for our purpose, we used the x coordinate.

Before applying the t-SNE, for each cell, 1080|δxi|s were sorted
from the smallest to the largest value. Sorting is an important aspect
of using tSNE on cell trajectories, which relies on the following
argument. Imagine two cells (A and B) in the same region (region
here means the distance from the tumor center) of the tumor. One
expects that their dynamics would be similar. However, a naive
application of tSNE method might lead to the opposite result. The
reason is that the conditional probabilities in tSNE are based on the
Euclidean distance �δxA − δxB� = ∑D

i=1(δxA,i − δxB,i)2. If the data are
not sorted, cells in the same region may not have small ∥δxA − δxB∥,
which is avoided if the data are curated.

Force data:We also used time traces of forces [F = (Fx, Fy, Fz)]
on individual cells (≈5000 cells) in the t-SNE analysis. Forces, with
Fx, Fy and Fz , were recorded every ≈10 min between time interval
Tw1 = τ ≤ t ≤ 11τ.

Interpenetration data: This dataset contains the interpenetra-
tion distances for ≈5000 cells that were present in the simulation
for time interval Tw1. The interpenetration of the ith cell at time tk
is given by hi(tk) = 1

NN(i,tk) ∑NN(i,tk)
j=1 hij(tk), where hij(tk) = max{0,

Ri(tk) + Rj(tk) − |ri(tk) − rj(tk)|}. Here, Rj(tk) (rj(tk)) is the radius
(position) of the jth cell at time tk. NN(i, tk) is the number of nearest
neighbors of the ith cell at time tk. For each cell, we have 1080 (tk,
hk) pairs.

Results: Figure 1(a) shows the clustering obtained when the tra-
jectories of cells [1080 (ti, |δxi|)] are projected onto tSNE1 and tSNE2
(P = 100). In Fig. 1, each dot represents a single cell and is colored
depending on its distance from the center of the tumor, Rc. It should
be emphasized that in performing t-SNE, we did not use the infor-
mation of the cell distance from the tumor center. The colors aid
in visualizing the cells. The results in Fig. 1(a) show that there is a
pattern in the way the dots are arranged. Majority of the red dots
(cells farthest from the tumor core) are at one end, with blue dots at
the other end (cells closer to the core). In the other words, there is
a dynamic phase separation, which we show below is a consequence
of cell division and apoptosis. The partitioning into two disjoint pat-
terns in Fig. 1(a) implies that the dynamics of the cells is dependent
on their distance from the center of the tumor, as noted in experi-
ments.11,12 However, the boundary between the two regions (roughly
high and low density) is not sharp. The t-SNE method, based on
machine learning, is able to delineate massive heterogeneity in a sin-
gle tumor with identical cells, which is hidden in observables, such as
the mean squared displacement or self-intermediate scattering func-
tion.15,18 Thus, unbiased analyses of the cell trajectories are required
to shed light on the origin of DITH in solid tumors.16,33,34

In a recent experiment,12 the solid tumor was divided into
two core and periphery regions. It was shown that the tumor
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FIG. 1. Heterogeneity is radially dependent on an evolving tumor spheroid. (a) Cell
trajectories (≈5000) projected onto tSNE1 and tSNE2. Each dot represents a cell.
The cell label depends on the radial distance from the center of the tumor (Rc). The
color gradient is suggestive of extensive dynamical heterogeneity. The cells in blue
represents those closer to the center, whereas cells in red are farther away from
the center (see the Rc scale on the right). (b) Cell trajectories sampled from the
core (blue dots) and periphery (red dots). There are 1580 (946) core (periphery)
cells. Projection of cell trajectories onto t-SNE coordinates shows that the cells in
the two regions have a resolvable dynamical phase space structure, by which we
mean that the data cluster according the motilities of the cells. This is easily seen
from the separation of the red and the blue dots.

