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ABSTRACT. Immediately following the commentary below, this previously pub-
lished article is reprinted in its entirety: Brian White, “Nonunique tangent
maps at isolated singularities of harmonic maps”, Bull. Amer. Math. Soc.
(N.S.) 26 (1992), no. 1, 123-129.

Brian White’s 1992 article in the Bulletin of the American Mathematical Society
[W1] gave an ingenious construction of the first examples of singularities with a
continuum of limiting blowups. These examples, which came a decade after the
major uniqueness of blow-up results by Allard and Almgren [AA] and Leon Simon
[S] showed the subtlety of the uniqueness question. Two and a half decades later,
these problems and techniques remain central to the understanding of singularities
in geometry and analysis.

Blow-up analysis. Blow-up analysis is a way to either rule out or, more gen-
erally, understand singularities by zooming in to smaller and smaller scales and
then analyzing the limit. The simplest example is the following characterization of
differentiability:

A function u : R — R is differentiable at a point z if any sequence

of dilations of its graph converges to a line.
For example, if v C R? is the graph {(z,u(z)) |z € R} of u, u(0) = 0 and r; — oo,
then the curves r; () converge to a line precisely when u is differentiable at z. The
limiting line is just the tangent line to the graph v at the origin.

A similar blow-up analysis, where one zooms in on a point to get limiting tangent
information, is an important tool for understanding singularities in geometry. This
method has been very successful in many different geometric problems, including
minimal varieties, harmonic maps, and mean curvature flow, among others. In each
case, the existence of a limit is guaranteed by a general compactness theorem, and
a priori control on the dilates comes from a monotone scale-invariant quantity.

Blow-up analysis for minimal varieties. The prototype for geometric blow-up
analysis comes from the work of Federer and Fleming [FF] in 1960 on minimal
varieties:
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Any sequence of dilates of a minimal variety has a subsequence

weakly converging to a minimal cone (the limit is minimal and

dilation invariant).
If we blow up at a smooth point, then the limiting minimal cone is just the tangent
plane to the variety at that point. At a singular point, however, the limiting
minimal cone, the tangent cone, describes the nature of the singularity. Moreover,
there are powerful techniques from geometric measure theory that control the size
and structure of the singular set if one can analyze the possible tangent cones.

Blow-up analysis for harmonic maps. Schoen and Uhlenbeck [SU] developed
a blow-up theory for harmonic maps in the early 1980s. In this case, the blow-up
process gives a limiting tangent map. The tangent map is homogeneous of degree
zero (this plays the analogous role of dilation invariance for minimal cones). The
tangent map is constant precisely when the harmonic map itself is smooth. At a
singular point, the tangent map contains information about the singularity and, in
some cases, can be used to rule singularities all together (for example, when the
target has nonpositive curvature; see [SU, p. 310]). Perhaps the simplest nonsmooth
example is the map z — ﬁ from the 3-ball to the 2-sphere.

There are also monotonicity formulas for the parabolic versions of these prob-
lems—mean curvature flow [H] and the harmonic map heat flow [St]. In these cases,
the blowup is a tangent flow that is invariant under parabolic dilations in space
and time.

Uniqueness of blowups. The blow-up process raises an obvious question: Is it
possible that a different subsequence of dilates converges to a different limit blowup?
As White explains for minimal varieties in his 1998 article [W2] on Fred Almgren:

In other words, a minimal variety looked at under a microscope will
resemble a cone, but under higher magnification, it might (as far as
anyone knows) resemble a completely different cone. Whether this
ever happens remains perhaps the most fundamental open question
about singularities of minimal varieties.

The general question of uniqueness of blowups for minimal varieties remains
open, though there has been substantial progress over the last five decades. One
of the early uniqueness results was the 1973 theorem of Jean Taylor [T] for a
special class of minimal varieties in three dimensions (cf. [W3] for surfaces in high-
er codimension).

Taylor used the epiperimetric inequality, following ideas of Reifenberg from 1964,
to prove a rate of convergence and uniqueness. She then used the uniqueness (and
the ideas in its proof) to get a very complete description of the possible singularities:
the singular set must be a differentiable curve. Much of the later work on uniqueness
has a similar theme, where the uniqueness is the starting point for analyzing the
finer structure of the singular set.

General uniqueness results. The early results on uniqueness were tailored to a
specific problem, but the early 1980s saw two powerful approaches that have since
been applied to a wide variety of settings. These methods were developed by Allard
and Almgren [AA] and Simon [S]. To explain these methods, note that the blow-
up process gives that the set of possible tangent cones form a continuous family.
Thus, uniqueness would be clear at an isolated minimal cone. Unfortunately, at
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the very least, any cone sits in a family consisting of all Euclidean rotations of
the cone, so they will never be isolated. Allard and Almgren instead assumed an
integrability condition, asserting that every infinitesimal one-parameter family of
variations actually came from differentiating an actual family. Simon’s approach
did not require this integrability, but rather required some analyticity and then
appealed to powerful results from real algebraic geometry.

Nonuniqueness. As we will see below, White’s 1992 examples of nonuniqueness
of blowups were for harmonic maps. Namely, he constructed a smooth 4-manifold
N and a harmonic map from the 3-ball to N with an isolated singularity at 0 and a
continuous family of (distinct) tangent maps at the singularity. This example shows
that Simon’s celebrated uniqueness theorem for harmonic maps to analytic spaces
fails without the analyticity, raising many interesting questions and illustrating the
subtlety, and difficulty, of the uniqueness of blowups in general.

Recent developments. There is a great deal of activity on uniqueness of blowups
and structural consequences for the singular set. We refer to [DSS], [GW], [Ha],
[RT], and references therein, for results related to minimal varieties and harmonic
maps and [CM1], [CM2], [GK], [W4], [W5] for results on mean curvature flow.
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