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Abstract: We consider recognizable evaluations for a suitable category of oriented
two-dimensional cobordisms with corners between finite unions of intervals. We call
such cobordisms thin flat surfaces. An evaluation is given by a power series in two
variables. Recognizable evaluations correspond to series that are ratios of a two-variable
polynomial by the product of two one-variable polynomials, one for each variable. They
are also in a bijection with isomorphism classes of commutative Frobenius algebras
on two generators with a nondegenerate trace fixed. The latter algebras of dimension n
correspond to points on the dual tautological bundle on the Hilbert scheme of n points
on the affine plane, with a certain divisor removed from the bundle. A recognizable
evaluation gives rise to a functor from the above cobordism category of thin flat surfaces
to the category of finite-dimensional vector spaces. These functorsmay be non-monoidal
in interesting cases. To a recognizable evaluation we also assign an analogue of the
Deligne category and of its quotient by the ideal of negligible morphisms.
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1. Introduction

Universal constructions of topological theories [1,13,21] that are not necessarily multi-
plicative [9] are interesting even in dimension two [14,16], providing examples some-
what different fromcommutativeFrobenius algebras for the invariants of two-dimensional
cobordisms. In this note we consider the analogue of the latter construction for oriented
two-dimensional cobordisms with corners. For simplicity we restrict to cobordisms be-
tween finite unions of intervals; boundary points of the intervals give rise to corners of
cobordisms. Furthermore, we require that each connected component of a cobordism
has non-empty boundary, which is a natural condition when excluding cobordisms with
corners that have circles as some boundary components.

Cobordisms that we consider can be “thinned” to consist of ribbons glued to disks and
can be depicted in the plane as regular neighbourhoods of immersed graphs, see Fig. 2
below for an example. For this reason we refer to these cobordisms as thin flat surfaces
or tf-surfaces throughout the paper. When viewed as a morphism in the appropriate
category TFS of thin flat cobordisms, a particular immersion of the surface into the
plane is inessential, and morphisms are equivalence classes of such cobordisms modulo
diffeomorphisms that fix the boundary.

The categoryTFS admits an analogueofα-evaluations from [14–16]. This time closed
connectedmorphisms S (connected endomorphisms of the unit object 0, the empty union
of intervals) are parametrized by two non-negative integers (�, g), where � + 1 is the
number of boundary components of S and g is the genus. Assigning an element α�,g of
the ground field k (or a ground commutative ring R) to such a component and extending
multiplicatively to disjoint unions gives an evaluation α on endomorphisms of the unit
object 0. Evaluation α can be conveniently encoded as power series

Zα(T1, T2) =
∑

k,g≥0

αk,gT
k
1 T

g
2 , α = (αk,g)k,g∈Z+ , αk,g ∈ k, (1)

where the degree of the first variable T1 counts “holes” in a cobordism (a disk has no
holes and an annulus has one hole) and T2 keeps track of the genus.

With α as above and n ≥ 0, one can define a bilinear form on a k-vector space with
a basis given by equivalence classes of thin flat surfaces with n boundary intervals. The
quotient by the kernel of the bilinear form is a vector space Aα(n). The collection of
quotient spaces {Aα(n)}n≥0 is what we refer to as the universal construction for the
category TFS, given α.

The spaces Aα(n) rarely satisfy the Atiyah factorization axiom, that is, the relation

Aα(m + n) ∼= Aα(m) ⊗ Aα(n)

does not hold. From the quantum field theory (QFT) perspective, this violation may
happen if the 2-dimensional QFT is embedded as a 2-dimensional defect inside a higher-
dimensional QFT.

It is straightforward to see that Aα(n) is finite-dimensional for all n iff Aα(1) is
finite-dimensional iff the series (1) is recognizable or rational (terms from the control
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theory and the theory of noncommutative power series). Recognizable power series in
this case have the form

Zα(T1, T2) = P(T1, T2)

Q1(T1)Q2(T2)
, (2)

that is, Zα can be written as a ratio of a polynomial in T1, T2 and two one-variable
polynomials, see Proposition 3.1 and Fliess [7].

Constructions of [16] go through for the category of thin flat surfaces and any recog-
nizable α as above. We define the category STFSα (skein thin flat surfaces) where homs
are finite linear combinations of cobordisms, closed components evaluate to coefficients
of α, and there are skein relations given by adding holes and handles to a component
of a cobordism and equating to zero linear combinations corresponding to elements of
the kernel ideal Iα ⊂ k[T1, T2] associated to α and also known as the syntactic ideal
of rational series α. A two variable polynomial z = z(T1, T2) is in Iα iff α(z f ) = 0
for any polynomial f ∈ k[T1, T2], with α(T �

1 T
g
2 ) = α�,g extended to a linear map

k[T1, T2] α−→ k.
For the rest of the paperwe change our terminology and call connected components of

a thinflat surface that have neither top nor bottomboundary intervalsfloating components
instead of closed components, since they otherwise have boundary, what we call side
boundary, that is present inside the cobordism but not at its top or bottom. This avoid
possible confusion with the usual notion of a closed surface. A non-empty thin flat
surface is never closed in the latter sense.

The category STFSα has finite-dimensional hom spaces. Taking the additive Karoubi
envelope of this category to form

DTFSα := Kar(STFS⊕
α )

gives an idempotent-completek-linear rigid symmetricmonoidal categoryDTFSα which
is the analogue of the Deligne category [3,4,6] for TFS and recognizable series α in two
variables.

Once we pass to k-linear combinations of cobordisms, and α is available to evaluate
floating cobordisms, there is a tracemap on endomorphisms of any object n. It is given by
closing each term in the linear combination of tf-surfaces describing the endomorphism
via n strips into a floating tf-surface and evaluating it via α. Consequently, one can form
the ideal Jα of negligible morphisms [3,4,6,16] and quotient the category by that ideal.

We call the quotient category gligible quotient to avoid the awkward-sounding word
“non-negligible quotient” andmirroring the terminology from [15]. The gligible quotient
TFSα of the skein category STFSα carries non-degenerate bilinear forms on its hom
spaces and otherwise shares key properties of STFSα: objects are non-negative integers,
category TFSα is rigid symmetric tensor, and the hom spaces are finite-dimensional over
k.

Likewise, the Deligne category DTFSα has the gligible quotient DTFSα by the ideal
of negligible morphisms. The same category can be recovered as the additive Karoubi
closure of TFSα .

Section 3.4 and diagram (12) contain a summary of these categories and key functors
relating them.

Similar to [5,6,15], it is natural to ask under what conditionswill DTFSα be semisim-
ple. Unlike [14,15], we do not work out any specific examples of these categories here
and leave that to an interested reader or another time.

Our evaluation α is encoded by a power series Zα in two variables (1), and the recog-
nizable series Zα gives rise to a finite-codimension ideal Iα in k[T1, T2], the largest ideal
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contained in the hyperplane ker(α). Such an ideal defines a point on the Hilbert scheme
of the affine plane A

2. We discuss the relation to the Hilbert schemes in Section 4 and
explain a bijection between recognizable power series with the ideal Iα of codimension k
and points in the complement T ∨

k \Dk of the dual tautological bundle T ∨
k on the Hilbert

scheme and a suitable divisor Dk on it.
It is not clear whether the appearance of the Hilbert scheme of A

2 is a bug or a
feature. In Section 5 we explain two generalizations of our construction. One of them
involves “coloring” side boundary components of a thin flat surface into r colors. For the
resulting category, recognizable series depends on r + 1 parameters (generalizing from
2 parameters for r = 1), and one would get a generalization of our construction from
the Hilbert scheme of A

2 to that of A
r+1, with the appropriate divisor removed from the

dual tautological bundle in both cases. Of course, the Hilbert scheme has vastly different
properties and uses in the case of algebraic surfaces versus higher dimensional varieties.

The other generalization considered in that section is given by extending the TFS
(thin flat surfaces) category by allowing closed components and circles as boundaries.
This corresponds to the usual category of two-dimensional oriented cobordisms with
boundary and corners studied in [2,17,19,23] and other papers. Objects of that category
are finite disjoint unions of intervals and circles. We briefly touch on this generalization
and explain encoding of recognizable series via certain rational power series in this case
as well.

Relations between Frobenius algebras, recognizable power series, codes and two-
dimensional TFTs are considered in Friedrich [8], which is quite close in spirit to this
paper.

A possible relation between moduli spaces of SU (m) instantons on R
4 (the Hilbert

scheme of C
2 corresponds to U (1) case) and control theory is explored in [12,22] and

the follow-up papers. We do not know how to connect it to the constructions in the
present paper.

2. The Category of Thin Flat Surfaces

2.1. Category TFS. We introduce the category TFS of thin flat surfaces. Its objects are
non-negative integers n ∈ Z+ = {0, 1, 2, . . . }. An object is represented by n intervals
I1, . . . , In placed along the x-axis in the xy-plane. A morphism from n to m is a “thin”
surface S immersed in R × [0, 1] connecting n intervals on the line R

2 × {0} with
m intervals on the line R

2 × {1}. The immersion map S −→ R
2 × [0, 1] is a local

diffeomorphism, but the image of S may have overlaps, that can be thought of as virtual
overlaps and ignored. The surface S inherits an orientation from its immersion into
R × [0.1]. Restricting to the complement of the boundary of S, the immersion is open.

Alternatively, the immersion can be perturbed to an embedding of S into R
2 × [0, 1]

by turning overlaps into over- and under-crossings of strips of a surface. This can be
done just for aesthetic purposes, and whether one chooses an over- or an under-crossing
does not matter for the morphism associated to the surface.

The boundary of S consists of several circles (at least one circle unless S is the empty
surface) and decomposes into n+m disjoint intervals that constitute horizontal boundary
∂h S and n + m intervals and some number of circles that constitute side, or vertical, or
inner boundary ∂vS of S:

∂S = ∂h S ∪ ∂vS.

Horizontal intervals that constitute ∂h S are the intersections of S with R × {0, 1} ⊂
R×[0, 1]. Vertical boundary ∂vS is the closure of the intersection of ∂S with R× (0, 1).
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Fig. 1. A thin flat surface in R × [0, 1]

Fig. 2. An immersed graph � in R × [0, 1] and associated thin flat surface N (�, j)

The intersection ∂h S ∩ ∂vS consists of 2(n + m) boundary points of the horizontal
intervals. These are also the corners of the surface S.

In the graphical depicitions of thin flat surfaces below,wewill draw horizontal bound-
ary segments as red intervals, and vertical boundary components as green arcs for better
visualization (Figs. 1 and 2 right), but the figures can also be viewed and carry full
information in greyscale. Starting from Fig. 2, we depict tf-surfaces in light aquamarine.

