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The field-induced decay of the quantum vacuum state associated with the creation of electron-positron pairs
can be caused independently by either multiphoton transitions or by tunneling processes. The first mechanism
is usually induced by appropriate temporal variations of the external field while the second (Schwinger-like)
process occurs if a static but spatially dependent electric field is of supercritical strength. The ultimate goal is
to construct an optimal space-time profile of an electromagnetic field that can maximize the creation of particle
pairs. The simultaneous optimization of parameters that characterize the spatial and temporal features of both
fields suggests that the optimal two-field configuration can be remarkably similar to that predicted from two
independent optimizations for the spatial and temporal fields separately.
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I. INTRODUCTION

The possibility of probing the instability of the quantum
electrodynamical vacuum state with external fields has found
considerable interest [1,2] as the result of the recent advances
in the development of new light sources with unprecedented
high intensities [3]. There are two intrinsically different decay
mechanisms, by which electron-positron pairs can be created
from the vacuum. The first scheme [4,5] requires the field
(which can be static) to be extremely large and can be vi-
sualized in terms of a tunneling process [6] between energy
shifted Dirac states, while the second scheme [7–14] requires
the field to be time dependent with a large frequency leading
to single- or multiphoton processes.

In view of this interest, several works [15–21] have begun
to develop computational optimization techniques to identify
an optimal set of parameters for the field that can maxi-
mize the final yield of created electron-positron pairs after
the interaction. However, most of these investigations were
restricted to examine only those fields that were constant in
either space or time. This restriction was necessary due to
the computational difficulty of simulating the pair-creation
process for those external fields that have both a spatial as
well as temporal dependence. Each of these investigations
also relies on entirely different theoretical approaches and
concepts to determine the final yield.

For spatially inhomogeneous but time-independent fields, a
steady-state vacuum decay rate can be defined and calculated
conveniently using the Hund rule [22–26], which permits
us to map the quantum field theoretical problem onto a
quantum mechanical scattering problem [27]. Here the total
pair-creation rate (or the rate associated with positrons of
a given energy range) can be calculated from the quantum
mechanical transmission coefficient. A recent work based
on an infinite-dimensional optimization [21] has surprisingly

revealed that there exists an optimal spatial shape for the
external supercritical potential V(x). In contrast to what one
might expect, this optimal spatial profile for the potential
turned out not to be an abrupt step, i.e., V (x) ∼ (1−x/|x|)
(for which the corresponding electric field is actually infinite),
but the optimum V(x) takes a nontrivial and nonmonotonic
quasioscillatory shape that is finite.

For external fields with temporal inhomogeneity, the pio-
neering optimization works by Kohlfürst et al. [15,16] and
Hebenstreit and Fillion-Gourdeau [17] have employed the
quantum Vlasov equation [28–34] to determine the final
positron yield. This convenient approach, however, cannot
be applied if the field also has a spatial dependence. Due to
the inherent difficulty of treating the combined action of two
fields with controlled spatial as well as temporal inhomogene-
ity, there have been few systematic investigations that explore
the simultaneous optimization of both the spatial and temporal
degrees of freedom.

Therefore, even the most fundamental questions have not
been addressed yet. For example, it would be very beneficial
to understand if the resulting optimized superposition of both
a temporal and spatial field could be approximated indepen-
dently from two separate optimizations. If possible, this would
correspond to a nonsymbiotic optimization of both degrees
of freedom. This possibility of an independent optimization
would certainly open the door to simplify future calculations
to construct optimal space-time field configurations.

On the other hand, it might also turn out that the op-
timization is fully symbiotic; i.e., the simultaneous action
of both degrees of freedom could lead to the existence of
new optimal field configurations, that cannot be deduced or
even explained from the independent action of the two fields
applied separately. While a finding of this symbiotic nature
would make further optimization studies more complicated,
from a physical point of view it might be also more fascinating
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as it would open the door to the exploration of new phenomena
that occur only as a result of the interplay of temporally and
spatially induced vacuum decay mechanisms.

In this work we report on some systematic steps towards
the long-time goal to construct an optimal electromagnetic-
field configuration with optimal spatial as well as temporal
shapes. In Sec. II we introduce a quantitive measure that
can classify the degree of symbiosis for general systems.
In Sec. III we illustrate this measure for a simple model
system. In Secs. IV and V we examine the field-induced
decay of the vacuum and show that—depending on the field
configurations—the optima can be symbiotic as well as non-
symbiotic. In Sec. VI we provide open questions and an
outlook to future studies.

II. SYMBIOTIC VERSUS NONSYMBIOTIC
OPTIMIZATION

Let us denote with F(t , s) the objective functional that
maps the external time- and space-dependent force into a
single number F. This is the number that needs to be max-
imized [35–42]. In the introductory Sec. III below, F will
represent the final displacement of a simple driven oscillator,
and in the main sections, Secs. IV and V, F is the final number
of created electron-positron pairs after the interaction with
the field. The two parameters t and s that characterize the
temporal and spatial characteristics of the applied force field
need to be determined to maximize F. In order to quantify the
principal difference between a nonsymbiotic and symbiotic
optimization, we can construct first the Taylor expansion
of the objective function F(t , s) around its local or global
maximum, denoted by the pair {topt, sopt}. As we examine
critical points that lead to vanishing first-order derivatives,
∂tF (topt, sopt ) = ∂sF (topt, sopt ) = 0, the lowest-order terms of
the Taylor expansion of F are given by

F (t, s) = F (topt, sopt ) + ∂s∂tF (topt, sopt )(t−topt )(s−sopt )

+ ∂2
tF (topt, sopt )(t−topt )

2/2

+ ∂2
sF (topt, sopt )(s−sopt )

2/2 + · · · . (2.1)

We exclude here the case of that rather special set of func-
tions, where the second derivatives around the critical points
vanish. For this set, the contour lines around the extreme are
ellipses, as we consider in this work. For the special case
of a nonsymbiotic maximum, the maximum depends on the
parameters topt and sopt in an independent way. That means
that if t is varied slightly from its optimal value t = topt, the
corresponding numerical value for sopt that would keep F(t , s)
at its maximum should not change here, and vice versa. In this
case, this independence is reflected by the vanishment of the
mixed derivative ∂t∂sF (sopt, topt ).

