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ABSTRACT

OxDNA and oxRNA are popular coarse-grained mod-
els used by the DNA/RNA nanotechnology commu-
nity to prototype, analyze and rationalize designed
DNA and RNA nanostructures. Here, we present
oxDNA.org, a graphical web interface for running, vi-
sualizing and analyzing oxDNA and oxRNA molecular
dynamics simulations on a GPU-enabled high perfor-
mance computing server. OxDNA.org automatically
generates simulation files, including a multi-step re-
laxation protocol for structures exported in non-
physical states from DNA/RNA design tools. Once
the simulation is complete, oxDNA.org provides an
interactive visualization and analysis interface us-
ing the browser-based visualizer oxView to facilitate
the understanding of simulation results for a user’s
specific structure. This online tool significantly low-
ers the entry barrier of integrating simulations in the
nanostructure design pipeline for users who are not
experts in the technical aspects of molecular simula-
tion. The webserver is freely available at oxdna.org.

GRAPHICAL ABSTRACT

INTRODUCTION

The field of nucleic acids nanotechnology uses DNA and
RNA molecules as basic building blocks to construct
nanoscale structures and devices. DNA and RNA have
been chosen due to their programmability, which exploits
the complementarity between corresponding bases (A–
U/T, C–G) to design target nanostructures as overall free-
energy minima of systems composed of self-assembling sin-
gle DNA or RNA strands. Over the past four decades since
its inception (1), the field has lead to the production of in-
creasingly larger and more complex self-assembled struc-
tures with applications that include synthetic biology (2),
nanopatterning (3), nanophotonics, drug delivery (4), di-
agnostics (5), immunotherapy (6) and vaccine development
(7). Experimental techniques, such as fluorescent labeling,
AFM and cryoEM are typically used to characterize the
structures. However, the resolution of the experiments is
limited, and most structures are typically designed empir-
ically through a trial-and-error procedure, until the de-
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sired shape or structure property is achieved, which is time-
consuming and costly.

An alternative is provided by computer simulations,
which can offer detailed insight into the function and prop-
erties of DNA and RNA nanostructures. Using atomistic
resolution models faces challenges due to the size of the
systems (ranging from hundreds to tens of thousands of
nucleotides), and to the long timescales involved in assem-
bly as well as equilibrium states sampling for typical nanos-
tructure designs. Hence, coarse-grained models, which use
simplified representations that group multiple atoms into
a single particle with effective parametrized interactions,
have become increasingly popular to study nanostructures
(8,9). Finite element-based computational studies of me-
chanical and structural properties of nanostructures (10,11)
have also been developed. Among the most popular tools
in the past few years have been the oxDNA and oxRNA
models for DNA and RNA nanotechnology modeling (12–
15). They represent each nucleotide as a single rigid body
with empirically designed interactions that are parameter-
ized to approximate basic structural, mechanical and ther-
modynamic properties of both single-stranded and double-
stranded DNA/RNA (Figure 1). Where available, the mod-
els have been found to be in good agreement with experi-
mental data and have been used in over 130 articles in the
past ten years. Applications range from studies of biophysi-
cal properties of DNA and RNA to studies and rationaliza-
tion of the function of DNA nanodevices, probing nanos-
tructure design and simulations of their assembly (9,16–
26). We note that the model does not currently support
sequence-dependent structural properties of DNA such as
AT-tract bending and sequence-specific stiffness. There are
other approaches and models available which are specifi-
cally aimed at prediction of sequence-dependent effects in
dsDNA structure (27–29).