Another way to describe S is to immerse a finite unoriented graph �, possibly with
multiple edges and loops, into the strip R × [0, 1], via the immersion j : � −→
R × [0, 1]. The graph � may have several boundary vertices v of valency 1 such that
j (v) ∈ R × {0, 1}. The remaining vertices are mapped inside the strip. The immersion
is disjoint on vertices. Edges of � may intersect in R × [0, 1]. We consider these virtual
intersections and not vertices. An example of � and j is shown in Fig. 2 left.

Taking a regular neighbourhood N (�, j) of � under j , locally in �, results in a thin
flat surface N (�). Vice versa, any thin flat surface S can be deformed to the surface
N (�) for some �.

Take a thin flat surface S and forget the embedding intoR×[0, 1], only remembering
boundary intervals and their order, on both top and bottom lines. In this waywe view S as
a cobordismbetween ordered collections of oriented intervals (induced by the orientation
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Fig. 3. A set of generating morphisms. From left to right: ι, ε,m,	 are morphisms from 0 to 1, from 1 to
0, from 2 to 1 and from 1 to 2, respectively. The rightmost morphism P is the permutation morphism on
1 ⊗ 1 = 2. Identity morphism id1 of object 1 is shown for completeness

Fig. 4. Self-duality morphisms ε m : 1 ⊗ 1 −→ 0 and 	 ι : 0 −→ 1 ⊗ 1 for the object 1

of R, say from left to right). The cobordism S has corners (unless n = m = 0) and two
types of boundary, as discussed. By definition, two cobordisms S1, S2 represent the
same morphism if they are diffeomorphic rel horizontal boundary, that is, keeping all
horizontal boundary points fixed.

The category TFS is symmetricmonoidal, and a possible set of generatingmorphisms
is shown in Fig. 3. We have included the identity morphism id1 into the Figure to
emphasize that the identity morphism idn is represented by the surface which is the
direct product of the disjoint union of n intervals (representing object n) and [0, 1]. The
permutation morphism P of 2 = 1 ⊗ 1 , shown on the right, is part of the symmetric
monoidal structure on TFS and squares to the identity (Fig. 3).

The elements ι, ε,m,	, P constitute a set of monoidal generators of TFS. Together
with the identity morphism id1 they can be used to build any morphism in TFS, via
horizontal and vertical compositions. In particular, from these generators we can build
the self-duality morphisms for the object 1, see Fig. 4.

Some relations in the category TFS are shown in Fig. 5.
We call a surface S representing a morphism from n tom in TFS a thin flat cobordism

from n to m. A thin flat cobordism S is a disjoint union of its connected components
S1, . . . , Sk . Consider one such component S′. It necessarily has non-empty boundary,
and we can assign to S′ non-negative integers �, g, where �+1 is the number of boundary
components and g ≥ 0 is the genus of S′. The surface S′ carries an orientation, inherited
via an immersion from the orientation of the plane.

We will also call a thin flat surface a tf-surface and, when viewed as a cobordism, a
tf-cobordism.

The morphisms

ι : 0 −→ 1, ε : 1 −→ 0, m : 1 ⊗ 1 −→ 1, 	 : 1 −→ 1 ⊗ 1

and relations on them show that the object 1 is a symmetric Frobenius algebra object
in TFS (top left relation in Fig. 5 shows that the trace map is symmetric). It’s not a
commutative algebra object, since the two morphisms in Fig. 6 left are not equal in TFS.

2.2. Classification of thin flat surfaces. By a closed or floating tf-surface S wemean one
without horizontal boundary. A floating tf-surface necessarily has side boundary, unless



Evaluating Thin Flat Surfaces 1841

Fig. 5. Some relations in TFS

Fig. 6. Left: object 1 is not commutative Frobenius. That the two diagrams on the left are not diffeomorphic rel
horizontal boundary can be seen easily by examining the matchings on the six corner points in each diagram
provided by side boundaries. The two matchings of the six points are different, a sufficient condition for the
two cobordisms not to be diffeomorphic rel boundary. Right: a diagram that’s not a morphism in TFS

it is the empty surface. Diffeomorphism equivalence classes of floating tf-surfaces are
in a bijection with endomorphisms of the object 0 of TFS. Such a surface is a disjoint
union of its connected components, and a component is uniquely determined by its pair
(� + 1, g), �, g ∈ Z+, the number of boundary components and the genus, respectively.
Any such pair is realized by some surface, since pairs (0+1, 0), (1+1, 0), and (0+1, 1)
are realized by a disk, an annulus, a flat punctured torus, see Fig. 7, and taking band-
connected sum of surfaces with invariants (�1 + 1, g1), (�2 + 1, g2) yields a surface with
the invariant (�1 + �2 + 1, g1 + g2). Choose a closed connected tf-surface S�+1,g , one for
each value of these parameters.

Connected morphisms from 0 to 0 in TFS are in a bijection with S�+1,g as above.
Endomorphisms of 0 in TFS is a free commutative monoid on generators S�+1,g , over
all �, g ∈ Z+,

EndTFS(0) ∼= 〈S�+1,g〉�,g≥0.
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Fig. 7. Examples of closed connected tf-surfaces S�+1,g for small values of � and g. We explicitly write � + 1
to remember that a surface always have at least one boundary component

An element a ∈ EndTFS(0) has a unique presentation as a finite product of S�+1,g’s with
positive integer multiplicities,

a =
k∏

i=1

Sri�i+1,gi , ri ∈ {1, 2, . . . }.

Consider a tf-surface S describing a morphism from n to m in TFS. It may have some
floating connected components, that is, those that are disjoint from the horizontal bound-
ary of S. Each of these components is homeomorphic to S�+1,g as above for a unique
�, g. Components of S that have non-empty horizontal boundary are called viewable
or visible components. Any component of S is either floating or viewable. We call S
viewable if it has no floating components. The empty cobordism is viewable.

The commutativemonoid EndTFS(0) acts on the set HomTFS(n,m) by taking a cobor-
dism to its disjoint union with a floating cobordism. Any morphism S ∈ HomTFS(n,m)

has a unique presentation S = S0 ·S1 where S0 ∈ EndTFS(0), S1 is a viewable cobordism
in HomTFS(n,m) and dot · denotes the monoid action. In particular, HomTFS(n,m) is a
free EndTFS(0)-set with a “basis” of viewable cobordisms.

Let us specialize to viewable cobordisms S. All connected components of S are
viewable and determine a set-theoretic partition of n + m horizontal boundary intervals
of S. Let us label these boundary intervals from left to right by 1, 2, . . . , n for the bottom
intervals and 1′, . . . ,m′ for the top intervals.

Each viewable component contains a non-empty subset of this set of intervals and
together viewable components give a decomposition λ of this set into disjoint sets. We
denote by Dm

n the set of partitions of these n + m intervals, so that λ ∈ Dm
n . To further

understand the structure of morphisms, we restrict to the case of connected S, thus a
surface with one viewable connected component. All horizontal intervals are in S.

The surface S and its horizontal boundary segments inherit orientation fromR×[0, 1]
and from induced orientations of the top and bottom boundary of R × [0, 1], see Fig. 8.

We use the convention of reversing the orientation on the source (bottom) part of the
boundary of a cobordism, see Fig. 8. Consequently, bottom intervals I1, . . . , In in ∂S
are oppositely oriented from the rest of the boundary, while top intervals I1′ , . . . , Im′ are
oriented compatibly with the side boundary orientations, inherited from that of S and in
turn inherited from the orientation of R × [0, 1]. In Fig. 8 right we shrank “tentacles”
of S into the “core” of S to make it easier to see compatible and reverse orientations of
the horizontal boundary segments of S.

We can now classify isomorphism classes of connected tf-cobordisms S from n to
m. Such a cobordism has � + 1 boundary circles and genus g. On � + 1 boundary circles
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Fig. 8. Orientation convention for R × [0, 1], its top and bottom boundary, surface S and its horizontal and
side boundary

choose n +m non-overlapping intervals and label them 1, . . . , n, 1′, . . . ,m′. Choose an
orientation of the interval 1′ or, if m = 0, orientation of interval 1.

The orientation of the interval 1′ induces an orientation of that boundary component of
S and hence of S itself. One then gets induced orientations for all boundary components
of S. Horizontal parts of ∂S for the intervals 2′, . . . ,m′ are then oriented compatibly
with the boundary, while those corresponding to the intervals 1, . . . , n in the opposite
way from that for the boundary.

Horizontal intervals on the � + 1 boundary components determine a partition of

N
m
n := {1, . . . , n, 1′, . . . ,m′}

into � + 1 disjoint subsets, possibly with some subsets empty. Orientations of boundary
components induce a cyclic order on elements of each subset, where one goes along a
component in the direction of its orientation and records horizontal intervals that one
encounters. We call an instance of this data a locally cyclic partition of N

m
n together

with a choice of genus g ≥ 0. Denote the set of locally cyclic partitions of N
m
n by

Dm
n,cyc and by Dm

n,cyc(�) if the number of components is fixed to be � + 1. This time,
empty components are allowed. They correspond to components of ∂S disjoint from the
boundary R × {0, 1} of the strip. We have

Dm
n,cyc =

⊔

�≥0

dmn,cyc(�).

For the example in Fig. 8 we have n = 3, m = 2, the set of horizontal intervals is
{1, 2, 3, 1′, 2′}, there are two components (� = 1), and the cyclic orders are (1′, 1, 2′, 3)
and (2).

Vice versa, suppose given (�, g) as above, a locally cyclic partition λ ∈ Dm
n,cyc(�) of

N
m
n into � + 1 subsets, possibly with some subsets empty, with a cyclic order on each

subset. To such data we can assign a connected thin flat surface S(λ, g) of genus g with
the horizontal boundary these n+m intervals, �+1 boundary components, and horizontal
intervals placed according to the cyclic order for the subset along each component.

For another example, for n = 4, m = 3, the partition {(1′, 4, 2′, 2), (3′, 1, 3), ()},
which includes one copy of the empty set, with cyclic orders as indicated and genus
g = 2 the resulting tf-surface is shown in Fig. 9 right.

