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Abstract: We consider recognizable evaluations for a suitable category of oriented
two-dimensional cobordisms with corners between finite unions of intervals. We call
such cobordisms thin flat surfaces. An evaluation is given by a power series in two
variables. Recognizable evaluations correspond to series that are ratios of a two-variable
polynomial by the product of two one-variable polynomials, one for each variable. They
are also in a bijection with isomorphism classes of commutative Frobenius algebras
on two generators with a nondegenerate trace fixed. The latter algebras of dimension n
correspond to points on the dual tautological bundle on the Hilbert scheme of n points
on the affine plane, with a certain divisor removed from the bundle. A recognizable
evaluation gives rise to a functor from the above cobordism category of thin flat surfaces
to the category of finite-dimensional vector spaces. These functors may be non-monoidal
in interesting cases. To a recognizable evaluation we also assign an analogue of the
Deligne category and of its quotient by the ideal of negligible morphisms.
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1. Introduction

Universal constructions of topological theories [1,13,21] that are not necessarily multi-
plicative [9] are interesting even in dimension two [14,16], providing examples some-
what different from commutative Frobenius algebras for the invariants of two-dimensional
cobordisms. In this note we consider the analogue of the latter construction for oriented
two-dimensional cobordisms with corners. For simplicity we restrict to cobordisms be-
tween finite unions of intervals; boundary points of the intervals give rise to corners of
cobordisms. Furthermore, we require that each connected component of a cobordism
has non-empty boundary, which is a natural condition when excluding cobordisms with
corners that have circles as some boundary components.

Cobordisms that we consider can be “thinned” to consist of ribbons glued to disks and
can be depicted in the plane as regular neighbourhoods of immersed graphs, see Fig. 2
below for an example. For this reason we refer to these cobordisms as thin flat surfaces
or tf-surfaces throughout the paper. When viewed as a morphism in the appropriate
category TFS of thin flat cobordisms, a particular immersion of the surface into the
plane is inessential, and morphisms are equivalence classes of such cobordisms modulo
diffeomorphisms that fix the boundary.

The category TFS admits an analogue of a-evaluations from [14—16]. This time closed
connected morphisms S (connected endomorphisms of the unit object 0, the empty union
of intervals) are parametrized by two non-negative integers (£, g), where £ + 1 is the
number of boundary components of § and g is the genus. Assigning an element oy o of
the ground field k (or a ground commutative ring R) to such a component and extending
multiplicatively to disjoint unions gives an evaluation o on endomorphisms of the unit
object 0. Evaluation « can be conveniently encoded as power series

Zo(T1. T) = Y ko Tf TS, @ = (aglkger,. g€k 1)
k,g>0

where the degree of the first variable 77 counts “holes” in a cobordism (a disk has no
holes and an annulus has one hole) and 73 keeps track of the genus.

With « as above and n > 0, one can define a bilinear form on a k-vector space with
a basis given by equivalence classes of thin flat surfaces with n boundary intervals. The
quotient by the kernel of the bilinear form is a vector space Ay (n). The collection of
quotient spaces {A,(n)},>0 is what we refer to as the universal construction for the
category TFS, given «.

The spaces A, (n) rarely satisfy the Atiyah factorization axiom, that is, the relation

Ag(m+n) = Ay(m) ® Ag(n)

does not hold. From the quantum field theory (QFT) perspective, this violation may
happen if the 2-dimensional QFT is embedded as a 2-dimensional defect inside a higher-
dimensional QFT.

It is straightforward to see that Ay (n) is finite-dimensional for all n iff Ay(1) is
finite-dimensional iff the series (1) is recognizable or rational (terms from the control
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theory and the theory of noncommutative power series). Recognizable power series in
this case have the form
P(T, T2)

Q1(T)02(Tr)’

that is, Z, can be written as a ratio of a polynomial in 77, 7 and two one-variable
polynomials, see Proposition 3.1 and Fliess [7].

Constructions of [16] go through for the category of thin flat surfaces and any recog-
nizable « as above. We define the category STFS,, (skein thin flat surfaces) where homs
are finite linear combinations of cobordisms, closed components evaluate to coefficients
of «, and there are skein relations given by adding holes and handles to a component
of a cobordism and equating to zero linear combinations corresponding to elements of
the kernel ideal I, C K[T7, T>] associated to « and also known as the syntactic ideal
of rational series «. A two variable polynomial z = z(T7, T2) is in I, iff a(zf) = 0
for any polynomial f € k[T, T2], with o:(TlZ ng) = g, extended to a linear map

K[Ty, T] — k.

For the rest of the paper we change our terminology and call connected components of
athin flat surface that have neither top nor bottom boundary intervals floating components
instead of closed components, since they otherwise have boundary, what we call side
boundary, that is present inside the cobordism but not at its top or bottom. This avoid
possible confusion with the usual notion of a closed surface. A non-empty thin flat
surface is never closed in the latter sense.

The category STFS,, has finite-dimensional hom spaces. Taking the additive Karoubi
envelope of this category to form

DTFS,, := Kar(STFSY)

Zy(T1, ) = 2)

gives an idempotent-complete k-linear rigid symmetric monoidal category DTFS,, which
is the analogue of the Deligne category [3,4,6] for TFS and recognizable series « in two
variables.

Once we pass to k-linear combinations of cobordisms, and « is available to evaluate
floating cobordisms, there is a trace map on endomorphisms of any object n. It is given by
closing each term in the linear combination of tf-surfaces describing the endomorphism
via n strips into a floating tf-surface and evaluating it via «. Consequently, one can form
the ideal J, of negligible morphisms [3,4,6, 16] and quotient the category by that ideal.

We call the quotient category gligible quotient to avoid the awkward-sounding word
“non-negligible quotient” and mirroring the terminology from [15]. The gligible quotient
TES,, of the skein category STFS, carries non-degenerate bilinear forms on its hom
spaces and otherwise shares key properties of STFS, : objects are non-negative integers,
category TFS,, is rigid symmetric tensor, and the hom spaces are finite-dimensional over
k.

Likewise, the Deligne category DTFS,, has the gligible quotient DTES , by the ideal
of negligible morphisms. The same category can be recovered as the additive Karoubi
closure of TFS,.

Section 3.4 and diagram (12) contain a summary of these categories and key functors
relating them.

Similar to [5,6,15], itis natural to ask under what conditions will DTES , be semisim-
ple. Unlike [14,15], we do not work out any specific examples of these categories here
and leave that to an interested reader or another time.

Our evaluation « is encoded by a power series Z,, in two variables (1), and the recog-
nizable series Z, gives rise to a finite-codimension ideal I, in k[T, T>], the largest ideal
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contained in the hyperplane ker(«). Such an ideal defines a point on the Hilbert scheme
of the affine plane A%. We discuss the relation to the Hilbert schemes in Section 4 and
explain a bijection between recognizable power series with the ideal I, of codimension k
and points in the complement 7,"\ Dy, of the dual tautological bundle 7, on the Hilbert
scheme and a suitable divisor Dy on it.

It is not clear whether the appearance of the Hilbert scheme of A” is a bug or a
feature. In Section 5 we explain two generalizations of our construction. One of them
involves “coloring” side boundary components of a thin flat surface into » colors. For the
resulting category, recognizable series depends on r + 1 parameters (generalizing from
2 parameters for r = 1), and one would get a generalization of our construction from
the Hilbert scheme of AZ to that of A”*!, with the appropriate divisor removed from the
dual tautological bundle in both cases. Of course, the Hilbert scheme has vastly different
properties and uses in the case of algebraic surfaces versus higher dimensional varieties.

The other generalization considered in that section is given by extending the TFS
(thin flat surfaces) category by allowing closed components and circles as boundaries.
This corresponds to the usual category of two-dimensional oriented cobordisms with
boundary and corners studied in [2,17,19,23] and other papers. Objects of that category
are finite disjoint unions of intervals and circles. We briefly touch on this generalization
and explain encoding of recognizable series via certain rational power series in this case
as well.

Relations between Frobenius algebras, recognizable power series, codes and two-
dimensional TFTs are considered in Friedrich [8], which is quite close in spirit to this
paper.

A possible relation between moduli spaces of SU (m) instantons on R* (the Hilbert
scheme of C? corresponds to U (1) case) and control theory is explored in [12,22] and
the follow-up papers. We do not know how to connect it to the constructions in the
present paper.

2. The Category of Thin Flat Surfaces

2.1. Category TFS. We introduce the category TFS of thin flat surfaces. Its objects are
non-negative integers n € Z;, = {0, 1,2, ...}. An object is represented by n intervals
I, ..., I, placed along the x-axis in the xy-plane. A morphism from n to m is a “thin”
surface S immersed in R x [0, 1] connecting »n intervals on the line R? x {0} with
m intervals on the line R x {1}. The immersion map S — R2 x [0, 1] is a local
diffeomorphism, but the image of S may have overlaps, that can be thought of as virtual
overlaps and ignored. The surface S inherits an orientation from its immersion into
R x [0.1]. Restricting to the complement of the boundary of S, the immersion is open.

Alternatively, the immersion can be perturbed to an embedding of S into R? x [0, 1]
by turning overlaps into over- and under-crossings of strips of a surface. This can be
done just for aesthetic purposes, and whether one chooses an over- or an under-crossing
does not matter for the morphism associated to the surface.

The boundary of S consists of several circles (at least one circle unless S is the empty
surface) and decomposes into n+m disjoint intervals that constitute horizontal boundary
0pS and n + m intervals and some number of circles that constitute side, or vertical, or
inner boundary 9, S of S:

S =0pSU9,S.

Horizontal intervals that constitute 05,5 are the intersections of S with R x {0, 1} C
R x [0, 1]. Vertical boundary a,,S is the closure of the intersection of 9.5 with R x (0, 1).
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1 2 . n
Fig. 1. A thin flat surface in R x [0, 1]

1 2 m 1 2 m
7 A virtual
8

1 2 3 . n 1 2 3 . n
Fig. 2. An immersed graph I" in R x [0, 1] and associated thin flat surface N (T, j)

The intersection 955 N 9,8 consists of 2(n + m) boundary points of the horizontal
intervals. These are also the corners of the surface S.

