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ABSTRACT: We apply a machine learning (ML) technique to
the multiobjective design of polymer blend electrolytes. In
particular, we are interested in maximizing electrolyte performance
measured by a combination of ionic transport (measured by ionic
conductivity) and electrolyte mechanical properties (measured by
viscosity) in a coarse-grained molecular dynamics framework.
Recognizing the expense of evaluating each of these properties, we
identify that the anionic mean-squared displacement and polymer
relaxation time can serve as their proxies. By employing the ML
approach known as Bayesian optimization, we identify a trade-off
between ion transport and electrolyte mechanical properties as a
function of varied design parameters, which include host molecular
weight and polarity. Our results suggest that blend electrolytes whose hosts have unequal molecular weights, such as gel polymer
electrolytes, rarely maximize electrolyte performance. Overall, our results suggest the potential of a framework to design high-
performance electrolytes using a combination of molecular simulation and ML.

1. INTRODUCTION
Lithium-ion batteries (LIBs) are emerging as a part of the
comprehensive solution to climate change by assisting
integration of renewable electricity into the grid.1−3 Although
LIBs are commercially successful, efforts have been made to
improve their energy and power densities by replacing their
graphitic anodes with lithium metal.4−7 However, dendrites
formed from uneven stripping and deposition of lithium ions
have limited the adoption of lithium-metal batteries.4 It has
been suggested that reducing the counteranion mobility8 and/
or increasing the electrolyte shear modulus9 may alleviate the
issue of dendrite formation.
In this regard, polymeric electrolytes are emerging as high-

performance materials that can enable such objectives. Indeed,
appending the counterion to a polymer host has been shown to
significantly reduce its mobility.10−15 Further, by simply tuning
the molecular weight of the polymer host, the shear modulus of
the resulting material can be increased.16−18 Despite their
advantages, polymer electrolytes exhibit sluggish ionic trans-
port, limited by a competition between ionic aggregation19−24

and slow polymer dynamics.25−30 As a result of such
observations, it is becoming clear that polymer electrolyte
design is one involving multiple performance metrics, which
may be in competition with each other. In this work, we chose
to design electrolytes on the basis of comaximizing ionic
transport and polymer dynamics.
Design of polymer electrolytes on this basis has primarily

advanced through physical intuition guiding the choice of
different properties to promote ion transport while maintaining

sufficient mechanical integrity.19−25,25−32 In contrast, machine
learning (ML) techniques have been applied in a variety of
application areas in materials science,33−40 including polymer
physics,41−49 to design materials which possess the optimal
combination of desired properties. Inspired by such successes,
we present results using ML in combination with molecular
dynamics simulations as a means to design polymer electro-
lytes.
The context for the present study arises from our recent

work in which we identified that miscible polymer blend
electrolytes (PBEs) consisting of high-mobility and high-
polarity components may potentially modulate the trade-off
between ion aggregation and polymer dynamics. In some
instances, these PBEs were shown to have faster ion transport
than electrolytes whose hosts consisted only of a single
polymer type. However, the study was limited in scope:
elements of the design space, such as host molecular weights
and host polarities, were restricted, and no attention was paid
to the influence of design parameters on the overall mechanical
properties.31 The parameter space accompanying polymer
blend systems is extensive and includes molecular weight and
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polarity contrast between the two components and the regime
of miscibility characterizing the blend components. This
renders an exhaustive study of the dependence of the desired
properties on the different parameters to identify the optimal
combination an intractable task. Motivated by such challenges,
in this study, we explored the use of one ML approach to
comprehensively examine the potential of PBEs to simulta-
neously improve ionic transport and mechanical properties.
Toward the above objective, we identified two performance

metrics of interest:
1. We discuss the electrolyte’s ionic conductivity λ, which

measures the rate of ionic transport under a given
applied electric field. Assuming a monovalent, binary
salt, λ can be expressed in the following form50

ne
Vk T

D D( )
2

B
c aλ α= +

(1)

where e is the proton charge, V is the system volume, kB is the
Boltzmann constant, T is the temperature, and n is the number
of cations. Dc and Da are the cationic and anionic diffusivities,
respectively, measuring self-correlated ionic motion. The
degree of uncorrelated motion α captures the extent to
which distinct ionic motion is correlated.

2. While the methodology and framework presented in this
article are general enough to accommodate any
characteristic mechanical property, in this work, we
explored the use of the material viscosity and polymer
segmental dynamics as the feature competing against the
maximization of ionic transport. We note that there has
arisen significant recent interest in understanding and
exploiting the “decoupling” between polymer dynamics
and ion transport in a variety of other contexts.51−55

Because of the slow dynamics of the system, influenced
in part by the presence of ions, it is computationally
difficult to probe the long-time zero shear viscosity
\enleadertwodots.22,56−58 Whence, we used the time-
dependent viscosity η(t), defined as

t G t t( ) ( )d
t

0
∫η = ′ ′

(2)