This bijection between connected morphisms from n to m and elements of the set
Dm
n,cyc × Z+ leads to a classification of morphisms in TFS. An arbitrary morphism
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Fig. 9. Left: converting the partition and genus data into a surface with boundary and labelled edges on the
boundary. One boundary component (inner right) does not carry labelled edges, since the partition contains
one copy of the empty set. Genus two is indicated by schematically showing two handles. Right: stretching
out labelled edges into corresponding horizontal intervals to produce a morphism in TFS

S ∈ HomTFS(n,m) is the union of the viewable subcobordism of S and the floating
subcobordism. The latter are classified by elements of HomTFS(0, 0) and admit a very
explicit description, via pairs (�, g) of the number of circles minus one and the genus of
each connected component. The viewable subcobordism S′ of S determines a partition
of N

m
n by with the set of horizontal intervals for each component of S′ being a part of

that partition. Each part of this partition is non-empty.
Next, for each part of the partition, remove the connected components of S′ for all

other parts, downsizing to just one component S′′. Relabel the horizontal intervals for
S′′ into 1, 2, . . . , n′′ and 1, 2, . . . ,m′′. Then such components S′′ are classified by data
as above: a locally cyclic partition of N

m′′
n′′ (possibly with empty subsets included) and a

choice of genus g ≥ 0.
Putting the steps of this algorithm together gives a classification of morphisms from

n to m in TFS.

2.3. Endomorphisms of 1 and homs between 0 and 1 in TFS. The category TFS is rigid
symmetric monoidal, with the unit object 0 and the generating self-dual object 1, with
all objects being tensor powers of the generating object, n = 1⊗n .

In the rest of this section, since we only consider the category TFS, we may write
Hom(n,m) instead of HomTFS(n,m), End(n) instead of EndTFS(n), etc.

Connected endomorphisms of 1: Endomorphisms End(1) = EndTFS(1) of the object
1 in the category TFS constitute a monoid. Consider the submonoid Endc(1) of End(1)
that consists of connected endomorphisms of 1. Define endomorphisms b1, b2, b3 ∈
Endc(1) via diagrams in Fig. 10.

Note that b2 has equivalent presentations, as shown inFig. 11. The last diagram is not a
tf-surface, but describes a diffeomorphism class of one (rel boundary). The tf-cobordism
b2 has genus one and one boundary component, with two horizontal segments labelled
1 and 1′ on it, which uniquely determines it as an element of End(1).



Evaluating Thin Flat Surfaces 1845

Fig. 10. Endomorphisms b1, b2, b3

Fig. 11. Presentations of b2. The diagram on the right is not a thin flat presentation but shows a cobordism
that can be deformed to a diagram in TFS

We refer to b1 as the “hole” cobordism, b2 as the “handle” cobordism, b3 as the
“cross” cobordism.

Proposition 2.1. The endomorphisms b1, b2, b3 ∈ EndTFS(1) pairwise commute:

b1b2 = b2b1, b1b3 = b3b1, b2b3 = b3b2.

Proof. Note that the product with b1 just adds a hole with no horizontal segments on it
to a connected cobordism. Product with b2 adds a handle to a connected cobordism. ��
Proposition 2.2. • Endc(1) is a commutative monoid generated by commuting ele-

ments b1, b2, b3 with an additional defining relation

b23 = b1b3.

• Endc(1) consists of the following distinct elements:

bn1b
m
2 , bn1b

m
2 b3, n,m ≥ 0.

Proof. A cobordism S ∈ Endc(1) is a connected surface with � + 1 boundary circles,
genus g, and two horizontal intervals on it. If the intervals are on the same connected
component of the boundary, S = b�

1b
g
2 . If the intervals lie on distinct boundary compo-

nents then � ≥ 1 and S = b�−1
1 bg2b3. ��

Spaces Hom(0, 1) and Hom(1, 0): An element y ∈ Hom(0, 1) is a tf-cobordism
with one horizontal interval, at the top. It is a product y1y0 of one viewable component
y1 ∈ Hom(0, 1) and a closed cobordism y0 ∈ Hom(0, 0). Assume that y is viewable,
thus connected, since it has a unique horizontal segment. Then y is determined by the
number � + 1 of its boundary components and the genus g and can be written as

y = b�
1b

g
2 ι,

where ι is the morphism 0 −→ 1 shown in Fig. 3 on far left. Note that b3ι = b1ι.
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Proposition 2.3. A morphism y ∈ HomTFS(0, 1) has a unique presentation y = b�
1b

g
2 ι ·

y0, where y0 ∈ End(0) is a floating cobordism.

Reflecting cobordisms about the horizontal line,we obtain a classification of elements
in HomTFS(1, 0).

Proposition 2.4. A morphism y ∈ HomT FS(1, 0) has a unique presentation y = y0 ·
εb�

1b
g
2 , where y0 ∈ End(0) is a floating cobordism.

Endomorphism monoid End(1). Recall that we continue with a minor abuse of nota-
tion, where we denote by 1 the generating object of TFS, also use it as the label for the
bottom left horizontal interval of a cobordism in Hom(n,m), and use it convenionally
as the label for the first natural number.

An element y of EndTFS(1) may be one of the two types:

1. Horizontal intervals 1 and 1′ belong to the same connected component of y.
2. Intervals 1 and 1′ belong to different connected components of y.

Denote by Ui the set of elements of type i ∈ {1, 2}, so that
End(1) = U1 �U2 . (3)

The set U2 is closed under left and right multiplication by elements of End(1), thus
constitutes a 2-sided ideal in this monoid. The set U1 is a unital submonoid in End(1).
These maps

U1 −→ End(1) ←− U2

upgrade decomposition (3). The monoid U1 is commutative and naturally decomposes

U1 ∼= Endc(1) × End(0)

into the direct product, both terms ofwhichwehave already described. The direct product
corresponds to splitting an element ofU1 into the viewable connected component and a
floating cobordism.

Likewise, an element y of U2 splits into a floating cobordism y0 and a viewable one
y1. A viewable element y1 of U2 consists of two connected components, one bounding
horizontal inteval 1, the other bounding 1′. Such an element can be written as

y1 = b�1
1 bg12 ι · εb�2

1 bg22 ,

with a general y ∈ U2 given by

y = b�1
1 bg12 ι · y0 · εb�2

1 bg22 .

Multiplication of two viewable elements as above produces an additional connected
component, see Fig. 12, where by the (�, g) coupon we denote the endomorphism b�

1b
g
2

of 1.

Remark. Unlike the monoids End(0), Endc(1), and their direct product U1, monoid
End(1) and its subsemigroup U2 are not commutative.

3. Linearizations of the Category TFS

In this section we work over a field k, but the construction and some results may be
generalized to an arbitrary commutative ring R (or a commutative ring with additional
conditions, such as being noetherian). A definitive starting reference for recognizable
series with coefficients in commutative rings is Hazewinkel [11].
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Fig. 12. Product of two viewable elements of U2 produces a floating component ε b
�2+�3
1 b

g2+g3
2 ι =

S�2+�3+1,g2+g3 , in addition to the components bounding intervals 1 and 1′

3.1. Categories kTFS and VTFSα for recognizable α. Category kTFS. Starting with
TFS we can pass to its preadditive closure kTFS. Objects of kTFS are the same as those
of TFS, that is, non-negative integers n ∈ Z+. Amorphism in kTFS from n tom is a finite
k-linear combination of morphisms from n to m in TFS. In particular, HomkTFS(n,m)

is a k-vector space with a basis HomTFS(n,m). Composition of morphisms is defined
in the obvious way.

CategorykTFS is ak-linear preadditive category. It is also a rigid symmetricmonoidal
category.

Power series α. The ring HomkTFS(0, 0) of endomorphisms of the unit object 0 of
kTFS is naturally isomorphic to the monoid algebra of HomTFS(0, 0). The latter is a
free commutative monoid on generators S�+1,g , over all �, g ∈ Z+, so that

HomkTFS(0, 0) ∼= k[S�+1,g]�,g∈Z+

is the polynomial algebra on countably many generators, parametrized by pairs (�, g)
of non-negative integers. Homomorphisms of k-algebras

HomkTFS(0, 0) −→ k

are in a bijection with doubly-infinite sequences

α = (α�,g)�,g∈Z+ , α�,g ∈ k.

The bijection associates to a sequence α the homomorphism, also denoted α,

HomTFS(0, 0) ∼= k[S�+1,g]�,g∈Z+

α−→ k, α(S�+1,g) = α�,g.

Sequences α are also in a bijection with multiplicative k-valued evaluations of floating
cobordisms in TFS. These evaluations are maps from the set of floating cobordisms
(endomorphisms of object 0) in TFS to k that take disjoint union of cobordisms to the
product of evaluations,

α(S � S′) = α(S) · α(S′).

Thus, α is a map of sets
α : Z+ × Z+ −→ k
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that we can think of a Z+ × Z+-matrix with coefficients in k

α =

⎛

⎜⎜⎜⎜⎝

α0,0 α0,1 α0,2 α0,3 . . .

α1,0 α1,1 α1,2 α1,3 . . .

α2,0 α2,1 α2,2 α2,3 . . .

α3,0 α3,1 α3,2 α3,3 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎠

We encode α into power series in two variables T1, T2:

Zα(T1, T2) =
∑

k,g≥0

αk,gT
k
1 T

g
2 , α = (αk,g)k,g∈Z+ , αk,g ∈ k. (4)

A doubly-infinite sequence α can also be thought of as a linear functional on the space
of polynomials in two variables:

α ∈ k[T1, T2]∗ := Homk(k[T1, T2],k).

We assume that α is not identically zero (the theory is trivial otherwise). Then ker(α) ⊂
k[T1, T2] is a codimension one subspace.

Category VTFSα . Given α, we can form the quotient VTFSα of category kTFS
by adding the relation that a floating surface S�+1,g of genus g with � + 1 boundary
components evaluates to α�,g ∈ k. Objects of VTFSα are still non-negative integers n.
Morphisms from n tom are finite k-linear combinations of viewable cobordisms from n
to m. Composition of cobordisms from n to m and from m to k is a cobordism from n to
k which may have floating components. These components are removed simultaneously
with multiplying the viewable cobordism that remains by the product of α�,g’s, for every
component S�+1,g .

The space of homs from n to m in this category has a basis of viewable cobordisms
from n to m. Letter V in the notation VTFSα stands for viewable.

Recognizable series. Borrowing terminology from control theory [7,10], we say that
a linear functional or series α is recognizable if ker(α) contains an ideal I ∈ k[T1, T2]
of finite codimension.

Proposition 3.1. α is recognizable iff the power series Zα has the form

Zα(T1, T2) = P(T1, T2)

Q1(T1)Q2(T2)
, (5)

where Q1(T1), Q2(T2) are one-variable polynomials and P(T1, T2) is a two-variable
polynomial, all with coefficients in the field k.

We assume that Q1(0) �= 0, Q2(0) �= 0, otherwise at least one of these polynomials
is not coprime with P(T1, T2) and either T1 or T2 cancels out from the numerator and
denominator. With the denominator not zero at T1, T2 = 0 the power series expansion
makes sense.

