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Abstract.

Noise due to scattered light has been a frequent disturbance in the Advanced
LIGO gravitational wave detectors, hindering the detection of gravitational waves.
The non stationary scatter noise caused by low frequency motion can be recognized as
arches in the time-frequency plane of the gravitational wave channel. In this paper,
we characterize the scattering noise for LIGO and Virgo’s third observing run O3 from
April, 2019 to March, 2020. We find at least two different populations of scattering
noise and we investigate the multiple origins of one of them as well as its mitigation.
We find that relative motion between two specific surfaces is strongly correlated with
the presence of scattered light and we implement a technique to reduce this motion.
We also present an algorithm using a witness channel to identify the times this noise
can be present in the detector.

1. Introduction

The LIGO gravitational-wave observatories located at Hanford, Washington (LHO), and
Livingston, Louisiana (LLO) in the USA [1], along with the Virgo detector in Cascina,
Italy [2], and the GEO 600 detector in Germany [3] are a part of a worldwide network
of gravitational-wave detectors. A schematic of the LIGO detectors is shown in Fig.
1. Each LIGO detector is a dual-recycled Fabry-Perot Michelson interferometer with 4
km arms. The detector acts as a transducer for strain, converting phase shift due to a
gravitational wave into a signal that can be measured on a photo-diode. The output
signal at the photodetectors is calibrated to an equivalent strain signal h(t) [4,5].

The first two observing runs, in September 2015-January 2016 and November 2016-
August 2017, resulted in spectacular discoveries, including signals from the merger of 10
pairs of black holes and one from a merger of neutrons stars [7-9]. The third observing
run began on April 1, 2019, and ended on March 27, 2020. During this run, plausible
gravitational wave sources were shared as public alerts, averaging one a week [10].
The average binary neutron star (BNS) range at Livingston and Hanford, during O3,
is approximately 130 Mpc and 110 Mpc respectively. In October 2019, a month-long
working break separated the first and second half of O3, called O3a and O3b respectively.
An increase in the laser input power and squeezed light injection contributed to the
increase in range from O2 to O3 [11].

Noise from several different sources limits the sensitivity of the strain data at
different frequencies. While quantum shot noise is dominant at frequencies above 300
Hz [12], ground motion is the major source of noise below 10 Hz which can affect the
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Figure 1: A schematic of aLIGO detectors taken from [0]

higher frequency band of the detectors. In addition to quantum noise, suspension noise
and seismic noise, short duration noise transients also known as “glitches” can affect the
sensitivity of the detectors [13]. These noise transients can be due to high ground motion,
electronic malfunction or other reasons, not well-understood [14-16]. At aLIGO they
are detected by the Omicron algorithm. Each of these glitches, also known as omicron
trigger, is annotated with some parameters such as event time, frequency, signal to
noise ratio (SNR) [17-19]. In this paper, we focus on the type of noise transient due to
scattered light which impacts the gravitational strain in 10 Hz to 120 Hz frequency band.
Signals from the merger of very massive binary black holes may fall into this frequency
region [20]. Thus, identifying and reducing the amount of scattering is imperative for
increased confidence in detecting such signals and overall enhanced detector sensitivity.

The paper is composed as follows. In Sec. 2 we give an overview of the sensors
and instruments at the LIGO end stations. Next in Sec. 3, we discuss scattering noise
and mathematically define the phase and amplitude component of the noise. Scattering
noise during O3 is addressed in Sec. 4. In Sec. 5 we provide a mathematical treatment
of slow scattering, a sub-population of the light scattering and discuss the source of the
noise. In Sec. 6 we develop a method to mitigate the slow scattering noise discussed in
Sec. 5. Sec. 7 introduces another source of slow scattering observed during O3. In Sec.
8 we discuss a method to identify scattering times. Finally we summarize the paper in
Sec. 9.

2. Hardware and sensors at LIGO end stations

The site of light scattering discussed in this paper, is the set of mirrors located in the
end station housing. This section describes these mirrors and other hardware, crucial
for an understanding of light scattering. A schematic of the LIGO end station housing
one end test mass [21] of the interferometer arm is shown in Fig. 2. Each station has
a reference seismometer on the floor to monitor ambient seismic noise. The vacuum
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Figure 2: The schematic of end station housing shows the seismic isolation system, quadruple
suspension, transmission monitor system (TMS), and the seismometer used to measure ground
vibrations. The optical shadow sensor and magnetic actuators (OSEMs) in the quadruple
suspension cage measure relative motion and produce a force on the main and reaction chain.
About 4 ppm of the light power in the arms is transmitted through the end test mass. 95%
of this 4 ppm is dumped and the remaining 5% is split onto the two-quadrant photo-diodes
(QPDs) in the TMS. These QPD’s are used to check for any misalignment of the beam on the
end test mass.

system has at the end of the 4km arms large vacuum chambers housing the test masses.
The test mass and a transmitted light monitoring table are suspended from a two-stage
seismic isolation table [22]. The test mass has a double chain, four-layered suspension
for additional isolation [23]. The quadruple suspension chain behind the quadruple
test mass suspension is called the reaction chain. There is additional hardware around
the suspension, most importantly the “cage”: a structure hard bolted to the seismic
isolation table which serves both as a reference and as a safety measure for protecting
against large motions that could damage the suspension.