It seems therefore natural to attribute the magnitude of
∂t∂sF (topt, sopt ) with the degree of symbiosis. However, as this
derivative can carry units in general, its numerical value is not
universal as it would change under a possible (and arbitrary)
multiplicative scaling of the spatial and temporal degrees of
freedom, i.e., t → λt and s → μs. In order to compensate
for this possibility, we propose in this work to consider the

following unitless index h,

h(topt, sopt ) ≡ (∂t∂sF )2/
(
∂2
t F∂2

s F
)
, (2.2)

as a possible measure for the symbiosis. This index is closely
related to the determinant of the corresponding 2 × 2 Hessian
matrix, that describes the local curvature and allows us to
classify a critical point as a maximum, minimum, or saddle
point. For example, h < 1 corresponds to a positive Hessian
determinant. If h is zero and the two degrees of freedom seem
to act independently of each other, we would call the optimum
nonsymbiotic. As a side issue, we note that for a maximum F,
h is generally constrained to the interval 0 � h � 1.

While it is possible to determine h numerically from the
computational data F(t , s) around its maximum, the degree of
symbiosis manifests itself also directly in the contour lines of
F(t , s) in the space spanned by the temporal and spatial param-
eters t and s. Here the alignment of the corresponding ellipse
around the maxima is related to h. One can show that the
alignment angle α between the major semiaxis of the ellipse
and the t or s axis is given by tan(2α) = 2∂t∂sF/(∂2

s F − ∂2
t F ).

This means that a nonsymbiotic maximum (h = 0) can be
easily recognized by ellipses that are not rotated in (t , s) space.

One of the key questions to be addressed below is about the
possibility to obtain a quantitative guidance for the parameter
range of the optimal pair {topt, sopt} from a (usually much
easier) examination of two separate subdynamics. The first
system is excited by a space-dependent force only leading to
a possible approximation for sopt, while an optimization for
a purely temporally driven system could provide an estimate
for topt. We will name the parameter pair obtained from these
two independent optimizations “i points,” and denote them by
{t {1,0}opt , s{0,1}opt } for reasons that become clear in Sec. III.

III. HARMONIC OSCILLATOR AS A PROTOTYPE FOR
SYMBIOTIC AND NONSYMBIOTIC OPTIMIZATION

In this section we illustrate the properties of symbiotic and
nonsymbiotic optima for an almost analytical model system
of a free classical particle, where the spatial and temporal
degrees of freedom of the external forces are provided by the
spatial scale of a harmonic oscillator and by the temporal scale
of a monochromatic driving force. As we will show below,
in this particular system, the global optimum is nonsymbiotic
while the first local optimum is symbiotic. We will illustrate
the different graphical implications of contour plots around
these two optima and examine the quality of the correspond-
ing i points to predict the true optima of the system driven by
both forces.

A. Simultaneous optimization and the Hessian index

In order to illustrate the different characteristics of symbi-
otic versus nonsymbiotic maxima in the space of the temporal
and spatial control parameters, we examine here the simplest
possible model system, a driven harmonic oscillator of unit
mass, given by the Hamilton function

H = P2/2 + B�2X 2/2−A sin(ωt )X. (3.1)

Here we have used a unit system for which the mass is equal
to 1. Choosing the pair of two parameters {A,B} = {1, 0} or
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FIG. 1. (left) Surface plot of the final displacement X (ω,�) for T = 1 and V = 0.01 For better readability we have also included as a
reference line the diagonal � = ω. (right) The corresponding contour lines. The sixteen black dots are the locations of the first 16 i points,
discussed in Secs. III B and III C.

{0,1} permits us to examine the temporal and spatial opti-
mization separately from each other, while the notation {1,1}
corresponds to the fully coupled dynamics. Let us assume the
goal is to find the optimal control pair {ωopt, �opt}, such that
for a given initial condition X (0) = 0 and dX/dt (0) = V the
displacement from equilibrium at a final interaction time X(T)
is maximal.

Due to the simplicity of the {1,1} system, we can solve
the corresponding set of Hamilton equations analytically and
obtain for the final displacement at time T

X (ω,�) = {� sin(ωT )−[ω−V (ω2 − �2)] sin(�T )}�−1

× (�2 − ω2)−1. (3.2)

The necessary condition for any critical points, i.e., ∂X/∂ω =
∂X/∂� = 0, is unfortunately a transcendental coupled set of
equations and therefore needs to be solved numerically.

To get a qualitative picture first, we have graphed in Fig. 1
the corresponding surface plot for X(ω, �) as a function
of the two control parameters ω and �, together with the
corresponding contour plot. As the two parameters in the
coordinate pair (�, ω) are independent of each other, we have
chosen in our graphs an arrangement of the two coordinate
axes that is similar to the usual matrix notation, where the first
component is the vertical location (column) and the second
component denotes the horizontal location (row) within the
matrix.

We see that the global maximum occurs for the pair
{ωopt,�opt} = {π/T, 0}. This set of control parameters makes
sense as the choice �opt = 0 removes the effect of the spa-
tial force entirely, which due to its binding character would
oppose any large displacements X(T). The numerical value
for the optimal temporal control parameter ωopt = π/T is
also expected, as with this particular choice the particle can
experience the first full half cycle of the oscillating field,
which can therefore maximally accelerate the particle to a
larger position, before the force direction would reverse itself
for t > T . The Hessian index h for the global maximum
is exactly zero here, consistent with the observed vanishing
angle between the semiaxes and the t and s coordinate axes.

The global maximum is therefore fully nonsymbiotic in this
system.

On the other hand, the first local maximum is calculated
to be at {ωopt, �opt} = {9.560, 8.816}. Its Hessian index is
determined as h = 0.222 and (for normalized axes and a
unit aspect ratio) the corresponding angle of the semimajor
(or -minor) axis is α = −42.9◦. Therefore, the first local
maximum happens to be symbiotic, which is consistent with
the rotated ellipses in the contour plot.

B. Mathematical i points obtained from
independent optimizations

The key question, of course, is whether it is possible to
obtain an estimate of the locations of the numerical values for
{ωopt,�opt} from independent (and for more complicated sys-
tems computationally significantly easier) calculations, where
either solely the spatial or the temporal forces are acting. As
we have discussed in the Introduction, the example of the
vacuum decay shows that when particles are created by either
solely temporal or spatial force fields, the computational
analysis is much easier.

