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Abstract
Let uq(g) be the small quantum group associated with a complex semisimple Lie
algebra g and a primitive root of unity q, satisfying certain restrictions. We establish
the equivalence between three different actions of g on the center of uq(g) and on the
higher derived center ofuq(g). Based on the triviality of this action for g = sl2, sl3, sl4,
we conjecture that, in finite type A, central elements of the small quantum group
uq(sln) arise as the restriction of central elements in the big quantum group Uq(sln).
We also study the role of an ideal zHig known as theHigman ideal in the center ofuq(g).
We show that it coincides with the intersection of the Harish-Chandra center and its
Fourier transform, and compute the dimension of zHig in type A. As an illustration we
provide a detailed explicit description of the derived center of uq(sl2) and its various
symmetries.

Mathematics Subject Classification Primary 17B37; Secondary 17B55 · 14L99 ·
20G05

1 Introduction

Background Let g be a complex semisimple Lie algebra with the root system R of
rank r , and Uv(g) be the Drinfeld–Jimbo quantum enveloping algebra over Q(v). We
will adopt the conventions and definitions of various quantum algebras used in [1].
Namely, let l be an odd integer greater than the Coxeter number of g and prime to the
determinant of the Cartan matrix of g, and let U = Uq(g) be the Lusztig’s integral
form ofUv(g) with v specialized at q, a primitive lth root of unity. It is usually known
as the big quantum group at a root of unity, and contains the divided powers of the
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generators E (n)
i = En

i /[n]di !, F (n)
i = Fn

i /[n]di !, where di ∈ {1, 2, 3} symmetrizes the

Cartan matrix of R. Then Uq(g) is generated over Q[q] by {Ei , Fi , E
(l)
i , F (l)

i }, where
i indexes simple roots αi of g, along with some additional elements of the Cartan
subalgebra containing K±1

j , j = 1, . . . r (see e.g. [28]). Let U = Uq(g) be the De
Concini-Kac form of Uv(g) (without the divided powers), also specialized at q equal
to a primitive l-th root of unity and factored over the ideal 〈Kl

i −1〉i=1,...r . Both U and
U are Hopf algebras and there exists a Hopf algebra homomorphism

U −→ U

whose image u = uq(g) is referred to as the small quantum group. Alternatively, u
can be defined as a subalgebra of U generated by Ei , Fi , K

±1
i , i = 1 . . . r and factored

over the ideal 〈Kl
i − 1〉i=1,...r .

Lusztig introduced the quantum Frobenius map φ that extends the assignment
E (l)
i → ei , Ei → 0, F (l)

i → fi , Fi → 0 to an algebra homomorphism from U
to Û (g), a completion of the universal enveloping algebra U (g) with respect to the
Chevalley generators {ei , fi }ri=1. The two-sided ideal (u) ⊂ U is the kernel of φ that
fits into an exact sequence of bi-algebras

0 −→ (u) −→ U
φ−→ Û (g). (1.1)

Here Û (g) is a completion of U (g) such that its category of representations can be
identified with the category of finite-dimensional representations over the group G of
adjoint type, with Lie(G) = g. Using the sequence, one can identify the classical uni-
versal enveloping algebraU (g) as theHopf quotientUq(g)//uq(g) (seeDefinition 2.4).

A geometric description of the Frobenius sequence given in [1,8] has motivated
the authors to investigate the center of small quantum groups via algebro-geometric
methods [25,26]. The problem of finding an algebraic description of the center of the
small quantumgroup has a long history. The interest in this question ismotivated by the
similarity with the case of algebraic groups over fields of positive characteristic [16],
by its connection to the representation theory of affine Lie algebras at a negative level
[19,20], and more recently by potential applications in logarithmic conformal field
theories [12]. Based on the geometric interpretation given in [1,8], we have developed
in [25,26] an algorithmic method that allows us to compute the structure of various
blocks of the center as naturally bigraded vector space. The results obtained in several
low-rank cases then led to a conjecture relating the structure of the principal block of
the center of u in type A to the bigraded vector space of the diagonal coinvariants [17]
corresponding to the same root system.
Methods and results In the present work we shift the focus from the center of a given
block of u (as in [25,26]) to the entire center z(u). We also naturally extend our study
to the total Hochschild cohomology of u (also known as the derived center of u).
Our main method relies on the classical theorem due to Ginzburg-Kumar [13], which
establishes a graded algebra isomorphism

HH•(H) ∼= Ext•H (k, Had) := H•(H , Had). (1.2)
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for a Hopf algebra H . Here the left hand side stands for the Hochschild cohomology
ring of H , while the right hand side denotes the usual Hopf-cohomology ring with
coefficients in the left adjoint representation Had. In particular, taking degree zero
parts on both sides, the center of H can be identified with the space of H -invariants
inside Had.