The suspension for the test mass uses optical shadow sensor and magnetic actuators
(OSEM) at the top three stages as well as an electrostatic drive (ESD) at the test mass
stage. The OSEMs at the top stages measure relative motion and can apply a force
between the cage and the two chains. For the upper-intermediate mass (UIM) and
penultimate (PUM) mass stages, the OSEMs measure and actuate in-between the two
chains.

The transmission monitor is a double suspension with OSEMs at the top stage,
measuring motion with respect to its cage [24]. It houses a telescope to reduce the
large beam size coming from the arm. The LIGO end test masses have a transmission
of approximately 4ppm, so for an arm power of 250kW as in O3a for the Livingston
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detector, the transmitted beam would be about 1W. 95% of this light is dumped and
5% is split about equally between two quadrant photodiodes.

In order to keep the optical cavities in the arms on resonance, LIGO uses the
interferometric signal at the detector output to sense the difference in the arm length.
It then feeds back that signal to one of the end test masses, at different stages of the
quadruple suspension, with a bandwidth of about 60 Hz [(]. As a result, the test mass
chain moves much more relative to the local surfaces, since it has to “account” for
the motion of all other test masses. The main pendulum frequency of the quadruple
suspension is around 0.45 Hz which means that for the force applied at frequencies
below 0.45 Hz at upper stages, the entire chain will move together. The dominant
ground motion to be fed back is indeed below this frequency. Furthermore, because
most of the force is applied in between the chains, the test mass chain moves twice as
much relative to the reaction chain. The test mass motion relative to other surfaces like
the transmission monitor, the cage or the vacuum chamber walls is half of the motion
measured by the OSEM at the UIM or PUM level, below 0.45 Hz.

Each LIGO detector is equipped with several hundreds of auxiliary sensors, used
in the feedback control system and in the environmental monitoring system. Many
of these channels are not sensitive to differential arm length and are used to identify
various environmental and physical couplings to the detector. Ground motion in various
frequency bands, for example, is measured by seismometers located at end stations and
corner station. These seismometers record ground motion in X, Y and Z direction in
the frequency range from 0.03 Hz to 30 Hz. Earthquakes shake the ground in 0.03 — 0.1
Hz band while seismic noise due to trains and human activity near the site, also known
as anthropogenic noise, shows up in the 1 — 3 Hz region. Ocean waves and sea storms
produce seismic waves with frequencies ranging from 0.03 — 0.5 Hz, also known as
microseisms. While the secondary, and dominant, microseism peak is typically measured
around 0.15 Hz [25,20], it varies in frequencies and was strongest at 0.13 Hz for this
analysis. As we discuss later, the output of these sensors is used to look for correlations
with noise transients in the strain data.

3. Scattering Noise

Tiny imperfections on the surfaces of test mass mirrors in the interferometer cause a
small amount of light to scatter out of the main beam. This scattered light can then
reflect from surfaces that have large relative motion relative to the test mass such as the
chamber walls and then back to the test mass. Upon recombining with the main beam,
the scattered light introduces noise in the gravitational wave data. The amplitude of
the noise depends on how much light recombines with the main beam, and the upper
frequency depends on the relative motion.

The motion of the scatterer introduces an additional phase in the field reflected
from its surface. Consider a small fraction A of the total field that gets scattered back
to the main beam, from a scattering surface located behind the end test mass (ETM).
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This light will acquire an additional phase due to the path length modulation caused by
the relative motion between the end test mass and the scatterer. The resulting phase

noise can be formulated as:

A .
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A is the laser wavelength, xg is static path that corresponds to the static phase ¢
while dz,. is the time-dependent displacement of the scattering surface which gives rise
to additional phase d¢s.(t), F is the Fourier transform [27-29].

The build up of this phase shifted field in the arms by the factor I' pushes on the
mirrors resulting in radiation pressure noise. This radiation component of the noise can

be expressed as:
arr 2
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I' = 13.58 here is cavity signal gain, M = 40 kg is the mass of mirrors, P is the power
in the arms, c is speed of light and € is the suspension eigenfrequency [30)].
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Figure 3: Scattering noise shows up as arches in the time-frequency spectrograms also
known as Q-scan of the primary gravitational wave channel as processed by gwdetchar-
omega [31,32]. The stacked arches suggests a scatter path that involves multiple reflections
of stray light between the test mass and the scatterer.

