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To S.T. Yau on his seventieth birthday.

ABSTRACT. The classical Liouville theorem states that a bounded harmonic function on all
of R™ must be constant. In the early 1970s, S.T. Yau vastly generalized this, showing that it
holds for manifolds with nonnegative Ricci curvature. Moreover, he conjectured a stronger
Liouville property that has generated many significant developments. We will first discuss
this conjecture and some of the ideas that went into its proof.

We will also discuss two recent areas where this circle of ideas has played a major role.
One is Kleiner’s new proof of Gromov’s classification of groups of polynomial growth and the
developments this generated. Another is to understanding singularities of mean curvature
flow in high codimension. We will see that some of the ideas discussed in this survey
naturally lead to a new approach to studying and classifying singularities of mean curvature
flow in higher codimension. This is a subject that has been notoriously difficult and where
much less is known than for hypersurfaces.

0. INTRODUCTION

The classical Liouville theorem, named after Joseph Liouville (1809 - 1882), states that a
bounded (or even just positive) harmonic function on all of R™ must be constant. There is
a very short proof of this for bounded functions using the mean value property:

Given two points, choose two balls with the given points as centers and of
equal radius. If the radius is large enough, the two balls will coincide except
for an arbitrarily small proportion of their volume. Since the function is
bounded, the averages of it over the two balls are arbitrarily close, and so the
function assumes the same value at any two points.

The Liouville theorem has had a huge impact across many fields, such as complex analysis,
partial differential equations, geometry, probability, discrete mathematics and complex and
algebraic geometry. As well as many applied areas. The impact of the Liouville theorem has
been even larger as the starting point of many further developments.

On manifolds with nonegative Ricci curvature, mean values inequalities hold, but are no
longer equalities, and the above proof does not give a Liouville type property. However,
in the 1970s, S.T. Yau, [Yal], showed that the Liouville theorem holds for such manifolds.
Later, in the mid 1970s, Yau together with S.Y. Cheng, [CgYa|, showed a gradient estimate
on these manifolds giving an effective version of the Liouville theorem; see also, Schoen, [Sc|.

The situation is very different for negatively curved manifolds such as hyperbolic space.
This is easiest seen in two dimensions where being harmonic is conformally invariant, so
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each harmonic function on the Euclidean disk is also harmonic in the hyperbolic metric.
In particular, each continuous function on the circle extends to a harmonic function on the
disk and the space of bounded harmonic functions is infinite dimensional; cf. Anderson, [A],
Sullivan, [S], and Anderson-Schoen, [ASc].

In general, given a complete manifold M and a nonnegative constant d, Hy(M) is the
linear space of harmonic functions of polynomial growth at most d:

That is, u € Hq(M) if Au =0 and for some p € M and a constant C,
sup |u| < C, (14 R)? for all R.
Br(p)

In 1974, S.T. Yau conjectured the following stronger Liouville property:
Conjecture 0.1. If M™ has Ric > 0, then H4(M) is finite dimensional for each d.

This conjecture generated many significant developments and was discussed by many
authors. See, for instance: page 117 in [Ya3], problem 48 in [Ya4], Conjecture 2.5 in [Sc],
[Kal], [Ka2], [Kz], [DF], Conjecture 1 in [Lil], and problem (1) in [LiTal], amongst others.

The conjecture was settled in [CM4]:
Theorem 0.2. [CM4] Conjecture 0.1 holds.

In fact, [CM4] proved finite dimensionality under much weaker assumptions of:

(1) A volume doubling bound.

(2) A scale-invariant Poincaré inequality.
Both (1) and (2) hold for Ric > 0 by the Bishop-Gromov volume comparison and [B].
However, these properties do not require much regularity of the space and are quite flexible.
In particular, they make sense for more general metric-measure spaces and are preserved by
bi-Lipschitz changes of the metric. Moreover, the properties (1) and (2) make sense also for
discrete spaces, vastly extending the theory and methods out of the continuous world. This
extension opens up applications to geometric group theory and discrete mathematics; some
of which we will touch upon later.