For the (solely) temporal system {A,B} = {1, 0}, given by
the Hamiltonian H = P2/2−sin(ωt )X , the final displacement
is X (ω, 0) = T/ω +VT−(1/ω2)sin(ωT ), consistent with the
limit of X (ω,� → 0) of Eq. (3.2). As the initial velocity V
enters the solution only via an additive term, it does not impact
the location of the maxima. For T = 1 the first four maxima
for X(T) occur at ω

{1,0}
opt = 3.142, 9.425, 15.708, and 21.81

[associated with decreasing magnitudes for X (ωopt, 0)].
Similarly, the spatially only forced system (corresponding

to {A,B} = {0, 1}) is given by H = P2/2 + �2X 2/2, leading
to X (0,�) = V sin(�T )/�. The values for the optimal spatial
scales can be found numerically as �

{0,1}
opt = 0, 7.725, 14.07,

and 20.371. Also, these values do not depend on the initial
velocity V of the particle.

Even though the {1,0} and the {0,1} systems are com-
pletely different physical systems and do not have any-
thing in common, we can (purely mathematically) combine
their optima to pairs, denoted by {ω{1,0}

opt , �
{0,1}
opt }. More
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specifically, if we focus on the first four optima of each
set, we obtain a total of 16 “coordinate pairs” denoted by
im,n ≡ {ω{1,0}

opt,(m),�
{0,1}
opt,(n)} with m = 1, 2, 3, 4 and n = 1, 2, 3,

4. To reflect the complete independence of the first and second
coordinate in each pair, we denote them as “independent
points,” or i points. We stress here that any pair {ω{1,0}

opt , �{0,1}
opt }

cannot be associated with any single physical system.
In the contour plot of the physical system (for

{A = 1,B = 1}) shown in Fig. 1 above, we have added the
locations of these 16 i points im,n. Quite remarkably, we
find that some of them (im,n with n = 1) match exactly the
locations of the true optima, while others (im,n with m > n)
seem to be located remarkably close to a true optimum. The
exact match of the i points im,n with n = 1 is expected as the
subsystem {A = 1,B = 0} is—by definition—identical to the
full system {A = 1,B = 1} if � = 0. We remind the reader
that all of these four maxima also had vanishing Hessian
indices h = 0. As some of the true optima are associated with
� = 0, the corresponding exact match with the i points is
therefore obvious.

On the other hand, quite remarkably, other i points ap-
parently can also serve as good guidance to find the ac-
tual locations of the true optima. To be more specific and
provide a qualitative example, the three i points {ω{1,0}

opt ,

�
{0,1}
opt }, given by i2,2 = {9.425, 7.725}, i3,3 = {15.71, 14.07},

and i4,4 = {21.81, 20.371} are in the direct vicinity of the
locations of the true optima, which are located at {9.560,
8.816}, {15.808, 15.3125}, and {22.0747, 21.6859}.

C. Back tracing of i points to true optima

As we have seen above, the numerical data seem to
suggest the set of i points can indeed serve as qualitative
guidance to predict the locations of the fully space-time forced
{A = 1,B = 1} system. However, in order to exclude the
possibility that this qualitative matching is just purely acciden-
tal, and to establish an unambiguous one-to-one connection
between a true optimum and the corresponding mathematical
i point, it would be desirable to establish some kind of direct
link between them.

This task is not so trivial as the i points are merely
mathematical constructs, whose coordinates were artificially
patched together from two completely independent systems
{A = 1,B = 0} and {A = 0,B = 1}. However, if we introduce
a running constant denoted by ε, whose value is increased
from ε = 0 to ε = 1, we could examine the resulting contin-
uous pathway that the corresponding i points {ω{1,ε}

opt , �
{ε,1}
opt }

would take as a function of ε. More specifically, for the system
{A = 1,B = ε} we would obtain an equation for the pair {ω,
�} that fulfills ∂X {1,ε}/∂ω = 0 and similarly, for the system
{A = ε,B = 1} we obtain a second equation ∂X {ε,1}/∂� = 0.
If we then (artificially) require to solve these two equations
together, we obtain the corresponding i point, denoted by
point {ω{1,ε}

opt , �
{ε,1}
opt }. While we stress again that for each

value of ε (not equal to 1) the sequence of i points does not
correspond to any single physical system, for ε = 1 they do
describe the system {A = 1,B = 1}. In other words, in this
way we have managed to construct a continuous connection
between the i point and the physical system of interest. The

FIG. 2. The connection pathway between the i point
i2,2 = {ω,�} = {9.425, 7.725} and the true optimum for the
{A = 1,B = 1} space-time forced system given by {9.560, 8.816}.
The pathway was linearly parametrized as a function of ε as {ω{1,ε}

opt ,

�
{ε,1}
opt } with 0 � ε � 1.

most important question, of course, is to find out which of
the maxima each i point can be linked to by this particular
scheme.

We have numerically examined this question and found
that the specific points im,1 consistently do not depend on ε,
while the other points (for m > n) evolve indeed to their near-
est true maximum. This means that it is indeed unambiguously
possible to uniquely connect some i points to their “parent”
value (given by the coordinate pair of the true maximum).

As a side issue, we should mention that these pathways are
usually not straight lines and sometimes even move away first
from the true maximum before they return. In fact, the details
of the pathway do depend on the way the two coefficients
A and B are parametrized by ε. However, we found that the
endpoints (for ε = 1) for unique and differently parametrized
paths always moved to exactly the same location. In Fig. 2
we have shown an example for these connection pathways. It
shows how the i point i2,2 (given by {9.425, 7.725}) evolves
to the true optimum {9.560, 8.816} for the simplest (linear)
parametrization given by {A = 1,B = ε} and {A = ε,B = 1}.

D. Orphan i points that cannot be traced back to true optima

If we examine those i points in Fig. 1 that are below the
ω = � diagonal (i.e., ω < �), we find that the association
between each i point {ω{1,0}

opt , �
{0,1}
opt } and its corresponding

parent parameters (given by the true optimum {ω{1,1}
opt , �{1,1}

opt })
is no longer obvious or sometimes not even possible. In fact,
we will illustrate below that some i points can no longer be
traced back to any optimum.We would denote these particular
isolated i points that are not so useful in finding the true
optima as “orphan” i points.