Proof. See [7] for a proof. This result is also mentioned in [10, Remark 2]. To prove it,
assume that α is recognizable. We start with the case when k is algebraically closed. A
finite codimension ideal I ⊂ k[T1, T2] necessarily contains a sum,

I1 ⊗ k[T2] + k[T1] ⊗ I2 ⊂ I ⊂ k[T1, T2] (6)
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for some finite codimension ideals I1 ⊂ k[T1] and I2 ⊂ k[T2]. To see this, note that
the finite affine scheme Spec(k[T1, T2]/I ) is supported over finitely many points of the
affine plane A

2. Projecting these points onto the coordinate lines and counting them
with multiplicities produces two one-variable polynomials U1(T ),U2(T ) such that I
contains the ideal (U1(T1)) + (U2(T2)) of k[T1, T2]. We can now take principal ideals
Ii = (Ui (Ti )), i = 1, 2 to get the inclusion on the LHS of (6). This also gives a quotient
map

k[T1]/(U1(T1)) ⊗ k[T2]/(U2(T2)) −→ k[T1, T2]/I
lifting to the identitymap on k[T1, T2]. Existence of such finite codimension ideals I1, I2
over an arbitrary field k follows as well.

Hence, recognizable series α has the property that α(U1(T1)T k
1 T

m
2 ) = 0 for any

k,m ≥ 0. We can assume that U1(T ) is a polynomial of some degree r with the lowest
degree term usT s for s ≤ r and write

U1(T ) = ur T
r + ur−1T

r−1 + · · · + us+1T
s+1 + usT

s, 0 ≤ s ≤ r, ur , us �= 0, u j ∈ k.

Then, for any k,m ≥ 0

urαr+k,m + ur−1αr−1+k,m + · · · + us+1αs+k+1,m + usαs+k,m = 0. (7)

We obtain a similar relation on the coefficients with U2 and T2 in place of U1 and T1
and varying the second index. Let us write

U2(T ) = vr ′T r ′
+vr ′−1T

r ′−1+· · ·+vs′+1T
s′+1+vs′T

s′ , 0 ≤ s′ ≤ r ′, vr ′ , vs′ �= 0, v j ∈ k.

Then, for any k,m ≥ 0

vr ′αr ′+k,m + vr ′−1αr ′−1+k,m + · · · + vs′+1αs′+k+1,m + vsαs′+k,m = 0. (8)

Consequently, α is eventually recurrent in both T1 and T2 directions and its values
are determined by αi, j with 0 ≤ i < r, 0 ≤ j < r ′.

Consider polynomials

Q̂1(T ) = T rU1(T
−1) = usT

r + us+1T
r−1 + us+2T

r−2 + · · · + ur T
r−s,

Q̂2(T ) = T r ′
U2(T

−1) = vs′T
r ′
+ vs′+1T

r ′−1 + vs′+2T
r ′−2 + · · · + vr ′T r ′−s′ .

Form the product

P̂(T1, T2) := Zα(T1, T2)Q̂1(T1)Q̂2(T2) =
∑

i, j≥0

wi, j T
i
1T

j
2

and examine coefficients of its power series expansion. Formulas (7), (8) show that
wi, j = 0 if i ≥ r of j ≥ r ′. Therefore, P̂(T1, T2) is a polynomial with T1, T2 degrees
bounded by r − 1, r ′ − 1, respectively. We can then form the quotient

P̂(T1, T2)

Q̂1(T1)Q̂2(T2)

The numerator and denominatormay share common factors, including T r−s
1 T r ′−s′

2 .After
canceling those out, we arrive at the presentation (5) for Zα(T1, T2).

We leave the proof of the opposite implication of the proposition to the reader or
refer to [7].

Note that the proof works for any finite number of variables T1, . . . , Tc, not only for
two. ��
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The condition that α is recognizable can also be expressed via its Hankel matrix
Hα . The latter matrix has rows and columns enumerated by pairs (m, k) ∈ Z+ × Z+,
equivalently by the monomial basis elements Tm

1 T k
2 . The ((m1, k1), (m2, k2))-entry of

Hα is αm1+m2,k1+k2 . The following result is proved in [7].

Proposition 3.2. The series α is recognizable iff the Hankel matrix Hα has finite rank.

Note that Hα has finite rank iff there exists M such that any M × M minor of Hα has
determinant zero. The rank is M − 1 if in addition there is an (M − 1)× (M − 1) minor
with a non-zero determinant.

3.2. Skein category STFSα . Recognizable series and commutative Frobenius algebras.
Assume that α is recognizable. Among all finite-codimension ideals I ⊂ ker(α) there
is a unique largest ideal Iα , given by the sum over all such I . Equivalently, it can be
described as follows. There is a homomorphism of k[T1, T2]-modules

h : k[T1, T2] −→ k[T1, T2]∗ (9)

given by sending 1 to α and z ∈ k[T1, T2] to zα ∈ k[T1, T2]∗ with (zα)( f ) = α(z f ).
The ideal Iα is the kernel of h.

Notice that α descends to a nondegenerate bilinear form on the quotient algebra

Aα := k[T1, T2]/Iα. (10)

In particular, Aα is a commutative Frobenius algebra on two generators T1, T2 with a
nondegenerate trace form α.

Vice versa, assume given a commutative Frobenius k-algebra B with the nondegen-
erate trace form β : B −→ k and a pair of generators g1, g2. To such data we can
associate a surjective homomorphism

ψ : k[T1, T2] −→ B, ψ(Ti ) = gi , i = 1, 2,

the trace map α = β ◦ ψ on k[T1, T2] given by composing ψ with β, and recognizable
series

αβ =
∑

�,g≥0

β(g�
1g

g
2 )T �

1 T
g
2 .

Thus, recognizable power series on k[T1, T2] are classified by isomorphism classes of
data (B, g1, g2, β): a commutative Frobenius algebra B generated by g1, g2 ∈ B and a
non-degenerate trace β.

Category STFSα . We can now define the category STFSα (where first S stands for
“skein”) to be a quotient of VTFSα by the skein relations in the ideal Iα . The category
STFSα has the same objects as all the other cobordism categories we’ve considered so
far, that is, nonnegative integers n. Morphisms from n to m are k-linear combinations
of viewable cobordisms modulo the relations in Iα . Precisely, let

p(T1, T2) =
∑

i, j

pi, j T
i
1T

j
2 ∈ Iα (11)

be a polynomial in the ideal Iα . Given a viewable cobordism x choose a component c of
x and denote by xc(i, j) the cobordism given by inserting i holes and adding j handles
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Fig. 13. b(v), for v = 3T1T2 − 4T 3
1 + T1T

2
2 ; handles are shown schematically

to x at the component c. We now mod out the hom space HomVTFSα (n,m), which is a
k-vector space with a basis of all viewable cobordisms from n to m, by the relations

∑

i, j

pi, j xc(i, j) = 0,

one for each component c of x , over all viewable cobordisms x .
It is easy to see that these “skein” relations are compatible with α-evaluation of

floating cobordisms. Namely, if instead of a viewable cobordism x we consider a floating
cobordism y and choose a component c of y to add holes and handles, resulting in
cobordisms yc(i, j), then ∑

i, j

pi, jα(yc(i, j)) = 0.

This compatibility condition, immediate from our definition of Iα as the kernel of the
module map (9), ensures non-triviality of this quotient and its compatibility with the
composition of morphisms.

Viewing VTFSα as a tensor category, it is enough to write down corresponding
relations on homs from 0 to 1 and then mod out by them in the tensor category (by
gluing each term in the resulting linear combination of products of holes and handles
on a disk to any component along a segment on its side boundary). Choose a generating
set v1, . . . , vr of Iα viewed as k[T1, T2]-module. Specializing to a single basis element
v j , assume that it is given by the polynomial p on the right hand side of (11). Form the
element

b(v j ) :=
∑

i, j

pi, j b
i
1b

j
2 ι ∈ Hom(0, 1).

The skein category STFSα can be defined as the quotient of VTFSα by the tensor
ideal generated by elements b(v1), . . . , b(vr ). Figure 13 shows an example of an element
b(v).

Remark. For a recognizable seriesα there are uniqueminimal degreemonic polynomials
qα,1, qα,2,

qα,1(x) = xt + at−1x
t−1 + · · · + a0, qα2(x) = xt

′
+ a′

t ′−1x
t ′−1 + · · · + a′

0,

such that

qα,1(T1) ∈ Iα, qα,2(T2) ∈ Iα.
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Fig. 14. Factorization of a connected cobordism x into a coupon and a minimal cobordism is shown schemat-

ically. Since y is connected, bi1b
j
2 coupon can be moved to any leg of y

Among skein relations associated to elements of Iα in STFSα there is a polynomial
relation that utilizes only adding holes to a component of the cobordism. This relation
is given by the polynomial qα,1(T1):

bt1 + at−1b
t−1
1 + · · · + a0 = 0,

describing an equality in the ring of endomorphisms of object 1 of STFSα , where b1 is the
hole cobordism, see Fig. 11. Equivalently, it can be rewritten as a relation in Hom(0, 1):

(bt1 + at−1b
t−1
1 + · · · + a0)ι = 0,

Likewise, there is a skein relation on cobordisms that differ only by genus of a given
component. The relation is given by the polynomial qα,2(T2):

bt
′
2 + a′

t ′−1b
t ′−1
2 + · · · + a′

0 = 0,

where b2 is the handle morphism, see Fig. 11.

Minimal viewable cobordisms, Bα-companions, and bases of hom spaces of STFSα.

Consider a connected viewable cobordism x . We say that x isminimal if it has genus
zero and no holes, that is, each boundary component of x contains at least one horizontal
segment. Equivalently x is minimal if it cannot be factored into x ′b1x ′′ or x ′b2x ′′ for
some morphisms x ′, x ′′. Note that if such a factorization exists, then there exists one
with x ′′ the identity cobordism and one with x ′ the identity cobordism. Any viewable
connected cobordism x from n to m with m > 0 can be written as (bi1b

j
2 ⊗ idm−1)y for

some minimal y and, if n > 0, as y(bi1b
j
2 ⊗ idn−1) for the same y, see Fig. 14. If one of

n or m is zero, only one of these two presentations exist.
Equivalently, a connected viewable cobordism x is minimal if it is handless and has

no holes.
A viewable cobordism y is called minimal if each connected component of y is

minimal. A viewable cobordism x factors into a product of a minimal cobordism and
“coupons” carrying powers of b1, b2, one for each connected component of x . That is,
for each connected component c of x count holes and handles on it and then remove them
to get a minimal connected component c′. The original component can be recovered by
inserting holes and handles back anywhere along c′. For instance, they may be inserted
at one of its top or bottom legs by multiplying c′ by the corresponding powers of b1 and
b2 there.