In the graphical depicitions of thin flat surfaces below, we will draw horizontal bound-
ary segments as red intervals, and vertical boundary components as green arcs for better
visualization (Figs. 1 and 2 right), but the figures can also be viewed and carry full
information in greyscale. Starting from Fig. 2, we depict tf-surfaces in light aquamarine.

Another way to describe S is to immerse a finite unoriented graph I', possibly with
multiple edges and loops, into the strip R x [0, 1], via the immersion j : [ —>
R x [0, 1]. The graph I' may have several boundary vertices v of valency 1 such that
J() € R x {0, 1}. The remaining vertices are mapped inside the strip. The immersion
is disjoint on vertices. Edges of I' may intersect in R x [0, 1]. We consider these virtual
intersections and not vertices. An example of I" and ; is shown in Fig. 2 left.

Taking a regular neighbourhood N (T', ;) of I" under j, locally in I', results in a thin
flat surface N(I"). Vice versa, any thin flat surface S can be deformed to the surface
N(T") for some I".

Take a thin flat surface S and forget the embedding into R x [0, 1], only remembering
boundary intervals and their order, on both top and bottom lines. In this way we view S as
acobordism between ordered collections of oriented intervals (induced by the orientation
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0o AW D X-X

L €
Fig. 3. A set of generating morphisms. From left to right: ¢, €, m, A are morphisms from O to 1, from 1 to
0, from 2 to 1 and from 1 to 2, respectively. The rightmost morphism P is the permutation morphism on
1 ® 1 = 2. Identity morphism id; of object 1 is shown for completeness

LN R -

Fig. 4. Self-duality morphismsem : 1 ® I — Oand A¢: 0 — 1 ® 1 for the object 1

of R, say from left to right). The cobordism $ has corners (unless n = m = 0) and two
types of boundary, as discussed. By definition, two cobordisms S, S» represent the
same morphism if they are diffeomorphic rel horizontal boundary, that is, keeping all
horizontal boundary points fixed.

The category TFS is symmetric monoidal, and a possible set of generating morphisms
is shown in Fig. 3. We have included the identity morphism id; into the Figure to
emphasize that the identity morphism id, is represented by the surface which is the
direct product of the disjoint union of n intervals (representing object n) and [0, 1]. The
permutation morphism P of 2 = 1 ® 1, shown on the right, is part of the symmetric
monoidal structure on TFS and squares to the identity (Fig. 3).

The elements ¢, €, m, A, P constitute a set of monoidal generators of TFS. Together
with the identity morphism id; they can be used to build any morphism in TFS, via
horizontal and vertical compositions. In particular, from these generators we can build
the self-duality morphisms for the object 1, see Fig. 4.

Some relations in the category TFS are shown in Fig. 5.

We call a surface S representing a morphism from » to m in TES a thin flat cobordism
from n to m. A thin flat cobordism S is a disjoint union of its connected components
S1, ..., Sk. Consider one such component §’. It necessarily has non-empty boundary,
and we can assign to S’ non-negative integers £, g, where £+ 1 is the number of boundary
components and g > 0 is the genus of S’. The surface S’ carries an orientation, inherited
via an immersion from the orientation of the plane.

We will also call a thin flat surface a #f-surface and, when viewed as a cobordism, a
tf-cobordism.

The morphisms

1:0—1,e:1—0m: 11 —1, A:1l —1®1

and relations on them show that the object 1 is a symmetric Frobenius algebra object
in TES (top left relation in Fig. 5 shows that the trace map is symmetric). It’s not a
commutative algebra object, since the two morphisms in Fig. 6 left are not equal in TFS.

2.2. Classification of thin flat surfaces. By a closed or floating tf-surface S we mean one
without horizontal boundary. A floating tf-surface necessarily has side boundary, unless
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R-a X-UVY-V
A -1 K-11

XN X-X K2R
X-N\

Fig. 5. Some relations in TFS

-+
L

Fig. 6. Left: object 1 is not commutative Frobenius. That the two diagrams on the left are not diffeomorphic rel
horizontal boundary can be seen easily by examining the matchings on the six corner points in each diagram
provided by side boundaries. The two matchings of the six points are different, a sufficient condition for the
two cobordisms not to be diffeomorphic rel boundary. Right: a diagram that’s not a morphism in TFS

it is the empty surface. Diffeomorphism equivalence classes of floating tf-surfaces are
in a bijection with endomorphisms of the object 0 of TFS. Such a surface is a disjoint
union of its connected components, and a component is uniquely determined by its pair
€+1,g),4£, g € Z,, the number of boundary components and the genus, respectively.
Any such pair is realized by some surface, since pairs (0+ 1, 0), (1+1,0),and (0+1, 1)
are realized by a disk, an annulus, a flat punctured torus, see Fig. 7, and taking band-
connected sum of surfaces with invariants ({1 + 1, g1), (€2 + 1, g2) yields a surface with
the invariant (€1 + £ + 1, g1 + g2). Choose a closed connected tf-surface S¢41, 4, one for
each value of these parameters.

Connected morphisms from 0 to 0 in TFS are in a bijection with S¢41, as above.
Endomorphisms of 0 in TFS is a free commutative monoid on generators Sg;1,¢, OVer
alll, g € Zy,

Endtgs(0) = (Se+1,6)¢,620-
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(0+1,0) (1+1,0) (0+1,1) (2+1,0) (1+1,1)

VOBOO

Fig. 7. Examples of closed connected tf-surfaces Sy ¢ for small values of £ and g. We explicitly write £ + 1
to remember that a surface always have at least one boundary component

An element a € Endrrs(0) has a unique presentation as a finite product of Sg41,¢’s with
positive integer multiplicities,

k
a=[]Si 1, ricfl2,...}

i=1

Consider a tf-surface S describing a morphism from # to m in TFS. It may have some
floating connected components, that is, those that are disjoint from the horizontal bound-
ary of S. Each of these components is homeomorphic to Sg41,¢ as above for a unique
¢, g. Components of S that have non-empty horizontal boundary are called viewable
or visible components. Any component of S is either floating or viewable. We call S
viewable if it has no floating components. The empty cobordism is viewable.

The commutative monoid Endrgs (0) acts on the set HomTps (2, m) by taking a cobor-
dism to its disjoint union with a floating cobordism. Any morphism S € Homrgs (1, m)
has a unique presentation S = Sp-S1 where So € Endtgs(0), Sj is a viewable cobordism
in Homrps (n, m) and dot - denotes the monoid action. In particular, Homrgs (2, m) is a
free Endps (0)-set with a “basis” of viewable cobordisms.

Let us specialize to viewable cobordisms S. All connected components of S are
viewable and determine a set-theoretic partition of n + m horizontal boundary intervals
of S. Let us label these boundary intervals from left toright by 1, 2, . . . , n for the bottom
intervals and 1/, ..., m’ for the top intervals.

Each viewable component contains a non-empty subset of this set of intervals and
together viewable components give a decomposition A of this set into disjoint sets. We
denote by D;' the set of partitions of these n + m intervals, so that A € D;". To further
understand the structure of morphisms, we restrict to the case of connected S, thus a
surface with one viewable connected component. All horizontal intervals are in S.

The surface § and its horizontal boundary segments inherit orientation from R x [0, 1]
and from induced orientations of the top and bottom boundary of R x [0, 1], see Fig. 8.

We use the convention of reversing the orientation on the source (bottom) part of the
boundary of a cobordism, see Fig. 8. Consequently, bottom intervals Iy, ..., [, in 3§
are oppositely oriented from the rest of the boundary, while top intervals Iy, ..., I,y are
oriented compatibly with the side boundary orientations, inherited from that of S and in
turn inherited from the orientation of R x [0, 1]. In Fig. 8 right we shrank “tentacles”
of S into the “core” of S to make it easier to see compatible and reverse orientations of
the horizontal boundary segments of S.

We can now classify isomorphism classes of connected tf-cobordisms S from n to
m. Such a cobordism has £ + 1 boundary circles and genus g. On £ + 1 boundary circles
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R x [0,1]

81'—(—

O

Yy ———————

+

1 2 LI n

Fig. 8. Orientation convention for R x [0, 1], its top and bottom boundary, surface S and its horizontal and
side boundary

choose n + m non-overlapping intervals and label them 1, ...,n, 1’,..., m’. Choose an
orientation of the interval 1’ or, if m = 0, orientation of interval 1.

The orientation of the interval 1’ induces an orientation of that boundary component of
S and hence of S itself. One then gets induced orientations for all boundary components
of S. Horizontal parts of dS for the intervals 2/, ..., m’ are then oriented compatibly
with the boundary, while those corresponding to the intervals 1, ..., n in the opposite
way from that for the boundary.

Horizontal intervals on the £ + 1 boundary components determine a partition of

N' = {l,...,n,1',....,m}

into £ + 1 disjoint subsets, possibly with some subsets empty. Orientations of boundary
components induce a cyclic order on elements of each subset, where one goes along a
component in the direction of its orientation and records horizontal intervals that one
encounters. We call an instance of this data a locally cyclic partition of N/ together
with a choice of genus g > 0. Denote the set of locally cyclic partitions of N by
Dy .. and by Dy . .(¢) if the number of components is fixed to be € + 1. This time,
empty components are allowed. They correspond to components of 9.5 disjoint from the
boundary R x {0, 1} of the strip. We have

Dyl eye = |_| dy ey (0)-
£>0

For the example in Fig. 8 we have n = 3, m = 2, the set of horizontal intervals is
{1,2,3, 1,2}, there are two components (¢ = 1), and the cyclic orders are (1’, 1,2, 3)
and (2).