(where G(t) is the time-dependent shear modulus), as a proxy
for the bulk mechanics of the polymer blend. As such, η(t) was
probed at a fixed time te and used as a property representative
of the polymer dynamics.
Thus, the performance f of a given PBE must be a function

of performance metrics λ and η(te): f(λ,η(te)), where
improving either metric, assuming that the other remains
fixed, will improve the performance. Design of PBEs will result
from a maximization of f.
We expand the design space of PBEs as a means to optimize

the performance f. As in prior work,22,23,31,59 we adopt the
Stockmayer polymer model,59−61 a coarse-grained model
characterized by freely rotating point dipole moments
embedded in each repeat unit of a Kremer−Grest polymer.62

We show in Figure 1 the elements of this design space. The
electrolytes consist of two polymers: a nominally low-
molecular-weight polymer (designated as polymer A, shown
in turquoise in Figure 1 with the degree of polymerization NA)
and a high-molecular-weight component polymer (B, purple,
NB). Each polymer will be assigned one of two dipole
strengths, μlo and μhi, the assignment of which is controlled by
the parameter γ. We define γ to be unity when μlo is assigned to

polymer A. We will include the Lennard-Jones (LJ) cross-
interaction energy between polymers A and B, εAB, which has
been shown to influence the miscibility of polymer
blends.31,62−64 Finally, we will vary the relative composition
of polymer A ϕA = NAnA/(NAnA + NBnB), where ni is the
number of chains of polymer type i. In summary, the chosen
design parameter vector is x = (NA, NB, μlo, μhi, εAB, ϕA, γ)T,
with bounds defined in Figure 1. Each parameter (aside from
γ) introduced above has been shown to influence ionic
aggregation and polymer dynamics in polymeric materi-
als,22,23,31,59,65 which in turn have been shown to influence
ion transport22,23,25,27−31,65−67 and the mechanical properties
of polymeric materials.68,69 As a result, we can express the
performance as a function of the design parameters: f(λ(x),
η(te,x)) = f(x). Please see the Methods section for all other
Stockmayer model details.
Our goal to maximize f(x) is hindered by two issues: (1) the

analytical relationship between the design parameters x and the
performance f(x) cannot a priori be expressed, and (2) an
Edisonian search of the relatively broad design space may not
be practically possible. In the absence of a clear physics-based
model, ML has been used to correlate design parameters to
material properties to design high-performance materials. One
such ML algorithm that can address both issues is Bayesian
optimization.70 Bayesian optimization uses Gaussian process
regression to fit a statistical model relating f and x

f kx x x x( ) ( ( ), ( , ))μ∼ ′5 (3)

where 5 is a normal distribution with mean function μ(x)
describing belief in the relationship between f and x and the
covariance function, or kernel, k(x,x′) describing the
uncertainty of that belief. By conditioning this model based
on prior performance evaluations, the resultant posterior
model can be used to predict subsequent performance
evaluations at a given design vector x tending toward the
desired optimum.
To summarize, we explored the use of Bayesian optimization

ML techniques in conjunction with molecular dynamics
simulations to examine parametric regimes of PBEs which
can facilitate optimal combinations of ionic transport and
electrolyte mechanical properties. In the Objective Function

Figure 1. Design parameters (and their ranges) of the Stockmayer
PBEs explored in this work.
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Choice and Simplification section, we describe in detail the
formulation of the performance f(x). We recognize the expense
of evaluation of f(x); as a result, we suggest a means to cheapen
said function evaluation by replacing f(x) with a proxy
performance f p(x). In the Optimization Results section,
optimizing fp(x), we reveal a trade-off between λ and η and
explore the changes in the optimal design vector x′
underpinning such a trade-off. Given these, we probe the
physics underlying our results by perturbing elements of x′ and
discuss the potential mechanisms in the Physics Underlying
Optimized Blends section. In the Conclusions section, we
summarize our findings and comment on the value of Bayesian
optimization in combination with molecular simulation in
materials design.

2. RESULTS AND DISCUSSION
2.1. Objective Function Choice and Simplification. As

mentioned in the Introduction section, we first developed an
expression for the performance f(x), noting a potential trade-
off between λ and η. If we assume a similar level of correlated
ionic motion across all design parameters x (yielding a roughly
constant degree of uncorrelated motion α), eq 1 shows that λ
becomes proportional to the sum of the cationic and anionic
diffusivities (Dc and Da, respectively). As a result of the inverse
correlation between penetrant (namely, ionic) diffusivities Di
and η71 and the direct correlation between η and the host
degree of polymerization N,18 λ ∝ η−1 ∝ N−1 for unentangled
polymers. Thus, λ and η are expected to trade off with each
other. Any attempt to optimize polymer electrolyte perform-
ance on the basis of these two metrics must identify a Pareto
front in which systematic improvement of one metric will
result in a degradation of the other.72