To any viewable x we can associate its minimal counterpart y by removing holes and
handles from each connected component of x . Given y, we can recover x by multiplying
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by appropriate powers of b1 and b2 at horizontal intervals for different components of
y.

Denote by M(n,m) the set of minimal viewable cobordisms from n to m.

Proposition 3.3. M(n,m) is a finite set.

Proof. From our classification of morphisms in TFS it is clear that minimal cobordisms
from n tom are in a bijection with partitions λ of the setNm

n of n+m horizontal intervals,
together with a choice of a partition μi of each part λi of λ and a cyclic order on each
part of μi . ��

Recall finite codimension ideal Iα (the syntactic ideal) associated with recognizable
series α. Let

dα = dim(k[T1, T2]/Iα).

Choose a set of pairs
Pα = {(it , jt )}dα

t=1, it , jt ∈ Z+

such that monomials T it
1 T jt

2 constitute a basis of the algebra k[T1, T2]/Iα . Denote this
basis by Bα . It iswell-known [18] that a basis can always be choosen so that the exponents
(it , jt ) of the monomials, when placed into corresponding points of the square lattice,
constitute a partition of dα , but we do not need this result here.

Choose a minimal cobordism y and assign an element vc ∈ Bα to each connected
component c of y. This assignment gives rise to a cobordism x obtained from y by
inserting cobordisms b(vc) at all components c of y. For vc = T i

1T
j
2 we add i holes

and j handles to the component c or, equivalently, multiply it at one of its horizontal
boundary intervals by bi1b

j
2 .

In this way to y ∈ M(n,m) there are assigned drα cobordisms x , where r is the
number of components of y. These x are called Bα-companions of y. Denote the set of
such x by Bα(y).

Proposition 3.4. Elements of sets Bα(y), over all y ∈ M(n,m), constitute a basis of
HomSTFSα (n,m).

In other words, to get a basis of homs from n to m in the skein category STFSα we
take all minimal cobordisms y from n tom and insert a basis element from Bα into each
component of y.

Proof. The proposition follows immediately fromour construction of STFSα . One needs
to check consistency, that our rules do not force additional relations when composing
cobordisms. This is straightforward. ��
Corollary 3.5. Hom spaces in the category STFSα are finite dimensional.

Remark. In a seeming discrepancy, object 1 of the category TFS is a symmetric Frobe-
nius object but not a commutative Frobenius object, see Fig. 6 left, since the multiplica-
tion map 1⊗ 1 −→ 1 does not commute with the permutation endomorphism of 1⊗ 1.
Yet, in the category STFSα the state space Hom(0, 1) of the interval is a commutative
Frobenius algebra Aα , defined in (10), with the multiplication on Hom(0, 1) given by
the thin flat pants cobordism in Fig. 15 left. This is explained by the observation that
the thin flat pants multiplication is commutative in the categories we consider, including
TFS and VTFSα and STFSα . Indeed, viewable morphisms from 0 to 1 in TFS have the
form bn1b

m
2 ι, and the product of two such morphisms does not depend on their order, see

Fig. 15 right. Adding floating components (or passing to linear combinations, or taking
quotients) does not break commutativity.

Later, in Section 5.1, in a similar situation we also denote bn1b
m
2 ι by bn1b

m
2 .
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Fig. 15. Left: thin flat pants cobordism from 1⊗ 1 to 1. Right: commutativity of multiplication in Hom(0, 1)

Fig. 16. The trace map: closing endomorphism x of n into x̂ and applying α

3.3. Quotient by negligible morphisms and Karoubi envelopes.. Category TFSα . Con-
sider the ideal Jα ⊂ STFSα of negligible morphisms, relative to the trace form trα
associated with α, and form the quotient category

TFSα := STFSα/Jα.

The trace form is given on a cobordism x from n to n by closing it via n annuli
connecting n top with n bottom circles of the horizontal boundary of x into a floating
cobordism x̂ and applying α,

trα(x) := α(̂x).

This operation is depicted in Fig. 16.
A morphism y ∈ Hom(n,m) is called negligible if trα(zy) = 0 for any morphism

z ∈ Hom(m, n). Negligible morphisms constitute a two-sided ideal in the pre-additive
category STFSα .

The quotient categoryTFSα has finite-dimensional homspaces, as does STFSα (recall
that α is recognizable). The trace is nondegenerate on TFSα and defines perfect bilinear
pairings

Hom(n,m) ⊗ Hom(m, n) −→ k

on its hom spaces. We may call TFSα the gligible quotient of STFSα , having modded
out by the ideal of negligible morphisms.

Let us go back to the category TFS and its linear version kTFS. Fix the number n of
intervals and consider the vector space Vn with a basis of all viewable tf-surfaces with
that boundary, that is viewable cobordisms in TFS from 0 to n. Given α, define a bilinear
form on Vn via its values on pairs of basis vectors:

(x, y) = α(yx) ∈ k,

where y is given by reflecting y about a horizontal line to get a cobordism from n to 0,
and yx is a floating cobordism from 0 to 0 given by composing y and x . This bilinear
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form on Vn is symmetric. Define Aα(n) as the quotient of Vn by the kernel of this bilinear
form. Then there is a canonical isomorphism

Aα(n) ∼= HomTFSα (0, n)

as well as isomorphisms

Aα(n + m) ∼= HomTFSα (0, n + m) ∼= HomTFSα (m, n)

given by moving m invervals from bottom to top via the duality morphism.
The symmetric group Sn acts by permutation cobordisms on Aα(n). Furthermore,

at each circle there is an action of the endomorphism algebra End(1) = EndTFSα (1).
Consequently, the cross-product algebra kSn � End(1)⊗k acts on Aα(n).

Multiplication maps

Aα(n) ⊗ Aα(m) −→ Aα(n + m)

turn the direct sum
Aα :=

⊕

n≥0

Aα(n)

into a unital commutative associative graded algebra, with Aα(0) ∼= k. All of this
data, including the power series

∑
n≥0 dim Aα(n)zn encoding dimensions of Aα(n), are

invariants of recognizable series α.
In the diagram of five categories and four functors

TFS −→ kTFS −→ VTFSα −→ STFSα −→ TFSα

one can get from kTFS to TFSα in one step, bypassing VTFSα and STFSα , by taking
the ideal of negligible morphisms in kTFS (for essentially the same trace map, shown in
Fig. 16) andmodding out by it. It is convenient to introduce those intermediate categories,
though. For instance, STFSα already has finite-dimensional hom spaces and allows to
define the analogue of the Deligne category in our case.

The Deligne category DTFSα and its gligible quotient DTFSα . The skein category
STFSα is a rigid symmetric monoidal k-linear category with objects n ∈ Z+ and finite-
dimensional hom spaces. We form the additive Karoubi closure

DTFSα := Kar(STFS⊕
α )

by allowing formal finite direct sums of objects in STFS, extending morphisms corre-
spondingly, and then adding idempotents to get a Karoubi-closed category. Category
DTFSα plays the role of the Deligne category in our construction.

In the Deligne category DTFSα endomorphisms of an object (n, e), where e is an
idempotent endomorphism of n, inherit the trace map trα into the ground field. Con-
sequently, category DTFSα also has a two-sided ideal of negligible morphisms JD,α .
Taking the quotient by this ideal

DTFSα := DTFSα/JD,α

gives us an idempotent-complete categorywith non-degenerate symmetric bilinear forms
on hom spaces Hom(0, (n, e)), where (n, e) is an object as above, and more generally
non-degenerate bilinear pairings on hom spaces

Hom((n, e), (m, e′)) ⊗ Hom((m, e′), (n, e)) −→ k
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where e′ is an idempotent endomorphism of object m. Due to the symmetry between
homs given by the contravariant involution on all categories that we have considered so
far (reflection about a horizontal line), the above bilinear pairings can be converted into
non-degenerate symmetric bilinear forms on Hom((n, e), (m, e′)) in DTFSα .

Category DTFSα is also equivalent to the additive Karoubi closure of the category
TFSα , see the commutative square in (12).

3.4. Summary of the categories and functors. Below is a summary for each category
that has been considered.

• TFS: the category of thin flat surfaces (tf-surfaces). Its objects are non-negative
integers and morphisms are thin flat surfaces.

• kTFS: this category has the same objects as TFS; its morphisms are formal finite
k-linear combinations of morphisms in TFS.

• VTFSα: in this quotient category of kTFS we reduce morphisms to linear com-
binations of viewable cobordisms. Floating connected components are removed by
evaluating them via α.

• STFSα: to define this category, specialize to recognizable α and add skein rela-
tions by modding out by elements of the ideal Iα in k[T1, T2] along each connected
component of a surface (T1 is a hole, T2 a handle). Hom spaces in this category are
finite-dimensional.

• TFSα: the quotient of STFSα by the ideal Jα of negligible morphisms. This category
is also equivalent (even isomorphic) to the quotients of kTFS and VTFSα by the
corresponding ideals of negligible morphisms in them. The trace pairing in TFSα

between Hom(n,m) and Hom(m, n) is perfect.
• DTFSα: it is the analogue of the Deligne category obtained from STFSα by allowing
finite direct sums of objects and then adding idempotents as objects to get a Karoubi-
closed category.

• DTFSα: the quotient of DTFSα by the two-sided ideal of negligible morphisms.
This category is equivalent to the additive Karoubi closure of TFSα and sits in the
bottom right corner of the commutative square below.

We arrange these categories and functors, when α is recognizable, into the following
diagram:

TFS −−−−→ kTFS −−−−→ VTFSα −−−−→ STFSα −−−−→ DTFSα
⏐⏐�

⏐⏐�

TFSα −−−−→ DTFSα

(12)

All seven categories are rigid symmetric monoidal. All but the leftmost category TFS
are k-linear. Except for the two categories on the far right, the objects of each category
are non-negative integers. The four categories on the right all have finite-dimensional
hom spaces. The two categories on the far right are additive and Karoubi-closed. The
four categories in the middle of the diagram are pre-additive but not additive.

The arrows show functors between these categories considered in the paper. The
square is commutative. An analogous diagram of functors and categories can be found
in [16] for the category of oriented 2D cobordisms in place of TFS.

