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Abstract— Atrial Fibrillation (AF) is most common sustained
cardiac arrhythmia and a precursor to many fatal cardiac
conditions. Catheter ablation, which is a minimally invasive
treatment, is associated with limited success rates in patients
with persistent AF. Rotors are believed to maintain AF and
core of rotors are considered to be robust targets for ablation.
Recently, multiscale entropy (MSE) was proposed to identify
the core of rotors in ex-vivo rabbit hearts. However, MSE
technique is sensitive to intrinsic parameters, such as scale
factor and template dimension, that may lead to an imprecise
estimation of entropy measures. The purpose of this research is
optimize MSE approach to improve its accuracy and sensitivity
in rotor core identification using simulated EGMs from human
atrial model. Specifically, we have identified the optimal time
scale factor (t,,) and optimal template dimension (T,,) that
are needed for efficient rotor core identification. The t,, was
identified to be 10, using a convergence graph, and the T, (~20
ms) remained the same at different sampling rates, indicating
that optimized MSE will be efficient in identifying core of the
rotor irrespective of the signal acquisition system.
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INTRODUCTION

Atrial Fibrillation (AF) is the most common type of
cardiac arrhythmia prevalent in United States and is
associated with increased risk of stroke and precursor to other
fatal cardiac diseases. According to an estimate in 2014, 2.7
to 6.1 million people in the United States are afflicted by AF
[1, 2]. Recent scientific studies indicate the presence of
localized sources (electrical rotors) is responsible for
sustaining AF in both animals and humans [3, 4].

Catheter ablation, which is a minimally invasive therapy
for AF termination, is shown to have an increased success
rate in patients with intermittent AF, where the triggered
activity is originated close to the pulmonary vein (PV)
regions [5, 6]. However, in the case of persistent AF, core of
rotors may arise outside the PV regions, thus decreasing the
success of AF ablation therapy [7]. Hence, it is important to
identify targets for ablation outside the PV region to improve
the success of catheter-based ablation therapy.

Conventional mapping for AF ablation is challenging,
because clinical intracardiac electrograms (EGMs) may not
always represent local activation, thus leading to false
identification of AF maintenance sites. On the other hand,
non-contact methods may distort the EGMs recorded, thus
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leading to poor signal to noise ratio [2, 8]. Currently used
electro-anatomical mapping techniques for identification of
ablation sites, such as local activation time, complex
fractionated EGMs and dominant frequency (DF), are known
to have limitations that prevent the accurate identification of
the cores of rotors, due to noise, misleading phase and signal
distortion [9].

Recently, we proposed to use a multi-scale entropy
(MSE) approach to improve identification of the core of the
rotor [11]. We validated this technique in ex-vivo animal
experiments, in which high-resolution optical mapping was
used to visualize electrical activity in the hearts. We
demonstrated that MSE approach is not only able to
accurately identify the cores of both stationary and
meandering rotors in ex-vivo rabbit hearts [10, 11], but also
is robust with respect to reduced spatial and temporal
resolutions [11]. Therefore, it was suggested that MSE can
potentially be implemented on intracardiac clinical EGMs.
However, further optimization is required for MSE approach
to have better performance.

We have developed an optimized MSE approach to
improve its accuracy and sensitivity in rotor core
identification using simulated EGMs from human atrial
model. First, we identified the optimal time scale factor (Top).
Then using the t,, measured, optimal template dimension
(Topy) that is needed for efficient rotor core identification is
evaluated. Then we show that optimized MSE will be
efficient in identifying core of the rotor irrespective of the
EGM signal acquisition system.

I. METHODS

A. Numerical Simulations:

Electrical activity in a 25x25mm isotropic human atrial
tissue model was simulated using an extended model that
incorporates both fibroblasts and myocytes, as previously
published [12]. A bi-layer anatomical model was adopted, in
which fibroblasts are aligned on top and in a parallel matrix
to a monolayer of myocytes. The extra-cellular potential, @,
and the transmembrane voltage (V,,), were modeled using
the bi-domain coupled equations [13].