core (periphery) exhibits sub-diffusive (super-diffusive) dynamics,
implying that the cells explore distinct non-overlapping regions of
phase space dynamically. In order to assess if t-SNE separates the
dynamics in the two regions, we collected position data of core
(Rc < 30 �m) and periphery (Rc > 60 �m). We applied the SNE
algorithm on this mixed dataset. Figure 1(b) shows the t-SNE clus-
tering of cells belonging to core (blue dots) and periphery (red dots;
P = 100). It is clear from Fig. 1(b) that the red and blue cells
are approximately phase separated. The distinct dynamical phase
space explored by the cells in the core and periphery, as illustrated
by Fig. 1(b), sheds light on the non-equilibrium phase separation
between the tumor core and periphery.12

Phase separation of cells into the core and periphery is a conse-
quence of self-generated active forces (SGAFs) arising from cell divi-
sion. The SGAF is spatially dependent, leading to distinct cell motil-
ity in the core and periphery. In order to understand the dynamical
phase space structure of cells predicted by t-SNE, we probed the
nature of forces exerted on the cells. We first calculated force–force
persistence of the ith cell, FFi(t) = Fi(t+δt)⋅Fi(t)�Fi(t+δt)�Fi(t)� , where Fi(t) (|Fi(t)|)
is the force (force magnitude) on the ith cell at time t and δt = 0.05 τ
or 40 min. FFi(t) is a measure of force persistence an ith cell expe-
riences and takes on values [−1, 1]. If FF(t) = 1 (FF(t) = −1), a
cell experiences force in the same (opposite) direction at time t and

t + δt. We calculated FFi(t), with τ ≤ t ≤ 11τ, for all the cells that
belong to the core and periphery and performed t-SNE analysis. The
t-SNE projection of the FF(t) data in Fig. 2(a) reveals contrasting
force persistence for cells in the core and periphery. FF(t) in the two
regions partition into two disjoint sets, which is vividly illustrated
in Fig. 2(a). The distinct behavior of force persistence is indica-
tive of the super-diffusive and sub-diffusive behavior of cells in the
periphery and core, respectively.11,12 The contrasting force behavior
in the core and periphery is intrinsically related to spatial propensity
for cell division. The increased stress (due to jamming) in the core

FIG. 2. Self-generated force due to cell division and apoptosis. (a) t-SNE projection
of FF(t) for cells in the core (blue) and periphery (red). The cells in the two regions
cluster into distinct regions. (b) Distribution of tc

τ obtained using Gaussian process
regression for cells in the core (blue) and periphery (red). Cells in the periphery
have higher persistence times (mean value is tc

τ = 0.08) compared to cells in the
core (average is tc

τ = 0.06). Inset in the left (right) shows the FF(t) fit using GPR
for cells in the core (periphery). The blue (red) dots correspond to cells in the core
(periphery) and the black solid line is the GPR fit. (c) Probability distribution of Fr�F�
for cells in the core (blue) and periphery (red). Cells in the periphery experience
force predominantly in the radial direction.
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suppresses cell division, whereas cells on the periphery can readily
divide.35,36 This imbalance in cell division in the two regions leads to
contrasting force persistence.

We calculated the tc
τ distribution to quantify how long SGAF

is persistent in the two regions. In order to extract tc
τ , we fit FFi(t)

using Gaussian process regression (GPR) with the standard radial-

basis function (RBF) kernel [k(t, t′) ∼ e−
(t−t′)2

2t2c ]. Figure 2(b) shows
that the distribution of tc

τ for cells in the core and periphery is resolv-
able. Furthermore, we find that the mean persistence time in the
periphery ( tcτ = 0.08) is greater than that in the core ( tcτ = 0.06).
Increased persistence of forces in the periphery results in greater
directed movement. Insets in Fig. 2(b) show the FF(t) fit using GPR
for one cell in the core and periphery. Experiments have noted that
the cells in the periphery move predominantly radially outward.11

Therefore, we calculated the radial force Fir�Fi � exerted on the cells in
the two regions. Here, Fi,r = Fi ⋅ r̂i, where r̂i is the radial unit vector,
r̂i = ri−rcom�ri−rcom � , and rcom is the center of mass of the tumor. If Fir�Fi � = 1, the
force is radially directed outward, whereas Fir�Fi � = −1 implies inwardly
directed force. The probability distribution of Fir�Fi � for cells in the
core is predominantly skewedmore toward unity [Fig. 2(c)] than the
core cells. The radially outward force explains the invasive charac-
teristics of the cells at the tumor boundary.11 These forces originate
solely due to the imbalance in cell division in the core and peripheral
region of the tumor. Cell division as a source of active stress has been
reported before,37 but the emergence of the highly persistent nature
of forces adds new insights into the physics of tumor expansion.