Vice versa, suppose given (¢, g) as above, a locally cyclic partition A € Dy’ ... (€) of
N into £ + 1 subsets, possibly with some subsets empty, with a cyclic order on each
subset. To such data we can assign a connected thin flat surface S(X, g) of genus g with
the horizontal boundary these 7 +m intervals, £+ 1 boundary components, and horizontal
intervals placed according to the cyclic order for the subset along each component.

For another example, for n = 4, m = 3, the partition {(1’, 4,2’,2), (3, 1, 3), O},
which includes one copy of the empty set, with cyclic orders as indicated and genus
g = 2 the resulting tf-surface is shown in Fig. 9 right.

This bijection between connected morphisms from n to m and elements of the set

DZnyC X Z4 leads to a classification of morphisms in TFS. An arbitrary morphism
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1 23

: 2
(02 &

Fig. 9. Left: converting the partition and genus data into a surface with boundary and labelled edges on the
boundary. One boundary component (inner right) does not carry labelled edges, since the partition contains
one copy of the empty set. Genus two is indicated by schematically showing two handles. Right: stretching
out labelled edges into corresponding horizontal intervals to produce a morphism in TFS

S € Homrgs(n, m) is the union of the viewable subcobordism of S and the floating
subcobordism. The latter are classified by elements of Homtgs (0, 0) and admit a very
explicit description, via pairs (£, g) of the number of circles minus one and the genus of
each connected component. The viewable subcobordism S’ of S determines a partition
of N by with the set of horizontal intervals for each component of S being a part of
that partition. Each part of this partition is non-empty.

Next, for each part of the partition, remove the connected components of S’ for all
other parts, downsizing to just one component S”. Relabel the horizontal intervals for
S§”into 1,2,...,n" and 1,2, ..., m"”. Then such components S” are classified by data
as above: a locally cyclic partition of N7, (possibly with empty subsets included) and a
choice of genus g > 0.

Putting the steps of this algorithm together gives a classification of morphisms from
n tom in TFS.

2.3. Endomorphisms of 1 and homs between 0 and 1 in TFS. The category TFS is rigid
symmetric monoidal, with the unit object 0 and the generating self-dual object 1, with
all objects being tensor powers of the generating object, n = 1%",

In the rest of this section, since we only consider the category TFS, we may write
Hom(n, m) instead of HomTgs (n, m), End(n) instead of EndTtgs(n), etc.

Connected endomorphisms of 1: Endomorphisms End(1) = Endtps(1) of the object
1 in the category TFS constitute a monoid. Consider the submonoid End(1) of End(1)
that consists of connected endomorphisms of 1. Define endomorphisms by, by, b3 €
End€(1) via diagrams in Fig. 10.

Note that by has equivalent presentations, as shown in Fig. 11. The lastdiagramis nota
tf-surface, but describes a diffeomorphism class of one (rel boundary). The tf-cobordism
b> has genus one and one boundary component, with two horizontal segments labelled
1 and 1’ on it, which uniquely determines it as an element of End(1).
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b § b3

Fig. 10. Endomorphisms b1, by, b3

¥

Fig. 11. Presentations of b,. The diagram on the right is not a thin flat presentation but shows a cobordism
that can be deformed to a diagram in TFS

We refer to by as the “hole” cobordism, b, as the “handle” cobordism, b3 as the
“cross” cobordism.

Proposition 2.1. The endomorphisms by, by, bz € EndTrs (1) pairwise commute:
bi1by = baby, bib3 = b3by, babs = b3b;.

Proof. Note that the product with b; just adds a hole with no horizontal segments on it
to a connected cobordism. Product with b, adds a handle to a connected cobordism. 0O

Proposition 2.2. e End“(1) is a commutative monoid generated by commuting ele-
ments by, by, by with an additional defining relation

b3 = by b;.
e I“n consists of tne fo owing 1stinct elements:
End¢(1) consi he following distinct el
biby, bibybs, n,m > 0.

Proof. A cobordism S € End“(1) is a connected surface with £ + 1 boundary circles,
genus g, and two horizontal intervals on it. If the intervals are on the same connected
component of the boundary, S = bfbg. If the intervals lie on distinct boundary compo-

nents then £ > 1 and S = b{~'65bs. O

Spaces Hom(0, 1) and Hom(1, 0): An element y € Hom(0, 1) is a tf-cobordism
with one horizontal interval, at the top. It is a product y; yg of one viewable component
y1 € Hom(0, 1) and a closed cobordism yg € Hom(0, 0). Assume that y is viewable,

thus connected, since it has a unique horizontal segment. Then y is determined by the
number £ + 1 of its boundary components and the genus g and can be written as

y = bib5,

where ¢ is the morphism 0 — 1 shown in Fig. 3 on far left. Note that b3t = by¢.
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Proposition 2.3. A morphism y € Homtrs (0, 1) has a unique presentation y = bfbg L-
yo, where yo € End(0) is a floating cobordism.

Reflecting cobordisms about the horizontal line, we obtain a classification of elements
in HOIIlTps(l , 0).

Proposition 2.4. A morphism y € Homrrs(1, 0) has a unique presentation y = yy -
ebfbg, where yo € End(0) is a floating cobordism.

Endomorphism monoid End(1). Recall that we continue with a minor abuse of nota-
tion, where we denote by 1 the generating object of TFS, also use it as the label for the
bottom left horizontal interval of a cobordism in Hom(n, m), and use it convenionally
as the label for the first natural number.

An element y of Endtgs(1) may be one of the two types:

1. Horizontal intervals 1 and 1’ belong to the same connected component of y.
2. Intervals 1 and 1’ belong to different connected components of y.

Denote by U; the set of elements of type i € {1, 2}, so that
End(1) =U,uU,. 3)

The set U is closed under left and right multiplication by elements of End(1), thus
constitutes a 2-sided ideal in this monoid. The set U is a unital submonoid in End(1).
These maps

U, — End(1) «— U,

upgrade decomposition (3). The monoid U; is commutative and naturally decomposes
U; = End®(1) x End(0)

into the direct product, both terms of which we have already described. The direct product
corresponds to splitting an element of U; into the viewable connected component and a
floating cobordism.

Likewise, an element y of U splits into a floating cobordism y( and a viewable one
y1. A viewable element y; of U; consists of two connected components, one bounding
horizontal inteval 1, the other bounding 1’. Such an element can be written as

yi = b'b5' - eb2b5?,
with a general y € U, given by
¢ ¢
y=0b'b5" - yo - eb?b5.

Multiplication of two viewable elements as above produces an additional connected
component, see Fig. 12, where by the (¢, g) coupon we denote the endomorphism bf b§
of 1.

Remark. Unlike the monoids End(0), End“(1), and their direct product U;, monoid
End(1) and its subsemigroup U, are not commutative.

3. Linearizations of the Category TFS

In this section we work over a field k, but the construction and some results may be
generalized to an arbitrary commutative ring R (or a commutative ring with additional
conditions, such as being noetherian). A definitive starting reference for recognizable
series with coefficients in commutative rings is Hazewinkel [11].
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Fig. 12. Product of two viewable elements of U, produces a floating component 6b12+ 3b§2+g3z =
Sey+03+1,g5+g3- in addition to the components bounding intervals 1 and 1

3.1. Categories KTFS and VTES,, for recognizable a. Category KTFS. Starting with
TFS we can pass to its preadditive closure KTFS. Objects of KTFS are the same as those
of TFS, thatis, non-negative integers n € Z.. A morphism in KTFS from n tom is a finite
k-linear combination of morphisms from n to m in TFS. In particular, Homgtps (2, m)
is a k-vector space with a basis Homrgs (12, m). Composition of morphisms is defined
in the obvious way.

Category kTFS is a k-linear preadditive category. Itis also arigid symmetric monoidal
category.

Power series o. The ring Homgtrs (0, 0) of endomorphisms of the unit object O of
KTFS is naturally isomorphic to the monoid algebra of Homtgs (0, 0). The latter is a
free commutative monoid on generators Sy41,g, over all £, g € Z,, so that

Homgtrs (0, 0) = K[Ser1,6le,6ez,

is the polynomial algebra on countably many generators, parametrized by pairs (¢, g)
of non-negative integers. Homomorphisms of k-algebras

Homgtgs (0, 0) — k

are in a bijection with doubly-infinite sequences

o= (‘xﬁ,g)f,geZJ,y 0y o € k.

The bijection associates to a sequence « the homomorphism, also denoted «,

Homrgs (0, 0) = K[Se41,¢lr.gez, —> K, @(Ser1.g) = g -

Sequences « are also in a bijection with multiplicative k-valued evaluations of floating
cobordisms in TFS. These evaluations are maps from the set of floating cobordisms
(endomorphisms of object 0) in TFS to k that take disjoint union of cobordisms to the
product of evaluations,

a(SUS) =a(S) - als).

Thus, « is a map of sets
ol xZy — Kk
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that we can think of a Z, x Z,-matrix with coefficients in k

0,0 @01 Q02 03
o0 o)1 o122 o3
a=| @0 a1 @z a3
030 o031 032 (33

We encode « into power series in two variables 71, T3:

Zo(T1. T) = Y ko Ti TS, @ = (kglhgez, g€k )
k,g>0

A doubly-infinite sequence « can also be thought of as a linear functional on the space
of polynomials in two variables:

a € K[Ty, I>]* := Homg (K[ T}, T>], K).

We assume that « is not identically zero (the theory is trivial otherwise). Then ker(«) C
k[T, T>] is a codimension one subspace.

Category VTFS,. Given «, we can form the quotient VTFS, of category KTFS
by adding the relation that a floating surface S¢.1,, of genus g with £ + 1 boundary
components evaluates to a¢ o € k. Objects of VTFS, are still non-negative integers n.
Morphisms from 7 to m are finite k-linear combinations of viewable cobordisms from n
to m. Composition of cobordisms from » to m and from m to k is a cobordism from n to
k which may have floating components. These components are removed simultaneously
with multiplying the viewable cobordism that remains by the product of a¢ s, for every
component Sy .