As a concrete illustration of how an i point can become
an orphan and how this transition manifests itself in a rapidly
rising Hessian index of the true optimum, we examine here
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as a concrete example the fate of the i point given by the
“coordinates” i2,3 = {9.425, 14.07}. Even though there is a
(very shallow) maximum for V = 0.1 (see Fig. 1) nearby, it
turns out that this point is not the parent maximum to this
particular i point.

As we noted above, in contrast to the location of the true
optimum, these two coordinates are independent of the initial
velocity V. However, the very existence as well as the location
of the true optima do depend on the velocity. The contour
plot for V = 0.01 (see Fig. 1) showed that there seemed to
be no optimum that could be easily assigned to i2,3. It turns
out that for V = 0.01 there is actually no associated optimum
and therefore i2,3 is an example of an orphan point.

To prove this feature of i2,3, we show that for V>0.0903 the
corresponding maximum can actually be recovered. Using the
backtracing technique discussed in Sec. III C for V > 0.0903,
one can construct a direct pathway from i2,3 to the maximum.
For example, for V = 0.12 this maximum is located at {7.84,
13.90}.

In Fig. 3 we illustrate graphically how a maximum can
actually disappear if the velocity is decreased beyond V =
0.0903. As shown in the contour plot of X (ω,�) for V =
0.12, in the immediate vicinity of the maximum at {7.84,
13.90} there is also a saddle point centered at {8.02, 12.59}.
As the velocity is decreased, these two critical points approach
each other with the result that at V = 0.0903 the two points
match and the saddle point eradicates the maximum. At the
same time, our i point i2,3 becomes an orphan as it can no
longer be traced back to any (parent) optimum of the physical
system. The “orbits” of the two critical points with decreasing
V in the {ω,�} plane are also depicted in Fig. 3(b). Consistent
with the definition of the Hessian index, h also increases from
basically zero (for V > 0.1) to h = 1 (for V < 0.0903), which
is characteristic of a saddle point. In Fig. 3(a) we have graphed
the rapid rise of h with decreasing velocity V.

As a side issue, we should point out that this saddle point
has an unusually asymmetric feature. The final displacement
X(T) decreases along the positive and negative ω direction as
well as the positive � direction, but it increases only along the
negative � direction. For an even smaller velocity V< 0.088,
even this saddle point ceases to exist, completing the transition
from originally two to one and finally zero critical points as
the velocity decreases.

E. Final displacement at the maxima

So far our focus was entirely on the location of the op-
timal parameters {ωopt,�opt} in the two-dimensional control
space, their relationship to the true optima, the orientation
of the ellipses around the maxima, and their h indices. It
might also be interesting to examine the actual values of the
optimum displacement X and to compare their magnitudes
with those obtained from the two subsystems {A = 1,B = 0}
and {A = 0,B = 1}. We could then examine whether a large h
index corresponds to those cases where the final displacement
X {1,1} of the combined action of both forces is actually much
larger than the displacements X {1,0} or X {0,1}.

Our numerical data suggest that this is actually not the
case at all for our particular system; it almost seems that the
temporal and spatial excitation mechanisms are here in direct
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FIG. 3. The disappearance of optima for the system with de-
creasing initial velocity V. (a) The Hessian index h as an indicator of
the transition from a maximum (h < 1) to a saddle point (h = 1) as a
function of V. The three insets show the corresponding contour plots
of X(ω,�) for three different values of the velocity. For reference, the
white dot is the i point, i2,3 = {9.425, 14.07}, whose coordinates are
independent of the velocity. (b) The orbits of the center of the ellipse
and the saddle point in the {ω,�} plane with decreasing velocity.

competition with each other. We have not encountered a single
local maximum where X {1,1} was actually larger compared to
either X {1,0} or X {0,1}, evaluated at the i points. For example,
for the first local maximum associated with the i point i2,2
we find that the corresponding amplification factor, defined
as X {1,1}/max[X {1,0},X {0,1}] is only 0.48. This ratio is even
further decreasing from 0.44 (for i3,3) to 0.42 (for i4,4).

This—at first unexpected—attenuation turns out to be a di-
rect consequence of the drift associated with the specific initial
turn-on phase of the temporal driving force. For the Hamil-
tonian of the {1,0} system, i.e., H = P2/2−sin(ωt )X , the
time-dependent solution X (t ) = t/ω−sin(ωt )/ω2 reveals this
drift term t /ω. As a comparison, this large term is even double
the size of the largest position of the harmonic oscillator at
full resonance, i.e., H = P2/2−sin(ωt )X + ω2X 2/2, which
takes the solution X (t ) = −t/(2ω)cos(ωt ) + sin(ωt )/(2ω2).
For large and optimal times, we would therefore find that
the amplification ratio is only X {1,1}/max[X {1,0},X {0,1}] ≈
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(t/ω)/[t/(2ω)] = 0.5, which is fully consistent with the nu-
merical values found above. This illustrates analytically that
in this system, the presence of the binding potential ω2X 2/2,
in the {1,1} system, cannot act as a true amplifying agent
for X(t).

Had we chosen a different turn-on phase of the force in
the {1,0} system, such as H = P2/2−cos(ωt )X , then the
solution X (t ) = [1−cos(ωt )]/ω2 would be only purely os-
cillatory and would not contain any drift term. In this case,
the maximum position of the corresponding {1,1} system,
i.e.,H = P2/2−cos(ωt )X + ω2X 2/2, is then given by X (t ) =
t/(2ω)sin(ωt ). This means that here the amplification fac-
tor X {1,1}/max[X {1,0},X {0,1}] would actually grow linearly in
time, reflecting a much more constructive collaborative action
of the temporal and spatial forces. Quite remarkably, for
any finite interaction time T, the global maximum for this
particular system is at {ωopt,�opt} = {0, 0} with the optimum
value X (T ) = T 2/2, reflecting once again that—even for this
turn-on phase—the absence of any binding potential is still
preferred to optimize a final position of a particle, despite the
possibility of a resonance.