On the other hand, using (1.2), there is a split injection H•(H ,k) −→ H•(H , Had),
since k is a direct summand in Had. It follows that HH•(H) is a module-algebra over
the ring H•(H ,k). When H = u defined over k = C, Ginzburg and Kumar has
exhibited a g-equivariant isomorphism

H•(u, C) ∼= C[N ] (1.3)

identifying the cohomology ring with the space of algebraic functions on the nilpotent
cone N of g [13]. Thus HH•(u) is a module over C[N ].

The isomorphism (1.2) prompts us to investigate further the module structure of
uad. This module carries some distinguished actions:

(i) the Hopf adjoint action by the big quantum group U on Uad that preserves the sub-
module uad. This action induces aU (g)-module structure on z(u) via the quantum
Frobenius map (1.1);

(ii) an extended modular group action on uad in the sense of [23], as u is a ribbon fac-
torizableHopf algebra (see Definitions 2.21 and 2.29). This action is first observed
in [24,35].

These symmetries descend, via the isomorphism (1.2), to the level of the (derived)
center of the small quantum group. Using the sequence (1.1) and the flatness of U over
u, one may identify

HH•(u) ∼= Ext•u(k, uad) ∼= Ext•U(U ⊗u k, uad) ∼= Ext•U(U (g), uad). (1.4)

It follows that the (derived) center of u carries a natural U (g)-module structure as
well as an extended modular group structure1. One of the main goals of our work is
to match this g-action with the geometrically defined g-action on the nilpotent cone
N and its Springer resolution ˜N via Schouten brackets (Theorem 3.11).

Along the way, we also investigate a remarkable ideal zHig, called theHigman ideal,
in the (derived) center of u. The ideal is preserved by both the action of U (g) and the
projective modular group action on HH•(u).

TheHigman ideal zHig in the (derived) center ofu has been studied in the framework
of Fronenius algebras (e.g. [10,37]). For a finite dimensional Hopf algebra H , it is the
space obtained by applying the left integral � ∈ H on Had: zHig = ad�(H). It is also
called the projective center, since for a finite-dimensional Hopf algebra this ideal is
the image of the span of projective characters in the Hopf dual H∗ under the Radford
map. Under the assumption that H is factorizable, it is also the image of the ideal
of projective characters under the Drinfeld map (see Lemma 2.20 and Propopsition
2.26).

1 The extendedmodular group action restricts to a projective action of themodular group on the Hochschild
cohomology of u, as was noticed in [24,35].
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We prove the following properties of zHig ⊂ HH•(u):

(i) The ideal zHig coincides with the intersection of the Harish-Chandra center zHC ⊂
z(u) and its Fourier transform: zHig = zHC ∩F(zHC). Its dimension is equal to the
number of blocks in u (Theorem 4.3) . In type An−1 this dimension is given by

the rational Catalan number 1
l+n

l + n
n

(Theorem 4.8).

(ii) zHig is a homogeneous ideal in the derived center HH•(u). Moreover, it is a sub-
module in HH•(u) with respect to the projective SL(2, Z) action, generated by
the operators {F ,L} introduced in [23]. HereF is the quantum Fourier transform,
and L is the multiplication by the ribbon element of u (Theorem 4.2).