Armed with the unbiased identification of the cells in the core
and the periphery, we set out to find out if these features are mani-
fested in other characteristics as well. Experiments have established
that the core cells are tightly packed or jammed and have smaller
volume compared to cells in the periphery.13 Therefore, we expected
that the inter-cellular distance can be used to differentiate between
the cells in the two regions. We recorded the interpenetration (hij)
distances (hijs) for cells in the time window Tw1 = τmin < t < 11τmin.
Figure 3 shows the result of t-SNE clustering based on hij data for
cells in the core and periphery (P = 50). To our surprise, the t-SNE

FIG. 3. Core and periphery cells have resolvable interpenetration. Interpenetra-
tion, hij (defined in the text), based classification for core and periphery cells
using t-SNE. Cells in the core (periphery) are represented using blue (red) dots.
The t-SNE algorithm resolves the interpenetration data for cells in the core and
periphery.

algorithm clustered the cells remarkably well with clear phase sepa-
ration between the cells in the core and the periphery. These results
imply that the density in the two regions differ greatly because the
interior cells are jammed, whereas the motility of the cells near the
periphery is high. The emergence of the radially dependent den-
sity, with jamming in the interior, is consistent with the experi-
ments, which show that pressure is higher in the core than at the
periphery.35

In order to provide a geometrical interpretation of the SGAF-
driven phase separation, we followed Merkel and Manning38 who
predicted that S = A

V
2
3
could serve as an order parameter for the

rigidity transition in 3D confluent tissues. The variables A and V
are, respectively, the surface area and volume of the cell. The rigid-
ity transition occurs at S = 5.41 in three dimensions (see Ref. 39 for
results in two dimensions). Because the core (periphery) is solid-
like (fluid-like), we expected that the shape parameter would reveal
the observed differences in the motilities within a single tumor. We
calculated the Voronoi volume and the area of the cells in at time≈11τ. We excluded the cells at the boundary as their Voronoi vol-
ume is not defined. Figure 4 shows the distributions of the shape
parameter distribution in the interior and the periphery. Remark-
ably, the distribution for cells in the core is narrow with a peak
at 5.41, close to the predicted38 solid to fluid transition value for
confluent tissues. However, the packing of cells in the interior in
our simulations is qualitatively different and does not reach conflu-
ency. In contrast, the distribution in the boundary broadly peaked
with a mean of around 5.6. The inset in Fig. 4 shows that the
cells in boundary have a bigger Voronoi volume as compared to
cells in the core. We should emphasize that the variations in the
shape parameter are observed in a tumor in which the low motile
and high motile cells are simultaneously present. It appears that
the shape parameter is good predictor of the transition from a
jammed to a motile (super diffusive) state even in a continuously
growing tumor whose dynamics is determined by cell division and
apoptosis.

We used the unsupervised clustering technique (t-SNE)19,21,22
to elucidate the extent of heterogeneity in an evolving solid tumor
consisting of nearly identical cells. The unbiased t-SNE analysis of

FIG. 4. Distribution of the shape parameter in the core and the periphery. Blue
curve shows the distribution for the cells in the core and red indicates the cells in
the periphery. The green line demarcates the solid to fluid boundary at A

V
2
3
= 5.41.

The inset shows the distributions of the Voronoi volume of cells in the core and the
periphery.
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the simulation data shows unambiguously that the dynamical behav-
ior of cells in a growing tumor spheroid depends on the distance
from the tumor core. The gradual change in the dynamical behav-
ior from a jammed state in the tumor interior to highly motile
(super-diffusive) behavior at the periphery is due to the genera-
tion of self-generated persistent forces that arises dynamically due to
the inequality between cell division and apoptosis rates. The t-SNE
method resolves the dynamical phase space structure of identical
cells, revealing a plausible mechanism for non-equilibrium phase
separation.12 Our results, establishing dynamic heterogeneity in a
single tumor consisting of nearly identical cells, imply that aver-
age properties in non-equilibrium systems may have little physical
meaning.40
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