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Abstract—Multi-modal wearable sensors monitoring physiol-
ogy and environment simultaneously would offer a great promise
to manage respiratory health, especially for asthmatic patients.
In this study, we present a preliminary investigation of the corre-
lation between ozone exposure, heart rate, heart rate variability,
and lung function. As the first step, we tested the effect of low-
level ozone exposure in a sample size of four healthy individuals.
Test subjects underwent controlled exposure from 0.06 to 0.08
ppm of ozone and filtered air on two separate exposure days. Our
results indicate an increment in mean heart rate in three out of
four test subjects when exposed to ozone. We have also observed
that changes in mean heart rate has a positive correlation
with changes in lung function and a negative correlation with
changes in neutrophil count. These results provide a baseline
understanding of healthy subjects as a control group.
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I. INTRODUCTION

Ozone (O3) is a common trigger for asthma attacks and
promotes lung inflammation. Studies suggest that O3 exposure
at levels even below the US National Ambient Air Quality
Standards (NAAQS) of 0.07 parts per million (ppm) can
decrease lung function and increase respiratory symptoms in
susceptible populations such as individuals with asthma [1],
[2]. An estimated 19 million adults and 6 million children are
currently living with asthma in the US, resulting in millions
of physician’s office or emergency room visits to resolve
asthma exacerbations [3]. Annual health care spending on
uncontrolled asthma in the US alone was over 82 billion
dollars in 2013 [4], making it one of the most expensive
chronic health conditions. Therefore, there is an urgent need
for an improved and cost-effective approach to improve asthma
control.

The National Science Foundation Engineering Research
Center for Advanced Self-Powered Systems of Integrated
Sensors and Technologies (ASSIST) at NC State University is
working towards developing multi-modal, wearable systems
for vigilant monitoring of physiological and environmental
conditions of an individual with the goal of improving health
outcomes [5], [6]. Wearable low-power systems can assess
environmental conditions locally with higher spatial and tem-
poral resolutions in contrast to more global and averaged
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weather station readings available online. These real-time
environmental measurements correlated with physiological
parameters could be used to identify changes in a user’s
physiologic conditions and can be used to predict asthma
exacerbations through advanced data analytics. The benefits
of such wearable monitoring devices can be extended beyond
the quality of life of asthmatic patients and would positively
impact the economy and healthcare practices in general.

This paper presents the preliminary testing results of a
group of four healthy test subjects. We collected heart rate
variability (HRV) data and biological samples to understand
the correlation of these with exposure to O3 and its impact on
lung function.

II. STUDY PROTOCOL

We conducted a randomized, double blinded, crossover pilot
study to investigate if low level O3 exposure (compared to a
clean air exposure) under sedentary conditions will cause mea-
surable changes in lung function and in airway inflammation.
We recruited healthy non-smoking volunteers 18-50 years of
age without asthma. Written consent was obtained from all
participants, and the study was approved by the University
of North Carolina at Chapel Hill IRB. An IRB Authorization
Agreement was set up with NC State University.

Subjects were exposed to either filtered clean air or O3
for 6.6 hours at 24◦C ± 1.1◦C and 40% RH ± 5% RH in
an environmental chamber. For the O3 exposure sessions, the
concentration started at 0.06 ppm, increased to 0.08 ppm in
30 minutes, and then decreased back to 0.06 ppm in the next
30 minutes. This pattern was repeated throughout the entire
exposure session for an average overall O3 concentration of
0.07 ppm, corresponding to NAAQS for ground level O3 on a
summer day. The subjects rested on a chair during the exposure
sessions. They were only permitted to walk intermittently on
a treadmill at a pace mild enough to not cause any abrupt
changes to the HRV or respiratory rate. Electrocardiography
(ECG) was recorded using an off-the-shelf wearable ECG
sensor – Shimmer3 (from Shimmer) – and calculated HRV was
used to assess the response during the O3 and air exposures.
Participants underwent spirometry based lung function testing
before and after exposure sessions. Neutrophil recruitment
to sputum was assessed at baseline and 24 hours after each
exposure session as a marker of airway inflammation. Subjects
were scheduled for a second exposure after a washout period
of a minimum of 2 weeks or maximum of 6 months from the
first exposure session.
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III. DATA ANALYSIS METHODOLOGY FOR ECG