There is, however, a steep learning curve in using the sim-
ulation code. It requires access to GPU-equipped servers,
knowledge of command line environment and practical ex-
perience in setting up and evaluating molecular dynamics
(MD) simulations, which typically requires at least basic
programming expertise as well. One of the most common
use cases of oxDNA and oxRNA is to prototype and test
novel nanostructure designs in equilibrium sampling sim-
ulation. To ease the use of the tool and also make it ac-
cessible to a broader user base, we introduce here a public
webserver, oxDNA.org, with a GUI that integrates auto-
mated simulation setup and subsequent evaluation of the re-
sulting trajectory in an intuitive user-friendly environment.
We provide here the description of the simulation setup and
analysis workflow, as well as information about the models
and the file formats used. Further tutorials and examples
of how to use the server are provided online. Similar to the
CanDo webserver (10), our server allows upload of a nanos-
tructure in a specified file format. As opposed to CanDo,
which uses finite-element methods to assess structure flex-
ibility and predict mean structure, oxDNA represents the
strands on nucleotide-level, thus also allowing for breaking
or formation of base pairs during the simulation and more
accurate representation of single-stranded regions. We also
support a larger set of analysis tools that also includes dis-
tance and angle distribution, and the server also supports

RNA simulations via the oxRNA model. However, since the
model uses molecular dynamics to sample the structures, it
takes longer to evaluate the nanostructures than CanDo.

MATERIALS AND METHODS

Server data processing

OxDNA.org runs the public release of the oxDNA simula-
tion code that implements the oxDNA2 and oxRNA mod-
els. It facilitates user interaction via a graphical user inter-
face (GUI) that automatically generates parameters for the
simulation and simplifies post-processing. The data work-
flow used by oxDNA.org is shown in Figure 2. The details
about the parametrization of the models and the computa-
tional implementation can be found in previous work (12–
15,30). The oxDNA.org webserver brings together, for the
first time, structure relaxation, simulation, visualization and
post-processing in a single GUI environment. Users provide
the DNA and RNA structure input files in the oxDNA for-
mat and are presented with the option to choose a limited
number of simulation parameters:

• Input files – An oxDNA configuration and topology file
pair that define the structure that will be simulated

• Job Name – The name you would like to give the job
• Interaction Type – Whether to use the oxDNA2 or

oxRNA force field when running the simulation
• Salt Concentration – The monovalent ion concentration

in molar. OxDNA uses the Debye-Hückel electrostatic
model to implicitly model reduction in backbone elec-
trostatic repulsion due to the presence of monovalent
ions. Magnesium interacts with DNA and RNA in a
non-uniform, site-specific manner and therefore is not in-
cluded in the oxDNA model. Previous studies (31) have
shown that high monovalent ion concentration in the
simulation produce results very similar to those found
in experiments containing standard levels of magnesium
ions.

• Steps – The number of steps to run the simulation (run-
ning time = steps · timestep).

• Temperature – The temperature of the simulation (set
with an Andersen-like thermostat).

• Relaxation – If checked a relaxation protocol will be run
prior to the production simulation. The protocol com-
prises a Monte-Carlo (MC) relaxation and an MD relax-
ation.

The following additional parameters are available for the
relaxation protocol:

• MC Steps – The number of steps to run the MC relax-
ation for. This is mostly used to relax overlapping parti-
cles and stretched bonds. If there are not many of these in
the input structure, this can be shorter than the default.

• MD Steps – The number of steps to run the MD relax-
ation for. If structures do not completely relax, this step
should be made longer.

• MD Timestep – The timestep of the MD relaxation. If
structures fail to relax or explode during the relaxation,
it can be helpful to lower this value.
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Figure 1. The oxDNA model is a coarse-grained one-bead-per-nucleotide model of DNA with empirically derived potentials between the beads which
approximate the physical, mechanical and thermodynamic properties of double- and single-stranded DNA molecules. The electrostatic repulsion between
nucleotides is implemented using a Debye-Hückel potential. The oxRNA model uses similar nucleotide-level representation for RNA molecules as oxDNA
does for DNA.

Figure 2. Workflow of the oxDNA.org pipeline.

The following parameters are also available in the ‘ad-
vanced parameters’ section for the production simulation:

• Backend – Run using the CPU or CUDA (GPU) back-
end. For structures over a couple hundred nucleotides the
CUDA backend will be significantly faster. The server is
currently equipped with 8 GPUs and 20 CPU cores, so
small structures should be run on CPU to leave GPU ca-
pacity for larger structures.