To this end, the anticipated trade-off between each
performance metric can be incorporated into the expression
for f(x). An objective function form widely used in multi-
objective optimization with a presumed Pareto front is the
linear scalarized form

f w f w fx x x( ) ( ) (1 ) ( )1 1 1 2= ̅ + − ̅ (4)

where f x( )1̅ and f x( )2̅ are two scaled performance metrics and
w1 ∈ [0, 1] is a factor that weights the relative importance of
each performance metric. Such a form requires that
f f O, (1)1 2̅ ̅ ∼ to appropriately compare each performance
metric. This can be done for performance metric i using a
minimum−maximum rescaling

f
f f

f f
x

x
( )

( )
i

i i

i i

,min

,max ,min

̅ =
−
− (5)

where f i(x) is the performance metric i and f i,min and f i,max are
minimum and maximum values of performance metric i,
respectively. To address the assumed scaling of λ and η with N
and ensure linearity with log(N), we chose f1(x) = log(λ) and
f 2(x) = log(η). Substituting these definitions and eq 5 into eq
4, we arrive at the final expression of the performance

f w wx
x x

( )
log( ( )/ )
log( / )

(1 )
log( ( )/ )
log( / )

min

max min

min

max min

λ λ
λ λ

η η
η η= + −λ λ

(6)

The maxima and minima of λ and η were determined based
on a core set of 29 simulations, discussed in more detail below.

Setting wλ = 1 ensures full emphasis on transport, whereas
setting wλ = 0 ensures emphasis only on electrolyte viscosity.
Unfortunately, even within the coarse-grained model

adopted for this work, an accurate evaluation of f(x) is
computationally expensive because of the long simulations
(with potential repl icates) needed to determine
λ21−23,31,50,73−77 and η.78,79 We hypothesized that easier-to-
evaluate measures may serve as proxies for λ and η. The ionic
diffusion coefficients Di are proportional to the slope of their
mean-squared displacements (MSDs)

D
n t

tr rlim 1
6

( ) (0)
t i i

n

i ii
2

i

∑= ⟨ − ⟩
→∞ (7)

Such a relationship requires long-time linearity of the MSDs
to be accurate. We anticipated that the ionic MSDs at some
fixed short time t0 could serve as potential proxies for λ. In
addition, the longest Rouse mode timescales correspond to
chain diffusion and are proportional to η.18 As a result, the
polymer relaxation time τR derived from the self-part of the
intermediate scattering function S(q, t) could serve as a proxy
for η. We chose q = 2π/5.0σ−1. The length scale encoded in
S(q,t) is approximately the polymers’ radius of gyration (see
Figure S2C in the Supporting Information) and should capture
some of the effects of polymer diffusion.18

To ascertain if correlations exist between the performance
metrics and the proposed proxies, we simulated 29 samples of
Stockmayer electrolytes with randomly chosen design param-
eters within the ranges specified by Figure 1. The design
parameters for these systems can be seen in the Supporting
Information, Table S1. To calculate η, simulations with
equilibration steps of 1.5 × 105 τ and production steps of
3.75 × 104 τ were carried out, where the characteristic
timescale τ = mσ2/ε, with elements of the pressure tensor
reported every 0.0025 τ. As discussed in the Introduction
section, η(te = 2000 τ) was calculated by integrating the time-
dependent shear modulus.78,79 Full details for this calculation
can be found in the Methods section. All other properties were
derived from simulations with equilibration steps of 1.5 × 105 τ
and production steps of 5 × 105 τ, in which all particle
positions were reported every 0.5 τ. λ was determined using
the full length of each simulation using a mixture of long- and
short-time statistics, briefly discussed in the Methods section
and in more depth in prior work.21−23,31,50,73−76 The first 5 ×
103 τ of these trajectories were treated as a short-run
simulation. Using eq 7, the ionic MSDs from these short-run
simulations were calculated at t0 = 2.5 × 103. As discussed in
the Methods section, τR was also extracted from the short-run
simulations.
We display the results of these calculations in Figure 2,

rescaling all results using eq 5. For simplicity, we fit the data to
weighted linear regression models (dashed lines) using a
training subset of these data (hollow symbols, corresponding
to 80% of the simulations run). We measured their predictivity
by calculating the score r2 on the test set (full symbols). The r2

values for the transport metrics (Figure 2A) were 0.68 (anion)
and 0.33 (cation), indicating moderate and poor predictivity of
λ, respectively. To maintain maximal predictivity, the anionic
MSD was chosen as the proxy metric for λ. η was moderately
predicted by τR (Figure 2B, r2 = 0.76). Thus, the proxy
performance f p(x) took on the following form, via substitution
of the short-time proxy metrics for their long-time analogues
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f w w

w

x
x

x

( ; )
log(MSD ( )/MSD )
log(MSD /MSD )