The ideal zHig acquires special significance in the case of the small quantum group,
since it carries a projective action of the modular group, and corresponds to the space
of projective characters pl under an algebra isomorphism between the left-shifted
traces and the center of u. The ideal pl has been considered previously in [21], where
it was presented as a non-semisimple analog (with the flavor of “simple-to-projective
duality”) of the Verlinde algebra arising from the representation theory of Uq(g). We
expect thatpl and zHig will play an important role in the development of the logarithmic
field theories, and we hope to study this question in our next paper.
Summary of sections In Sect. 2,we present the necessary backgroundmaterial onfinite-
dimensional Hopf algberas satisfying increasingly stronger requirements, and study
their adjoint representations. We introduce the quantum Fourier transform defined by
Lyubashenko–Majid [23], and studied in [10,22], and an extended SL2(Z)-action on
the Hopf adjoint module (Theorem 2.30). In the remaining part of Sect. 2 we list other
useful facts on the Higman ideal for H [10,37].

In Sect. 3, we study the actions of the Lie algebra g and its universal enveloping on
the Hochschild cohomology groups of the small quantum group u, naturally arising
in the study of the center:

• The adjoint action of U (g) on z(u) via the Frobenius pullback of the l-th divided
powers of the generators (Theorem 3.3;)

• The action of U (g) on the total Hochschild cohomology via the Ginzburg-Kumar
isomorphism HH•(u) � Ext•(U//u, uad) (Corollary 3.8).

• The natural g-action coming from the geometric interpretation obtained in [8] of
blocks of HH•(u) as cohomology of certain coherent sheaves on the Springer
resolution ˜N associated with g (Theorem 3.11).

We prove that all these actions restrict to the same action of g on z(u) (Corollary 3.8,
Theorem 3.11). Since the center z(u) consists entirely of the trivial g-modules in cases
g = sl2, sl3, sl4, as exhibited in [25,26], this implies that z(u) arises as the restriction
of the center of the big quantum group in these cases. We conjecture that this property
should hold for all z(u) in type A (Conjecture 3.13).

In Sect. 4, we study the Higman ideal for the small quantum group u. The ideal
is preserved under the modular group and under the action of U (g) studied in the
previous section (Theorem 4.3 and Proposition 4.6). In type A, the dimension of the
Higman ideal is expressible in terms of generalized Catalan number (Theorem 4.8).
The Higman ideal admits an interesting “fusion product” introduced in [21], which
we intend to study in a follow-up work.
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In Sect. 5 we give an explicit description of the derived center of uq(sl2), illustrating
the results described above. This is made possible by the previous work of Kerler [18],
Feigin–Gainutdinov–Semikhatov–Tipunin [12] and Ostrik [31]. The case g = sl2
remains the only case where an explicit description of the adjoint representation uad is
available due to [31], and we use it to obtain an explicit description of z(uq(sl2)) as a
submodule in the adjoint representation (Theorem 5.4). We further use the Ginzburg-
Kumar isomorphism (1.2) to obtain a detailed description of the entire derived center as
a module algebra over the function space over the nilpotent coneC[N ] (Theorem 5.7).
The algebra structure on the derived center is determined via the geometric realization
of the blocks of the center (Corollary 5.10). Finally, using the result in [18], we provide
a decomposition of the derived center as a projective SL(2, Z)-module in Corollary
5.13.

2 Hopf-adjoint action and an ideal in the center of u.

In this section we collect some basic facts about finite-dimensional Hopf algebras that
we will need later. Much of the material is well-known from the works of Drinfeld
[11], Radford [34], Lyubashenko–Majid [23] and Cohen–Westreich [10]. We prove
some of the results for completeness, while streamlining some arguments.
Generalities Let H be a Hopf algebra with the structure maps

� : H −→ H ⊗ H , S : H −→ Hop, ε : H −→ k

known as the coproduct, the antipode and the counit. We will use Sweedler’s notation:

�(h) =
∑

h1 ⊗ h2, (2.1)

for any h ∈ H . We will also use very often the axiom

∑

h1S(h2) =
∑

S(h1)h2 = ε(h) (2.2)

which holds for any h ∈ H .

Definition 2.1 A unital algebra A equipped with a (left) H -action

H × A −→ A, (h, x) �→ h · x

is called an (left) H-module algebra, if the algebra structure of A is compatible with
the H -action, in the sense that, for any h ∈ H

(1) h · 1A = ε(h)1A where 1A stands for the multiplicative unit element of A;
(2) h · (xy) = ∑

(h1 · x)(h2 · y) for all x, y ∈ A.