• Simulation Timestep – The timestep of integration for the
MD simulation. This number should not be set higher
than 0.003 to avoid numerical instability.

• External Force File – The user may upload an external
force file to add additional forces. All valid oxDNA force
files are supported, the full list of formats can be found in
the oxDNA documentation (dna.physics.ox.ac.uk). Mu-
tual traps, the most commonly used type of force to pull
two separated strands into proximity, can be generated in-
teractively by oxView (32) by selecting which nucleotides
should be paired together. Alternatively, the force files can

also be used to pin a specific nucleotide to a given posi-
tion, or to introduce a 2D plane in the simulation box, as
described in the oxDNA documentation.

• Average Sequence Model – By default, oxDNA and
oxRNA use the same (averaged) sequence strength for A–
T(U) and C–G base pairs and for stacking interactions.
Switching this option will run the model with sequence-
dependent strengths for A–T and G–C bonds (or A–
U, G–C and G–U for RNA) as well as with sequence-
dependent stacking interaction strengths.

• Mismatch Repulsion – The oxRNA force field is known
to over-stabilize mismatches between paired segments.
This introduces an additional repulsion force between
non-complementary bases to reduce such incidents.

• Print Conf Interval – The frequency with which the simu-
lation will print its current configuration to the trajectory
file. The default number was chosen to obtain configura-
tions that are, on average, uncorrelated. OxDNA limits
data output to 1MB per second, so the maximum print
rate depends on the size of the structure.
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• Print Energy Interval – The frequency with which the
simulation will print its current energy to the energy file.

The default parameters were chosen to provide a good
balance between runtime and sampling and in most cases
will result in a trajectory with uncorrelated energies between
subsequent configurations. The default parameters will run
a DNA simulation at 20◦C and 1 M sodium concentration
for 109 MD steps with a timestep of integration of 0.001
simulation time units. Note that, due to the inherent non-
linearity in coarse-graining, an exact time correspondence
with experiments cannot be established (23). Based on di-
rect unit conversion the default running time corresponds to
3.03 �s. Previously, the correspondence between the simu-
lation time and experimental time was roughly based on the
diffusion of a 14-mer (33,34), which is about 100 times faster
in simulation than what has been measured experimentally.
Another possible correspondence between the simulation
and the experimental times was obtained by comparing the
DNA duplex hybridization rate (23), yielding a factor of
∼3000. Hence, the 109 steps can correspond up to roughly
10 ms in real time. However, different processes might scale
with different ratios and this number should be only con-
sidered as a very crude estimate.

Relaxation will be required for most structures exported
from DNA/RNA nanostructure design software prior to
starting the oxDNA simulation, since most design software
presents an idealized version of DNA structures that is not
strictly accurate from a physical perspective. For example,
the respective parts of the structures might be drawn on a
lattice and the nucleotide positions in the design interface
might violate the length constraints imposed by covalent
bonds. Another common problem with structures directly
exported from design tools is that some nucleotides are po-
sitioned too close to each other, leading to steric clashes. An
MD simulation cannot be directly started from such con-
figurations, as the large forces due to the unphysical confor-
mations would lead to numerical instabilities. OxDNA.org
hence implements the relaxation scheme described in (35)
where a short Monte-Carlo simulation is first performed
to reduce excluded-volume clashes and shorten stretched
bonds. The structure is then relaxed using a longer MD
simulation with a highly-coupled Bussi-Donadio-Parrinello
thermostat (36) and a modified backbone potential which
reduces the possibility of numerical instabilities. The default
relaxation parameters on the webserver are very generous
in order to facilitate most user submissions. Structures that
are already in a near-physical state can be run faster by re-
ducing the number of steps in the relaxation, while some
structures that are very far from their expected configura-
tion may require more aggressive methods beyond the scope
of oxDNA.org such as rigid-body dynamics (32) which can
be performed using oxView, mrDNA (8), or interactive re-
laxation using ox-serve (37).