The local number of fibroblasts connected to a single
myocyte was adjusted to maintain and simulate a stationary
sustained rotor. The rotor was induced using the S1 S2
stimulations as suggested in [13]. The 25x25mm 2-
dimensional (2D) map is represented by a 100x100 pixel
image with each pixel containing V,, signals for a 1.7 second
time period. Fig la shows the 2D V,, map for the
numerically simulated stationary rotor.
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B. “True” core identification:

The core of the rotor is the spatial area around which the
rotational electrical activity sustains in the heart during AF
and other arrhythmias. The “true” core of the rotor was
determined as demonstrated previously [14], by
implementing Hilbert transform over entire duration of the
movie and identifying the phase singularity (PS) points
based on numerical simulation of V,, obtained previously.
Fig. 1b shows the location of the “true” core of the rotors
(white colored area) for the simulated stationary rotor.

C. Simulated Unipolar EGMs:

Simulated unipolar EGMs (UniEGMs) were obtained
from the numerical simulations by the summation of V,

dipoles weighted by the direction I and distance r with

respect to the measuring point using 2D linear gradient v
[12], under the assumption of a homogeneous, unbounded
and quasistatic substrate. The UniEGMs are computed at
each pixel location assuming the measuring point to be at the
current pixel and the reference is assumed to be at infinite
distance:

UniEGM = ¥ (r%) VY, (1)

Fig. 2 a,b show representative examples of simulated V,
and UniEGMs signals at the same pixel location indicated by
a yellow * in Fig.la, respectively. It is to be noted that the
V., signal has information content in repolarization phase
indicated by the red part of the zoomed in signal whereas the
information is diminished or absent in the UniEGMs signal
during the repolarization. The sampling rate of the signals
was 1000 samples per second.

D. MSE Approach:

The MSE approach is briefly described below (see [10]
for more details).

Let x = {xq, x5, ...
length N.

., Xy Jrepresent the EGM time series of

The moving average time series z°, is calculated for the

chosen time scale factor “t” as
T 1 27+1
zi = ST X 2
J (2t+1) <=1 TR &

where 1 <j<N—r7and i=12,3..,. N

Template vectors y;*(&) with dimension m and delay &
are constructed from at z* each specific t as the following:

V) = (ZE i+ S wzf + (m—DS), ()
where 1 < k < N —mé.

The Euclidian distance d;}(8) for each template vector
pairs is calculated using infinity norm and matched template
vector pairs are computed based on a tolerance threshold r,
chosen to be 0.2 times standard deviation of EGM. The total
number of matched pair vectors is denoted by n (m, §, r).

MSE is calculated as follows:

MSE = —In (H2220)

n(m,8,r)

(4)

E. Quantitative measures of core identification:

The sensitivity and specificity of the MSE approach was
calculated by comparing the “true” core of the rotor with the
core of rotor identified by the MSE technique. The equations
for sensitivity and specificity are as follows:

Sensitivity = 8)

TP+FN’

Specificity = TNIFP 9)

where True Positive (TP) are the points that are identified as
a core both by MSE approach and by a PS analysis (see
“true” core of the rotor in Fig.1b); True Negative (TN) are
the points that are identified as a periphery of the rotor both
by MSE and PS analysis; False Negative (FN) are the points
that are identified as a “true” core of the rotor by the PS
analysis, but not by the MSE approach; and False Positive
(FP) are the points that are identified as a core of the rotor by
MSE, but not by the PS analysis. The specificity was
maintained to be above 90% in all further analysis, to keep
the false core identifications at the minimum.

F. Analysis at different sampling rates:

We investigated the efficacy of MSE optimization
procedure with respect to different sample rate, since
different signal acquisition systems have different sampling
rates when recording clinical EGM signals. For this, the
UniEGMs were resampled at different sampling rates (500,
1000, 1500 and 2000 samples/second), and optimal T (Top)
was calculated for each sampling rate using the convergence
graph (sensitivity vs 1 plot). T, was defined as the maximum
T for which the sensitivity does not increase by more than
0.01% when compared to the next t. The dimension of
template vector y;* (see Eq. 3) was set such that it is equal to
2t+1. The optimal template dimension (T,,) needed under
different sampling rates of input EGMs was identified to
evaluate the robustness of the optimized MSE for different
EGM acquisition systems.
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Figure 1. (a) 2D V,, map of the simulated stationary rotor. (b) The “true”
core of the rotor indicated by the white area.

II. RESULTS

A. Rotor Identification at different t:

Fig. 3 shows the 2D MSE map at t = 1, that was obtained
using the simulated UniEGMs for the stationary rotor and
the white boundary encloses the identified core. The core
is identified as previously done in [11]. The identified



core is clearly smaller in comparison to the “true” core of
the rotor in Fig. 1b.
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Figure 2. Representative examples of V,, at one pixel (see yellow * Fig. 1.)

along with a single period cycle (left). Representative examples of UniEGM

at the same pixel along with a single period cycle (right). Red line segment
in zoomed images show the repolarization phase.
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Figure 3. 2D MSE Map for the simulated stationary rotor using UniEGMs
at 7= 1. Core enclosed by white boundary.