Scattering noise can be recognized as arches in the Q-scan as shown in Fig. 3. The
peak frequency of these arches tells us the number of fringes per second and can be
related to the velocity of the scatterer, vs. with the following relation:

franget) = | 222D 0
where fpinge(t) is the fringe frequency and n is the number of times stray light gets
reflected back and forth between the test mass and the scatterer before it joins the main
beam. This equation can be derived by calculating the rate of change of phase from Eq.
2. We can also look at the spacing of the peaks in the time domain to give us half the

period of the scattering surface.
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4. Scattering in O3

The BNS range defined as the radius of the orientation-averaged spacetime volume
assuming a matched-filter detection signal-to-noise ratio threshold of 8, increased to 110-
140 Mpc in O3, from 80-100 Mpc in O2 [1 1] Due to this improvement in sensitivity and
the enhanced stability of the interferometer which allows the detector to stay operational
during high microseismic activity, some of the transients of similar origin in O2 and O3
now surface with higher signal to noise ratio (SNR). Consequently, we see a lot more
scattering arches in O3. An interesting feature of scattering in O3 is the presence of
two different populations of scattering triggers, so-called the “slow” scattering and the
“fast” scattering at both LLO and LHO. The glitch morphology of the slow scattering
is the more familiar arch in Q-scan as shown in Fig. 3. The fast scattering triggers are
more localized in time and occur with lower SNR compared to slow scattering. Table 1
compares different characteristics of slow and fast scattering triggers as classified by a
noise classification tool GravitySpy discussed in Sec. 8.
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(a) Slow scattering arches. (b) PUM stage motion during light scattering.

Figure 4: The left image shows QQ-scan of slow scattering in the primary gravitational wave
channel. This is an unusual number of arches due to extremely high ground motion in the 0.03
- 0.1 Hz (earthquake) and 0.1 - 0.3 Hz (microseism) bands on April 5, 2019. The right image
shows the PUM stage motion between the chains for the same time period. As mentioned in
Sec. 2, the PUM stage OSEM records twice the displacement of the main chain.

4.1. Slow Scattering.

In time-frequency spectrograms, slow scattering triggers resemble an arch. Fig. A4a.
shows slow scattering in h(t) for a day with large ground motion. As shown in this
figure, the scatterer has a period of ~ 7 seconds, and from this we can derive the
scattering surface is moving with a frequency close to 0.13 Hz which corresponds to one
of the peaks in microseism [33]. Slow scattering is dominant during high ground motion
in 0.03 - 0.1 Hz (earthquake) and 0.1 - 0.3 Hz (microseism) band. These arches reach
high frequencies during larger ground motion and so it is more visible above the quiet
background noise in the differential arm cavity (DARM). During O3, it was particularly
strong on Dec 1, 2019 and January 6, 2020 due to high levels of ground motion on both
of these days at LLO. Depending on the ground motion, slow scattering creates “scatter
shelves” in the frequency band 10 Hz to 120 Hz in h(t) spectra.
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Figure 5: The left image shows Q-scan of fast scattering triggers in primary gravitational
wave channel at LLO. Each “arch” contains multiple sub-arches. Fast scattering triggers
correlate well with high ground motion in the 1 - 5 Hz (anthropogenic) band. The top right
image shows the ground motion in the anthropogenic band at X and Y end of the detector
at LLO on Feb, 9, 2020. The bottom right image shows the rate of omicron triggers in the
frequency band 10 to 50 Hz for the same duration.

4.2. Fast Scattering.

The fast scattering triggers shown in Fig. 5a occur with a frequency ~ 4 Hz [34].
This population of scattering correlates with increased ground motion in the 1 - 5 Hz
(anthropogenic) and 0.1 - 0.3 Hz (microseism) band. It is normally higher in the daytime
during the weekdays. Human activity near the site and trains passing on the track near
the Y end station at LLO shakes the ground in these frequency bands. These triggers
affect the h(t) sensitivity in the band between 10 and 50 Hz.

The striking differences in the glitch morphology, SNR, and the duration for
slow and fast scattering triggers suggest that they are due to different noise coupling
mechanisms. Fig. 6 shows the SNR and duration of total scattering triggers in O3a.
Both distributions reveal the presence of more than one population of scattering triggers.
We concentrate in this paper on slow scattering triggers and will not investigate fast
scattering further. In the next section, we provide a detailed description of slow
scattering noise.
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Properties Slow scattering triggers | Fast scattering triggers
Frequency of arches below 0.2 Hz between 2 and 5 Hz
Median SNR 37.6 11.0
Median duration 3.2 sec 1.3 sec
% of total scattering 40.27 % 59.73 %

Table 1: Comparison of slow and fast scattering triggers in O3a at LLO as identified by
GravitySpy above a confidence of 90% and SNR above 10. Frequency of arches relates
to the frequency of the ground motion band active during the noise. Slow scattering is
dominant during ground motion in the microseism band (0.1 — 0.3) Hz, whereas Fast
scattering is more common during high ground motion in the anthropogenic band (1—5)
Hz. This comparison is shown for LLO since at LHO, fast scattering amounts to only
1.6% of the total scattering observed. This is primarily due to difference in ground
motion in anthropogenic band between the two sites.
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(a) SNR distribution for scattering in O3a. (b) Duration distribution of scattering in O3a.