The space of homs from n to m in this category has a basis of viewable cobordisms
from n to m. Letter V in the notation VTFS,, stands for viewable.

Recognizable series. Borrowing terminology from control theory [7,10], we say that
a linear functional or series « is recognizable if ker(«) contains an ideal I € K[T7, T»]
of finite codimension.

Proposition 3.1. « is recognizable iff the power series Zy has the form

P(T1, Tr)
01(T) 02:(T»)’

where Q1(T1), Q2(T2) are one-variable polynomials and P(T1, T») is a two-variable
polynomial, all with coefficients in the field k.

Zy(T, ) = 5)

We assume that Q1(0) # 0, 02(0) # 0, otherwise at least one of these polynomials
is not coprime with P (T, T>) and either T} or T, cancels out from the numerator and
denominator. With the denominator not zero at 71, 7> = 0 the power series expansion
makes sense.

Proof. See [7] for a proof. This result is also mentioned in [10, Remark 2]. To prove it,
assume that « is recognizable. We start with the case when k is algebraically closed. A
finite codimension ideal I C k[T, T>] necessarily contains a sum,

L QK[ ] +K[T11® I, C I CK[Ty, T>] (6)
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for some finite codimension ideals I; C K[T7] and I C K[T»]. To see this, note that
the finite affine scheme Spec(k[77, 72]/1) is supported over finitely many points of the
affine plane A%, Projecting these points onto the coordinate lines and counting them
with multiplicities produces two one-variable polynomials U;(T), U2(T) such that
contains the ideal (U1 (T1)) + (U2(T»)) of k[T7, T»]. We can now take principal ideals
I; = (Ui(T;)),i = 1, 2 to get the inclusion on the LHS of (6). This also gives a quotient
map
K[T11/(U1(T1) @ K[T2]/(U2(T2)) —> K[T1, T21/1

lifting to the identity map on k[77, T»]. Existence of such finite codimension ideals I, I»
over an arbitrary field k follows as well.

Hence, recognizable series o has the property that a(Ul(Tl)le ") = 0 for any
k, m > 0. We can assume that U;(T) is a polynomial of some degree r with the lowest
degree term u;T° for s < r and write

Ui(T) = u, T +tp i T 4o ug T 4w, T, 0< s <7y oup, ug #0, uj ek
Then, for any k, m > 0
UpQpskm + Ur—10 —L4k,m +  +  + U1 skl + UsOspem = 0. @)

We obtain a similar relation on the coefficients with U, and 73 in place of U; and T
and varying the second index. Let us write

Us(T) = vy T +vp T e tog TS g T8, 0 < 5" <7, vy, vg #£0, v; €k
2 = Ur r'—1 s'+1 s > U =r, U/, U » Uj .
Then, for any k, m > 0

Up' Oy om + U/ =10 —14k,m + 0+ U/ 10kt 1,m T Vs ik om = 0. ®)

Consequently, « is eventually recurrent in both 77 and T, directions and its values
are determined by o; ; with0 <i <r,0 < j <r'.
Consider polynomials

@] (T) = TVU] (T_l) = MsTr + Ugt] Tr_l + MS+2TV_2 +et l/err_s,
O0x(T) =T ' Us(T™") = vgT" + vy T" " +vgaT" 24 oo b0 T
Form the product
P(T1,Ty) i= Zo(T1, T) 01(T1) Q2(T2) = Y wi;T{ T}
i,j=0

and examine coefficients of its power series expansion. Formulas (7), (8) show that
w; j = 0ifi > r of j > r’. Therefore, P(T1, T>) is a polynomial with T, 7> degrees
bounded by r — 1, r’ — 1, respectively. We can then form the quotient

P(Ty, T»)
01(T) 02(T7)

The numerator and denominator may share common factors, including 7, ~* 7 "= After
canceling those out, we arrive at the presentation (5) for Zy (71, T3).

We leave the proof of the opposite implication of the proposition to the reader or
refer to [7].

Note that the proof works for any finite number of variables 71, .. ., T¢, not only for
two. 0O
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The condition that « is recognizable can also be expressed via its Hankel matrix
H,. The latter matrix has rows and columns enumerated by pairs (m, k) € Z; X Zy,
equivalently by the monomial basis elements 77" T2k. The ((m1, k1), (m2, k2))-entry of
Hy 1S Oy 4my, ki +ko - The following result is proved in [7].

Proposition 3.2. The series o is recognizable iff the Hankel matrix H, has finite rank.

Note that H, has finite rank iff there exists M such that any M x M minor of H, has
determinant zero. The rank is M — 1 if in addition there is an (M — 1) x (M — 1) minor
with a non-zero determinant.

3.2. Skein category STFS,. Recognizable series and commutative Frobenius algebras.
Assume that ¢ is recognizable. Among all finite-codimension ideals I C ker(«) there
is a unique largest ideal I,, given by the sum over all such /. Equivalently, it can be
described as follows. There is a homomorphism of k[77, T>]-modules

h:K[Ti, ] — K[T1, To]* 9

given by sending 1 to « and z € K[Ty, T5] to za € K[T1, T»]* with (za)(f) = a(zf).
The ideal 1, is the kernel of A.
Notice that o descends to a nondegenerate bilinear form on the quotient algebra

Ay = K[T1, T2]/ 1. (10)

In particular, A, is a commutative Frobenius algebra on two generators 71, 7> with a
nondegenerate trace form «.

Vice versa, assume given a commutative Frobenius k-algebra B with the nondegen-
erate trace form 8 : B —> Kk and a pair of generators g1, g». To such data we can
associate a surjective homomorphism

Y K[T1, o] — B, y(Ti) = gi, i = 1,2,

the trace map « = 8 o ¢ on k[T7, T>] given by composing ¥ with B, and recognizable
series
ap =Y PBlgigT|T;.
£,8>0

Thus, recognizable power series on K[77, T>] are classified by isomorphism classes of
data (B, g1, g2, B): a commutative Frobenius algebra B generated by g1, g» € B and a
non-degenerate trace f.

Category STFS,. We can now define the category STFS,, (where first S stands for
“skein”) to be a quotient of VTES,, by the skein relations in the ideal I,. The category
STFS,, has the same objects as all the other cobordism categories we’ve considered so
far, that is, nonnegative integers n. Morphisms from n to m are k-linear combinations
of viewable cobordisms modulo the relations in /. Precisely, let

p(T, 1) =Y pijTiT] € I (1)
i,J

be a polynomial in the ideal /. Given a viewable cobordism x choose a component ¢ of
x and denote by x.(i, j) the cobordism given by inserting i holes and adding j handles
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Fig. 13. b(v), for v = 37| T» — 4T} + T{ T}: handles are shown schematically

to x at the component ¢. We now mod out the hom space Homyrrs,, (1, m), which is a
k-vector space with a basis of all viewable cobordisms from 7 to m, by the relations

> pijxeli, j) =0,

iJj

one for each component ¢ of x, over all viewable cobordisms x.

It is easy to see that these “skein” relations are compatible with «-evaluation of
floating cobordisms. Namely, if instead of a viewable cobordism x we consider a floating
cobordism y and choose a component ¢ of y to add holes and handles, resulting in
cobordisms y.(i, j), then

Y pije(yel, j) =0.

i
This compatibility condition, immediate from our definition of I, as the kernel of the
module map (9), ensures non-triviality of this quotient and its compatibility with the
composition of morphisms.

Viewing VTFS, as a tensor category, it is enough to write down corresponding
relations on homs from O to 1 and then mod out by them in the tensor category (by
gluing each term in the resulting linear combination of products of holes and handles
on a disk to any component along a segment on its side boundary). Choose a generating
set vy, ..., v of I, viewed as k[T, T»]-module. Specializing to a single basis element
v;, assume that it is given by the polynomial p on the right hand side of (11). Form the
element

b(vj) =Y pijbib} 1 € Hom(0, 1).
i,J
The skein category STFS, can be defined as the quotient of VTFS,, by the tensor

ideal generated by elements b(vy), ..., b(v,). Figure 13 shows an example of an element
b(v).

Remark. Forarecognizable series « there are unique minimal degree monic polynomials

qa,1549a,2,

1

—_— ’ /7
Go1(xX) =x"+a_1 X"+t ag, go,(x) =x" +ay,_x' 1+--~+516,

such that
qa,1(T1) € Iy, qu2(T2) € Iy.
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Fig. 14. Factorization of a connected cobordism x into a coupon and a minimal cobordism is shown schemat-

ically. Since y is connected, b’i b% coupon can be moved to any leg of y

Among skein relations associated to elements of I, in STES,, there is a polynomial
relation that utilizes only adding holes to a component of the cobordism. This relation
is given by the polynomial g, 1(71):

b} +a,_1b’1_1 +.-t+ay=0,

describing an equality in the ring of endomorphisms of object 1 of STFS,,, where b is the
hole cobordism, see Fig. 11. Equivalently, it can be rewritten as a relation in Hom(0, 1):

B +a_1b 7+ ag) =0,

Likewise, there is a skein relation on cobordisms that differ only by genus of a given
component. The relation is given by the polynomial gy 2(72):

bh +a;,_1b’2/_1 +-tay =0,
where b is the handle morphism, see Fig. 11.

Minimal viewable cobordisms, By-companions, and bases of hom spaces of STES,,.
Consider a connected viewable cobordism x. We say that x is minimal if it has genus
zero and no holes, that is, each boundary component of x contains at least one horizontal
segment. Equivalently x is minimal if it cannot be factored into x'b;x” or x'byx” for
some morphisms x’, x”. Note that if such a factorization exists, then there exists one
with x” the identity cobordism and one with x” the identity cobordism. Any viewable

connected cobordism x from n to m with m > 0 can be written as (bli bé ®id;,—1)y for

some minimal y and, if n > 0, as y(b’ibé ®id,_1) for the same y, see Fig. 14. If one of
n or m is zero, only one of these two presentations exist.

Equivalently, a connected viewable cobordism x is minimal if it is handless and has
no holes.