It is possible to go directly from kTFS to TFSα by modding out by the ideal of
negligible morphisms in the former category. We found it convenient to get to this
quotient in several steps, introducing categories VTFSα and STFSα along the way.
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Remark. For possible future use, it may be convenient to relabel the categories above
using shorter strings. For instance, writing S (for “surfaces”) in place of TFS we can
rename the categories as follows:

S −−−−→ kS −−−−→ VSα −−−−→ SSα −−−−→ DSα
⏐⏐�

⏐⏐�

Sα −−−−→ DS α

(13)

For convenience we wrote below short reminders of what these categories are:

cobordisms �� k-linear �� viewable �� skein

��

�� Deligne (Karoubian)

��
gligible �� gligible and Karoubian

(14)
If α is not recognizable, we can still define categories VTFSα , TFSα and DTFSα (in

the streamlined notation, categories VSα , Sα andDS α), but it is not clear whether these
categories may be interesting for some such α.

4. Hilbert Scheme and Recognizable Series

Recognizable series and points on the dual tautological bundle. Recognizable series α

gives rise to the ideal Iα in k[T1, T2] of finite codimension k = dα and the quotient
algebra Aα by this ideal, see formula (10) in Section 3.2. This algebra is commutative
Frobenius and comeswith two generators T1, T2 and a non-degenerate trace. The ideal Iα
describes a point in the Hilbert scheme of codimension k ideals in A

2 = Spec k[T1, T2],
where

k = dα = dim Aα.

Let us specialize to the ground field k = C. Denote by Reck the set of recognizable
serieswith the syntactic ideal Iα of codimension k and refer toα ∈ Reck as a recognizable
series of codimension k. Let also

Rec :=
⊔

k≥0

Reck, Rec≤n :=
⊔

k≤n

Reck .

Consider the Hilbert scheme Hk = Hilbk(C2) of k points in C
2 or, equivalently, the

scheme of codimension k ideals in C[T1, T2], see [20].
Denote by Tk the tautological bundle over Hk whose fiber over the point associated

to an ideal I of codimension k is the space AI = C[T1, T2]/I . Points of the dual bundle
T ∨
k above a point I ∈ Hk describe elements of A∗

I = HomC(AI , C), that is, linear
functionals on AI . Let

π : T ∨
k −→ Hk

be theprojectionof thebundle onto its base. For a point p ∈ T ∨
k the elementπ(p) ∈ Hk is

the projection of p onto the base of the bundle, and we denote by Iπ(p) the corresponding
codimension k ideal of C[T1, T2].

The point p also defines a linear functional αp on

Aπ(p) := C[T1, T2]/Iπ(p), αp : Aπ(p) −→ C,
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associated to p. This functional lifts to a functional on C[T1, T2], which is recogniz-
able, contains Iπ(p) in its kernel, and has codimension at most k. The latter functional
(equivalently, recognizable power series) is also denoted αp.

This functional has the associated ideal Ip = Iαp ⊂ C[T1, T2] of finite codimension,
the largest ideal in the kernel of functional αp on C[T1, T2]. There is an inclusion of
ideals

Iπ(p) ⊂ Ip.

For a generic point p on T ∨
k this inclusion is the equality Iπ(p) = Ip, but for some points

p the inclusion is proper.
Another way to describe the ideal Ip is to consider the symmetric bilinear form ( , )p

on Aπ(p) given by
(x, y)p := αp(xy), x, y ∈ Aπ(p).

The kernel of the form ( , )p is an ideal I ′
p in Aπ(p) that lifts to the above ideal Ip

in C[T1, T2], and there is an isomorphism I ′
p

∼= Ip/Iπ(p). The inclusion Iπ(p) ⊂ Ip is
proper precisely when I ′

p is a nonzero ideal, that is, when the bilinear form ( , )p is
degenerate.

These ideals are shown in the diagram below, where the two squares on the left are
pull-backs. The bottom sequence is short exact, and the top row becomes exact upon
replacing Iπ(p) by 0.

Iπ(p)
� � ��

��

Ip

��

� � �� C[T1, T2] �� ��

��

Ap �� 0

��
0 �
� �� I ′

p
�� Aπ(p) �� �� Ap �� 0

Denote by Dk the subset of T ∨
k that consists of points p such that the inclusion

Iπ(p) ⊂ Ip is proper:
Dk := {p ∈ T ∨

k |Iπ(p) �= Ip}.
Recognizable power series αp for p ∈ T ∨

k has codimension k (in our notations, αp ∈
Reck) precisely when p ∈ T ∨

k \Dk .
If p ∈ Dk so that

codim(Ip) = m < k = codim(Iπ(p)),

then recognizable power seriesαp has codimensionm strictly less than k andαp ∈ Recm .
For example, if p ∈ Hk ⊂ T ∨

k is a point in the zero section of T ∨
k , so that the linear

map αp is identically zero, the ideal Ip = C[T1, T2] has zero codimension and m = 0.
A mild confusion exists in our notations in this case (and in this case only), for then
p = π(p).

Going the other way, to a recognizable series α with the associated ideal Iα of codi-
mension dα = k as above we associate a point pα of T ∨

k . It is the point in the fiber of T ∨
k

over the ideal Iα which describes functional α on C[T1, T2] and the induced functional
on the quotient algebra Aα = AIα .

The above discussion implies the proposition below.

Proposition 4.1. Assigning pα to α ∈ Reck and αp to p ∈ T ∨
k \Dk establishes a bijec-

tion
Reck ∼= T ∨

k \Dk .
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In particular, pαp = p and αpα = α for p and α as in the proposition, so the two
assignments are mutually-inverse bijections. �

Note that the two ideals coincide, Iπ(p) = Ip, precisely when αp is a nondegenerate
tracemap on Aπ(p). In particular, in this case Aπ(p) is Frobenius.We obtain the following
statement.

Proposition 4.2. Points p ∈ T ∨
k \Dk classify isomorphism classes of data (A, ε, t1, t2):

a commutative Frobenius algebra A over C of dimension k with a non-degenerate trace
ε and generators t1, t2 of A.

Not every commutative Frobenius algebra can be generated by two elements, of
course.

Taking codimension m ≤ k of Ip into account, one gets the following statement.

Proposition 4.3. Associating αp to p ∈ T ∨
k gives a surjective map

T ∨
k −→

k⊔

m=0

Recm .

Restricting this map to Dk gives a surjective map

Dk −→
k−1⊔

m=0

Recm,

while on the complement to Dk this map is the bijection in Proposition 4.1.

Example. The set Rec0 is a single point corresponding to the zero series α, αi, j =
0, i, j ∈ Z+. The ideal for this point is the entire algebra C[T1, T2]. Points of Rec1
correspond to hyperplanes (codimension one subspaces) that are ideals J = (T1 −
λ1, T2 − λ2) together with a nonzero functional on C ∼= C[T1, T2/J , determined by its
value λ on 1. Consequently, we can identify Rec1 ∼= C × C × C

× by sending a point in
Rec1 to the triple (λ1, λ2, λ).

Set-theoretic divisor Dk . Quasi-projective variety Hk admits an open cover by affine
sets Uλ, over all partitions λ of k, see Theorem 18.4 in [18, Section 18.4], for example.
Place partition λ in the corner of the first quadrant of the plane so that it covers nodes
(i, j) of the square lattice with 0 ≤ i < λ j+1. In particular, it covers λ1 nodes on the
x-axis.

Let Tλ be the set ofmonomials T i
1T

j
2 with (i, j) ∈ λ (in particular, |Tλ| = k) and T ′

λ be
the set of complementary monomials, for pairs (i, j) ∈ Z+ × Z+\λ. Open set Uλ ⊂ Hk

consists of ideals I such that monomials in Tλ descend to a basis of AI = C[T1, T2]/I ,
see [18, Section 18.4] for details.

The vector bundle T ∨
k −→ Hk can be trivialized overUλ, being naturally isomorphic

to the trivial bundle of functions on the set Tλ. A functional p on C[T1, T2]/Iπ(p) is
determined by its values on the basis elements t ∈ Tλ of this quotient space.

To describe the points p ∈ T ∨
k withπ(p) ∈ Uλ consider an arbitrary linear functional

α ∈ (CTλ)
∗, given by its values

α(T i
1T

j
2 ) ∈ C, for T i

1T
j
2 ∈ Tλ,
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and an ideal I ∈ Uλ. Such pair (α, I ) trivializes a pair (p, π(p)) with π(p) ∈ Uλ. For a
pair u, v ∈ Tλ take the product uv, view it as an element of AI = C[T1, T2]/I , and then
write it as a linear combination of elements in Tλ, allowing to apply α to it explicitly.

Consider a matrix Mα where rows and columns are labelled by elements of Tλ and
put α(uv) as the entry at the intersection of row u and column v.

Proposition 4.4. Point p with π(p) ∈ Uλ is in the subset Dk iff det(Mα) = 0.

Proof. Matrix Mα is the Gram or Hankel matrix of the bilinear form (x, y) = α(xy)
on the associative algebra AI in the basis Tλ. A bilinear form on a finite-dimensional
algebra B given by the composition of themultiplication with a fixed linear functional on
B is non-degenerate exactly when its Hankel matrix with respect to some (equivalently,
any) basis is non-degenerate, that is, has a non-zero determinant. ��

Condition thatdet(Mα) = 0 is locally a codimension one condition (given by a single
equation), unless the determinant is identically zero on points (p, π(p)) with π(p) on
some irreducible component of the open subset Uλ of the Hilbert scheme. To see that
the latter case does not happen, observe that a “generic” point I on the Hilbert scheme
Hk corresponds to a semisimple quotient (no nilpotent elements in C[T1, T2]/I ), with
the quotient algebra isomorphic to the product of k fields,

C[T1, T2]/I ∼= C × C × · · · × C.

On this quotient an open subset of linear functionals are non-degenerate, with the associ-
ated bilinear forms having trivial kernels. Indeed, a functional α on the algebra

∏k
i=1 C

is non-degenerate iff each of its k coefficients is non-zero.
These observations imply the following result.

Proposition 4.5. Dk is a set-theoretic divisor on the variety T ∨
k .

It is straightforward to check that Dk comes from an actual divisor on T ∨
k . For a

finite-dimensional C-vector space V define a one-dimensional vector space

det V := (�topV )∨ = �top(V∨).

Thedeterminantdet α̂ of a bilinear form α̂ : V⊗V → C is an elementdet α̂ ∈ (det V )⊗2

defined as the determinant of the matrix of α̂. Namely, if e1, . . . , ek is a basis of V and
e1, . . . , ek is the dual basis in V∨, then e1 ∧ · · · ∧ ek is a basis in the one-dimensional
space det V and

det α̂ := det||̂α(ei , e j )|| (e1 ∧ · · · ∧ ek)⊗2.

A point p ∈ T ∨
k defines a symmetric bilinear form α̂p(x, y) := αp(xy) on the fiber

Tπ(p) = Iπ(p) of the tautological bundle. The determinant of this form is an element of
(det Tπ(p))

⊗2. Hence the pullback line bundle

π∗ (
(detT )⊗2

)
−→ T ∨

k

over T ∨
k has a canonical section σdet given by σdet(p) := det α̂p. The set Dk is the

divisor of zeroes of this section.