1. HARMONIC POLYNOMIALS ON EUCLIDEAN SPACE

There are two simple ways to understand Hyz(R"™). The first, which is very special to
Euclidean space, uses that the Laplacian commutes with partial derivatives on R™. The key
is then the gradient estimate®:

If Au=0on Byr C R™, then
V2n + 16
sup |Vu| < ———— supul.
Bpr R Bag

Thus, if [u| < C on all of R™, then supy, |Vu| < 228 for all R. Letting R — oo gives
that u is constant. Since 0,,Au = A(J,,u) on R", the gradient estimate implies that if
u € Hq(R™), then % € Hq—1(R™). Applying this d times gives that the d-th order partials

IThe constant v/2n + 16 is not sharp.
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are constant and, thus, v is a polynomial of degree d. It follows that H4(R™) is the space of
harmonic polynomials of degree at most d and, thus, has dimension of the order d"!.

There is another way to think of this that gives a more general perspective. Namely, in
polar coordinates (p,6) € R* x S*~!, the Laplacian is

(1 1) ARn :p_QAg—{—(TL— 1)ph12+6—2
' op  0Op?’
In particular, the restriction of a homogeneous harmonic polynomial of degree d to S"~!
gives an eigenfunction with eigenvalue d? + (n —2)d.
A similar “cone construction” holds more generally; cf. [CM2]. Given a manifold N"!,
the cone over NV is the manifold C(N) = N x [0, o) with the metric
(1.2) dsZC(N) = dr® +rds?, .
The Laplacians of N and C(N) are related by
(1.3) Acvyu =12 Anu + (n 1)r‘1au+a—2u
’ c® = N or ore
Using (1.3), we can now reinterpret the spaces Hqy(C/(N)):

Lemma 1.4. If Ayg = —Xgon N, then r?g € Hy(C(N)) where
(1.5) A+ (n—2)d=\.

As a consequence of Lemma 1.4, the spectral properties of N are equivalent to properties
of harmonic functions of polynomial growth on C (N). In this way, the dimension bounds on
Ha, for d large, are related to spectral asymptotics on the cross-section which are given by
Weyl’s asymptotic formula. This point of view was a focus point of [CMB5].

2. LAPLACIAN ON A MANIFOLD

On a Riemannian manifold M with metric (-, -) and Levi-Civita connection V, the gradient
of a function f is defined by

(2.1) V(f) = (Vf,V) for all vectors fields V .

The Laplacian of f is the trace of the Hessian. That is, if e; is an orthonormal frame for M ,
then

(2.2) Af = TrHess; = Z Hess¢(e;, €;) = Z(veiv, e;) .

7

For harmonic functions, we get the following reverse Poincaré inequality (also sometimes
called the Caccioppoli inequality):

Lemma 2.3 (Reverse Poincaré). If Au= 0 on Byyr C M, then

4
(2.4) / ‘VU]Q < o5 / u?.
Bgr R Bagr

Incidentally, Yau used this in [Ya2] to show:

Theorem 2.5 (Yau). If M is open, u is harmonic, and [u? < oo, then u must be constant.
If M has infinite volume, then u = 0.
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2.1. The Bochner formula. On Euclidean space R", partial derivatives commute and
1
(2.6) 5 Are |Vu|? = [Hess,|” + (Vu, VAgnu) .

On a Riemannian manifold M, derivatives do not commute and (2.6) does not hold in general.
However, the failure of derivatives to commute is measured by the Riemann curvature tensor.
Using this, Bochner proved the following extremely useful formula:

1
(2.7) §A|Vu|2 = |Hess, | + (Vu, VA u) + Ricy (Vu, Vau) .

Thus, if Ricy; > 0, then the energy density of a harmonic function is subharmonic.

3. GRADIENT ESTIMATE FOR HARMONIC FUNCTIONS

Gradient estimates have played a key role in geometry and PDE since at least the early
work of Bernstein in the 1910s. These are probably the most fundamental a priori estimates
for elliptic and parabolic equations, leading to Harnack inequalities, Liouville theorems, and
compactness theorems for both linear and nonlinear PDE.

A typical example for linear equations is the well-known, and highly influential, gradient
estimate of S.Y. Cheng and S.T. Yau for harmonic functions:

Theorem 3.1. [CgYa] If Au =0 on Bg(0) with nonnegative Ricci curvature, then

V2n+16
——— supul.