Figure 6: The SNR and duration histograms for total scattering in O3a at LLO reveal the
presence of two populations the fast and slow scattering. Slow scattering tends to be louder and
long duration. It should be emphasized that the third bump in the duration plot between 6 sec
and 8 sec does not correspond to any third population, but rather to extended slow scattering.
This is common when high ground motion persists long enough without the interferometer
breaking lock.

5. Slow scaterring noise coupling mechanism

For most of the first three aLIGO observing runs, slow scattering noise occasionally
polluted the A(t) spectra during periods of high ground motion in 0.1-0.3 Hz band.
The characteristic scattering arches indicated that there were wavelength-scale or larger
modulations of the scattering path. As described in Sec. 2 an external drive is applied
to the test mass chain to keep the optical cavities on resonance. Because the ground
moves differently at the ends of the 4 km long cavities, this drive can lead to micron-
scale relative motion between the end test mass (ETM) and other objects in its vicinity,
making this region a good candidate for the source of scattering arches.

Several clues pointed specifically towards a scattering path involving the annular
end reaction mass (AERM): first, the presence of several harmonics of the arches or
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scattering shelves, indicated that significant fractions of the light traversed the scattered
light path more than once. This eliminated several potential paths, such as to light
baffles or enclosure walls, because imperfect reflections on these other paths would
likely cause the loss of much more than 90% of the power in each successive round
trip. Second, the observation of similar harmonic series of arches at both LHO and
LLO suggested that the noise was not due to an improbable alignment. And, third,
micron-scale relative motions were recognized between upper stages of the test mass
and reaction mass chains, suggesting that the scattering surfaces were likely between
the chains.

one bounce
gfrom ESD traces

(two bounces
from ESD traces

Figure 7: The reaction chain pushes on the main chain to keep the detector on resonance.
Control is applied via coil actuators as shown in Fig. 2 and electrostatic drive as shown here.
This fluctuates the distance between the AERM shown on the left and ETM shown on the
right. A part of the light reflected back from the gold electrostatic drive joins the main beam
in the arm with an additional phase. The changing difference in the phase between the two
beams introduces noise by causing light modulation at the gravitational wave detection port.
Multiple bounces between the ESD trace and the end test mass show up as multiple arches in
the h(t) spectrograms.

The relative movement between the ETM and AERM, dx,. in Eq. 2, is not directly
sensed, but at low frequencies (relative to the .45 Hz pendulum resonance ) the motion
between the ETM and AERM is similar to the motion that is sensed at the penultimate
(PUM) stage of the compound pendulum. This allows us to approximate the motion
between the end test mass and the reaction mass with that of PUM stage. As shown
in Fig. 8a the fringe frequency of the PUM stage motion and its higher harmonics,
calculated using Eq. 4, match scattering arches in h(t) spectrograms.

On the AERM an electro-static drive (ESD) is formed by the installation of 5 gold
traces [35]. Applying a voltage on the gold traces, an electrostatic force can drive the
test mass. The reaction mass is a hollow cylinder to allow the transmitted beam to pass
without encountering additional optical surfaces [36]. During operations, most of the
light transmitted through the ETM goes through the reaction mass hole and onto the
other side of the reaction chain as shown in Fig. 7. A small fraction of this Gaussian
beam hits the gold trace ESD, on the AERM. Due to its high reflectivity, almost all of
the light is back scattered towards the test mass and a fraction of that is transmitted
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back to the arm through the ETM. This back scattered field with an additional phase
shift, given by Eq. 2, interferes with the main beam in the arms and introduces phase
noise in h(t).

Let Ey be the field in the arms and F.zg is the part of this field backscattered from
the end reaction mass at the point Fj is computed. We can calculate the total field in

the arms:

Etot = EO + Eesd (5)
Eesd = EOAeiw(t); A= Tend fr (6)
Etot = E(][l + A€i6¢(t)] (7)

T..q is the ETM transmission (46’6), fr is the fraction of the power incident on the
gold trace ESD. The calculation for F..; involves two transmissions through the ETM
and one reflection from the ESD.