IV. ELECTRON-POSITRON PAIR CREATION DUE TO
EITHER TEMPORAL OR SPATIAL EXCITATIONS

In this section, we apply the derived i-point method to
identify the possible location of two control parameters that
optimize a physical process to the quantum field theoretical
dynamics of electron-positron pair creation. We will briefly
summarize the methodology of computational quantum field
theory to calculate the vacuum decay process and to determine
the final number of created electron-positron pairs at a given
energy. While some of the prior optimization studies of solely
temporal [20] or spatial fields [21] could be accomplished
based on infinite-dimensional optimization, to get some in-
sight into combined space-time optimization processes, we
begin with only a finite-dimensional optimization based on
only two control parameters [15–17,19]. The time-dependent
electric field is characterized by a varying frequency ω, while
for the spatially inhomogeneous field we have varied either
the spatial extension W or the amplitude Vb. In each of the
three (separate) cases we have found a regime in which a
finite parameter can lead to one or several maxima with
regard to the final number of created electron-positron pairs
after the interaction. The key idea in this section will be to
illustrate that the i-point methodology can even be generalized
from classical mechanical systems to predict quantum field
theoretical dynamics.

A. Computational quantum field theoretical description

Let us first briefly summarize our quantum field theoretical
system to describe the vacuum decay process. It is based on
the numerical solutions of the electron-positron field operator
from the time-dependent Dirac equation, ih̄∂	/∂t = H	.
In one spatial dimension (and atomic units, where m = 1,
q = −1, h̄ = 1, and c = 137.036), the Hamiltonian takes the
following form:

H = cσ1px + σ1A(x, t ) + c2σ3−V (x)σ0, (4.1)

where σi (with i = 0, 1, 2, 3) denotes the set of the four 2×
2 Pauli matrices that satisfy the anticommutation relations
{σi, σ j} = 2δi, j . The spatially induced (supercritical) part of
the external force field is modeled by a (supercritical) poten-
tial step V(x) with a controlled spatial inhomogeneity. The
associated electric-field points along the x direction and is
spatially localized along the x direction. The temporal part
with a controlled time dependence is modeled by a vector
potential A(x, t), whose spatial profile was chosen to guarantee
that the temporally induced pair creation occurs only in the
finite region in space, where V′(x) does not vanish.

The initial vacuum state is represented by the set of
occupied eigenstates |k; d〉 of the (field-free) Dirac oper-
ator H0[=cσ1px + c2σ3] with negative energy that satisfy
H0|k; d〉 = −[c4 + c2k2]1/2|k; d〉. We assume that our system
has a finite spatial extension L and that all states satisfy
periodic boundary conditions. As a result, the states can be
normalized as 〈k1; d|k2; d〉 = δk1,k2 and they have a momen-
tum mode spacing �k = 2π/L. The corresponding positive-
energy states with momentum p are denoted by |p; u〉. In
computational quantum field theory [43] the required space-
time evolution of the electron-positron quantum field operator
can be obtained equivalently from the time evolution of the set
of all states |k; d〉 and the resulting matrix elements Upk (t ) ≡
〈p; u|U (t )|k; d〉, where U(t) is the time-ordered evolution
operator associated with H. The solutions of the space-time-
dependent Dirac equation with the external potentials A(x,
t) and V(x) can be obtained on a space-time lattice with
Nt temporal and Nx spatial grid points using efficient fast-
Fourier transformation based split-operator schemes [44–46].
The main quantity of interest in this work, the total number
of created electron-positron pairs after the interaction at final
time T, is then obtained from all time-evolved Hilbert-space
states as N (T ) ≡ 
p,k|Upk (t )|2.

In order to make our numerical simulations less CPU time
consuming, in this work we represent the vacuum by just
a single initial state, which is equivalent to focusing on the
creation of an electron with a specific final energy E only. In
this work we have chosen E = 1.25c2 corresponding to an
initial state with negative energy −1.25c2 of the positronic
Dirac sea.

B. Optimal frequencies of the temporal force only

The temporal vector potential A(t) is mainly characterized
by its frequency ω, the amplitude F0 of the associated electric
field, and an overall (super-Gaussian) envelope that guaran-
tees a smooth turn-on and -off. The temporal turn-off was
chosen to remove any ambiguity in the interpretation of N(T)
to represent either a real or quasiparticle pair [33,47]. In order
to restrict the temporal pair creation to the same spatial region
where the spatially induced pair creation occurs [see Eqs. (4.3)
and (4.4) below], we have chosen A(t) to be nonzero only to
the region where V′(x) is mainly nonzero.

A(t ) = F0c/ω exp[−(t−T/2)4/(0.02T 4)] cos(ωt ). (4.2)

In our numerical simulations we fixed the amplitude of the
electric field to F0 = 0.3c3. As a temporal control parameter,
we have varied the oscillation frequency ω of the vector
potential.
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FIG. 4. The final number N(T) of created electron-positron pairs
after the interaction of the vacuum state as a function of the frequency
ω of a time-dependent electric field given by the vector potential
A(t ) = F0c/ωexp[−(t−T/2)4/(0.02T 4)]cos(ωt ), shown in the inset
for ω = c2. For reference the three dashed vertical lines point to
ω

{1,0}
opt = 0.844, 1.26, and 2.51. (F0 = 0.3c3, T = 0.006 a.u., L =

1.5 a.u., the electric field was chosen to be nonzero for a spatial
region of length L/4, Nx = 4096, Nt = 6000).

In Fig. 4 we show the final number of created positrons
N(T) after the interaction with the pulse as a function of the
oscillation frequency ω of the field. As expected, the global
maximum occurs for ω = 2.51c2 as this particular frequency
matches roughly the energy difference of the initial state (at
energy E = −1.25c2) and that of the most likely coupled
state in the positive energy continuum (with E = 1.25c2).
However, if this energy difference can be matched with any
integer multiple of the external frequency, we have additional
maxima. The first two of them are shown in Fig. 4 by the
dashed lines and correspond to ω = 1.26c2 and ω = 0.844c2,
which can be loosely interpreted as the result of the absorption
process of two and three photons. As the three frequencies that
couple the initial states to the continuum states are actually
remarkably close to the values given by ω = 2E/n for n = 1,
2, and 3, the field-induced level shift as well as finite pulse
effects are not so important for this choice of the field ampli-
tude F0. In fact, we are here still in the perturbative regime,
where the peak heights N(t) scale linearly, quadratically, and
cubically with the field intensity F 2

0 .