Signal Quality Index. It is essential to determine what data
is reliable enough to extract relevant features for analysis. In
particular, for ECG signals, a number of artifacts could be
present ranging from electrical noise to motion artifacts and
muscle activation. For this purpose, we made use of a Signal
Quality Index (SQI) providing a normalized value between 0
and 1 to capture the detection consistency of heart beats from
multiple detectors. SQI is scored lower when the beat detectors
disagree and vice versa. Fig. 1 illustrates an example of ECG
signals and the SQI values. The beat detector tools used are
jqrs, a modified version of the Pan Tompkins algorithm [7],
and wqrs, a QRS detector based on the length transform [8].
The Cardiovascular System toolbox in MATLAB was used to
compute RR intervals and signal quality [9].

We computed SQI using a 20 s window with a 5 s overlap
and a 0.1 s buffer. We computed RR with a high threshold of
1.5 s and a lower threshold of 0.375 s. Consecutive beats that
differed more than the recommended 15% were removed.

Wavelet-Based Signal Processing. To determine the initial
ECG QRS locations, we removed the noise components from
the signal via the Pan Tompkins algorithm. We removed any
RR intervals consisting of a heart rate (HR) greater than 180
bpm, maximum HR at which session would be halted. The
minimum RR interval corresponded to an HR of 40 bpm,
commonly used as a lower threshold for healthy participants
[10].

This initial pre-processing created our baseline signal which
we further processed using SQI and wavelet based cleaning.
SQI was then recalculated subsequently. We would like to
highlight the use of SQI in two different ways here. The first
is by removing any data under a signal quality threshold τ .
We refer to this process as SQI Removal and applied to both
the raw and wavelet-based cleaned signals. The second way is
to determine when to use the wavelet packet decomposition of
the signal to clean the segments of the waveform with an SQI
threshold less than τ . A second hand picked minimum SQI
threshold ρ was used to specify when a signal’s SQI was too
low for processing. We observed that cleaning signals with too
low of an SQI did not give any improvements. The MATLAB
functions wdenoise and modwpt were used with a total of
10 levels to ensure proper frequency resolution of the ECG
signal when decomposed. The wavelet fk18, was used with the

Fig. 1. Illustration of SQI. Raw ECG signal [Top] and Cleaned ECG signal
[Bottom]. Each dot illustrates the locations where a QRS complex is detected,
and its color ranging from green (high SQI) to red (low SQI) indicate the
signal quality. The raw signal has false detection and low SQI.

Universal Threshold method. The noise estimate was set to be
level dependent. The described method aggressively removed
any components of the signal that were not QRS peaks. The
SQI was computed again on the new signal. Any segments
in the signal that did not show improvement in SQI were
reverted to its pre-processed state. ρ was set to 0.3 empirically.
To determine τ , two hour segments of the data were manually
annotated as ‘good’ or ‘bad’ and the ROC was graphed against
a range of possible τ . The value τ = 0.95 returned the lowest
false positive rate of approximately 0.08 and and a true positive
rate 0.88.

Computing HRV. HRV indexes summarize statistics from the
detected adjacent RR intervals. As described earlier, we re-
moved certain QRS detection (and their adjacent RR-intervals)
based on our SQI removal procedure. The HRV statistics were
computed over a 5 minute window, as it is often done in the
literature [11].

When computing the HR and HRV over a window, we only
reported the value if the RR intervals removed cover less than
50% of the window. Fig. 2 illustrates a HRV feature extracted
for the raw and cleaned ECG signals and their corresponding
τ -SQI filtered results including the percentages of RR-intervals
removed.