The phase noise hyy(f) and the radiation noise h,.qq(f) due to this back scattered
field is given by the Eq. 1 and Eq. 3 respectively. The total effective displacement
power spectrum S(f) can be obtained by adding the individual contributions:
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Figure 8: In the left figure, we have overlaid the multiple harmonics of the fringe frequency
due to the penultimate (PUM) stage motion onto scattering arches. In the right figure, we
have plotted the DARM spectrum during the scattering noise shown in the left figure and
the spectrum calculated from the PUM stage motion using Eq. 8. DARM spectrum during
a quieter time is shown as the black curve for comparison. The arches in the spectrogram on
the left show up as shelves in the spectra on the right. Also, notice that the height for each
successive shelf falls by a factor of 10. As we discuss in Sec. 7, the scattering noise in the
region below 20 Hz that does not match the red curve in the right image, is due to another
slow scattering coupling.

Fig. 8b shows the total power spectrum for a scattering event on Jan 6, 2020 at
LLO. The first shelf in the h(t) spectrum matches for v/f, = 2¢—4, roughly consistent,
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within an order of magnitude with a previous estimation [37]. The coefficient for second
and third shelf are 5e—5 and 5e—6 respectively, about an order of magnitude reduction
for each higher harmonic. The amplitude of the scatter shelf for (n 4 1)th harmonic is
approximately 10% of nth harmonic, as suggested by these reflection coefficients. This
can also be observed in Fig. 8b. We performed similar analysis for several scattering
triggers and we found the second and third shelf coefficient magnitudes in the range of
(be—5,6e—5) and (5e—6,6e—6) respectively, while the first shelf coefficient did not vary.

6. Noise mitigation using suspensions control system

Scattered light due to the large relative motion between the test mass chain and reaction
chain during high ground motion has adversely affected the sensitivity of the detector.
One way to reduce this noise coupling is by reducing the relative motion between the
ETM and AERM while keeping the intended relative motion between the ETM and the
input test mass (ITM) in the arm cavity. This can be achieved by sending a part of
the drive from the PUM stage and feeding it to the top stage as shown in Fig. 2. This
will cause the two chains to move together and hence will reduce the relative motion
between them. The reaction chain “tracks” the main chain and we call this RC tracking
[38]. The reduced relative motion effectively decreases the frequency at which scattering
creates shelves in h(t) spectrum.

RC tracking was implemented on Jan 7, 2020, at LLO [39]. To understand the
impact of the tracking on slow scattering caused by ETM-AERM relative motion, we
measured the SNR of scattering triggers and ground motion in the earthquake and
microseism band between Nov 1, 2019, the start of O3b and Feb 8, 2020. We analyze
triggers that are classified as scattering by GravitySpy with a confidence above 0.9 [10].
We divided this data into Pre and Post RC, where for LLO Pre RC is from Nov 1, 2019,
to Jan 6, 2020, and Post RC is from Jan 10, 2020, to Feb 8, 2020, and for LHO Pre
RC is from Nov 1, 2019, to Jan 14, 2020, and Post RC is from Jan 15, 2020, to Feb 28,
2020. The analyzed data is normalized by the observing duration of Post RC considered
in this study, which is ~ 21 days for LLO and ~ 34 days for LHO. Next, we considered
time segments during which the ground motion in the microseismic band is similar Pre
and Post RC tracking and plotted the SNR distribution of scattering triggers during
these time segments. We found a clear reduction in the SNR of the scattering triggers
at LLO and LHO for the Post RC scattering [11]. At LLO for example, the number
of triggers in the SNR bin 20-25 after RC tracking is 89, while for the same bin, before
RC tracking, LLO registered 1127 scattering triggers. The SNR comparison is shown in
Fig. 9a and Fig. 9b.

We also compared the rate of scattering triggers against the microseismic ground
motion for Pre and Post RC tracking. Here again, we found that for similar levels of
microseism above 1um/s, the Post RC glitch rates are considerably lower at both the
sites as shown in Fig. 9c. and Fig. 9d [12]. As can be seen from these figures, the
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Figure 9: The top images compares the SNR of scattering triggers before and after RC
tracking for LLO and LHO. The SNR distribution is plotted during similar levels of before
and after ground motion in the microseism band. The bottom plots compare the scattering
glitch rates for different levels of microseismic ground motion before and after RC tracking.
For the Pre RC tracking microseism ground motion data considered for LHO in this study,
no data was found above 1500um/s. The scattering triggers for these plots were fetched from
GravitySpy with confidence above 0.9 and SNR above 10.

ground motion in the microseismic band is usually higher at LLO than at LHO.