A viewable cobordism y is called minimal if each connected component of y is
minimal. A viewable cobordism x factors into a product of a minimal cobordism and
“coupons” carrying powers of b1, b, one for each connected component of x. That is,
for each connected component ¢ of x count holes and handles on it and then remove them
to get a minimal connected component ¢’. The original component can be recovered by
inserting holes and handles back anywhere along ¢’. For instance, they may be inserted
at one of its top or bottom legs by multiplying ¢’ by the corresponding powers of b and
by there.

To any viewable x we can associate its minimal counterpart y by removing holes and
handles from each connected component of x. Given y, we can recover x by multiplying
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by appropriate powers of b and b, at horizontal intervals for different components of

Denote by M (n, m) the set of minimal viewable cobordisms from 7 to m.
Proposition 3.3. M(n, m) is a finite set.

Proof. From our classification of morphisms in TFS it is clear that minimal cobordisms
from n to m are in a bijection with partitions A of the set N/!' of n+m horizontal intervals,
together with a choice of a partition u; of each part A; of A and a cyclic order on each
partof ;. O

Recall finite codimension ideal 1, (the syntactic ideal) associated with recognizable
series «. Let
dy = dim(K[T1, T2]/1a).
Choose a set of pairs
Py = (e, jOV{",. s, i € Zs

such that monomials Tll g sz " constitute a basis of the algebra K[T}, T»]/1,. Denote this
basis by B, . Itis well-known [18] that a basis can always be choosen so that the exponents
(ir, jr) of the monomials, when placed into corresponding points of the square lattice,
constitute a partition of d,, but we do not need this result here.

Choose a minimal cobordism y and assign an element v, € B, to each connected
component ¢ of y. This assignment gives rise to a cobordism x obtained from y by

inserting cobordisms b(v,) at all components ¢ of y. For v, = Tf TZJ we add i holes
and j handles to the component ¢ or, equivalently, multiply it at one of its horizontal
boundary intervals by b’ b3.

In this way to y € M(n, m) there are assigned d/, cobordisms x, where r is the
number of components of y. These x are called By-companions of y. Denote the set of
such x by By ().

Proposition 3.4. Elements of sets By(y), over all y € M(n, m), constitute a basis of
Homgtrs, (n, m).

In other words, to get a basis of homs from #n to m in the skein category STFS, we
take all minimal cobordisms y from » to m and insert a basis element from B, into each
component of y.

Proof. The proposition follows immediately from our construction of STFS,,. One needs
to check consistency, that our rules do not force additional relations when composing
cobordisms. This is straightforward. O

Corollary 3.5. Hom spaces in the category STFS, are finite dimensional.

Remark. In a seeming discrepancy, object 1 of the category TFS is a symmetric Frobe-
nius object but not a commutative Frobenius object, see Fig. 6 left, since the multiplica-
tionmap 1 ® 1 —> 1 does not commute with the permutation endomorphism of 1 ® 1.
Yet, in the category STFS, the state space Hom(0, 1) of the interval is a commutative
Frobenius algebra Ay, defined in (10), with the multiplication on Hom(0, 1) given by
the thin flat pants cobordism in Fig. 15 left. This is explained by the observation that
the thin flat pants multiplication is commutative in the categories we consider, including
TFS and VTFS,, and STFS,,. Indeed, viewable morphisms from O to 1 in TFS have the
form b’ b3't, and the product of two such morphisms does not depend on their order, see
Fig. 15 right. Adding floating components (or passing to linear combinations, or taking
quotients) does not break commutativity.

Later, in Section 5.1, in a similar situation we also denote b’ b5't by b} b5'.
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Fig. 15. Left: thin flat pants cobordism from 1 ® 1 to 1. Right: commutativity of multiplication in Hom(0, 1)

. — . > (@)

Fig. 16. The trace map: closing endomorphism x of n into X and applying «

3.3. Quotient by negligible morphisms and Karoubi envelopes.. Category TFS,. Con-
sider the ideal J, C STFS, of negligible morphisms, relative to the trace form try
associated with o, and form the quotient category

TFSy := STFSy/ Jq.

The trace form is given on a cobordism x from n to n by closing it via n annuli
connecting n top with n bottom circles of the horizontal boundary of x into a floating
cobordism X and applying «,

try (x) == a ().

This operation is depicted in Fig. 16.

A morphism y € Hom(n, m) is called negligible if tr,(zy) = 0 for any morphism
z € Hom(m, n). Negligible morphisms constitute a two-sided ideal in the pre-additive
category STFS,.

The quotient category TFS,, has finite-dimensional hom spaces, as does STFS,, (recall
that « is recognizable). The trace is nondegenerate on TFS,, and defines perfect bilinear
pairings

Hom(n, m) ® Hom(m, n) — k

on its hom spaces. We may call TFS,, the gligible quotient of STFS,, having modded
out by the ideal of negligible morphisms.

Let us go back to the category TFS and its linear version kTFS. Fix the number n of
intervals and consider the vector space V,, with a basis of all viewable tf-surfaces with
that boundary, that is viewable cobordisms in TFS from 0 to n. Given «, define a bilinear
form on V,, via its values on pairs of basis vectors:

(x,y) =a(yx) €Kk,

where y is given by reflecting y about a horizontal line to get a cobordism from r to 0,
and yx is a floating cobordism from O to 0 given by composing y and x. This bilinear
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form on V,, is symmetric. Define A, (n) as the quotient of V,, by the kernel of this bilinear
form. Then there is a canonical isomorphism

Ay (n) = Homrps, (0, n)
as well as isomorphisms
Ay (n+m) = Homrrs, (0, n + m) = Homrgs, (m, n)

given by moving m invervals from bottom to top via the duality morphism.
The symmetric group S, acts by permutation cobordisms on A, (n). Furthermore,
at each circle there is an action of the endomorphism algebra End(1) = Endrrs, (1).
Consequently, the cross-product algebra kS,, x End(1)®k acts on Ay (n).
Multiplication maps

Ay(n) ® Ay(m) — Ay(n+m)

Ay = EB Ay (n)

n>0

turn the direct sum

into a unital commutative associative graded algebra, with A,(0) = k. All of this
data, including the power series ), ., dim A, (n)z" encoding dimensions of A, (n), are
invariants of recognizable series .

In the diagram of five categories and four functors

TFS — kKTFS — VTFS, — STFS, — TFS,

one can get from KTFS to TFS, in one step, bypassing VTFS, and STFS,, by taking
the ideal of negligible morphisms in KTFS (for essentially the same trace map, shown in
Fig. 16) and modding out by it. It is convenient to introduce those intermediate categories,
though. For instance, STFS, already has finite-dimensional hom spaces and allows to
define the analogue of the Deligne category in our case.

The Deligne category DTFS,, and its gligible quotient DTES . The skein category
STFS,, is a rigid symmetric monoidal k-linear category with objects n € Z,. and finite-
dimensional hom spaces. We form the additive Karoubi closure

DTFS, := Kar(STFSY)

by allowing formal finite direct sums of objects in STFS, extending morphisms corre-
spondingly, and then adding idempotents to get a Karoubi-closed category. Category
DTEFS,, plays the role of the Deligne category in our construction.

In the Deligne category DTFS, endomorphisms of an object (n, ¢), where e is an
idempotent endomorphism of n, inherit the trace map tr, into the ground field. Con-
sequently, category DTFS,, also has a two-sided ideal of negligible morphisms Jp 4.
Taking the quotient by this ideal

DTFS,, := DTFSy/Jp.o

gives us an idempotent-complete category with non-degenerate symmetric bilinear forms
on hom spaces Hom(0, (n, e)), where (n, e) is an object as above, and more generally
non-degenerate bilinear pairings on hom spaces

Hom((n, e), (m, €')) ® Hom((m, €'), (n, e)) — k
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where ¢’ is an idempotent endomorphism of object m. Due to the symmetry between
homs given by the contravariant involution on all categories that we have considered so
far (reflection about a horizontal line), the above bilinear pairings can be converted into
non-degenerate symmetric bilinear forms on Hom((n, e), (m, ¢')) in DTES ,.

Category DTES , is also equivalent to the additive Karoubi closure of the category
TFS,, see the commutative square in (12).

3.4. Summary of the categories and functors. Below is a summary for each category
that has been considered.

e TFS: the category of thin flat surfaces (tf-surfaces). Its objects are non-negative
integers and morphisms are thin flat surfaces.

e KTFS: this category has the same objects as TFS; its morphisms are formal finite
k-linear combinations of morphisms in TFS.

e VTFS,: in this quotient category of kTFS we reduce morphisms to linear com-
binations of viewable cobordisms. Floating connected components are removed by
evaluating them via «.

e STFS,: to define this category, specialize to recognizable « and add skein rela-
tions by modding out by elements of the ideal 1, in k[77, T>] along each connected
component of a surface (77 is a hole, 7> a handle). Hom spaces in this category are
finite-dimensional.

e TFS,: the quotient of STFS, by the ideal J,, of negligible morphisms. This category
is also equivalent (even isomorphic) to the quotients of KTFS and VTFS, by the
corresponding ideals of negligible morphisms in them. The trace pairing in TFS,
between Hom(n, m) and Hom(m, n) is perfect.

e DTFS,: itis the analogue of the Deligne category obtained from STFS,, by allowing
finite direct sums of objects and then adding idempotents as objects to get a Karoubi-
closed category.

e DTES ,: the quotient of DTFS,, by the two-sided ideal of negligible morphisms.
This category is equivalent to the additive Karoubi closure of TFS,, and sits in the
bottom right corner of the commutative square below.

We arrange these categories and functors, when « is recognizable, into the following
diagram:

TFS —— kTFS —— VTFS, —— STFS, —— DTFS,

[ ™
TFS, —> DTFS,,

All seven categories are rigid symmetric monoidal. All but the leftmost category TFS
are k-linear. Except for the two categories on the far right, the objects of each category
are non-negative integers. The four categories on the right all have finite-dimensional
hom spaces. The two categories on the far right are additive and Karoubi-closed. The
four categories in the middle of the diagram are pre-additive but not additive.