(32 Vul(0) < YT sy

Proof. We begin by introducing a cutoff function 7 that vanishes on 0Bg and has bounds
on its gradient and Laplacian. Define the cutoff function n(xz) = R? — r?, where r is the
distance function to the center 0 of the ball. Observe that

(3.3) Vi = |20 VF| £ 2R,

(3.4) [Vi’| =20 |Vn| < 4R,

(3.5) Anp=—-Ar*> —2n,

(3.6) A? =2V +2nAn > —4nnp > —4n R?,

where the third line used the Laplacian comparison theorem (which applies since Ric > 0).
Using the product rule the Laplacian, the Bochner formula and the above formulas for 7,
we compute that

Am? |Vul’) = 7° A|Vul? + 2(Vi?, VIVul®) + [Vul* Ay’
> 27 |Hess, |2 — 16 R 1) |[Vu| |[Hess,| — 4n R?* |Vul?
(3.7) > —(4n + 32) R?|Vu|?,

where the last inequality used the absorbing inequality 16 ab < 2 a*+32b* with a = 7 |Hess,|
and b = R |Vu|. On the other hand, we have Au? = 2|Vu|?, so the function

(3.8) w = (2n 4+ 16) R?u® + n? |Vu|?
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is subharmonic on Bg(0) (i.e., Aw > 0). By the maximum principle, the maximum of w
occurs on the boundary so that
(3.9) R*|Vul*(0) < w(0) < max w = (2n + 16) R? maxu®.

R

O0Bgr

In fact, Cheng and Yau proved a stronger estimate:

Theorem 3.10 (Gradient estimate; [CgYa]). If Au = 0 and wu is positive on Bgr(0) with
Ric > 0, then

(3.11) g% dn

(0) =[Vlogu|(0) < —.

An important consequence of (3.11) is the Harnack inequality for positive harmonic func-
tions. Accordingly, estimates of the form (3.11), which give a bound for the derivative of
the logarithm of a positive function, are often referred to as differential Harnack estimates.
In 1986, Li and Yau proved a sharp gradient, or differential Harnack, estimate for the heat
equation on manifolds with Ric > 0, [LiY]. The paper [C2] gives a sharp elliptic gradient
estimate on such manifolds. Finally, note that the Harnack inequality holds more generally
for manifolds with a volume doubling and Poincaré inequality by [Gr], [SC].

4. HARMONIC FUNCTIONS WITH POLYNOMIAL GROWTH ON GENERAL SPACES

The Cheng-Yau gradient estimate implies the global Liouville theorem of Yau, [Ya3], by
taking R — oo in (3.11). In fact, it implies the stronger result that any harmonic function
with sublinear growth must be constant:

Corollary 4.1. [CgYa] If M is complete with Ricy, > 0, then Hy4(M) = {Constant functions}
for d < 1.

Since R™ has nonnegative Ricci curvature and the coordinate functions are harmonic, this
is obviously sharp. Therefore, when d > 1 a different approach is needed. Instead of showing
a Liouville theorem, the point is to control the size of the space of solutions. Over the years,
there were many interesting partial results (including when M is a surface, [LiTa2] and [DF]).
In [LiTal], P. Li and L.F. Tam obtained the borderline case d = 1, showing that

(4.2) dim(H;(M)) <n+1,

for an n-dimensional manifold with Ricy; > 0. When M = R™ the space H;(R™) has
dimension n + 1 and is spanned by the n coordinate functions plus the constant functions.
The corresponding rigidity theorem was proven in [ChCM] (see [Li2] for the special case
where M is Kéahler):

Theorem 4.3. [ChCM] If M is complete with Ricy, > 0, then every tangent cone at infinity
M, splits isometrically as

(4.4) My, = N x REm(Fa(M))-1
Hence, if dim(H;(M)) = n + 1, then [C1] implies that M = R".
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Finally, in [CM4], Yau’s conjecture from 1974 was settled. Namely, [CM4] showed that
the spaces of polynomial growth harmonic functions are finite dimensional; see Theorem 0.2.
The proof consists of two independent steps (the first does not use harmonicity):

e Given a 2k-dimensional subspace H C Hy(M) and h € (0,1], there exists a k-
dimensional subspace K C H and R > 0 so that

fB<1+h)2R v’ 8d
veK\{0} Br

e The dimension of a space K of harmonic functions satisfying (4.5) is bounded in
terms of h and d.