7. Relative motion between test mass and transmitted light monitors

As mentioned in Sec. 2, the control drive sent to the end test mass chain creates relative
motion between the test mass and all other objects in its vicinity, such as the AERM, the
TMS, vacuum chamber walls, or mechanical structures. When motion is high enough,
the phase modulation from this path length difference can show up as scattering arches
in both h(t) and the transmitted light monitors, labelled QPD in Fig. 2. The motion
between the main and reaction chain is twice compared to the motion between test mass
and all other objects. Thus, the scattering shelf/arch due to ETM-TMS relative motion
is observed at one-half the frequency of the scattering shelf/arch due to ETM-AERM
relative motion. This can be seen in Fig. 10a where the first harmonic due to ETM-
AERM scattering is at 40 Hz and the scattering arch due to ETM-TMS scattering is at
20 Hz. Before RC tracking, a scattering shelf in transmitted light monitor at f Hz will
predict scattering shelves in h(t) at f Hz due to ETM-TMS coupling and at 2f, 4f, 6f
and so on due to ETM-AERM coupling. Following RC tracking, a shelf in transmitted
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light monitor at f Hz only corresponds to a shelf in h(t) at the same frequency.
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Figure 10: The top left plot shows scattering arches in h(t) Q-scan during a day with very
high microseism. Multiple reflections between the test mass and reaction mass generates the
multiple harmonics. The first harmonic of the light scattering due to ETM-AERM relative
motion is close to 40 Hz with higher harmonics present at ~ 80 Hz, ~ 120 Hz. Since the
relative motion between the test mass and TMS is one-half of the ETM-AERM motion, the
scattering arch due to ETM-TMS scattering is at ~ 20 Hz. The top right plot shows this
scattering arch in the transmitted light monitor. After RC tracking was implemented the
noise due to ETM-AERM relative motion has reduced considerably. And thus during high
ground motion post RC tracking, only the ETM-TMS noise coupling shows up as scattering
arches in h(t) and the transmitted light monitor as shown in the bottom plots.

Fig. 10c shows a slow scattering arch in the time-frequency representation, after the
RC tracking was implemented. The lack of multiple arches suggests that the scattering
path does not involve multiple traversals between the test mass and the scatterer. The
TMS-ETM scatter mechanism was confirmed experimentally. Low frequency motion
was injected at the Y end seismic isolation table, forcing the DARM loop to respond by
inducing large motion at the X end test mass and creating a scatter shelf in h(t). The
TMS was then fed the same motion, reducing the relative motion in between it and the
optic and the h(t) scatter shelf disappeared [13-15].

With RC tracking the higher frequency scattering shelves due to ETM-AERM
coupling have gone away. Fig. 11 compares the scattering shelves in h(t) and X
end transmitted light monitor for scattering events before and after RC tracking. The
DARM control signal is sent to one test mass and this results in large relative motion
between the test mass and its surroundings. One remedy to reduce the ETM-TMS
relative motion is to split and apply this control drive at all four test masses forming
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Figure 11: The left image shows Relative Intensity Noise (RIN) of X end transmitted light
monitor and h(t) before RC tracking was implemented. The scattering shelf at 10 Hz in h(t)
correlates with ETM-TMS noise coupling, while the higher frequency shelves at ~ 20 Hz and
~ 40 Hz are due to ETM-AERM scattering. The image on the right is for a Post RC tracking
scattering event and higher frequency shelves are absent in h(t) due to reduced relative motion

between the main chain and the reaction chain.

the LIGO arm cavities. This will reduce the relative motion by a factor of 4. Further
reduction can be employed by making the TMS follow the test mass chain like in the
test described above and we intend to implement this for the next observing run.

8. Using transmitted light monitors to identify scattering

GravitySpy is an image recognition tool that uses machine learning to classify the variety
of omicron triggers that show up as transient noise in the strain data. It is a citizen
science project and volunteers help to generate the training dataset by assigning one of
the several glitch classes to the spectrogram images. The algorithm assigns each image
a glitch class and a confidence score which represents the probability that the image
belongs to that specific glitch class. We can identify times of transients due to scattered

light by looking at the output of GravitySpy [40,46].
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8.1. GWDetChar-Scattering

Another way of identifying the potential scattering triggers is by monitoring the motion
of OSEMs and then correlating it with the presence of the same triggers in the
gravitational wave strain channel. This is accomplished by using an algorithm called
- gwdetchar-scattering [32]. Throughout the detector, OSEMs are used to capture
the motion of any components, light can get scattered from. The timeseries data from
these sensors is used to find potential site of scattering in the following way. The
position measurements taken by the OSEMs is first converted velocity using a savgol
filter [17] and then to fringe frequency using the following equation 4. The gwdetchar-
scattering script then creates segments of the form (startime, endtime) during which
the fringe frequency motion in optic crosses a certain frequency threshold. The algorithm
then looks for time coincidences between these segments and omicron triggers in h(t) in
10 Hz - 60 Hz frequency band. Efficiency is defined as the percentage of triggers in h(t)
channel that falls within these segments while the deadtime is the duration of all the
segments for an optic as a percentage of total observing time. An optic is considered to
be “strong” witness if the ratio of efficiency over deadtime is greater than 2 and “weak”
if it is less than 2. The script then prepares a webpage, as shown in Fig 12, showing the
movement of all the optics, the scattering segments of each optic and the information
of h(t) triggers captured by these segments [15].