Simulations of a full-sized DNA origami (∼10 000 nu-
cleotides) take about 3 days to run on oxDNA.org with the
default parameters, with runtime scaling approximately lin-
early with the total number of nucleotides. Users are al-
lowed to submit up to four simulations at a time, and the
trajectories are kept on the server for one week after com-
pletion. The trajectories are stored in a compressed 7zip for-

mat, however for a origami-sized structure the files will still
be ∼3GB, so ensure sufficient time to download the results.
The server is currently equipped with 8 NVIDIA RTX 2080
Ti GPU cards with plans to expand capacity in the future.

Software

The web frontend/backend uses a Flask (Python3)/
Angular 1.8 (JavaScript)/Bootstrap(CSS+HTML) stack.
The main code of oxDNA is written in C++ and CUDA
and can be downloaded from (dna.physics.ox.ac.uk).
OxView (sulcgroup.github.io/oxDNA-viewer/) is a single-
page Three.js (JavaScript) application used for visualization
and editing of oxDNA structures. Analysis is performed
using the Python-based oxDNA analysis tools package
(github.com/sulcgroup/oxDNA analysis tools). Examples
of outputs are demonstrated in the following section.

RESULTS AND DISCUSSION

Input files for the server

The job submission form on oxDNA.org (Figure 3) re-
quires two files: configuration and topology. Both files
are described in detail in the oxDNA documentation on
dna.physics.ox.ac.uk. Briefly, the configuration file header
has three lines that contain, respectively, the timestep, sim-
ulation box size, and total, potential and kinetic energy per
particle for the given configuration. Then, the file contains
one line per nucleotide. Each line contains the nucleotide
position, the normal particle orientation vectors a1 and a3
of the reference frame of the nucleotide, and the velocity and
angular velocity vectors. The topology file contains connec-
tivity information defining which particles are connected to-
gether to form strands as well as the nucleoside identity of
each particle. The first line of the topology file shows the
total number of nucleotides and strands. Then, for each nu-
cleotide, its corresponding line in the topology file lists the
strand id that the nucleotide is part of, the base identity
(A,C,G, T or U for RNA), the id of the nucleotide’s 3′ neigh-
bor along the strand and then the id of the nucletotide’s 5′
neighbor. The nucleotides in the topology file are listed 3′
to 5′ (note the backwards convention) for each respective
strands. If a nucleotide does not have a 3′ or 5′ neighbor,
the id of the neighbor is listed as –1. The ids of the strands
start from 1, the ids of the nucleotides start from 0.

There are a variety of popular design tools in the
DNA/RNA nanotechnology field (38–42) that can be used
to create a starting configuration for an oxDNA simu-
lation. Some (like Adenita, MagicDNA or vHelix) have
built-in exporters to the oxDNA format while others (caD-
NAno, Tiamat, or PDB format) can be converted using
TacoxDNA (tacoxDNA.sissa.it) (43). OxDNA files can
be edited using the oxView tool, on the main website
(sulcgroup.github.io/oxDNA-viewer/). Users may option-
ally include an external force file which defines an external
potential that acts on certain particles in the simulation.
Most commonly used are mutual traps, which add an ex-
ternal spring potential of a given stiffness and equilibrium
length between two particles. These files can be generated
using oxView or oxDNA analysis tools or can be manually
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Figure 3. Submitting a job on oxDNA.org The Job submission interface showing the uploaded structure in oxView and the parameter setting (A). The job
status page where users can check the status of their jobs as well as download the original input files as well as the output files and logs. Clicking on the
job name will take the user to the analysis page for that job (B).

written based on the template provided in the documenta-
tion.

When submitting a job, users can either sign up for an ac-
count to keep track of all their submissions in one place or
submit anonymously, in which case the user should book-
mark the job output link for later access. Users who create
an account may opt-in to emails when jobs complete and
will receive email reminders about stale files that will soon
be removed from the server.

Server output result

There are two pages of outputs from simulation jobs run on
the server (Figure 4). The first is a summary table of all jobs
run by the user which contains links to download the initial
configuration and topology files submitted, as well as the
simulation input file and job logs generated by the server.