(1 )
log( ( )/ )
log( / )

p D D
a a,min

a,max a,min

D
R R,min

R,max R,min

τ τ
τ τ

=

+ −
(8)

with wD ∈ [0, 1] substituted here for wλ seen in eq 4. The
values used to rescale the anionic MSD and τR were the
minima and maxima proxy values from the set of 29
simulations above.
2.2. Optimization Results. Herein, we report the results

of the Bayesian optimization as a function of the emphasis on
transport wD. Using the 29 core simulations described above as
the test set for this optimization, a minimum of 15 iterations
were carried out to optimize f p(x;wD). Each iteration
incorporated data from all prior iterations, as detailed in the
Supporting Information, eq S7. Importantly, we assigned some

measurement error σn2 to each evaluation of f p(x;wD) in prior
iterations to be equal to 0.1. Three blend electrolytes were
simulated per iteration, which were chosen by the method of
local penalization.80 Each of these simulations consisted of an
equilibration step of 1.9 × 104 τ and a production step of 5 ×
103 τ, with particle positions reported every 0.5 τ. As shown in
Figure S2C, we can see from a sample of runs for wD = 0.5 that
the polymer conformations [measured by their radii of
gyration Rg

2(t)] largely converge (with some fluctuation)
during the equilibration run. In addition, as shown in Figure
S2, stable energies from a different sample set of production
runs further suggest metastability. While neither of these
measurements ensures complete equilibration for these
simulations, any anticipated error arising from incomplete
equilibration was modeled by including the measurement error
term σn

2 = 0.1.
The optimizations were considered finished when at least

four iterations yielded no improvement in f p(x;wD). In Figure
3, we present details of the optimization of the proxy
performance f p(x;wD) for all wD. In comparison to the best
value of f p from the core simulation (blue dashed line), one
can see that the best value f p′ (red dashed lines) arising from
the optimization ranges from being relatively insensitive as a
function of simulation number ns (as in Figure 3C) to quite
sensitive (as in Figure 3H). In all cases, f p′ slowly increases
with simulation number, eventually plateauing. It can be seen
that at least 12 simulations (or 4 iterations) were run after that
in which f p is maximized. When looking at each evaluation of
f p, shown by the black squares, it is clear that the optimization
algorithm balances between exploitation (improved best values
of f p(x) with optimization run time) and exploration
(evaluating design parameters that ultimately yielded partic-
ularly low values of f p(x)). Please see the Supporting
Information, Table S2, for a summary of these results. In
addition, see the Optimization Implementation section in the
Methods section for the algorithm used to perform the
optimization and the section in the Supporting Information for
further details on model training and acquisition function
calculation.
As anticipated, the Bayesian optimization identified a trade-

off between ionic transport and electrolyte mechanical
properties. We plot in Figure 4A the Pareto front between
the anionic MSD and τR. Each data point represents the
average of the three best f p evaluations. As the emphasis on

Figure 2. (A) Conductivity λ as a function of cationic (black squares)
or anionic (red triangles) short-time MSDs. Error bars indicate one
standard deviation. (B) Viscosity η(te = 2000 τ) as a function of
polymer relaxation time τR. Dashed lines represent the linear
regression curve derived from the weighted least squares procedure.
Training and test sets for linear regression are represented by hollow
and full symbols, respectively. r2 values indicate predictivity based on
test set comparison. The results suggest that λ and η are well
correlated with easy-to-calculate proxy measures of the anionic MSD
and τR.

Figure 3. f p(x;wD) (black squares) as a function of the number of short-run simulations ns after core simulations, the best value of f p(x;wD) (blue
dashed line) of the core simulations, and the best value of f p(x;wD) (red dashed line) arising from the optimization itself as a function of the
number of short-run simulations. Each panel is for a given wD value. It can be seen that the optimization values plateau for at least 12 simulations.
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transport increases, the anionic MSD increases and τR
decreases over nearly 2 orders of magnitude. The most
sensitive region appears for wD ∈ [0.3, 0.7] (corresponding to
symbols 3−6 from left to right in Figure 4A), suggesting
significant transition of electrolyte design parameters over this
range.
We sought to confirm the results of the optimization by

evaluating the true performance metrics λ and η by performing
long-run simulations with the optimal design parameter vector
x′(wD) (the values which we discuss below). To calculate the
conductivity λ, we performed simulations consisting of 1.5 ×
105 τ equilibration runs, followed by a 5.0 × 105 τ production
run. To calculate the viscosity η, five independent 1.5 × 105 τ
equilibration runs were followed by 1.0 × 105 τ production
runs. η(te = 2000 τ) was averaged over these five simulations.
In Figure 4A, we can see that the results of these simulations
reveal a similar trade-off between λ and η over 2 orders of
magnitude in Figure 4B. Such a result supports our hypothesis

that f p(x) could serve as a proxy for f(x). As further emphasis
of the success of the optimization procedure, the materials
appear to become viscoelastic with a plateau regime at lower
wD (see Figure S4 in the Supporting Information), a region
which possibly arises from ionic cross-linking.81−83