C. Optimal width of the spatial force

In order to establish the steady state of the pair creation due
to a temporally inhomogeneous electric field, the correspond-
ing potential V(x) must be supercritical, i.e., the difference
|V (x → −∞)−V (x → ∞)| > 2c2. To have a simple case, for
which the pair-creation rate in the steady state can also be ob-
tained analytically, we have examined here a smooth potential
step given by the form V (x) = V0[1−tanh(x/W )]/2, where
W denotes the width. Except for the data presented below in
Fig. 5, we have fixed the value of V0 to 2.5c2 to guarantee
supercriticality. For this case, the pair-creation rate per unit
energy can be found based on a transmission coefficient τ (E),
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0 0.2 0.4 0.6 1W c

N(T)

analytical

numerical

W

FIG. 5. The final number N(T) of created electron-positron pairs
after the interaction of the vacuum state as a function of the spatial
extension W of the electric field E (t ) = −dV/dx, where V (x) =
V0[1−tanh(x/W )]/2 and V0 = 2.5c2(Wc/0.3)1/2, as shown in the
inset. The analytical predictions are based on the steady-state decay
rate given by Eq. (4.3). (T = 0.006 a.u.; V(x) was turned on smoothly
in time over 0.0002 a.u.).

which is given by an analytical expression [46,48,49],

τ (E ) = − sinh[π pW ] sinh[πkW ]/

{sinh[π (|V0|/c + p+ k)W/2]

× sinh [p(|V0|/c − p− k)W/2]}, (4.3)

where the two momenta are given by k =
−[(E−|V0|)2−c4]1/2/c and p = [E2−c4]1/2/c. It was shown
in Ref. [27] that this transmission coefficient τ (E) can be used
to construct the number density of created positrons at final
time T for a given energy E via Nanalyt (T ) = 1/Lτ (E )vinc T ,
where L is the extension of the numerical box and vinc the
velocity of the (incoming) negaton state that populates the
final positron state with energy E.

As τ (E) in Eq. (4.3) decreases monotonically with increas-
ing width W, the true optimum width would be zero, corre-
sponding to an abrupt potential step V (x) = V0(1−x/|x|)/2.
In order to study a situation where we have a well-defined
maximum that is not located at a boundary, we have con-
strained the resulting “energy” of the corresponding elec-
tric field −dV/dx to satisfy ∫ dx(dV/dx)2 = constant. This
requirement leads to a width-dependent potential strength
V0 = 2.5c2(Wc/0.3)1/2. The numerical value 0.3 was chosen
arbitrarily, such that forW = 0.3/c we obtainV0 = 2.5c2. It is
clear that as a consequence of this particular choice the poten-
tial is supercritical only if V0 > 2c2, i.e., 2.5c2(Wc/0.3)1/2 >

2c2. This means that positrons can only be created if the width
fulfills W > 0.192/c. While in the opposite limit, W → ∞,
the extension of the corresponding electric field is infinite, the
maximum amplitude of the electric field approaches zero, i.e.,
−dV/dx|x=0 → −1.14c5/2W−1/2. This means that for both
limits W > 0.192/c and W → ∞ the positron creation rate
vanishes and we expect a maximum in between. By equating
the derivative of τ (E) to zero, we find that the optimum width
for E = 1.25c2 occurs atWopt = 0.375/c.
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FIG. 6. The final number N(T) of created electron-positron pairs
after the interaction of the vacuum state as a function of amplitudeVb

of the bump. Here V(x) corresponds to a smooth two-step potential as
described in the text and shown in the inset. The open circles are the
approximate and rate-based predictions according to the analytical
expression Eq. (4.5) (V0 = 2.5c2, T = 0.006 a.u.; the potential was
turned on smoothly over a time 0.0001 a.u.).

In Fig. 5 we show the (rate-based) analytical prediction
for N(T) according to Eq. (4.3) together with the numeri-
cally obtained number of positrons after the interaction time
T = 0.006 a.u. The agreement is very good, which suggests
that this interaction time was sufficiently long such that the
transient temporal turn-on effects associated with finite times
are not so important.

D. Optimal amplitudes for the spatial force only

As a complementary way to control the spatial potential
V(x), we have also varied the amplitude Vb of an additional
bump of width d that has been placed on top of the Sauter
potential discussed in Sec. IVC. The reason for this particular
choice for V(x) is twofold. First, V(x) mimics the actual
spatial shape of the optimal potential rather well which can be
obtained numerically via an infinite-dimensional optimization
scheme [21]. Second, due to its simple functional form, one
can even obtain here also an approximate (but analytical) form
of the steady-state pair-creation rate. The functional form of
this potential is given by

V (x) = V0[1 − tanh(x/w)]/2 +Vb{tanh[(x + d )/w]

− tanh(x/w)}/2, (4.4)

where we keep the amplitude V0 = 2.5c2, the width w =
0.1/c, and the size d = 1/c constant. In the inset of Fig. 6
we show the spatial form of this potential V(x). For similar
parameters as in Fig. 5 we display also here the final number
of created positrons N(T) after the interaction with this su-
percritical potential as a function of the magnitude Vb of the
additional bump.

The sequence of maxima and minima are associated with a
resonant match between the wavelength of the corresponding
negative energy states under the spatial extension d of the
bump. More details are discussed in Ref. [21]. Similar to
the potential discussed in Sec. IVC, the data for N(T) can
also here be approximated by an analytical expression. If we
assume that the spatial width w is equal to zero, then the
supercritical scalar potential is characterized by two abrupt

steps, given by V (x) ≡ V0 for x < −d, V (x) ≡ V0 +Vb for
−d < x < 0, and V (x) ≡ 0 for 0 < x. Due to its simple
functional form, one can construct analytically the corre-
sponding stationary energy eigenstate for a positive energy
E by matching the analytical solution at the boundaries at
x = −d and x = 0 based on the continuity equation. The
resulting analytical expression for the transmission coefficient
is derived in Ref. [50] as τ (E ) = 4c4pq0q21/(N1 + N2), where

N1 ≡ c2q21[(E−c2)
1/2

(E0−c2)
1/2

+ (E + c2)
1/2

(E0 + c2)
1/2 + c2]2cos2(q1d ), (4.5a)

N2 ≡ {E1[(E + c2)
1/2

(E0−c2)
1/2

+ (E−c2)
1/2

(E0 + c2)
1/2 + c2]

+ c2[(E + c2)
1/2

(E0−c2)
1/2

− (E−c2)
1/2

(E0 + c2)
1/2

]}2sin2(q1d ), (4.5b)

and where the three momenta are p(E ) ≡ (E2−c4)1/2/c,
q1(E ) ≡ [(Vb +V0−E )2−c4]1/2/c, and q0(E ) ≡ [(V0−E )2 −
c4]1/2/c, and the relevant shifted energies are E0 ≡ V0−E and
E1 ≡ Vb +V0−E .