The arrows show functors between these categories considered in the paper. The
square is commutative. An analogous diagram of functors and categories can be found
in [16] for the category of oriented 2D cobordisms in place of TFS.

It is possible to go directly from kTFS to TFS, by modding out by the ideal of
negligible morphisms in the former category. We found it convenient to get to this
quotient in several steps, introducing categories VTFS,, and STFS,, along the way.
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Remark. For possible future use, it may be convenient to relabel the categories above
using shorter strings. For instance, writing S (for “surfaces”) in place of TFS we can
rename the categories as follows:

S kS VSq SSq DS,

Lol m

Sﬂl — Ea

For convenience we wrote below short reminders of what these categories are:

cobordisms — k-linear —— viewable skein Deligne (Karoubian)

| |

gligible —— gligible and Karoubian
(14)
If « is not recognizable, we can still define categories VTFS,,, TFS, and DTES , (in
the streamlined notation, categories VS, Sq and DS ), but it is not clear whether these
categories may be interesting for some such «.

4. Hilbert Scheme and Recognizable Series

Recognizable series and points on the dual tautological bundle. Recognizable series o
gives rise to the ideal I, in K[77, T>] of finite codimension k = d, and the quotient
algebra A, by this ideal, see formula (10) in Section 3.2. This algebra is commutative
Frobenius and comes with two generators 77, 7> and a non-degenerate trace. The ideal 1,
describes a point in the Hilbert scheme of codimension k ideals in A> = Spec k[T, T»],
where

k=d, =dim A,.

Let us specialize to the ground field k = C. Denote by Rec; the set of recognizable
series with the syntactic ideal I, of codimension k and referto o € Recy asarecognizable
series of codimension k. Let also

Rec := |_| Recg, Rec<, := |_| Recy.
k=0 k<n

Consider the Hilbert scheme H* = Hilb*(C?) of k points in C? or, equivalently, the
scheme of codimension k ideals in C[T], T3], see [20].

Denote by 7; the tautological bundle over H* whose fiber over the point associated
to an ideal / of codimension k is the space A; = C[T}, T2]/1. Points of the dual bundle
’Z;(V above a point / € H k describe elements of A} = Homc(A;, C), that is, linear
functionals on A;. Let

n: T — H*

be the projection of the bundle onto its base. Forapoint p € 7, theelement (p) € H kis
the projection of p onto the base of the bundle, and we denote by I (p) the corresponding
codimension k ideal of C[Ty, T>].

The point p also defines a linear functional , on

Arp) = C[T, Tz]/lﬂ(p), ap  Agpp) — C,
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associated to p. This functional lifts to a functional on C[Ty, T»], which is recogniz-
able, contains I () in its kernel, and has codimension at most k. The latter functional
(equivalently, recognizable power series) is also denoted o).

This functional has the associated ideal I, = I, » C C[T}, T>] of finite codimension,
the largest ideal in the kernel of functional ), on C[Tj, T>]. There is an inclusion of
ideals

Iy C Ip.

For a generic point p on 7, this inclusion is the equality /,;(,) = I,,, but for some points
p the inclusion is proper.

Another way to describe the ideal /), is to consider the symmetric bilinear form (, ),
on Ay (p) given by

(x, Y)p = Olp(x)’), X,y € An(p)-

The kernel of the form (, ), is an ideal I[g in Ay(p) that lifts to the above ideal I,
in C[T, T2], and there is an isomorphism I;, = I, /I (py- The inclusion I () C Ip is
proper precisely when [/ 1’, is a nonzero ideal, that is, when the bilinear form ( , ), is
degenerate.

These ideals are shown in the diagram below, where the two squares on the left are
pull-backs. The bottom sequence is short exact, and the top row becomes exact upon
replacing I (p) by O.

I Ip——C[T1, )] —= A, —=0

o |

0 4 Ax(p) Ap 0

Denote by Dy the subset of 7," that consists of points p such that the inclusion
Iz (py C Ip is proper:
Dy = {p € T/ lx(p) # Ip}.

Recognizable power series ), for p € 7, has codimension k (in our notations, a, €
Recy) precisely when p € 7,7\ Dy.
If p € Dy so that
codim(/,) =m < k = codim(/(p)),

then recognizable power series «, has codimension m strictly less than k and ), € Recy,.
For example, if p € H* C 7, is a point in the zero section of 7", so that the linear
map o), is identically zero, the ideal /,, = C[T, T>] has zero codimension and m = 0.
A mild confusion exists in our notations in this case (and in this case only), for then
p=7n(p).

Going the other way, to a recognizable series « with the associated ideal I, of codi-
mension d, = k as above we associate a point p, of 7, . Itis the point in the fiber of 7,/
over the ideal I, which describes functional @ on C[T}, T>] and the induced functional
on the quotient algebra A, = Ay, .

The above discussion implies the proposition below.

Proposition 4.1. Assigning py to a € Recy and ap, to p € T\ Dy, establishes a bijec-
tion
Recy = Z(v\Dk.
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In particular, py, = p and &), = « for p and & as in the proposition, so the two
assignments are mutually-inverse bijections. [

Note that the two ideals coincide, I; () = I, precisely when o, is a nondegenerate
trace map on Ay (p). In particular, in this case A (p) is Frobenius. We obtain the following
statement.

Proposition 4.2. Points p € ’Z;{V\Dk classify isomorphism classes of data (A, €, t1, 1)
a commutative Frobenius algebra A over C of dimension k with a non-degenerate trace
€ and generators ty, t of A.

Not every commutative Frobenius algebra can be generated by two elements, of
course.
Taking codimension m < k of I, into account, one gets the following statement.

Proposition 4.3. Associating ap, to p € T,Y gives a surjective map

k
7, — |_| Rec,,.

m=0
Restricting this map to Dy gives a surjective map

k—1
D, — |_|Recm,

m=0
while on the complement to Dy this map is the bijection in Proposition 4.1.

Example. The set Recp is a single point corresponding to the zero series «, o; j =
0,i,j € Z+. The ideal for this point is the entire algebra C[Ty, T»]. Points of Rec
correspond to hyperplanes (codimension one subspaces) that are ideals J = (71 —
A1, T» — Ap) together with a nonzero functional on C = C[T}, T»/J, determined by its
value A on 1. Consequently, we can identify Rec; = C x C x C* by sending a point in
Rec to the triple (A1, A2, A).

Set-theoretic divisor Dy. Quasi-projective variety H* admits an open cover by affine
sets U, over all partitions X of k, see Theorem 18.4 in [18, Section 18.4], for example.
Place partition A in the corner of the first quadrant of the plane so that it covers nodes
(i, j) of the square lattice with 0 < i < A ;4. In particular, it covers A nodes on the
X-axis.

Let T;, be the set of monomials Tli sz with (i, j) € A (in particular, | T} | = k) and T be
the set of complementary monomials, for pairs (i, j) € Z; x Z;\A. Open set U, C H¥
consists of ideals I such that monomials in 73, descend to a basis of A; = C[T}, T»]/1,
see [18, Section 18.4] for details.

The vector bundle 7, — H ¥ can be trivialized over U , being naturally isomorphic
to the trivial bundle of functions on the set T;. A functional p on C[Ty, T2]/Ix(p) is
determined by its values on the basis elements ¢ € T, of this quotient space.

To describe the points p € 7, with(p) € U, consider an arbitrary linear functional
a € (CT,)*, given by its values

«(T{T)) e C, for T{TJ € T,
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and an ideal I € U,. Such pair (¢, 1) trivializes a pair (p, 7(p)) with w(p) € U,. For a
pair u, v € T, take the product uv, view it as an element of A; = C[T}, T>]/1, and then
write it as a linear combination of elements in 7}, allowing to apply « to it explicitly.

Consider a matrix M, where rows and columns are labelled by elements of 7; and
put a(uv) as the entry at the intersection of row u# and column v.

Proposition 4.4. Point p with w(p) € U, is in the subset Dy, iff det(M,) = 0.

Proof. Matrix My, is the Gram or Hankel matrix of the bilinear form (x, y) = a(xy)
on the associative algebra Ay in the basis 7. A bilinear form on a finite-dimensional
algebra B given by the composition of the multiplication with a fixed linear functional on
B is non-degenerate exactly when its Hankel matrix with respect to some (equivalently,
any) basis is non-degenerate, that is, has a non-zero determinant. O

Condition that det(M,) = 0islocally a codimension one condition (given by a single
equation), unless the determinant is identically zero on points (p, w(p)) with =(p) on
some irreducible component of the open subset U, of the Hilbert scheme. To see that
the latter case does not happen, observe that a “generic” point I on the Hilbert scheme
H* corresponds to a semisimple quotient (no nilpotent elements in C[Ty, T>]/1), with
the quotient algebra isomorphic to the product of k fields,

CIT\, T:])I =ECxCx---xC.

On this quotient an open subset of linear functionals are non-degenerate, with the associ-

ated bilinear forms having trivial kernels. Indeed, a functional « on the algebra ]_[f: 1 C
is non-degenerate iff each of its k coefficients is non-zero.
These observations imply the following result.

Proposition 4.5. Dy, is a set-theoretic divisor on the variety T, .

It is straightforward to check that D comes from an actual divisor on 7,”. For a
finite-dimensional C-vector space V define a one-dimensional vector space

detV = (APV)Y = A®P(VY).
The determinantdet @ of abilinear form@: VQV — Cisanelementdet@ e (det V)®?2

defined as the determinant of the matrix of @. Namely, if e, ..., e is a basis of V and

el, ..., e is the dual basis in VV, then ¢! A --- A X is a basis in the one-dimensional

space det V and
=~ ~ 1 ke ©2
deto := det|[a(e;, )| (e" A--- A e )7,

A point p € 7, defines a symmetric bilinear form @), (x, y) := a,(xy) on the fiber
Tr(p) = In(p) of the tautological bundle. The determinant of this form is an element of
(det 7 p))®2. Hence the pullback line bundle

* ((detT)®2) — T

over Z(V has a canonical section oget given by oget(p) := deta),. The set Dy is the
divisor of zeroes of this section.