Similarly, one can define the right H -action version of H -module algebras. We
leave its definition and analogous properties below as exercise for the reader.
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Lemma 2.2 Let A be an H-module algebra. Then the H-action on A preserves the
center z(A) of A: H · z(A) ⊂ z(A).

Proof Let h ∈ H , z ∈ z(A) and x ∈ A be arbitrary elements. Then

(h · z)x =
∑

(h1 · z)(h2S(h3) · x) =
∑

h1 · (z(S(h2) · x)) =
∑

h1 · ((S(h2) · x)z)
=

∑

(h1S(h2) · x)(h3 · z) =
∑

ε(h1)x(h3 · z) = x(h · z).

The result follows. 
�
Given a Hopf algebra H , it is readily seen to be a (left) H -module with respect to

the (left) Hopf-adjoint action defined as follows:

H × H −→ H , (h, a) �→ adh(a) :=
∑

h1aS(h2), (2.3)

for all a, h ∈ H . We will denote this H -module by Had.
Similarly, the right Hopf-adjoint action is defined by

H × H −→ H , (a, h) �→ adr h(a) :=
∑

S(h1)ah2, (2.4)

for all a, h ∈ H . We will denote this representation by H ′
ad when needed.

The next result summarizes some well-known properties of the adjoint represen-
tation of Hopf algebras that we will use later. We give its proof for the sake of
completeness.

Lemma 2.3 Let H be a Hopf algebra.

(i) The multiplication map of H is an ad-equivariant homomorphism. In particular,
H is a module algebra over itself under the adjoint representation.

(ii) The space of ad-invariants of H is equal to the center z(H) of H.

Proof The second statement of (i) follows from its first part, and using that adh(1H ) =
ε(h) (2.2). To see the first part, we note that

adh(ab) =
∑

h1abS(h2) =
∑

h1aS(h2)h3bS(h4) =
∑

adh1(a) · adh2(b).

For (ii), it is clear that, if z ∈ Z(H) is central, then adh(z) = ε(h)z. Conversely, if
z ∈ Had is ad-invariant, then

hz =
∑

h1zS(h2)h3 =
∑

adh1(z)h2 =
∑

ε(h1)zh2 = zh

holds for all h ∈ H . The lemma follows. 
�
Definition 2.4 Suppose H is a Hopf algebra and A ⊂ H is a Hopf subalgebra. Then
A is called normal in H if either of the equivalent conditions

adh(A) ⊂ A, adr h(A) ⊂ A
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holds for all h ∈ H .When A is normal in H , the augmentation ideal A+ of ε : A −→ k
generates an ideal in H satisfying A+H = H A+. The quotient algebra

H//A := H

H A+

inherits a Hopf algebra structure from that of H , and is called the Hopf quotient
algebra.

Integral in H and the Higman ideal We will be interested in finite dimensional Hopf
algebras. A particular feature of such Hopf algebras is the existence of a unique
left/right integral up to scaling.

Definition 2.5 Let H be a Hopf algebra. An element � ∈ H is called a left integral
if, for any h ∈ H , we have

h� = ε(h)�.

Similarly, a right integral is characterized by the condition

�h = ε(h)�.

A classical result of Sweedler [36] says that the space of left integrals in a finite
dimensional Hopf algebra is always one-dimensional, and likewise for the right inte-
grals. When a nonzero left integral is also a right integral, it is then a central element
in the Hopf algebra, and the Hopf algebra is called unimodular.

Corollary 2.6 Let H be a finite dimensional Hopf algebra. The space ad�(H) consists
of central elements. Furthermore, ad�(H) is an ideal in z(H).

Proof By Lemma 2.3, it suffices to show that H acts trivially, via the adjoint repre-
sentation, on this space. Now, for any x, h ∈ H , we have

adx(ad�(h)) = ad(x�)(h) = ad(ε(x)�)(h) = ε(x)ad�(h).

For the second statement, it suffices to note that, if z ∈ z(H) and h ∈ H , then

zad�(h) =
∑

z�1hS(�2) =
∑

�1zhS(�2) = ad�(zh) ∈ ad�(H).

The result follows. 
�
Definition 2.7 The central ideal zHig(H) := ad�(H) in z(H) is the Higman ideal of
H .