As discussed above we can approximate here again the
final number of created positrons at energy E via Nanalyt (T ) =
1/Lτ (E )vincT , which are indicated by the circles in Fig. 6.
The differences between both sets of data are associated with
the nonzero width w of the exact data as well as the early-time
transients that are unavoidably associated with any temporally
turned-on force fields. As N(T) uniformly decreases with
increasing width w, the analytical data (based on w = 0)
should overestimate the true number of created positrons.

In order to separate the transient effects from those as-
sociated with a nonzero width w, we have repeated the
numerical simulations for the potential with w = 0. In order
to appropriately sample the corresponding abrupt changes
of V(x) at x = −d and x = 0, this required an extremely
large number of spatial grid points to obtain numerically
converged results. We found that here the data up toVb < 10c2

were graphically indistinguishable from the analytical data
predicted by Eqs. (4.5a) and (4.5b). Depending on whether
N(t) after the early-time transient period rose above or below
the analytical prediction [based on the constant growth rate
1/Lτ (E )vinc], the final number of created positrons was either
under- or overestimated by the analytical form at the end of
the interaction.

As suggested by the data in Fig. 6, the locations of the
maxima are remarkably well approximated by the analyti-
cal expression. The exact values for the first three maxima,
given by Vb/c2 = {0.733, 3.56, 6.66}, differ only insignifi-
cantly from the analytical ones, which can be derived as
Vb/c2 = {0.731, 3.57, 6.67}.

V. ELECTRON-POSITRON PAIR CREATION
DUE TO SIMULTANEOUS TEMPORAL

AND SPATIAL EXCITATIONS

Now that the i points are well defined through the two
decoupled single-parameter dynamics, in this section we will
examine the combined action of space- and time-dependent
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FIG. 7. The locations of the true optima (open circles) and the
corresponding i points (open squares) for N(T) in the (ω,W) plane. In
the inset we show the corresponding contour plots around the true op-
tima. The i points are located at i1 = {ω/c2,Wc} = {0.844, 0.375},
i2 = {1.26, 0.375}, i3 = {2.52, 0.375}, and the corresponding true
optima are at {0.880, 0.372}, {1.25, 0.392}, and {2.48, 0.423}. (F0 =
0.3c3, V0 = 2.5c2, T = 0.006 a.u.; the potential V(x) was turned on
smoothly over a time 0.0001 a.u.).

force fields. We illustrate here for a concrete set of parameters
that the i-point methodology can guide us to narrow down
the search space for optimal parameters. The key point will
be the observation that the approach from the simple model
system in Sec. III concerning the usefulness of the i points
as well as the Hessian index and its graphical manifestation
can indeed be generalized to this much more complicated
quantum field theoretical system. For the temporal system, we
have seen that a set of three particular frequencies ωopt leads
to maximal pair creation. If this system is combined with the
spatial force described in Sec. IVC leading to the optimal
width wopt/c = 0.375, we can construct the corresponding
three i points. In Sec. VA we will show that these three i
points can indeed provide excellent guidance with regard to
the locations of the true optima.

Very similarly, the spatial variations presented by the am-
plitude led to the first three optimal values given by Vb,opt =
0.733c2, 3.56c2, and 6.65c2. If this spatial force field is
combined with the time-dependent force, we can construct
a set of nine i points. In Sec. VB below we will show that
even in this system each of the nine i points can provide good
guidance with regard to the locations of the true optima.

A. Simultaneous optimization for the frequency and spatial
width of the fields

In Fig. 7 we have graphed the first three optima for
the space-time driven system, located at {ω/c2,Wc} =
{0.8803, 0.3722}, {1.252, 0.3919}, and {2.482, 0.4232}. We

also show the corresponding elliptic contour plots in the
immediate vicinity. The maxima are associated with Hessian
indices given by h = 0.1667, 0.0047, and 0.002 24, reflecting
their various degrees of symbiosis. The corresponding relative
orientation angles of the semimajor axes are a = −8.57◦, −
3.54°, and − 2.37°.

Using the data obtained from the temporal- and spatial-
only excitations derived in Secs. IVB and IVC, we can con-
struct the corresponding three i points {ω{1,0}/c2,W {0,1}c} =
{2.52, 0.375}, {1.26, 0.375}, and {0.844, 0.375}. Comparing
them with the optima of the simultaneously excited system,
we see that they can indeed provide excellent guidance with
regard to the locations of the true optima.

In order to judge if the simultaneous presence of both
forces can actually enhance the vacuum decay, we have also
computed here the corresponding amplification factor, which
we define here (similarly to the discussion in Sec. III E)
as N (T ){1,1}/max[N (T ){1,0}, N (T ){0,1}]. As a reference, the
number of created electron-positron pairs for the spatial force
was N (T ){0,1} = 0.100 (compare Fig. 5), while for the tempo-
ral excitation we measured N (T ){1,0} = 6.86 × 10−3, 7.63 ×
10−2, and 3.47 × 10−1, as shown in Fig. 4. If we determine
the actual final particle yields for the vacuum decay under the
simultaneous action, we find the corresponding amplification
factors of 1.047, 1.323, and 0.95879. This suggests that -
similarly to the case of the much simpler oscillator model-
both forces cannot really mutually amplify the vacuum decay
rate significantly. It certainly requires much more detailed
and systematic studies to examine any general principles
that would permit us to predict for which optimum one can
achieve a largest amplification compared to the particle yields
associated with the i points.

B. Simultaneous optimization for the frequency and spatial
amplitude of the fields

To have a second and independent test of the generality of
our findings, in this section we have optimized simultaneously
the frequency of the time-dependent field together with the
amplitude Vb of the spatial force field. Above we have exam-
ined for each temporal- and spatial-only system the first three
optima. This leads to the prediction of the locations of nine i
points. For better comparison, we present the nine coordinate
pairs together with the true optima of the combined system in
Table I.

Consistent with our prior findings, we also see here that
each of the nine i points can provide again (remarkably
accurate) guidance for the locations of the true optima.