Another method to identify scattering culprits is to employ an adaptive algorithm
based on time varying Empirical Mode Decomposition (tvf EMD) used at Virgo [19].
This method which utilizes the non-linear nature of light scattering, finds correlation
between the Instantaneous Amplitude (IA) of primary channel and time derivative of
potential scatterer’s position. A method based on Hilbert Huang transform has also
been developed to catch scattering surfaces [50]. The tvf EMD and the Hilbert Huang
methods are based on quantifying time series correlation between the gravitational
strain data and potential scattering surface. The gwdetchar-scattering finds time
coincidence between moving optical surfaces and trigger data processed by another
pipeline (Omicron).

GravitySpy, even though does not provide any information with regards to where
the scatterer might be located, identifies a larger subset of scattering triggers compared
to that identified by motion in OSEMs. On the other hand, optics motion can be a
more direct method of locating the source of scattering noise since it can identify which
mirror is moving with the velocity required. It thus makes sense to see if we can make
gwdetchar-scattering more “efficient” by adding better scattering witnesses to the
algorithm. In this section, we explore such a witness that can be used to identify the
scattering noise.

In Sec. 7, we showed that the transmitted light monitors serve as a witness of slow
scattering noise in h(t). Fig. 13 shows a time correlation between the slow scattering
triggers in h(t) as identified by GravitySpy and the noise in the transmitted light monitor
below 20 Hz. Due to the presence of this temporal coincidence of triggers, the noise in
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Figure 12: The left image shows the optical sensors processed by gwdetchar-scattering
for evidence of scattering. They are color coded with red for strong evidence of scattering and
yellow for weak. The topmost plot on the right image shows the position measurement by the
OSEM on the PUM stage of the reaction chain, followed by the fringe frequency calculated
using 4. The third plot shows h(t) Omicron glitches with the glitch rate increasing with the
increase in fringe frequency motion. The final plot shows the time segments during which
the fringe frequency motion is above 15 Hz. The h(t) triggers that lie within these scattering
segments are written to a file as potential scattering.

this auxiliary channel can be used to identify the slow scattering noise in h(t). These
channels can be added to the list of optics, over which the algorithm gwdetchar-
scattering iterates to find scattering in h(t). This change represents an update on
gwdetchar-scattering rather than a new algorithm to find scattering noise.

Apart from slow scattering, “Extremely Loud triggers”, which is another class of
triggers characterized by typically high SNR, also makes its way to the transmitted
light monitors. The source of these loud triggers is not well understood but it is not
believed to be related to scattered light, so we need to remove these triggers from our
analysis. To differentiate the presence of slow scattering noise in h(t) from loud triggers,
we can look at the frequency content of the coincident noise in the transmitted light
monitors. The scattering noise in these witness channels appears in the range 4 - 10
Hz while the triggers coincident with loud glitches in h(t) typically appear with higher
peak frequency.

8.2. Band-limited RMS

To capture the scattering triggers in h(t), we use whitened band-limited root mean
square (RMS) segments constructed from the raw time-series of the transmitted light
monitors, in the frequency band of interest. A scattering trigger in h(t) shows up as
a spike in these band-limited RMS (BLRMS). By choosing a suitable threshold, we
can create BLRMS segments and then use time coincidence with the Omicron triggers
in h(t) to identify the scattering triggers. Any h(t) triggers that coincide with these
band-limited segments are then written to a file as potential scattering. This process is
shown in Fig. 14. Before finding time coincidence between the h(t) triggers and BLRMS
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Figure 13: Time coincidence between X end transmitted light monitor and slow scattering in
h(t) channel during the first three months of O3a at LLO. The top plot shows slow scattering
triggers identified by GravitySpy above a confidence of 0.95 in h(t) and the bottom plot shows
the omicron triggers in X end transmitted light monitor during the same time period. The
vertical lines show the correlation between the scattering in h(t) channel and noise in the
transmitted light monitor channel.

segments, we filter the triggers by SNR (between 15 and 200) and frequency (between
10 Hz and 60 Hz), thus excluding the loud triggers that can pollute the algorithm. The
transmitted light monitors witness loud slow scattering as 95 % of the light transmitted
through the ETM is dumped before it reaches the TMS, hence we use a lower SNR limit
of 15.