Interestingly, Figure 4A,B shows that ion transport and
electrolyte viscosity seem to be somewhat “decoupled” at low
wD. Such a decoupling manifests as a nearly flat curve in which
the viscosity changes little while transport increases by nearly
an order of magnitude. Similar behavior has been seen recently
in metal−ligand-bond-based polymer electrolytes.54 We
investigate below the resulting design parameters from the
Bayesian optimization, which may reveal some insight into this
phenomenon.
The results for the optimal design parameters x(wD) arising

from the optimization are shown in Figure 5. We again average
over the three best-performing electrolytes. Error bars beyond
the ranges of values in Figure 1 do not represent possible
solutions within the context of the optimization. We observe
that (i) the composition of most blend electrolytes appears to
be symmetric in terms of molecular weights and (ii) there is a
transition from a polymeric electrolyte to a small-molecule
electrolyte at wD = 0.6 (Figure 5A,B). The fact that optimal
blends rarely have any molecular weight contrast suggests that
electrolytes containing mixtures of the polymer and solvent
(such as gel polymer electrolytes19,84,85) rarely lie along the
Pareto front of electrolyte performance, as defined in this work.
We next turn to the host polymer polarity design

parameters, as seen in Figure 5C,D. With high emphasis on
material mechanics (low wD), we observe significant polarity
contrast μhi − μlo. However, as emphasis transitions to being
on transport (high wD), μhi − μlo decreases to negligible levels.
When taken in combination with the incompatibility
decreasing with wD (namely, miscibility increasing with wD),
as shown in Figure 5E, we can draw two conclusions. First, at
low wD, the PBE is likely to be a phase-separated material. In
previous work, we noted that ions preferentially partitioned to
the high-polarity domain and saw that such a partitioning
significantly slowed polymer dynamics relative to miscible
blends.31 Such a phenomenon may explain the particular
combination of design parameters in Figure 5 at low wD.
Indeed, when we visually investigate the phase behavior for wD
= 0.1 in Figure 6, we can see clear domains of high-polarity and
low-polarity polymers and a partitioning of cations into the
high-polarity phase. Second, at high wD, the optimal design
parameters suggest nearly pure (NA = NB, μlo ≈ μhi), rather

Figure 4. (A) Pareto front between the optimal anionic MSD and
polymer relaxation time τR, averaged over three best-performing
electrolytes. (B) Pareto front between ionic conductivity λ and
viscosity η for the best set of design parameters identified by proxy
optimization. In both (A) and (B), error bars represent one standard
deviation. The results suggest a trade-off between ion transport and
electrolyte mechanical properties present even in the true perform-
ance metrics.

Figure 5. (A) NA, (B) NB, (C) μlo, (D) μhi, (E) εAB, (F) ϕA, and (G) γ as a function of weighting factor wD, averaged over the three best-performing
electrolytes. Error bars represent one standard deviation and may be hidden behind its respective symbol. Mixed-molecular-weight electrolytes
seem to rarely optimize fp(x).
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than blend electrolytes. Such an observation is in conflict with
prior small-molecule electrolyte literature studies, in which a
blend of high-mobility (typically low polarity) and high-
polarity components tend to have faster ionic transport than
their pure counterparts.86 We investigate whether these
literature observations hold in relation to our Stockmayer
simulations in the next section.
Finally, we turn to the last two parameters, the relative

polymer composition ϕA and the assignment parameter γ,
shown in Figure 5F,G, respectively. γ, which controls the
assignment of polarity to one of the polarity hosts, is uniformly
set to unity for all wD. As a result, the nominally low-molecular-
weight polymer A is always assigned the low polarity value μlo.
As a result of the molecular weight symmetry, ϕA controls the
volume fraction of the low-polarity host. Unlike the molecular
weight, polarity, and incompatibility design parameters, we
observe that there seems to be no clear correlation between
these parameters and the evolution of the performance metrics
with increasing wD.
Overall, these results suggest that the molecular weight,

polarity, and compatibility design parameters, corresponding to
panels A−E in Figure 5, are the most important in the design
of high-performance electrolytes in two ways. First, as noted

above, they tend to be well correlated with the changes in the
performance metrics. Second, their relatively small error bars
further emphasize that they cannot be varied much while
maintaining high performance. As such, these results suggest
that the design of PBEs should focus on these design
parameters.
Having reviewed the design parameters in full, we now

comment on the possible underlying physical reasons for the
decoupling of conduction and viscosity at low wD, drawing
from the results in our previous investigation of PBEs.31 Such a
decoupling may arise from (1) the seeming phase separation of
the PBE (Figures 5E and 6) and (2) the gradual transition
from a high-polarity contrast electrolyte to a lower contrast
material characterized by a singular high-polarity host (Figure
5C,D). We have observed that the overall rate of ionic
conduction is significantly slowed in an immiscible blend
electrolyte. As μlo → μhi with increasing wD, the conductivity
must increase to that of an electrolyte whose singular host has
polarity μhi.

31 In contrast, we have seen that the low-polarity
host has fast dynamics, while the high-polarity host has slow
dynamics, which is further penalized by both the presence of
the low-polarity host and the immiscibility of the electrolyte.
As μlo → μhi with increasing wD, the low-polarity host dynamics
must slow. At the same time, the high-polarity host dynamics
must increase.31 We hypothesize that these two effects
incompletely cancel each other out. We propose that these
effects underpin our observation of a slower change in the
dynamics and viscosity at low wD in comparison to transport.