Proposition 2.8 For a finite-dimensional Hopf algebra H, a central element z ∈ z(H)

belongs to the ideal zHig(H) if and only if z spans a trivial submodule contained in a
projective-injective summand of Had .
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Proof We will use [32, Corollary 5.5] (see also [33, Sect. 4] for another proof), which
says that a morphism f : M −→ N in the category of H -modules factors through a
projective-injective module if and only if

f = � · g =
∑

�2g(S
−1(�1)(-))

for some g ∈ Homk(M, N ).
Now let M = kz where z ∈ z(H), and N = Had. Then M ∼= k, the trivial H -

module. The above formula says that the inclusion map f : M −→ N factors through
a projective-injective object, necessarily the injective envelope of the trivial module,
if and only if there is a g ∈ Homk(k, Had) ∼= Had, such that f = � · g. Identifying
f and g with their images z = f (1) ∈ Had, x = g(1) ∈ Had, this is equivalent to
requiring that

z =
∑

ad�2(g(S
−1(�1)1)) = ad�2ε(S

−1(�1))g(1) = ad�(x).

When the inclusion of M into Had does factor through the injective envelope I of M :

kz
f

Had

I
f ′

then f ′ must be injective as it is nonzero on the socle, and thus I must occur as a
summand of Had. The result now follows. 
�

Formore details on this ideal for Frobenius algebras, we refer the reader to [37, Sect.
5.9]. It has been also intensively studied for Hopf algebras (see, for instance, [10]).
The next proposition gives a useful dimension count of the Higman ideal. Although
we will not need the result, it will help put some later discussions in a more general
context.

Proposition 2.9 If H is a finite-dimensional unimodular Hopf algebra, then

dimk(zHig(H)) = rank(CH ⊗Z k),

where CH stands for the Cartan decomposition matrix of projective H-modules in
terms of simples.

Proof This follows from [37, Corollary 5.9.15] since when H is finite-dimensional, it
is a Frobenius algebra. 
�
The Radford isomorphismWhen H is a unimodular Hopf algebra, Radford [34] intro-
duced an isomorphismbetween the space of certain shifted trace-like linear functionals
on H with the center of H .
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Definition 2.10 Define the commutative subalgebras c(H), cl(H), cr (H) ⊂ H∗ by

c(H) = { f ∈ H∗| f (ab) = f (ba), ∀a, b ∈ H},
cl(H) := { f ∈ H∗| f (ab) = f (bS2(a)), ∀a, b ∈ H},
cr (H) := { f ∈ H∗| f (ab) = f (bS−2(a)), ∀a, b ∈ H}.

They will be referred to as the algebras of trace-like functionals, left shifted trace-like
functionals and right-shifted trace-like functionals respectively.

Remark 2.11 It is easily verified that, if f ∈ cl(H) then we have f ◦ S ∈ cr (H).
Likewise f ∈ cr (H) implies f ◦ S ∈ cl(H). Thus precomposing with S defines an
isomorphism between cl(H) and cr (H), and precomposing with S2 induces automor-
phisms of cl(H) and cr (H) respectively. When S2 is inner, the last automorphisms
are trivial.

Example 2.12 (1) The counit map ε : H −→ k is clearly an element in all c, cr and
cl .

(2) Given any H -module V , its character χV , defined by

χV (h) := Tr
∣

∣

V (h),

is clearly an element of c(H). Therefore we have a natural subalgebra of c(H)

r(H) := G0(H -mod) ⊗Z k, (2.5a)

where G0(H -mod) is the Grothendieck ring spanned by the characters of finite-
dimensional H -modules. The algebra structure on c(H) corresponds to tensor
product of H -modules, and ε = χk is the unit of the multiplication.
We also define

p(H) := {χP ∈ r(H)|P : projectiveH -module} ⊗Z k (2.5b)

Then p(H) is an ideal in c(H), since the tensor product of a projective H -module
with any H -module remains projective. Furthermore, the ideal p(H) in r(H) has
dimension equal to the rank of CH ⊗Z k, where CH is the Cartan matrix of H .