We performed the analysis for O3a, from April 1, 2019, to Sep 30, 2019. The
BLRMS segments identified 3864 h(t) triggers as scattering at LLO while GravitySpy
found 3663 scattering triggers above confidence of 0.8. Three-fourth of the GravitySpy
scattering match with scattering triggers caught by BLRMS segments. 71% of the 3864
triggers caught by BLRMS segments match with GravitySpy output. This suggests that
29% of 3864 or approximately 1120 triggers are false positive with respect to GravitySpy.
The time-frequency spectrograms of 57 randomly chosen trigger times from these 1120



Reducing Scattered Light in LIGO’s Third Observing Run. 20

h(t) omicron li=hsion

triggers TimeSeries.

Whiten
Band-Pass
Fiterby =~ SNRand RMS
Frequency
Whitened BLRMS.
Apply  threshold
Filtered triggers Transmon

segments.

h(t) filtered triggers coincident with Transmon segments.

Figure 14: Flowchart of the process to capture scattering in h(t) by using segments generated
from whitened transmon BLRMS. Transmon or transmitted light monitor’s time series is first
whitened to normalize the power in the frequency bins. This is followed by band-passing the
data between 4 and 10 Hz. Since the scattering arches show up in this frequency range in the
transmon, band-passing will remove any noise outside this range. After taking the root-mean-
square, any values of this whitened and band-passed time-series above a given threshold are
converted to segments. We then look for coincidence between these BLRMS segments and
h(t) omicron triggers filtered by SNR and frequency.

triggers showed that as many as 40 of these were scattering triggers, but they were not
labelled as scattering by GravitySpy above confidence of 0.8.

We also examined the performance of BLRMS segments against OSEM time series
on 3 days in O3a dominated by slow scattering noise. Fig. 16 shows the efficiency over
dead time for Apr 13, 2019, May 13, 2019, and June 25, 2019. Efficiency is the fraction of
filtered h(t) triggers that coincide with BLRMS segments. Deadtime refers to the total
duration of the segments as a fraction of the total observing duration for that day. A
large value of efficiency over deadtime is preferred as the goal is accurate identification of
noise. For all the three days, BLRMS segments register higher efficiency over deadtime
than OSEMs scattering segments. The gwdetchar-scattering algorithm with just
OSEMs as scattering witnesses, is designed to capture the motion of optics throughout
the interferometer. As we have identified the likely location of scattering, we can use
a more specific approach by employing the transmitted photodiode’s BLRMS segments
to capture the noise.

Of the two separate noise couplings mentioned in Sec. 5 and Sec. 7, the PUM
stage OSEM is sensitive to only first of these, the ETM-AERM relative motion. And
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Figure 15: For O3a, the first pie chart shows that most of the triggers vetoed by
BLRMS segments are identified as scattering by GravitySpy above a confidence of 0.8. The
spectrograms of a subset of false positives show most of them are slow scattering but were
labeled with a confidence lower than 0.8 by GravitySpy. The second pie chart shows that
BLRMS segments caught close to 75 % of the slow scattering that GravitySpy identified above
a confidence of 0.8.
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Figure 16: Comparing efficiency over deadtime between OSEMs and BLRMS segments. This
shows that for slow scattering that occurred on Apr 13, May 13 and June 25, 2019, transmmited
light monitor’s band limited RMS segments perform better than OSEMs in identifying it.

in principle we expect it to identify as much noise as the BLRMS segments. Following
RC tracking however, the scattering impact due to ETM AERM relative motion has
been reduced whilst having no effect on ETM TMS noise which the PUM stage is not
sensitive to. Post RC tracking slow scattering noise can thus still be identified using the
BLRMS segments.
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9. Summary and discussion

Scattering noise affects the data quality of the Advanced LIGO detectors. Upconversion
of the low-frequency noise due to large optic motion reduces the sensitivity of the
detector in 10 - 120 Hz band. We use witnesses that identify times in the data when
scattering noise is present as well as, when possible, identifying and eliminating the
scatter mechanism in the instrument detector itself.

We analyzed light scattering in LLO during O3 and we found the presence of
two different populations of scattering noise, slow scattering, and fast scattering. We
investigated slow scattering that appears with a typical arch shape in the time-frequency
representation and we found two different paths through which this noise couples to the
detector simultaneously. We were able to implement a solution for the louder noise
coupling that resulted in a substantial reduction of the noise and we discussed possible
remedies for the second one. One of these solutions, the TMS feed forward, we plan
to implement in O4. In order to identify the times when this noise is present in the
gravitational wave channel, we suggested using the band-limited time-series data of an
auxiliary channel. This channel, monitors the light transmitted through the end test
mass and we showed it identifies a larger subset of scattering triggers as compared to
other scattering witnesses.

High Q resonances found at the corner and end stations at LLO could be
contributing to fast scattering. The ongoing investigation suggests that damping the
motion of some optical components at these stations would likely mitigate the rate of
fast scattering.
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