2.3. Physics Underlying Optimized Blends. Before we
conclude, we seek to perturb the optimal design vectors x′.
Such an exercise is important for two reasons. First, such a
perturbation allows us to investigate the stability of the
Bayesian optimization algorithm’s solutions. Second, it helps us
to glean physical intuition behind the solution outcomes. To
these ends, we investigated the solutions at three wD values:
0.3, 0.5, and 0.7. These values represent optimizations with
mechanical, balanced, and transport emphases, respectively. To
perturb the solutions, we chose one parameter to vary, while
fixing all others. We performed short-run simulations using the

Figure 6. Snapshot of a long-run simulation for the best set of design
parameters for wD = 0.1. The whole system is shown in (A); the
polymers only are shown in (B), with one polymer made transparent
for clarity; and only the cations and their nearest five neighbors are
shown in (C). The high-polarity polymer is shown in blue, the low-
polarity polymer in pink, the cations in blue, and the anions in red.
Clear domains of each polymer can be seen, and a preference of the
cations to interact with the high-polarity polymer is evident.

Figure 7. (A) Effect of μlo on polymer relaxation time τR (black squares) and proxy performance fp(x) (red circles) for wD = 0.3. (B) Effect of εAB
on polymer relaxation time τR (black squares) and proxy performance f p(x) (red circles) for wD = 0.5. (C) Effect of εAB on anionic MSD (black
squares) and proxy performance f p(x) (red circles) for wD = 0.5. (D) Effect of μlo on the total free-ion fraction (black squares) and proxy
performance f p(x) (red circles) for wD = 0.7. The blue tick label represents the optimal value of the explored design parameter. It can be seen that
deviating from the identified optimal parameters leads to a reduction in proxy performance.
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same equilibration and production procedures as those used by
the optimization simulations (see the Objective Function
Choice and Simplification section). We present the results of
these perturbations in Figure 7.
We first begin with wD = 0.3, in which the combination of

design parameters suggested a polymeric, immiscible blend
electrolyte with a large polarity contrast. In the case of pure
polymer electrolytes,22,23 polymer dynamics slowed the most
in electrolytes with high-polarity hosts. Naiv̈ely, one would
expect that a similar material would have the best mechanical
properties. We investigated such a hypothesis by increasing μlo
in the best-performing blend electrolyte. As shown in Figure
7A, we display the relaxation time τR (black squares) and the
proxy performance fp(x) (red triangles) as functions of μlo. We
can see that both τR and f p(x) decrease with μlo. In recent
work, we showed that ions partitioned into the high-polarity
phase of immiscible blend electrolytes, which increased with
increasing polarity contrast and was correlated with signifi-
cantly slowed dynamics of the high-polarity polymer.31 By
decreasing polarity contrast, as we have done in the electrolytes
underpinning the results seen in Figure 7A, the ions are likely
more uniformly distributed throughout the electrolyte, thereby
slowing dynamics less overall.
Similar physics influences the optimal design vector for wD =

0.5. We noted a sharp transition from a highly incompatible
(εAB ≈ 1.5kBT) PBE to a highly compatible (εAB ≈ 0.5kBT)
PBE at wD = 0.5. We anticipated that such a transition would
be correlated with faster polymer dynamics and faster ionic
transport.31 We varied εAB to investigate the influence of host
compatibility, the results of which are shown in Figure 7B.
Consistent with our observations, decreasing polymer
compatibility (increasing εAB) slowed polymer dynamics
(increasing polymer relaxation time τR), which would have a
positive effect of f p. However, we simultaneously saw a
decrease in f p(x), suggesting a larger increase in the anionic
MSD as a trade-off (see Figure 7C). These results suggest that
the miscibility of PBEs may be a key design parameter to boost
performance, where both transport and the mechanical
properties are equally considered.
For wD = 0.7 (emphasis on transport), our results seem to

differ from prior experimental results regarding small-molecule
electrolytes, which found that a mixture of high-polarity and
low-viscosity components promotes fast ionic transport.86 We
hypothesized that our results were consistent with previous
simulation findings, in which we observed that small-molecule
species were worse at solvating ions than their polymeric
counterparts.23 By reducing the polarity of some of the
electrolytes, we expected further increased ionic aggregation to
offset a potential increase in dynamics.22,23 We tested our
hypothesis by simulating several electrolytes with lower μlo
values. We calculated the free-ion fraction, defined as the
fraction of ions separated by more than 1.25 σ from all
counterions. We show in Figure 7D that ionic aggregation
increases and that performance decreases when μlo decreases,
as expected. These results suggest that within the Stockmayer
model simulated in this work, ionic aggregation in small-
molecule electrolytes is quite sensitive to both host polarities.
Such a sensitivity translates to decreased electrolyte perform-
ance at reduced μlo. Further investigation to better match the
Stockmayer model to experimental reality is required.