Except for the i point associated with the pair {ω,Vb} =
{2.52c2, 0, 733c2}, we found that the average error, defined as
(err{1,0} + err{0,1})/2, where err{1,0} ≡ (ω{1,1}−ω{1,0})/ω{1,1}
and err{0,1} ≡ (Vb{1,1}−Vb{0,1})/Vb{1,1} is usually significantly
less than about 1%, suggesting also for this system the useful-
ness of the i points.

Finally, in Table II we have again examined the associated
amplification factors. We find again only an insignificant
amplification, which suggests that also here the temporally
and spatially induced vacuum decay mechanisms are in com-
petition with respect to each other. The only exception occurs
for {ω,Vb} = {2.52c2, 0, 733c2}, where already the i point
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TABLE I. Comparison of the optimal frequency ω and spatial
bump amplitude Vb with the coordinate pair of the corresponding i
points ω{1,0} andV {0,1}

b . (F0 = 0.1c3, T = 0.006 a.u.; the electric field
was chosen to be nonzero for the spatial domain 1.5/4 < x < 1.5/2).

ωL
{1,0} ωL

{1,1} Vb
{0,1} Vb

{1,1} % Error h Index Angle α

0.838 0.851 0.733 0.729 1.0% 3.3 × 10−7 0.2°
0.838 0.858 3.56 3.56 1.3% 8.9 × 10−4 −1.8°
0.838 0.871 6.65 6.65 2.0% 3.7 × 10−4 −1.5°
1.26 1.25 0.733 0.731 0.5% 1.1 × 10−5 0.5°
1.26 1.26 3.56 3.56 0.2% 1.7 × 10−5 0.1°
1.26 1.26 6.65 6.65 0.2% 9.1 × 10−5 5.2°
2.52 2.52 0.733 0.524 14% 1.1 × 10−5 0.01°
2.52 2.52 3.56 3.57 0.1% 7.2 × 10−2 −0.6°
2.52 2.52 6.65 6.66 0.05% 6.2 × 10−2 −0.7°

predicted the optimum with the largest error (14%). Here the
amplification (=1.76) for the particle yield is actually largest.
For a complete collection of the maxima locations, errors and
h indices for all nine points, we refer the reader to Table I.

VI. SUMMARY AND OPEN QUESTIONS

In this work we have introduced the i-point methodology
to analyze the location of optimal space-time parameters that
maximize the physical output. As these i points reflect two
independent dynamics, they can be obtained rather easily and
can give guidance to the otherwise very complicated land-
scape in the parameter space. Such a method can potentially
reduce the numerical complexity of the optimization algo-
rithm. As a first proof of concept, we have initially considered
a relatively simple model system to illustrate the mathematical
concepts and then generalized these concepts to the more
complicated dynamics of electron-positron pair creation from
the vacuum. This serves as an example of a nontrivial system
where it is of significant experimental interest to optimize
simultaneously the spatial as well as temporal characteristics
of the electromagnetic radiation pulse. Due to computational
advances in the last few years it has become possible to opti-
mize these characteristics under a solely spatial or temporal
excitation. In this work, we have examined the concept of
symbiotic optimization to permit us to examine the optimal
characteristics of the combined action. We have shown that a

TABLE II. The corresponding average amplification factors
N (T ){1,1}/max[N (T ){1,0},N (T ){0,1}] for each of the nine optima of
Table I.

ωL
{1,1} Vb

{1,1} N (T ){1,1} Amplification

0.851 0.729 0.194897 0.9952
0.858 3.56 0.265196 0.9981
0.871 6.65 0.271256 0.9980
1.25 0.731 0.196363 1.0027
1.26 3.56 0.2664 1.0027
1.26 6.65 0.271963 1.0003
2.52 0.524 0.344704 1.7601
2.52 3.57 0.378513 1.4246
2.52 6.66 0.381796 1.4042

spatial amplitude optimization of the final number of created
electron-positron pairs can be symbiotic or nonsymbiotic
depending on the parameter regime. We have also generalized
the concept of i points and showed that they can provide
surprisingly reliable guidance for the optimal parameters of
the systems that are excited by the combined action.

In order to provide a few systematic steps towards this
difficult optimization problem, we have parametrized each
field by only a single spatial and temporal parameter.
The question, of course, arises if and how the basic
conclusion about the Hessian index and the usefulness of
the computationally much easier i points as guidance for the
location of the true maxima can be generalized to higher-
dimensional optimization schemes. For example, if the spatial
field were to be parametrized simultaneously by N parameters
with s j (spatial extension, amplitudes, etc.), and similarly the
temporal field by M parameters with t j , then corresponding
hyperellipsoids around the optimal (N + M) parameters in
this (N + M) dimensional space could also be characterized
by a generalized Hessian index. It would generalize to
h ≡ 
i, j[∂2F/(∂ti∂s j )]2/{
i[∂2F/(∂ti∂ti)]
i[∂2F/(∂si∂si)]},
which reduces naturally to our original Hessian index h =
[∂2F/(∂t1∂s1)]2/{[∂2F/(∂t1∂t1)][∂2F/(∂s1∂s1)]} for N =
M = 1. In the ideal (and hopefully) future case, where we can
permit an infinite-dimensional optimization for the spatial
as well as temporal degrees, the i points would become
two-component i functions, but their basic role in predicting
the locations of the optima of the simultaneous action should
remain the same as discussed here.

While for the geometrical configurations examined in
this work, the tunneling and multiphoton-based pair-creation
mechanisms seem almost to be in competition with each other,
for other scenarios, such as the so-called dynamically assisted
Schwinger effect [51,52], both fields can mutually help each
other to increase the yield. The more competitive behavior
observed for our system might also be a consequence of the
fact that we focused our comparison to those cases where each
individual force was already optimized by itself, leading to the
i points.

We should conclude this outlook with a critical comment
about the physical realizability of optimal space-time pro-
files of electromagnetic-field configurations. While the focus
of this work has been on the optimization of the quantum
field theoretical dynamical response of the vacuum state, one
should not forget that any experimentally realizable configu-
rations in three dimensions have also to satisfy the confines
of the Maxwell equations and cannot be manipulated at will.
These would intimately relate the possible spatial and tem-
poral variations of the fields. We should therefore point out
that it would be an interesting and important future challenge
to construct fields that can even meet the physical boundary
conditions provided by Maxwell’s theory.
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