Corollary 4.6. Dk is the divisor of zeros of the section σdet.
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Each point of T ∨
k \Dk gives rise to recognizable series α in two variables and to the

corresponding rigid symmetric monoidal categories, as discussed in the Section 3 and
summarized in Section 3.4, including category TFSα , the Deligne category DTFSα and
its gligible quotient DTFSα . It may be interesting to understand these categories for
various α’s, including finding the analogue of the classification result from [15] on when
the category DTFSα is semisimple.

5. Modifications

5.1. Adding closed surfaces. Category TFS can be enlarged to a category C with mor-
phisms – oriented 2D cobordisms (surfaces) with corners between oriented 1D mani-
folds with corners. Extensions of 2D TQFTs to this category have been widely studied
[2,17,19,23]. An oriented 1Dmanifold with corners is diffeomorphic to a disjoint union
of finitely-many oriented intervals and circles. We adopt a minimalist approach and
choose one manifold for each such diffeomorphism class. Consequently, objects of C
are pairs n = (n1, n2) of non-negative integers, and an object n is represented by a fixed
disjoint union W (n) = W (n1, n2) of n1 intervals and n2 circles. Morphisms from n
to m = (m1,m2) are compact oriented 2D cobordisms M , possibly with corners, with
both horizontal and side boundary and corners where these two different boundary types
meet:

∂M = ∂hM ∪ ∂vM, ∂hM = W (m1,m2) � (−W (n1, n2)).

Cobordisms that are diffeomorphic rel boundary define the same morphisms. Category
C contains TFS as a subcategory.

C is a rigid symmetric monoidal category, with self-dual objects. The unit object
1 is the empty one-manifold W (0, 0). Its endomorphism monoid is freely generated
by diffeomorphism types of compact connected surfaces with boundary. The latter are
classified by surfaces S�,g with � boundary components and of genus g, one for each
pair (�, g), �, g ∈ Z+. The difference with endomorphisms of the unit object of TFS is
that in C closed surfaces are allowed, which corresponds to � = 0 and surfaces S0,g ,
over all g ∈ Z+.

Multiplicative evaluations β of endomorphisms of the unit object are again encoded
by a power series

Z̃β(T1, T2) =
∑

k,g≥0

βk,gT
k
1 T

g
2 , β = (βk,g)k,g∈Z+ , αk,g ∈ k, (15)

with the first index shifted by 1 compared to evaluations for TFS. We changed the label
from α in evaluations in TFS to β in C to make it easier to compare evaluations in these
two categories. Now the coefficient

βk,g = β(Sk,g)

is the evaluation of connected genus g surface with k boundary components rather than
with k + 1 components as in the TFS case, see earlier.

To relate these two power series encodings, in formulas (1) and (4) versus (15), start
with Zα(T1, T2) as in (4) and also form a one-variable power series

Zγ (T2) =
∑

k≥0

γkT
k
2 , γk ∈ k.
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To the pair (Zα, Zγ ) assign the series

Z̃β(T1, T2) = T1Zα(T1, T2) + Zγ (T2). (16)

Adding coefficients of Zγ to the data provided by Zα precisely means that we now
include evaluations of closed surfaces, via coefficients γk (for a closed surface genus k).
The scaling factor T1 in the formula is needed to match the discrepancy in the evaluation
conventions in the two categories TFS and C. Formula (16) gives a bijection between
series encoded by β and those encoded by (α, γ ). Starting from Z̃β , one recovers Zα

and Zγ as

Zγ (T2) = Z̃β(0, T2)

Zα(T1, T2) = (Z̃β(T1, T2) − Z̃β(0, T2))/T1.

From C pass to its k-linearization kC by allowing finite k-linear combinations of
morphisms in C. Given series β, we can define analogues of categories VTFSα and
TFSα in (12). Denote these new categories by VCβ and Cβ :

• In VCβ one evaluates floating components to elements of k via β. A connected
component is floating if it has no horizontal boundary.

• To form category Cβ we quotient category VCβ (alternatively, category kC) by the
two-sided ideal of negligible morphisms, defined in the same way as for TFS.

We say that evaluation β (or series Z̃β ) is recognizable if category Cβ have finite-
dimensional hom spaces.

Proposition 5.1. β is recognizable iff the power series Z̃β has the form

Z̃β(T1, T2) = P̃(T1, T2)

Q̃1(T1)Q̃2(T2)
, (17)

where Q̃1(T1), Q̃2(T2) are one-variable polynomials and P̃(T1, T2) is a two-variable
polynomial, all with coefficients in the field k.

It is easy to see that series β is recognizable iff hom spaces

Hom(1, (1, 0)) and Hom(1, (0, 1))

in Cβ are finite-dimensional. These are the hom spaces from the empty 1-manifold
W (0, 0) (representing the unit object 1) to an interval W (1, 0) and a circle W (0, 1),
respectively. Necessity of this condition is obvious. Vice versa, if these homs are finite-
dimensional, by analogy with the proof of Proposition 3.1, there are skein relations
allowing to reduce some large number of handles (respectively, holes) on a connected
component to a linear combination of otherwise identical cobordisms but with fewer
handles (respectively holes). The rest of the proof of Proposition 5.1 follows that of
Proposition 3.1. �

Corollary 5.2. Series β is recognizable iff the corresponding series α and γ are both
recognizable.
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Fig. 17. Maps δ0 and δ1

Note that, when α and γ are recognizable, their rational function presentation may
have very different denominators,

Zα(T1, T2) = P(T1, T2)

Q1(T1)Q2(T2)
, Zγ (T2) = Pγ (T2)

Qγ (T2)
,

so that

Z̃β(T1, T2) = T1P(T1, T2)

Q1(T1)Q2(T2)
+

Pγ (T2)

Qγ (T2)

= T1P(T1, T2)Qγ (T2) + Q1(T1)Q2(T2)Pγ (T2)

Q1(T1)Q2(T2)Qγ (T2)
.

For generic polynomials, there are no cancellations and

Q̃1(T1) = Q1(T1), Q̃2(T2) = Q2(T2)Qγ (T2)

are the denominators in the minimal rational presentation (17) for Z̃β .
For recognizable β, the state spaces

Aβ(1, 0) := HomCβ
(1, (1, 0)), Aβ(0, 1) := HomCβ

(1, (0, 1)),

of homs from the unit object 1 = (0, 0) to the interval and the circle objects, respectively,
are both commutative Frobenius algebras. Annuli, viewed as morphisms between (1, 0)
and (0, 1), see Fig. 17, give linear maps

δ0 : Aβ(1, 0) −→ Aβ(0, 1), δ1 : Aβ(0, 1) −→ Aβ(1, 0)

between the underlying vector spaces.
Consider the hole and handle endomorphisms b1, b2 of the interval and c1, c2 of the

circle, respectively, in Fig. 18 top.
Multiplications in algebras Aβ(1, 0) and Aβ(0, 1) are given by pants and flat pants

cobordisms, see Fig. 19, where the cobordisms for the unit and trace morphisms on
Aβ(1, 0) and Aβ(0, 1) are shown as well.

Take endomorphisms b1, b2, c1, c2 of the interval and circle and cap them off at the
bottom with the unit morphisms ι and ι′ for the interval and circle (see Fig. 19) to get
elements b1 = b1ι, b2 = b2ι in Aβ(1, 0) and elements c1 = c1ι′, c2 = c2ι′ in Aβ(0, 1),
shown in Fig. 18.

The analogue of Proposition 2.3 holds in C, and the “interval” Frobenius algebra
Aβ(1, 0) is generated by commuting elements b1, b2 (the hole and handle elements).
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Fig. 18. Endomorphisms b1, b2 of the interval, endomorphisms c1, c2 of the circle and corrresponding ele-
ments b1, b2 of Aβ(1, 0) = Hom(1, (1, 0)) and elements c1, c2 ∈ Aβ(0, 1) = Hom(1, (0, 1))

Fig. 19. Flat pants and pants cobordisms, together with the other structure maps ι, ε and ι′, ε′ (units ι, ι′ and
counits ε, ε′) of commutative Frobenius algebras Aβ(1, 0) and Aβ(0, 1)

Likewise, the “circle” Frobenius algebra Aβ(0, 1) is generated by commuting hole and
handle elements c1 and c2.

Endomorphisms b1, b3 of the interval in the category C are different (endomorphism
b3 is also shown in Fig. 11), but they induce the same map on Aβ(1, 0), see Fig. 20.
There, x ∈ Aβ(1, 0) can be written as a linear combination of monomials bn1b

m
2 , with

b3 acting by
b3b

n
1b

m
2 = bn+11 bm2 = b1b

n
1b

m
2 .

Trace maps
ε : Aβ(0, 1) −→ k, ε′ : Aβ(1, 0) −→ k, (18)

given by capping off the interval with a disk, respectively the circle with a cap, turn these
two commutative algebras into Frobenius algebras (for recognizable β).

Compositions of δ0 and δ1 are endomorphisms of the interval and the circle in C (and
in Cβ ) and satisfy

δ1δ0 = b3, δ0δ1 = c1,

δ1c1 = b1δ1, δ1c2 = b2δ1,

δ0b1 = c1δ0, δ0b2 = c2δ0.
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Fig. 20. b3x = b1x for any x ∈ Aβ(1, 0). b3 �= b1 as End((1, 0)) in C (and in Cβ , in general)

In particular, maps δ0, δ1 intertwine the hole endomorphisms b1, c1 of the interval
and the circle. They also intertwine the handle endomorphisms b2, c2 of the interval and
the circle.

Their two compositions produce the hole endomorphisms of the interval and the
circle.

The map δ1 is a surjective unital homomorphism of commutative algebras, while the
map δ0 is an injective homomorphism of cocommutative coalgebras, with comultiplica-
tions given by the dual of the multiplications on these Frobenius algebras. In particular,
δ0 respects traces, in the sense that ε′δ0 = ε.

A recognizable power series β is encoded by a commutative Frobenius algebra (the
state space of a circle) Aβ(0, 1) with generators c1, c2 and non-degenerate trace map ε′
such that

β�,g = ε′(c�
1c

g
2), �, g ∈ Z+. (19)

Further unwrapping this data, to a recognizable power series β we can associate

• Two commutative Frobenius algebras A(1, 0) = Aβ(1, 0) and A(0, 1) = Aβ(0, 1)
with generators b1, b2 and c1, c2, respectively (hole and handle elements).

• Non-degenerate traces ε and ε′ as in (18), subject to (19) and

β�+1,g = ε(b�
1b

g
2), �, g ∈ Z+.