3. CONCLUSIONS
In summary, we used Bayesian optimization to examine the
potential of PBEs to co-optimize ionic transport and
mechanical strength. Recognizing a potential trade-off between
these two performance metrics, we developed an objective
function that incorporates this trade-off. Further, to speed the
optimization process, we correlated proxy performance metrics
with the true performance metrics. We demonstrated that both
proxy and true performance metrics traded off with each other
with increasing emphasis on ionic transport and that materials
with a high mechanical emphasis were seemingly viscoelastic.
Several key features emerged: host polymer molecular weights
sharply decreased, the lower-polarity polymer became more
polar, blend electrolyte miscibility increased, and the electro-
lyte host changed from a blend to a single component. These
results suggest that mixed-molecular-weight blend electrolytes,
such as gel electrolyte materials, rarely optimize electrolyte
performance. Balancing these metrics was better served by
having a uniformly high molecular weight when mechanical
strength was more strongly desired or a low molecular weight
when fast transport was emphasized. When ionic transport was
emphasized, our results also showed that pure, high-polarity
electrolytes maximized performance. Admittedly, our results
differ from related experimental observations, and such
discrepancies may arise from a combination of the objective
function employed and the ability of our coarse-grained model
to reflect atomistic aspects of polarity. Finally, we perturbed
the optimal design parameters to investigate the robustness of
the optimization procedure and to gain some physical insight
into the optimal design parameters. We discovered that
perturbations to the design parameters uniformly decreased
electrolyte performance. They also highlighted the potential
importance of polymer blend miscibility in balancing ionic
transport and electrolyte mechanical properties. Despite the
limitations of the work presented herein, our study identifies a
framework for the combined use of computer simulations and
ML approaches which can be used toward the design of higher-
performance polymer electrolytes.

4. METHODS
4.1. Stockmayer Model and the Molecular Dynamics

Methodology. The Stockmayer model is a simple, coarse-grained
model of polar fluids. Each molecule (or repeat unit) contains a freely
rotating, point dipole moment. Such a dipole moment encodes the
polarity of the species in question, allowing for interactions between
the solvent and ions.59−61 Within this coarse-grained model, we set
the characteristic mass m = 2.99 × 10−26 kg, the characteristic energy
ε = 5.27 × 10−27 J, and the characteristic length σ = 4.5 Å.59 The
nondimensionalized temperature T* = kBT/ε was set to 1.0 for all
simulations, where kB is the Boltzmann constant. All particle masses
mi were also set to = 1.0. Dipolar particles were assigned a rotational
inertia I = 0.25mσ2. The nondimensionalized proton charge e* was set
according to the following equation

e e
(4 )

9.863
0

1/2πε
* =

σε
=

(9)

where ε0 is the permittivity of free space. Anionic (a) and cationic (c)
charges were chosen to be qa = −qc = −e. Dipole strengths were set as
multiples of that of an ethylene oxide repeat unit at 373 K (1.7 D).22

Such a quantity was denoted as μEO, calculated according to the
following equation

(1.7 D)(3.33564 10 C m/D)
(4 )

0.775EO

30

0
3 1/2μ

πε σ ε
= × =

−

(10)
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All nonbonded particles interacted through the purely repulsive LJ
potential (also known as the Weeks−Chandler−Anderson or WCA
potential87) and electrostatic interactions. The WCA potential is
given as EWCA(rij)
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where σij and εij are the LJ radius and energy between particles of type
i and j, respectively. σij is determined by arithmetically averaging the
radii of each particle. Here, the monomeric radii are σA = σB = σ, the
cationic radius is σc = 0.5 σ, and the anionic radius is σa = 1.5 σ, all of
which were chosen to roughly mimic a poly(ethylene oxide)-based
lithium bistriflymide electrolyte in terms of size disparity. εij was
chosen to be 1.0 kBT for all pairs of atom types, with the exception of
εAB, as described in the Introductionsection. Ion−ion, ion−dipole,
and dipole−dipole interactions were quantified through Coulomb’s
law, the ion−dipole potential, and the dipole−dipole potential.88 All
electrostatics were directly calculated within a 6 σ range, beyond
which they were calculated using Ewald summation.88,89

All adjacent particles in a polymer were bonded with the finitely
extensible nonlinear elastic (FENE) potential
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The spring constant k and the maximum extension R0 were chosen
to be 30ε/σ2 and 1.5σ, respectively.90

All simulations were carried out using the Large-scale Atomic/
Molecular Massively Parallel Simulator.91 The number density of all
simulations was fixed at 0.85 particles/σ−3. In all simulations, the
number of polymer beads was set to approximately 2000. Enough
cations and anions were placed in the simulation box to maintain a
repeat unit/cation ratio of 16 and electroneutrality. For some of the
larger polymers simulated in this work, this corresponds to a box
length of ∼4Rg (see Figure S2C in the Supporting Information). Each
simulation box was packed with random polymer configurations, after
which ions were randomly dispersed.
Simulations were performed in the following steps:

1. We minimized using the steepest descent algorithm, followed
by the conjugate gradient algorithm. Both were terminated
when the relative error fell below 1 × 10−5.