IV. RESULTS AND DISCUSSION

A. Lung Function

Data are shown from four healthy individuals (two men and
two women) (Fig. 3). Low level O3 exposure under sedentary
conditions provoked a decrease in lung function, namely
Forced Vital Capacity (FVC) and Forced Expiratory Volume in
1 s (FEV1), that was more pronounced in the women than the
men. We also found an elevated airway inflammatory response,
with greater %neutrophils (%PMNs) in the sputum after O3
exposure compared to filtered air exposure. Collectively, these
data indicate that exposure to O3 at 0.07 ppm can lead to
reductions in lung function and relative increases in lower
airway inflammation. Hence, O3 exposure at accepted standard
levels may lead to adverse respiratory effects in individuals
with underlying lung conditions such as asthma.

B. Continuous Monitoring of ECG

Fraction of Data Removed. The Wavelet-based processing
of the signals reduced the fraction of data removed from each
session (Fig. 4). On average, the fraction removed for the raw
signal after SQI filtering was 44%, and for the cleaned signal
was 33%. This indicates an overall reduction of 26% on the
amount of data removed through this filtering.

Patterns on HRV. We computed several HRV indexes from
the raw data with and without SQI removal, and the cleaned
data with SQI removal. All features except for pNNa50 were
calculated for 5 minute windows. The features extracted were
the mean of the heart rate (meanHR), the standard deviation
of the differences between adjacent NN intervals (mean-sdsd),
the standard deviation of NN intervals for each window (mean-
nnstd), the mean of the root mean squared adjacent NN
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Fig. 2. Processing of SQI removal for raw and cleaned signal (representative data). The raw signal without any SQI removal (left), the raw signal with SQI
removal (middle), and the cleaned signal with SQI removal (right). On the bottom, we observe the fraction of data retained on each window.

Fig. 3. Lung function and airway inflammation results. Healthy volunteers
(n=4) experienced drops in Forced Vital Capacity (FVC) and Forced Expira-
tory Volume in 1 second (FEV1), and increased airway inflamation (%PMNs)
with low level O3 exposure under sedentary conditions.

intervals (mean-rmssd), the standard deviation of the mean NN
intervals (mean-sdann), the mean of the standard deviation of
the standard deviations (mean-sdnni), and the percent of total
NN intervals greater than 50 ms (pNNa50) [11]. Table I shows
the results for meanHR and pNNa50 from the raw and cleaned
signals after SQI removal for which we had three subjects with
similar trends on their response. We did not include the results
from the raw signal without SQI removal since those results
included errors in the R-peak detection.

Comparing HRV to Lung Function. We computed the
correlation between the changes in HRV and lung function.
We focused on the HRV features extracted using the cleaned
signal after SQI removal. The changes in meanHR (Fig. 5)
seems to have a positive correlation with changes in FVC
and negative correlation with changes in %PMN. In contrast,
pNNa50 seems to have a positive correlation with %PMNs. A
larger study is needed to properly justify these relationships
due to the smaller sample size.

V. CONCLUSION

This work presents a preliminary assessment towards under-
standing the effect of low dose ozone on healthy individuals.

Fig. 4. Fraction of data removed per session after SQI filtering. We compared
the results of the raw signal and the cleaned signal after Wavelet processing.

Fig. 5. Correlation between changes in HRV and lung function.

Following this initial study on the control group, additional
data analysis with a larger sample size and a follow up study
with mild asthmatics are currently in progress with wearable
devices developed by the ASSIST Center. The outcome of
this work and the study in progress would enable appropriate
asthma care and management through vigilant health monitor-
ing and relevant data analytics.
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TABLE I
ECG RESULTS FOR SUBJECTS AFTER SQI REMOVAL AND CLEANED

WAVELET PROCESSED SIGNAL
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