To give some feel for the argument, we will sketch a proof of the second step.

Proof. (Sketch of second step) For simplicity, suppose that R = 1 and A = 1. Fix a scale
r € (0,1) to be chosen small. We will use two properties of manifolds with Ricy; > 0:
First, we can find N < C,, v~ balls B,(z;) with

(46) X B < Z X Br(z;) S Cn XB; »

where g is the characteristic function of a set E. (To do this, choose a maximal disjoint
collection of balls of radius r/2 and then use the volume comparison to get the second
inequality in (4.6) and bound N.)

Second, there is a uniform Poincaré inequality: If |, Ba(x) f =0, then

(4.7) / f? SCNSQ/ \4i
Bs(z) Bs(z)

To bound the dimension of K, we will construct a linear map M : K — R and show
that M is injective for r > 0 sufficiently small. We define M by

(4.8) M(v) = (/Br(mv,.-. ,/BT(M) v) .

We will deduce a contradiction if v € K\ {0} is in the kernel of M. In particular, (4.7) gives
that for each ¢

(4.9) / v? < Cy 7"2/ |Vol?.
Br(l‘z) Br(zz)

Combining this with (4.6) gives

N N
(4.10) / Wt < Z/ o < CNTQZ/ Vol? < C, C 12 / Vo2
By i=1 r(24) §=1 r(24)

Bs

We now (for the only time) use that v is harmonic. Namely, the Caccioppoli inequality (or
reverse Poincaré inequality) for harmonic functions gives

(4.11) |Vv|2§/ v
Ba By
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Combining (4.10) and (4.11), we get
(4.12) / v* < C, Oy r? / al
Bl B4

This contradicts (4.5) if r is sufficiently small, completing the proof. O

On Euclidean space R”, the spaces Hy are given by harmonic polynomials of degree at
most d. In particular, it is not hard to see that

(4.13) dim(Hy(R™)) ~ Cd" .

Using the correspondence between harmonic polynomials and eigenfunctions on S»~! (see
Lemma 1.4), this is closely related to Weyl’s asymptotic formula on S*!. In [CM5], the
authors proved a similar sharp polynomial bound for manifolds with non-negative Ricci
curvature:

Theorem 4.14. [CM5] If M" is complete with Ricy; > 0 and d > 1, then
(4.15) dim(Hg(M)) < Cd™ 1.

Taking M = R", (4.13) illustrates that the exponent n — 1 is sharp in (4.15). However,
as in Weyl’s asymptotic formula, the constant in front of d*~! can be related to the volume.
Namely, we actually showed the stronger statement

(4.16) dim(Hg(M)) < Co Vagd*™ + o(d™™),

where

e (), depends only on the dimension n.

e V) is the “asymptotic volume ratio” lim,_, Vol(B,)/r".

e o(d™") is a function of d with limg .o, o(d*~')/d* ! = 0.
As noted above, Theorem 4.14 also gives lower bounds for eigenvalues on a manifold N7~!
with Ricy > (n — 2) = Ricga-1. Using the sharper estimate (4.16) introduces the volume of
N into these eigenvalue estimates (as predicted by Weyl’s asymptotic formula).

An interesting feature of these dimension estimates is that they follow from “rough” prop-
erties of M and are therefore surprisingly stable under perturbation. For instance, in [CM{],
we proved Theorem 0.2 for manifolds with a volume doubling and a Poincaré inequality; un-
like a Ricei curvature bound, these properties are stable under bi-Lipschitz transformations.

This finite dimensionality was not previously known even for manifolds bi-Lipschitz to
R" (except under additional hypotheses, cf. Avellenada-Lin, [AvLn], and Moser—Struwe,
[MrSt]).

The volume doubling and Poincaré inequality together imply a meanvalue inequality. Us-
ing the meanvalue inequality and the doubling, we prove finite dimensionality for harmonic
sections of certain bundles in [CM6] (see also [CM3]).

This is just a very brief overview (omitting many interesting results), but we hope that it
gives something of the flavor of the subject; see [CM3] and references therein for more.