2. Velocities drawn from a Gaussian distribution with temper-
ature T* were assigned to all particles for both linear and
rotational degrees of freedom.

3. Each system was equilibrated with a timestep of 0.01 τ, where τ
= mσ2/ε in an NVT ensemble. The temperature was imposed
with a Nose−́Hoover thermostat with a time constant of 1.0
τ.92,93 The length of each equilibration is specified at the point
of mention.

4. Each system was run for production with the same parameters
for the equilibrations. The length of each production is
specified at the point of mention.

4.2. Analyses Performed. 4.2.1. Conductivity. As described by
eq 1, we calculated the ionic conductivities of select simulations. Such
a calculation was performed in two parts using a previously described
literature procedure.21−23,31,75,76 First, the ionic diffusion coefficients
(Dc and Da) were calculated using the Einstein relation in eq 7 using
the long-time MSDs of each ion type. Second, the degree of
uncorrelated motion was estimated using short-time statistics (t ≤
0.05ttotal, where ttotal is the run length of the simulation) of the
following equation
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t t
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We calculated the average value α̅ using the following equation

t n t1
9

( 0.005 )
n 1

9

total∑α α̅ = = * *
= (14)

The standard deviation of α̅ was also estimated, which was
propagated to the final estimate of the standard deviation of the λ.

4.2.2. Viscosity. As described in the main text of the paper, the
viscosity η was calculated by initially calculating the time-dependent
shear modulus G(t)78,79
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where V is the system volume, kB is the Boltzmann constant, and T is
the system temperature. The six pressure elements were related to the
elements of the pressure tensor: P1 = 2Pxy, P2 = 2Pyz, P3 = 2Pxz,
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tensor Pαβ was calculated according to the virial equation
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where mi is the mass of particle i, vαi is the velocity of particle i in
direction α, rαij is the distance between particles i and j in direction α,
and Fβij is the force acting on particle i due to its interaction with
particle j in direction β. η was calculated by integrating G(t)78,79

G t t( )d
0

∫η =
∞

(17)

Formally, the upper bound of this integral is chosen such that G(t)
→ 0. However, because of the computational expense needed for
simulations to accurately obtain η, particularly for polymeric materials,
the integral was truncated at te = 2000 τ. As such, the viscosity
calculated herein serves as an incomplete averaging of the simulated
materials’ response to a shear stress.

4.2.3. Polymer Relaxation Time. The self-part of the intermediate
scattering function S(q,t) was calculated according to the following
equation

S q t
n

q t
q t
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where q = 2π/5.0 σ−1 and nmon is the number of monomers in the
system. S(q,t) was fit to a stretched exponential94
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where t* is the characteristic timescale and β is the stretching
exponential. The polymer relaxation time τR was calculated using the
following equation

t 1 1
Rτ β= *Γ +

ikjjjj y{zzzz (20)

where Γ(x) is the gamma function with argument x.
4.2.4. Optimization Implementation. Bayesian optimization was

carr ied out using the design-of-exper iments funct ion
(GPyOpt.methods.BayesianOptimization.suggest_next_locations())
in the Python package GPyOpt.95 As described in the main text of this
work, 29 simulations were carried out form the original test set yMSD,0
and yτR,0, which were 29-element-long vectors containing the anionic
MSDs and polymer relaxation times, respectively, and X0, which
contained the design parameters. The initial kernel 02 was the
Mat́ern 5/2 covariance function with arbitrary parameters σ0

2 =
1.0and (1.0, ..., 1.0)0

T=S added to a measurement uncertainty,
described above, with σn

2 = 0.1. It had the following form
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X X K X X I( , ) ( , ) n0 0 0 0
2σ= +2 (21)

The following procedure at optimization step i was implemented

1. Following eqs S4−S7 from the Supporting Information,
convert yMSD,i−1 and y itau , 1R − to fp,i−1.

2. Initialize the kernel X X( , )i i i1 1 1− − −2 using the conditioned
kernel parameters σi−1

2 and i 1−S .
3. Pass the domain (given in Figure 1), constraints (given in

Figure 1), X X( , )i i i1 1 1− − −2 , and the desired acquisition
function (here, the expected improvement acquisition
function, see eq S10) to the Bayesian optimization object in
GPyOpt. Assume a mean function μi−1 = 0. This step
conditions the prior distribution to the posterior distribution,
described above.

4. Report the conditioned parameters σi
2and iS to a data file.

5. Use the initialized Bayesian optimization object with the local
penalization method to suggest three simulations with design
parameters Xi* = (x1,i* x2,i* x3,i*). Report Xi = (Xi−1Xi*) to a data
file.

6. Run short simulations as described.

7. Calculate yMSD,i* and y i,Rτ . Report y
y
yi

i

iMSD,
MSD, 1

MSD,
= *

−ikjjjjj y{zzzzz and
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−ikjjjjj y{zzzzz to data.

The above procedure is repeated until both i ≥ 15 (45 short-run
simulations ran at the minimum) and the maximum objective value f ′
is constant for at least 4 iterations (12 short-run simulations of no
improvement in the objective function).
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