Corollary 4.6. Dy is the divisor of zeros of the section odet.
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Each point of 7,”\ Dy gives rise to recognizable series « in two variables and to the
corresponding rigid symmetric monoidal categories, as discussed in the Section 3 and
summarized in Section 3.4, including category TFS,, the Deligne category DTFS,, and
its gligible quotient DTES ,. It may be interesting to understand these categories for
various «’s, including finding the analogue of the classification result from [15] on when
the category DTES , is semisimple.

5. Modifications

5.1. Adding closed surfaces. Category TFS can be enlarged to a category C with mor-
phisms — oriented 2D cobordisms (surfaces) with corners between oriented 1D mani-
folds with corners. Extensions of 2D TQFTs to this category have been widely studied
[2,17,19,23]. An oriented 1D manifold with corners is diffeomorphic to a disjoint union
of finitely-many oriented intervals and circles. We adopt a minimalist approach and
choose one manifold for each such diffeomorphism class. Consequently, objects of C
are pairs n = (n1, no) of non-negative integers, and an object n is represented by a fixed
disjoint union W(n) = W(ny, np) of n; intervals and n, circles. Morphisms from n
tom = (m1, my) are compact oriented 2D cobordisms M, possibly with corners, with
both horizontal and side boundary and corners where these two different boundary types
meet:
oM = oM U 0,M, opM = W(my, mp) U (—W(ny,ny)).

Cobordisms that are diffeomorphic rel boundary define the same morphisms. Category
C contains TFS as a subcategory.

C is a rigid symmetric monoidal category, with self-dual objects. The unit object
1 is the empty one-manifold W (0, 0). Its endomorphism monoid is freely generated
by diffeomorphism types of compact connected surfaces with boundary. The latter are
classified by surfaces S¢ , with £ boundary components and of genus g, one for each
pair (¢, g), £, g € Z,. The difference with endomorphisms of the unit object of TFS is
that in C closed surfaces are allowed, which corresponds to £ = 0 and surfaces Sp g,
overall g € Z,.

Multiplicative evaluations 8 of endomorphisms of the unit object are again encoded
by a power series

Zg(T. T) = Y BegTi TS, B = (Brghgers. g€k, (15)
k,g=0

with the first index shifted by 1 compared to evaluations for TFS. We changed the label
from « in evaluations in TES to 8 in C to make it easier to compare evaluations in these
two categories. Now the coefficient

IBk,g = ,B(Sk,g)

is the evaluation of connected genus g surface with k£ boundary components rather than
with k£ + 1 components as in the TFS case, see earlier.

To relate these two power series encodings, in formulas (1) and (4) versus (15), start
with Z, (T1, T>) as in (4) and also form a one-variable power series

Z,(T) =) nTy, nek
k>0
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To the pair (Zy, Z, ) assign the series
Zg(T1, 1) = T1 Zy (T, T2) + Z, (). (16)

Adding coefficients of Z, to the data provided by Z, precisely means that we now
include evaluations of closed surfaces, via coefficients y; (for a closed surface genus k).
The scaling factor 77 in the formula is needed to match the discrepancy in the evaluation
conventions in the two categories TFS and C. Formula (16) gives a bijection between
series encoded by B and those encoded by (e, y). Starting from Zg, one recovers Zy
and Z,, as

Z,(T>) = Zg(0, T»)
Zo(T1, T2) = (Zg(T1, Tr) — Zg(0, T2))/ T

From C pass to its k-linearization kC by allowing finite k-linear combinations of
morphisms in C. Given series 8, we can define analogues of categories VTFS, and
TFS,, in (12). Denote these new categories by VCg and Cg:

e In V(g one evaluates floating components to elements of k via . A connected
component is floating if it has no horizontal boundary.

o To form category Cg we quotient category VCp (alternatively, category kC) by the
two-sided ideal of negligible morphisms, defined in the same way as for TFS.

We say that evaluation 8 (or series Z ) is recognizable if category Cg have finite-
dimensional hom spaces.

Proposition 5.1. 8 is recognizable iff the power series Z g has the form

P(T\, T)

Zs(T1, ) = m—— o,
pIn 1) 01(1) 02(17)

a7

where él(Tl), éz(Tz) are one-variable polynomials and P (Ty, T») is a two-variable
polynomial, all with coefficients in the field k.

It is easy to see that series S is recognizable iff hom spaces
Hom(1, (1, 0)) and Hom(1, (0, 1))

in Cg are finite-dimensional. These are the hom spaces from the empty 1-manifold
W (0, 0) (representing the unit object 1) to an interval W (1, 0) and a circle W (0, 1),
respectively. Necessity of this condition is obvious. Vice versa, if these homs are finite-
dimensional, by analogy with the proof of Proposition 3.1, there are skein relations
allowing to reduce some large number of handles (respectively, holes) on a connected
component to a linear combination of otherwise identical cobordisms but with fewer
handles (respectively holes). The rest of the proof of Proposition 5.1 follows that of
Proposition 3.1. [J

Corollary 5.2. Series B is recognizable iff the corresponding series o and y are both
recognizable.
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C Y (o \/ (1,0)
/N (”
(1,0) T (0,1)

Fig. 17. Maps 8¢ and §;

Note that, when o and y are recognizable, their rational function presentation may
have very different denominators,

P(T, Tr) Py ()
2 T Ty) = LI 1) |
(T1, T) Q1(T1) Q2(T2) y() = e
so that 0
Zy(T1. Ty) = i P(Th, T2) + P, (T>)

01(T)02(T2)  Qy(T)
_ T1P(T, T2) Qy(T2) + Q1(T1) Q2(T2) Py (T2)
01(T1) 02(T2) O (T2) ’

For generic polynomials, there are no cancellations and

01(Ty) = Q1(T1), 02(Tr) = 02(T2) 0, (T»)

are the denominators in the minimal rational presentation (17) for Z 8-
For recognizable §, the state spaces

Ap(1,0) :=Hom¢, (1, (1,0)), Ag(0, 1) :=Homg,(1, (0, 1)),

of homs from the unit object 1 = (0, 0) to the interval and the circle objects, respectively,
are both commutative Frobenius algebras. Annuli, viewed as morphisms between (1, 0)
and (0, 1), see Fig. 17, give linear maps

8o : Ap(1,0) — Ag(0,1), & : Ag(0,1) —> Ag(1,0)

between the underlying vector spaces.

Consider the hole and handle endomorphisms b1, by of the interval and c1, ¢, of the
circle, respectively, in Fig. 18 top.

Multiplications in algebras Ag(1, 0) and Ag(0, 1) are given by pants and flat pants
cobordisms, see Fig. 19, where the cobordisms for the unit and trace morphisms on
Ag(1,0) and Ag(0, 1) are shown as well.

Take endomorphisms b1, by, c1, c2 of the interval and circle and cap them off at the
bottom with the unit morphisms ¢ and ¢’ for the interval and circle (see Fig. 19) to get
elements b; = byt, b, = byt in Ag(1, 0) and elements ¢; = ¢1t/, ¢, = c2t’ in Ag(0, 1),
shown in Fig. 18.

The analogue of Proposition 2.3 holds in C, and the “interval” Frobenius algebra
Ag(1,0) is generated by commuting elements b, b, (the hole and handle elements).
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() ()
(D (D

b by (&1 2
v \.J

Fig. 18. Endomorphisms by, by of the interval, endomorphisms cy, ¢ of the circle and corrresponding ele-
ments by, by of Ag(1,0) = Hom(1, (1, 0)) and elements ¢, ¢, € Ag(0, 1) = Hom(1, (0, 1))

/Noa /\Sa

m L € m/ J €

(

)

)

Fig. 19. Flat pants and pants cobordisms, together with the other structure maps ¢, € and ¢, €’ (units ¢, ¢’ and
counits €, €’) of commutative Frobenius algebras Ag(1,0) and Ag(0, 1)

Likewise, the “circle” Frobenius algebra Ag(0, 1) is generated by commuting hole and
handle elements ¢ and ¢,.

Endomorphisms b1, b3 of the interval in the category C are different (endomorphism
b3 is also shown in Fig. 11), but they induce the same map on Ag(1, 0), see Fig. 20.
There, x € Ag(1, 0) can be written as a linear combination of monomials Qﬁ’_g", with
b3 acting by

babiby = bi*'by = bibjby
Trace maps
€ 1 Ag(0,1) — k, € : Ag(1,0) — Kk, (18)

given by capping off the interval with a disk, respectively the circle with a cap, turn these
two commutative algebras into Frobenius algebras (for recognizable B).
Compositions of 8y and §; are endomorphisms of the interval and the circle in C (and
in Cg) and satisty
8180 = b3, 8081 = ci,
d1c1 = b181, S1c2 b6,
Sob1 = c189, Sobar = 2.
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T

) U . )

Fig. 20. b3x = byx forany x € Ag(1,0). b3 # by as End((1, 0)) in C (and in Cg, in general)

In particular, maps Jo, 81 intertwine the hole endomorphisms by, ¢1 of the interval
and the circle. They also intertwine the handle endomorphisms b3, ¢ of the interval and
the circle.

Their two compositions produce the hole endomorphisms of the interval and the
circle.

The map §; is a surjective unital homomorphism of commutative algebras, while the
map § is an injective homomorphism of cocommutative coalgebras, with comultiplica-
tions given by the dual of the multiplications on these Frobenius algebras. In particular,
8¢ respects traces, in the sense that €’§p = €.