5. THE HEAT EQUATION

A function u satisfies the heat equation if u; = Au. In particular, harmonic functions are
static (time-independent) solutions of the heat equation.
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5.1. Ancient solutions of the heat equation. The natural parabolic generalization of a
polynomial growth harmonic function is a polynomial growth ancient solution of the heat
equation. On R", it is classical that these are just polynomials and, thus, finite dimensional.
In view of [CM4], [CM5] and [CM6] for harmonic functions, it is natural to seek dimension
bounds for these spaces on manifolds. This was initiated by Calle in 2006 in her thesis,
[Cal], [Ca2]; cf. [LZ] for some recent results, including a parabolic generalization of [CM4].

Given d > 0, let Py(R") be the space of ancient solutions u(z,t) of the heat equation
Owu = Au so that there exists C, with

(5.1) sup  |ul| < C, (1+R)*.
BRX[—RQ,O]

Theorem 5.2. [CM11] If Vol(Bg(p)) < C (1 + R)% for some p € M, thenfor 1 < k e Z
(5.3) dim Py (M) < (k+ 1) dim Hop (M)

Combining this with the bound dim Hy(M) < C d** when Ricym > 0 from [CM5] gives:
Corollary 5.4. [CM11] There exists C'= C(n) so that if Ricpm > 0, then for d > 1
(5.5) dim Py(M) < Cd".

There is a constant ¢ depending on n so that for d > 1
(5.6) ¢ 'd" < dim Py(R™) < cd”.

Thus, the exponent n in (5.5) is sharp; see Lin and Zhang, [LZ], for a recent related result
that adapts the methods of [CM4]-[CM6] to get the weaker bound d™*!.

Theorem 5.2 gives finite dimensionality of Py(M) for any M where Hy(M) is finite dimen-
sional. Thus, the earlier results of [CM4]-[CM6] give finite dimensionality of Py4(M) when
M has a volume doubling and either a Poincaré or meanvalue inequality.

5.2. Parabolic gradient estimates. Using the parabolic gradient estimate of Li and Yau
in place of the Cheng-Yau gradient estimate, we will get generalizations of the harmonic
rigidity theorems when the degree of growth is low.

Corollary 5.7. Suppose that Ricyn > 0. If d < 1, then Py(M) = {Constant functions}. If
d < 2, then Py(M) = Hq(M). Finally, dim P;(M) < n + 1 with equality only on R”

The next lemma gives a simple interior gradient estimate that parallels the gradient esti-
mate of Theorem 3.1 for harmonic functions. One can also get gradient estimates in time,
though the scaling factor is different.

Lemma 5.8. If M is complete with Ricy; > 0, the there exists C' depending on n so that if
(0r = A)u =0 on Bp x [-R?,0], then

,  C
(5.9) sup |Vul? < —  sup  u’.
Bpysx[~R2/4,0] R? poxi—R20)

Proof. By scaling, it suffices to prove the estimate when R = 1. Let 1 be a cut-off function
that is one on By x [~1/4, 0] and zero on the parabolic boundary of By x [—1,0]. Note that
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(0,—A)u? = —2|Vul? and, by the Bochner formula since Ric > 0, (9,—A)|Vu|? < —2|V2ul?.
Therefore, the Kato inequality |V|Vu|| < |V2u| and the absorbing inequality give
(0 — A) [¥°|Vul’] < =2|V2ul* + [Vul® (9, — A)y? + 8lu| [Vul[4]| V|
(5.10) < |Vul? {(0, — Ay + 8|V} .

Using the Laplacian comparison theorem, we can construct ¢ so that [(9; — A)? + 8 |[Vih]?| <
C for a constant C' depending just on n. It follows that C u® + |Vu|?1? is a subsolution of
the heat equation and the parabolic maximum principle gives

(5.11) sup [Vul? < C  sup u?.
By /ox[-1/4,0] B1x[-1,0]
After rescaling to radius R, this gives the lemma. U

In [LiY], Li and Yau proved a gradient estimate for positive solutions of the heat equation:
Theorem 5.12 (Differential Harnack inequality; [LiY]). If ;u = Au = 0 and u is positive
on M x [0,00) with Ric > 0, then
Vaf w _n

u? u ~ 2t

There is also a local version of Theorem 5.12 in [LiY] when u is positive on Bg x [—R2, 0]

with Ric > 0. Namely, there exists C,, depending on n so that

2
(5.14) sup <|Vul - %) = Cn

2 = Do
2 U U R
B_IQ:C_X[_RTvo]

(5.13)