MSE t=10
0.8
20 % 0.75
40
0.7
60
80 0.65
100 0.6

20 40 60 80

100

Figure 4. 2D MSE Map for the simulated stationary rotor using UniEGMs
at T = 10. Core enclosed by white boundary

Fig. 4 shows the 2D MSE map at T = 10, that was obtained
using the simulated UniEGMs for the stationary rotor and
the white boundary encloses the identified core. The
identified core is closer in size to the “true” core of the rotor
in comparison to t = 1 identification.

B. Optimization of rotor core identification

The sensitivity of MSE in identification of the core of the
stationary rotor at a sampling rate of 1000 is shown in Fig. 5
as a function of 7. Note that the sensitivity is low at small r,
and increases as T increases, converging at ~ 93%.
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Figure 5. Sensitivity as function of t in stationary rotor core
identification using the MSE approach. Sensitivity converges at ~93%
with Tep =10.

The t,, was calculated to be 10 because the percentage
increase in sensitivity for the next T was not significant.
Further, larger the 1, number of computations required for
calculating MSE increases, thus, reducing the computational
efficiency.

C. 1,y at different sampling rates

TABLE 1 Topr AT DIFFERENT SAMPLING RATES
Sampling Rates (samples/s) | Topr | Tops (ns)
500 4 18
1000 10 21
1500 15 21
2000 19 19

Table 1. shows the 1., obtained at each sampling rate
and the corresponding T,y It is evident that in each case T,
has very similar time lengths. This indicated that the
optimized MSE captures the same critical complexity of a
signal irrespective of the sampling rate of the inputs. Thus,
optimization technique eliminates the effect of sampling rate
on the MSE analysis results and helps identify critical
complexity of the UniEGMs. Therefore, here we present a
robust method for rotor core identification irrespective of the
sampling rate of the input signals in use.

III. DISCUSSION

In this work, we developed an optimization of the MSE
approach to improve its accuracy and sensitivity in cores
identification using simulated EGMs from human atrial
model. Specifically, we have identified the optimal time scale
factor (top) and optimal template dimension (T) that are



needed for efficient rotor core identification. The T,y was
identified using a convergence graph and the T, remained
the same at different sampling rates, indicating that optimized
MSE will be efficient in identifying core of the rotor
irrespective of the signal acquisition system.

Previously the MSE approach was used to differentiate
AF from normal sinus rhythms using a single lead ECG
signals [10]. It was also used for identification of core of
rotors in ex-vivo rabbit hearts [11]. In these studies, the T,y
was 3 and 2, respectively. But the signals used for the rotor
core detection has different morphology and complexity
compared to the EGM signals that are usually used in clinical
settings. From Fig. 2, it is clear that the information content
in the repolarization phase of the V,, signal is missing or
diminished in the UniEGMs. This causes changes in the
complexity of the signals measured by the MSE approach.
Therefore, the optimization step was important and
implemented to identify the 1., of MSE approach for rotor
core identification using UniEGMs.

The sensitivity measures are computed to evaluate the
performance of the MSE method in identification of rotor
cores with respect to the different 1. The sensitivity measures
help in identifying the percentage of true spatial area of the
core that is identified by our MSE method. High specificity
value represents the minimization of false core
identifications, that is peripheral areas that are falsely
identified to be the core. High specificity value is desired, to
reduce the number of false identification of cores thus
decreasing the probability of ablating peripheral spatial area
of the rotors. Hence, throughout our analysis we have always
maintained the specificity value to be above 90%.

For complete AF termination the conduction block must
extend from the core region to at least one of the unexcited
boundaries of the rotational site. This can be achieved by
performing a linear conduction block that extends from core
of the rotational site to the periphery. The optimized MSE
approach clearly distinguishes between the core of the rotor
and its periphery using UniEGMs, this will enable us to
identify the core region and an unexcitable boundary and
perform an ablation that leads to successful AF termination.

IV. CONCLUSION

Optimization of MSE is important for the successful
identification of core of the rotors using the EGM signals.
Further, validation of this approach is required in persistent
AF patients using clinically recorded EGM signals, which
will lead us towards identification of possible active sites
that cause AF and improve the catheter ablation therapy.
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