The user can further view or download the last configura-
tion output by the simulation and download a zip archive
containing the entire simulation trajectory. By clicking on
the job name, the user will be taken to the analysis page
where they will find many options for post-processing of
their simulation trajectory. This page is a GUI implementa-
tion of many of the scripts found in oxDNA analysis tools.
The following scripts are available through the GUI:

• Mean and RMSF – Uses single value decomposition
(SVD) alignment to calculate the mean position of every
nucleotide, then again analyzes the trajectory to get the
root mean squared fluctuation (RMSF) of each particle
from its mean position.

• Align Trajectory – Uses SVD to align all frames in the tra-
jectory to the first. Produces a clearer view of fluctuations
when viewed or converted to a movie using oxView. This
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Figure 4. Analyzing a completed job The job analysis interface showing a few of the options available to users when their simulation finishes. (A) In this
example, a wireframe DNA origami from (44) was simulated and, when finished, the mean structure with RMSF and the end-to-end distances of two of
the edges were calculated. Clicking on the ‘view’ options will open the structure in a separate oxView tab allowing the user to interactively explore their
results (B).
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Table 1. Browser Compatibility: oxDNA.org works in all major browsers
and operating systems

creates a trajectory file about 2/3 the size of the original,
so is recommended prior to downloading.

• Distance – Calculates the distances between two lists of
particles (the first particle id in ‘particles 1’ is compared
with the first particle id in ‘particles 2’ etc.) Results are
provided as both a histogram and line plot format in ad-
dition to as a text file.

• Energy – Creates plots out of the simulation energy file
showing the average potential energy per particle. Fluc-
tuation around a constant value is the simplest way to
determine whether or not a structure has been properly
equilibrated.

• Bond Occupancy – Calculates the percentage of trajec-
tory frames in which the bonds present in the first config-
uration are subsequently present. This is useful for proto-
typing structures, as improperly designed regions will be
unstable and prone to breaking base pairs.

• Duplex Angles – This is split into two sections, the first
calculates the orientation of all duplexes in the structure.
The second takes as input the starting nucleotide ids of
duplexes and uses the output file from the previous script
to calculate the angle between duplexes that start with
those particles. The input and output format is the same
as the distance script.

‘Mean and RMSF’, ‘Energy Plotter’, and ‘Bond Occu-
pancy’ give a good summary of how the structure behaves
and what fluctuation modes the structure encountered dur-
ing the simulation. Base pair occupancy in particular is
something that rapid equilibrium structure prediction algo-
rithms such as CanDo(10) and SNUPI(11) cannot predict.
Distance and Angles serve to ask specific questions about
how regions of the structure behave relative to one another,
allowing the user to accurately discern parameters such as
ideal locations for FRET pairs or explore 3D curvature that
is not visible on AFM images. All results from the server can
be downloaded by clicking the download link.

The webserver has been tested on all major browsers and
operating systems (Table 1). The original oxDNA code is
supported only for Unix-based systems, so this improves ac-
cessibility to those using Windows environments.

CONCLUSION

OxDNA.org simplifies the oxDNA/oxRNA simulation
pipeline and makes a tool previously limited to Unix com-
mand line execution usable to non-expert users via a GUI.
OxDNA has long been a popular tool for the prototyp-
ing of DNA and RNA nanotechnology structures, and we
hope that the simplification of the interface and the im-

plementation of automatic relaxation will allow this tool
to find wider adoption among traditionally experiment-
only groups and that simulation-probing will become a
standard step within the nucleic acid nanostructure design
and characterization process. The webserver implementa-
tion and scripts are also freely available under GNU Pub-
lic License at github.com/sulcgroup/oxdna-web. The web-
server code is available for anyone to setup their own lab
server for oxDNA simulations, as well as setup mirror sites
of oxDNA.org to increase the resource availability to the
community. The package is optimized for nginx webserver
on Linux operating system, and the installation and setup
details are provided on the github page.
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Doye,J.P.K. and Jerala,R. (2016) Design principles for rapid folding
of knotted DNA nanostructures. Nat. Commun., 7, 10803.
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