An immediate corollary of (5.14) is a generalization of Lemma 5.8:

Corollary 5.15. There exists C' depending on n so that if O;u = Au = 0 and Ric > 0, then
C
(5.16) sup luel < =5 sup  Jul.
B x[-£2,0] R Bpx[-R%,0]
2
Similarly, we have SUDp B2 g Vul? < 5 SUDp (- R2,0 U -
2

Proof. Let m be the supremum of |u| on Bg x [-R%0]. Then v = u+m and w = m — u
satisfy the heat equation and are positive with

(5.17) 0<v,w<2m.
Let @ = Br x [—RTQ, 0]. Applying (5.14) to v gives on  that
[Vl _w _ [VoP v Ca
w2 v v? v — R?’
Thus, we get on () that u;, > —%‘—29 > —2012#. Applying (5.14) to w gives on ) that
|Vul? R [Vwl < G

w? w w? w — R?’

(5.18)

(5.19)

which gives that u; < % < 26;;2’”. Combining the upper and lower bounds on u; gives

(5.16). Finally, using (5.16) in (5.19) gives the spatial gradient estimate. O
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Proof of Corollary 5.7. Suppose that u € Py(M) with d < 1. By taking R — oo in Lemma
5.8, we see that |Vu| = 0 and, thus, u is constant in space. The equation u; = Awu then
implies that u is also constant in time.

By Corollary 5.15, we see that if d < 2, then Py(M) = Hy(M). In particular, dim Py (M) <
n+ 1, by [LiTal], and equality holds if and only if M = R™ by [ChCM]. OJ

6. RECENT RESULTS

In the last two sections we will discuss two recent applications of the methods discussed
here in two very different directions. The first is a new proof, by Kleiner, of Gromov’s
theorem about groups of polynomial growth whereas the second, which is discussed in the
next section, is to blow-ups (ancient solutions) of curvature flow.

6.1. Connections with geometric group theory. Recently Kleiner, [K], (see also Shalom-
Tao, [ST]) used, in part, the circle of ideas discussed here in his new proof of an important
and foundational result in geometric group theory, originally due to Gromov, [G]. Gromov’s
theorem asserts that any finitely generated group of polynomial growth has a finite index
nilpotent subgroup.

Given an infinite group generated by a finite symmetric set, a function on the group is said
to be harmonic if it obeys the mean value equality. Here the mean is taken over adjacent
elements. Kleiner’s proof has roughly four steps, cf. [T1], [T2]. The first is to construct
plenty of polynomial growth harmonic functions on any group with polynomial growth. The
second step uses that the space of polynomial growth functions H,; on the group is finite
dimensional for each d. The third step shows that any finitely generated group of polynomial
growth that sits inside a compact Lie subgroup of the general linear group is virtually abelian.
Finally, the fourth step uses an induction argument to reduce the general question to the
third step. Steps one and two together give that step three applies. To get the key finite
dimensionality of the second step, Kleiner shows a Poincaré inequality and observes that the
group satisfies a type of doubling condition.

7. A NEW APPROACH TO MEAN CURVATURE FLOW IN HIGHER CODIMENSION

We will see that some of the ideas discussed in this survey naturally leads to a new approach
to studying and classifying singularities of mean curvature flow in higher codimension. This
is a subject that has been notoriously difficult and where much less are known than for
hypersurfaces. The results that we describe in this section can be found in [CM10]; see also
[CM12] for more results.

A one-parameter family of n-dimensional submanifolds M* C R" evolves by mean cur-
vature flow if each point z(t) evolves by

(71) 815.17 = —H7

where H = —Tr A is the mean curvature vector and A is the second fundamental form. It
is said to be ancient if it exists for all negative times. The restrictions of the coordinate
functions on RY to the evolving submanifolds satisfy the heat equation. This is particularly
relevant for the connection with the space of polynomial growth functions. Indeed one way
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of thinking about mean curvature flow is that the position vector z € M C RY satisfies
the nonlinear heat equation

(72) (8t — A]\,{t) z=0.

This equation is nonlinear since the Laplacian depends on the evolving submanifold M,.
There is a Lyapunov function for the flow that is particularly useful. To define it recall
that the Gaussian surface area F' of an n-dimensional submanifold ¥* ¢ RY is

_l=/?