A recognizable power series § is encoded by a commutative Frobenius algebra (the
state space of a circle) Ag(0, 1) with generators ¢, ¢, and non-degenerate trace map €’
such that

Brg =€'(cicd), € g €L (19)

Further unwrapping this data, to a recognizable power series § we can associate

e Two commutative Frobenius algebras A(1,0) = Ag(1,0) and A(0, 1) = Ag(0, 1)
with generators b, b, and ¢, ¢,, respectively (hole and handle elements).
e Non-degenerate traces € and ¢’ as in (18), subject to (19) and

Bertg = €(bib3), €, g € L.

e Linear maps &g, 81:
3o
Ag(1,0) == Ag(0, 1)
81

that intertwine the action of handle elements b, and ¢,. The hole elements are given
by
by =8180(1), ¢; =3od1(D).

e 41 is a surjective unital homomorphism of commutative algebras.

The reader may want to constrast the data coming from a recognizable series 8
as above, with both algebras Ag(0, 1) and Ag(1, 0) commutative Frobenius, with that
given by a 2-dimensional TQFT with corners [2,17,19,23] where the Frobenius algebra
B associated to the interval is not necessarily commutative and the algebra associated
to the circle is related to the center of B.

To a recognizable series f there is associated a finite codimension ideal Ig C
k[T7, T>] describing relations on the hole and handle endomorphisms along any com-
ponent of a surface. Starting with the viewable category VCg, described earlier, where
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3 1

Fig. 21. Left: A morphism in TFS (") from the colored interval (3, 1) to the union (3, 2) L (2, 1) of two colored
intervals. Middle: the dual of object (i, j) is the object (j, i). Right: a connected floating component of genus
1 and the sequence (1, 2, 1). It has one boundary circle of colors 1 and 3 each and two circles of color 2

floating components are evaluated via 8, we impose relations in /g on hole and handle
endomorphisms along any component. The resulting category, denoted SCg (the skein
category) has finite-dimensional hom spaces.

From the skein category we can pass to the already defined gligible quotient Cg by
taking the quotient of SCg by the ideal of negligible morphisms. This ideal comes from
the trace on SCg or, equivalently, from the bilinear form given by pairing of cobordisms.

Taking the additive Karoubi closure of SCg results in the Deligne category DCpg.

Taking the quotient of DCg by the ideal of negligible morphisms produces the cate-
gory D_Cﬁ. Alternatively, this category is equivalent to the additive Karoubi closure of
Cg, and the square below is commutative.

The following diagram summarizes these categories and functors (compare with (12),
(14), and [16]).

C kC Vg SCy DCy

[

Cp —_>D_Cﬁ

Each of the four categories in the vertices of the commutative square has finite-
dimensional hom spaces between its objects.

5.2. Coloring side boundaries of cobordisms. Fix a natural number » > 1 and consider
a modification TES®) of the category TFS where side boundaries of cobordisms are
colored by numbers from 1 tor. Let N, = {1, ..., r} be the set of colors. A morphisms
in TFS") is a tf-surface x, up to rel boundary diffeomorphisms, such that each side (or
vertical) boundary component of x carries a label from N,.. Coloring of x induces a
coloring on the set of corners of x, that is, on endpoints of the one-manifold d,x which
is the horizontal boundary of x, see Fig. 21.

Consequently, each boundary interval I of x, being oriented, gets an induced ordered
sequence (71 (1), ro(I)) of two colors. We consider a skeletal version of TES"), choosing
only one object for each isomorphism class. An object a then is determined by the r x r
matrix M = M (a) with the (i, j)-entry the number of intervals in a colored (i, j).

Thus, objects a are described by r x r matrices of non-negative integers counting
number of colored intervals in a. We can call these objects r-colored or r-labelled
thin one-manifolds or r-boundary colored thin one-manifolds. An object can also be
described by a list of colored intervals in it.
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This skeletal version is still rigid tensor, with the obvious tensor product. The unit
object 1 = ¢ corresponds to the matrix of size 0 x 0.

The notion of a connected component, floating and viewable components of a mor-
phism are defined as for TFS. Commutative monoid End(#) of endomorphisms of the
empty one-manifold @ is a free abelian monoid generated by diffeomorphism classes
of connected floating r-colored tf-surfaces. Such a surface S is classified by its genus
g > 0 and a sequence of r non-negative integers n = (ny, ..., n,), where n; is the
number of boundary components of color i. Denote such component by Sy .. Figure 21
right shows the component S(12,1),1.

For each color i < r there is an embedding of TFS into TES"") by coloring each side
boundary of morphisms in TFS by i. Each horizontal interval is then an (i, i)-interval.

For a morphisms between two objects in TFS( to exist, there must exist a suitable
matching between the colorings of their endpoints. For instance, there are no morphisms
from the empty object ¥ to (i, j) interval if i # j, since the i and j endpoints must
belong to the same side interval and have the same coloring. There are morphisms from
@ to (i, j) U (j, i) but no morphisms from @ to (i, j) U (i, j) fori # j, since matching
the two i’s via a side interval is not possible with our orientation setup.

As usual, denote by KTFS™ the k-linear version of TES"), with the same objects as
TFS") and morphisms — kk-linear combinations of morphisms in TES®"”.

The construction of evaluation categories and recognizable (or rational) series can
be extended from TFS to TFS" in a direct way.

An evaluation « is a multiplicative homomorphism from the monoid End(¢J) of float-
ing colored tf-surfaces to a field k. Such an evaluation is determined by its values on
connected floating surfaces Sy ¢. Let

Zo(To,....T) =Y ang T§T", ong €k 1)
n.g
be a formal power series in r + 1 variables, with
™ =T/ ...T", n=(ny,...,n.), nj €Ly

where T™ is a monomial in T, ..., T,. Thus, T is the genus variable and T, ..., T,
are color variables. Coefficient oy, ¢ at Tog TI” ... T encodes the evaluation of floating
connected surface Sy .

Since each component of a tf-surface has non-empty boundary, coefficients at 7,5,
withn = 0 = (0, ...,0) do not appear in this formal sum. We set them to zero and
extend the sum to these indices by setting

age =0, g€ 22)
Thus, our power series has the property that
Z4 (T, 0,...,0) =0. (23)
We can also view « as a linear map of vector spaces

o : K[Ty,...,T,] — k

subject to condition (22), that is, a(7) = 0, g > 0.
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To o we assign the category VTFS((;), the quotient of KTFS") by the relations that
a connected floating component diffeomorphic to Sy, evaluates to ay, g. This is the
category of viewable r-colored tf-surfaces with the o-evaluation.

Categor VTFS&” carries a natural trace form given on an endomorphism x of an
object a by closing x into a floating surface X and evaluating this surface via a, see
Fig. 16, where now side boundaries are r-colored. If x is not a single cobordism but a
linear combination, we use linearity of the trace to define try (x) = a ().

Denote by J, the two-sided ideal of negligible morphisms in VTFS,({) for this trace

map. Define the gligible cobordism category TFSS) as the quotient of VTFSS) by the
ideal J,:
TES{) := VTFSY/J,.

We say that evaluation « is rational or recognizable if category TFS(({) has finite-
dimensional hom spaces.

Proposition 5.3. The following properties are equivalent.

(1) « is recognizable.

(2) Hom spaces Hom(#, (i, i)) from the empty one-manifold to the (i, i)-interval are
finite-dimensional in TFS,({)for alli=1,...,r.

(3) Power series Zy has the form

P(To,.... Ty)
ZO((TO""ﬂTr)= ’
Qo(To) Q1(T1) ... Or(T})
where P is a polynomial in r + 1 variables and Qy, ..., Q, are one-variable poly-

nomials, with Q;(0) #0,i =0,...,r.

Polynomials Q; can be normalized so that Q;(0) = 1 for all i. Power series Z, also
satisfies equation (23).

Proof. The proof is essentially the same as in r = 1 case, when all side components
carry the same color and there is no need to mention colors. Proof of Proposition 3.1
carries directly to the case of arbitrary r. 0O

Take any floating component S and a monomial 7' = Tog Tln1 ... T, . Define S(T) as
the surface S with additional g handles and additional n; holes with boundary colored
i,fori=1,...,r.

Given a linear combination y = Y u;T; of monomials, define S(y) = > u; S(T;)
as the linear combination of corresponding floating surfaces. Evaluation «(S(y)) is an
element of the ground field k.

Given «, we can then define the syntactic ideal 1, C k[T, ..., 7,]. Namely, y € I,
if (S(y)) = O for any floating S.

Proposition 5.4. « is recognizable iff the ideal 1, has finite codimensioninKk[Ty, . .., T,].

Thus, for recognizable «, one can define the skein category STFS(({) as the quotient
of VTFSZ) by the relations that inserting any y € I, into a cobordism is zero. Category
STFSf{) has finite-dimensional hom spaces. It also has the ideal of negligible morphisms,
with the quotient category isomorphic to TFS%C). One can then define the analogue of

the Deligne category for STFS(({) by taking its additive Karoubi closure and define
the glibigle quotient of the latter. The resulting diagram of categories and functors
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below mirrors diagrams (12), (20), and the corresponding diagram in [16]. The square
1S commutative.

TES®) — kTFS® — VTFS") —  STFSY) — - DTFSY

L] e

TESY) — 5 pTFS?

Condition (23) on the power series Z, seems rather unnatural. It can be removed
by passing to the larger category, as in Section 5.1, where now closed components are
allowed. Objects of the new category that extends TES"” are disjoint unions of oriented
intervals (with endpoints colored by elements of N,.) and circles. Morphisms are two-
dimensional oriented cobordisms between these collections, with side boundary intervals
and side circles colored by elements of N,.. In the definition of evaluation & we can now
omit condition (22) or, equivalently, restriction (23) on the power series Z,.

Definition and basic properties or recognizable series now work as in the TES"” case.
In the analogue of Proposition 5.3 for this modification, property (2) is replaced by the
condition that the state space of the circle is finite-dimensional (hom space Hom({, sh
is finite-dimensional). This is due to the surjection from the state space of the circle to
that of the interval (7, i) induced by the map §; in Fig. 18 with the side (vertical) interval
colored i. It is straightforward to set up the analogue of the diagram (24) of categories
and functors for this case as well, for recognizable «.
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