• Linear maps δ0, δ1:

Aβ(1, 0) Aβ(0, 1)
δ0

δ1

that intertwine the action of handle elements b2 and c2. The hole elements are given
by

b1 = δ1δ0(1), c1 = δ0δ1(1).

• δ1 is a surjective unital homomorphism of commutative algebras.

The reader may want to constrast the data coming from a recognizable series β

as above, with both algebras Aβ(0, 1) and Aβ(1, 0) commutative Frobenius, with that
given by a 2-dimensional TQFT with corners [2,17,19,23] where the Frobenius algebra
B associated to the interval is not necessarily commutative and the algebra associated
to the circle is related to the center of B.

To a recognizable series β there is associated a finite codimension ideal Iβ ⊂
k[T1, T2] describing relations on the hole and handle endomorphisms along any com-
ponent of a surface. Starting with the viewable category VCβ , described earlier, where
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Fig. 21. Left: A morphism in TFS(r) from the colored interval (3, 1) to the union (3, 2)� (2, 1) of two colored
intervals. Middle: the dual of object (i, j) is the object ( j, i). Right: a connected floating component of genus
1 and the sequence (1, 2, 1). It has one boundary circle of colors 1 and 3 each and two circles of color 2

floating components are evaluated via β, we impose relations in Iβ on hole and handle
endomorphisms along any component. The resulting category, denoted SCβ (the skein
category) has finite-dimensional hom spaces.

From the skein category we can pass to the already defined gligible quotient Cβ by
taking the quotient of SCβ by the ideal of negligible morphisms. This ideal comes from
the trace on SCβ or, equivalently, from the bilinear form given by pairing of cobordisms.

Taking the additive Karoubi closure of SCβ results in the Deligne category DCβ .
Taking the quotient of DCβ by the ideal of negligible morphisms produces the cate-

gory DCβ . Alternatively, this category is equivalent to the additive Karoubi closure of
Cβ , and the square below is commutative.

The following diagram summarizes these categories and functors (comparewith (12),
(14), and [16]).

C −−−−→ kC −−−−→ VCβ −−−−→ SCβ −−−−→ DCβ
⏐⏐�

⏐⏐�

Cβ −−−−→ DCβ

(20)

Each of the four categories in the vertices of the commutative square has finite-
dimensional hom spaces between its objects.

5.2. Coloring side boundaries of cobordisms. Fix a natural number r ≥ 1 and consider
a modification TFS(r) of the category TFS where side boundaries of cobordisms are
colored by numbers from 1 to r . Let Nr = {1, . . . , r} be the set of colors. A morphisms
in TFS(r) is a tf-surface x , up to rel boundary diffeomorphisms, such that each side (or
vertical) boundary component of x carries a label from Nr . Coloring of x induces a
coloring on the set of corners of x , that is, on endpoints of the one-manifold ∂hx which
is the horizontal boundary of x , see Fig. 21.

Consequently, each boundary interval I of x , being oriented, gets an induced ordered
sequence (r1(I ), r0(I )) of two colors.We consider a skeletal version of TFS(r), choosing
only one object for each isomorphism class. An object a then is determined by the r × r
matrix M = M(a) with the (i, j)-entry the number of intervals in a colored (i, j).

Thus, objects a are described by r × r matrices of non-negative integers counting
number of colored intervals in a. We can call these objects r -colored or r -labelled
thin one-manifolds or r -boundary colored thin one-manifolds. An object can also be
described by a list of colored intervals in it.
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This skeletal version is still rigid tensor, with the obvious tensor product. The unit
object 1 = ∅ corresponds to the matrix of size 0 × 0.

The notion of a connected component, floating and viewable components of a mor-
phism are defined as for TFS. Commutative monoid End(∅) of endomorphisms of the
empty one-manifold ∅ is a free abelian monoid generated by diffeomorphism classes
of connected floating r -colored tf-surfaces. Such a surface S is classified by its genus
g ≥ 0 and a sequence of r non-negative integers n = (n1, . . . , nr ), where ni is the
number of boundary components of color i . Denote such component by Sn,g . Figure 21
right shows the component S(1,2,1),1.

For each color i ≤ r there is an embedding of TFS into TFS(r) by coloring each side
boundary of morphisms in TFS by i . Each horizontal interval is then an (i, i)-interval.

For a morphisms between two objects in TFS(r) to exist, there must exist a suitable
matching between the colorings of their endpoints. For instance, there are no morphisms
from the empty object ∅ to (i, j) interval if i �= j , since the i and j endpoints must
belong to the same side interval and have the same coloring. There are morphisms from
∅ to (i, j) � ( j, i) but no morphisms from ∅ to (i, j) � (i, j) for i �= j , since matching
the two i’s via a side interval is not possible with our orientation setup.

As usual, denote by kTFS(r) the k-linear version of TFS(r), with the same objects as
TFS(r) and morphisms – kk-linear combinations of morphisms in TFS(r).

The construction of evaluation categories and recognizable (or rational) series can
be extended from TFS to TFS(r) in a direct way.

An evaluation α is a multiplicative homomorphism from the monoid End(∅) of float-
ing colored tf-surfaces to a field k. Such an evaluation is determined by its values on
connected floating surfaces Sn,g . Let

Zα(T0, . . . , Tr ) =
∑

n,g

αn,g T
g
0 T

n, αn,g ∈ k (21)

be a formal power series in r + 1 variables, with

T n := T n1
1 . . . T nr

r , n = (n1, . . . , nr ), ni ∈ Z+

where T n is a monomial in T1, . . . , Tr . Thus, T0 is the genus variable and T1, . . . , Tr
are color variables. Coefficient αn,g at T

g
0 T

n1
1 . . . T nr

r encodes the evaluation of floating
connected surface Sn,g .

Since each component of a tf-surface has non-empty boundary, coefficients at T g
0 ,

with n = 0 = (0, . . . , 0) do not appear in this formal sum. We set them to zero and
extend the sum to these indices by setting

α0,g = 0, g ∈ Z+. (22)

Thus, our power series has the property that

Zα(T0, 0, . . . , 0) = 0. (23)

We can also view α as a linear map of vector spaces

α : k[T0, . . . , Tr ] −→ k

subject to condition (22), that is, α(T g
0 ) = 0, g ≥ 0.
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To α we assign the category VTFS(r)
α , the quotient of kTFS(r) by the relations that

a connected floating component diffeomorphic to Sn,g evaluates to αn,g . This is the
category of viewable r -colored tf-surfaces with the α-evaluation.

Categor VTFS(r)
α carries a natural trace form given on an endomorphism x of an

object a by closing x into a floating surface x̂ and evaluating this surface via α, see
Fig. 16, where now side boundaries are r -colored. If x is not a single cobordism but a
linear combination, we use linearity of the trace to define trα(x) = α(̂x).

Denote by Jα the two-sided ideal of negligible morphisms in VTFS(r)
α for this trace

map. Define the gligible cobordism category TFS(r)
α as the quotient of VTFS(r)

α by the
ideal Jα:

TFS(r)
α := VTFS(r)

α /Jα.

We say that evaluation α is rational or recognizable if category TFS(r)
α has finite-

dimensional hom spaces.

Proposition 5.3. The following properties are equivalent.

(1) α is recognizable.
(2) Hom spaces Hom(∅, (i, i)) from the empty one-manifold to the (i, i)-interval are

finite-dimensional in TFS(r)
α for all i = 1, . . . , r .

(3) Power series Zα has the form

Zα(T0, . . . , Tr ) = P(T0, . . . , Tr )

Q0(T0)Q1(T1) . . . Qr (Tr )
,

where P is a polynomial in r + 1 variables and Q0, . . . , Qr are one-variable poly-
nomials, with Qi (0) �= 0, i = 0, . . . , r .

Polynomials Qi can be normalized so that Qi (0) = 1 for all i . Power series Zα also
satisfies equation (23).

Proof. The proof is essentially the same as in r = 1 case, when all side components
carry the same color and there is no need to mention colors. Proof of Proposition 3.1
carries directly to the case of arbitrary r . ��

Take any floating component S and a monomial T = T g
0 T

n1
1 . . . T nr

r . Define S(T ) as
the surface S with additional g handles and additional ni holes with boundary colored
i , for i = 1, . . . , r.

Given a linear combination y = ∑
μi Ti of monomials, define S(y) = ∑

μi S(Ti )
as the linear combination of corresponding floating surfaces. Evaluation α(S(y)) is an
element of the ground field k.

Given α, we can then define the syntactic ideal Iα ⊂ k[T0, . . . , Tr ]. Namely, y ∈ Iα
if α(S(y)) = 0 for any floating S.

Proposition 5.4. α is recognizable iff the ideal Iα hasfinite codimension ink[T0, . . . , Tr ].
Thus, for recognizable α, one can define the skein category STFS(r)

α as the quotient
of VTFS(r)

α by the relations that inserting any y ∈ Iα into a cobordism is zero. Category
STFS(r)

α has finite-dimensional hom spaces. It also has the ideal of negligiblemorphisms,
with the quotient category isomorphic to TFS(r)

α . One can then define the analogue of
the Deligne category for STFS(r)

α by taking its additive Karoubi closure and define
the glibigle quotient of the latter. The resulting diagram of categories and functors
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below mirrors diagrams (12), (20), and the corresponding diagram in [16]. The square
is commutative.

TFS(r) −−−−→ kTFS(r) −−−−→ VTFS(r)
α −−−−→ STFS(r)

α −−−−→ DTFS(r)
α⏐⏐�

⏐⏐�

TFS(r)
α −−−−→ DTFS(r)

α

(24)

Condition (23) on the power series Zα seems rather unnatural. It can be removed
by passing to the larger category, as in Section 5.1, where now closed components are
allowed. Objects of the new category that extends TFS(r) are disjoint unions of oriented
intervals (with endpoints colored by elements of Nr ) and circles. Morphisms are two-
dimensional oriented cobordisms between these collections,with side boundary intervals
and side circles colored by elements of Nr . In the definition of evaluation α we can now
omit condition (22) or, equivalently, restriction (23) on the power series Zα .

Definition and basic properties or recognizable series nowwork as in the TFS(r) case.
In the analogue of Proposition 5.3 for this modification, property (2) is replaced by the
condition that the state space of the circle is finite-dimensional (hom space Hom(∅, S

1)

is finite-dimensional). This is due to the surjection from the state space of the circle to
that of the interval (i, i) induced by the map δ1 in Fig. 18 with the side (vertical) interval
colored i . It is straightforward to set up the analogue of the diagram (24) of categories
and functors for this case as well, for recognizable α.
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