(7.3) F(Z) = (47)"2 / e
by

The factor (47r)_% is chosen to make the Gaussian area one for an n-plane through the origin.
Following [CM9], the entropy A is the supremum of F over all translations and dilations
(7.4) AX) =sup F(cX + zo) .

¢,xo
By Huisken’s monotonicity, [H], it follows that A is monotone nonincreasing under the flow.
From this, and lower semi continuity of A, we have that all blowups have entropy bounded
by that of the initial submanifold in a MCF.

Mean curvature flow (MCF) in higher codimension is a complicated nonlinear parabolic
system and much less is known than for hypersurfaces. The singularities are modeled by
shrinkers 3 that evolve by scaling. Shrinkers get more complicated as the codimension
increases. The most fundamental shrinkers are cylinders Slf/@ x R™"* but there are many

others including all n-dimensional minimal submanifolds of the sphere OB s; C RY.
The entropy of round spheres is monotone decreasing in the dimension, [St], with

(7.5) VZ<AS™) < AS™ Y < < A(SY) = \/? ~1.52,

and A(X x R) = A\(2).

Any blow up of a mean curvature flow leads to an ancient solution. A particularly impor-
tant way of blowing up is around a fixed point in space-time. This kind of ancient solutions
are the shrinkers. A submanifold ¥ is a shrinker if it satisfies the equation

.CL"L

(7.6) H=,

where z is the perpendicular part of the position vector field. This is equivalent to saying
that the one parameter family /—¢ ¥ flows by the mean curvature flow.

7.1. Bounding codimension. Let M C R" be an ancient MCF of n-dimensional sub-
manifolds with entropies A(M;) < A\¢ < oco. Ancient means that the flow exists for all
negative times. The space Py of polynomial growth solutions of the heat equation consists
of functions u(z,t) on UM, x {t} so that (8; — Apy,) u = 0 and there exists C' depending on
u with

(7.7) lu(z,t)] < C (1 + |z]* + \t!g) for all (z,t) with z € M, .

In [CM10], for each d we bound the dimension of P4(M,) for an ancient MCF M, c RY.
The bound is in terms of the dimension of M;, the entropy and d. The next result is a special
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case of this for d = 1 that show that the codimension of the smallest Euclidean space that
the flow sits inside is bounded in terms of the entropy.

Theorem 7.8. (Bounding codimension by entropy for ancient solutions, [CM10]). If M C
RY is an ancient mean curvature flow with finite entropy, then there exists an affine subset
W of RY of dimension < C(n) sup, A(M,).

Let ¥ C R be a shrinker with finite entropy A(X). We will use |Ju||z> to denote the
Gaussian L? norm. As in [CMG6], the drift Laplacian £ = A — $V,r is self-adjoint with

o / |z . . g :
respect to the Gaussian inner product fz; uve "+ . We will say that u is a u-eigenfunction

if Lu= —puand 0 < |Jul|z2 < co. The spectral counting function N (i) is the number of
eigenvalues p; < p counted with multiplicity. In [CM10] we bound the spectral counting
function for any shrinker in terms of the dimension of the shrinker, its entropy and u. A
key component in the proof if the bound for the counting function is a sharp polynomial
growth bound for eigenfuctions of £ on any shrinker. This result seems to be of independent
interest. It too is sharp on R™ and shows that any eigenfunction on any shrinker grows
polynomially of degree at most twice the eigenvalue. As a special case of our bound for the
spectral counting function we get for u = % that:

Theorem 7.9. (Bounding codimension by entropy for shrinkers, [CM10]). Given n, there
exists Cy, so that if £ C R” is a shrinker, then it is contained in a Euclidean subspace of
dimension at most C,, A where A = A(X).

Our estimates in Theorems 7.8 and 7.9 are linear in the entropy, which is known to
be sharp. The corresponding linear estimate for algebraic varieties in complex projective
space follows from Bézout’s theorem, 18.3 in [Ha]. When ¥ C 9B 5; C R is a closed
n-dimensional minimal submanifold of the sphere and the entropy reduces to the volume,
then this estimate follows from theorem 6 in [CLY].

In theorem 1.5 in [dCW], do Carmo and Wallach construct families of minimal subman-
ifolds of the sphere, each isometric to the same round sphere, generalizing earlier results of
Calabi [Ca]. The boundary immersions of the families in [dCW] lies in a lower-dimensional
affine space. Obviously, they have the same volume and, since they are contained in spheres,
also the same entropy. Thus, the number of linearly independent coordinate functions can
vary along a family.

7.2. Strong rigidity of cylinders. By uniqueness of solutions to ODEs, it follows that
any l-dimensional shrinker is contained in a 2-plane. From this and dimension reduction, it
is expected that for MCF in all codimension the most prevalent singularities are S! x R"7!,

Our next result plays a key role in the regularity of MCF in higher codimension, cf.
[CM12]. This result shows that cylinders are rigid in a very strong sense: Any shrinker, even
in a large dimensional space, that is sufficiently close to a cylinder on a large enough, but
compact, set is itself a cylinder. To state the theorem, let C, x be the collection of all RY
rotations of S’f/ﬂ xR fork=1,...,n.

Theorem 7.10. (Strong rigidity of cylinders, [CM10]). Given N, there exists Ry so that
if ¥» C R" is a complete shrinker with finite entropy and there exists C € Cn.nv so that
Bry MY is a graph over C of a normal vector field V with ||[V]|c2.« < Ry, then ¥ € C, .
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The rigidity of cylinders in codimension one was proven in [CIM]. To prove Theorem 7.10,
we show that a shrinker, even in high codimension, that is close to a cylinder on a large
bounded set must be a hypersurface in some Euclidean subspace.

7.3. Sharp bound for codimension. Suppose that M C R” is an ancient MCF with
sup, A(M;) < oo. For each constant ¢ > 0 define the flow M., by

(711) Mc,t = % 2t -

It follows that M., is an ancient MCF as well. Since sup, A(M;) < oo, it follows from
Huisken’s monotonicity, [Hu], and work of Ilmanen, [I], White, [Wh1], that every sequence
¢; — 00 has a subsequence (also denoted by ¢;) so that M,.,, converges to a shrinker Moot
(80 Mooy = v/—t Moo —1) with sup, \(Muo ) < sup, A(M,). We will say that such a M., is a
tangent flow at —oo of the original flow.

Theorem 7.12. If M C R is an ancient MCF and one tangent flow at —oo is a cylinder,
then there exists an affine subset W C R" of dimension n + 1 such that M, C W for all ¢.
In other words, M, is an ancient flow of hypersurfaces in a Euclidean space.

We believe that this theorem will have wide ranging consequence for mean curvature flow
in higher codimension. We will try here to briefly explain some of these.

Affine subspaces have entropy one and, by White’s Brakke theorem, [Wh2], any other
shrinker has strictly larger entropy. In [CIMW], it was conjectured that the round S™
minimizes entropy among closed hypersurfaces in R™™! for n < 6. This conjecture was
proven by Bernstein and Wang, [BW1]; Zhu later proved this for all n in [Z]. See also
[BW2], [KZ]. We conjecture that this holds in all codimension:

In fact, we believe that at least in low dimension and any codimension round generalized
cylinders are the shrinkers with the lowest entropy:

Conjecture 7.13. For n < 4 and any codimension, round generalized cylinders, Slf/g—k’ X
R" %, are the shrinkers with the lowest entropy.

We also conjecture that for any n the round S™ has the least entropy of any closed shrinker
3" C RY. The corresponding result for hypersurfaces was proven in [CIMW]; see also [HW].
Recall also that as noted in [CIMW] the “Simons cone” over S? x S? has entropy strictly less
than that of S! x R*. In other words, already for n = 5, S¥ x R"* is not a complete list of
the lowest entropy shrinkers. Conjecture 7.13 is known for n = 1 since shrinking curves are
contained in affine two-planes and have entropy at least that of round circles.

If this conjecture holds, then combined with Theorem 7.12 it would follows that any
ancient solution M C R with entropy at most A(S!) plus some small € > 0 would be a
hypersurface in some Euclidean subspace of dimension n+1 provided n < 4. This would give
that all blowups near any cylindrical singularity for n < 4 are ancient flows of hypersurfaces.
Thus, reducing the system to a single differential equation.

A positive solution to Conjecture 7.13, combined with Theorem 7.12, would extend codi-
mension one results, see e.g. [BC| and [CHH], for ancient flows to higher codimension.
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