(3) It is known that [34], when H is unimodular, the left and right integrals of the
dual Hopf algebra H∗, denoted λl and λr respectively, belong to cl(H) and cr (H)

respectively. These elements are characterized by the properties that

f λl = f (1)λl , λr f = λr f (1)

for all f ∈ H∗.

The following property is the analogue of Lemma 2.3
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Proposition 2.13 A linear functional f ∈ H∗ belongs to cl if and only if it defines a
morphism of H-modules f : Had −→ k. In other words, there is an equality

cl = HomH (Had,k). (2.6)

Proof Suppose f ∈ cl . For any h, x ∈ H , we have

f (adh(x)) =
∑

f (h1xS(h2)) =
∑

f (S−1(h2)h1x) = ε(h) f (x).

Conversely, given f : Had −→ k, we have the equality

f (hx) =
∑

f (h1xS(h2S(h3))) =
∑

f (h1xS
2(h3)S(h2)) =

∑

f (adh1(xS
2(h2)))

= ε(h1) f (xS
2(h2)) = f (xS2(h)),

which holds for any h, x ∈ H . The result follows. 
�
Using the right adjoint action, we may also identify

cr (H) ∼= HomH (H ′
ad,k). (2.7)

Corollary 2.14 If z ∈ z(H) is contained in the radical of the Hopf-adjoint module Had,
then f (z) = 0 for all f ∈ cl(H). In particular, if z is in the Higman ideal zHig(H)

for a non-semisimple H, then z is annihilated by all shifted trace-like functionals in
cl(H).

Proof The above proposition shows that, as k is a simple H -module,

cl(H) = HomH (Had,k) ∼= HomH (Had/Rad(Had),k),

where Rad(M) denotes the radical of an H -module M . For the second statement, it
suffices to note that, when H is nonsemisimple,� spans a two-sided ideal of H which
is nilpotent by the uniqueness of integrals up to rescaling. It follows that� ∈ Rad(H),
and ad�(H) ⊂ Rad(Had). 
�
Remark 2.15 The converse of the second statement in the corollary does not hold, as
can be seen from the example small quantum sl2 in Theorem 5.4.

Theorem 2.16 (i) There are isomorphism of H-modules

ψl : H −→ H∗, h �→ λl((-)h), ψr : H −→ H∗, h �→ λr (S(h)(-))

(ii) Upon restriction of the above isomorphisms to the center, there are isomorphisms
of modules over z(H)

ψl : z(H)
∼=−→ cl(H), z �→ λl(z(-)), ψr : z(H)

∼=−→ cr (H), z �→ λr (S(z)(-)).
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Proof This is the main theorem of [34]. 
�

The isomorphisms in Theorem 2.16 are usually known as theRadford isomorphims.
In this work, we will mostly reserve this term for ψl . We also obtain, as a corollary, a
simpler proof of [10, Theorem 2.9] under a slightly weaker hypothesis.

Corollary 2.17 For a unimodular H, � lies in zHig(H) if and only if H is semisimple.

Proof For a general unimodular H , we may always normalize λl(�) = 1. Thus if
� = ad�(h) for some h ∈ H , then

λl(�) = λl(ad�(h)) = ε(�)λl(h),

showing that ε(�) �= 0. Thus H is semisimple. Conversely, if H is semisimple, then
ε(�) �= 0. Using that � is both a left and right integral, we have

ad�(�) =
∑

�1�S(�2) =
∑

ε(�1)�S(�2) = ε(S(�))� = ε(�)�,

so that � = ad�
(

�
ε(�)

)

. The result follows. 
�

Another immediate consequence is the following.

Corollary 2.18 Let H be a non-semisimple finite dimensional Hopf algebra. Then
ψl(z)

∣

∣

z(H)
≡ 0 for any z ∈ zHig(H).

Proof If z = ad�(x) and y ∈ z(H), we have

ψl(ad�(x))(y) =
∑

λl(�1xS(�2)y) =
∑

λl(�1xyS(�2)) = ε(�)λl(xy) = 0.


�

Let us point out the connection of Proposition 2.13 with the Radford isomorphism.
To do this, consider the left dual adjoint action of H on H∗ defined by

H ⊗ H∗ −→ H∗, (h, f ) �→ ad∗h( f ),

where ad∗h( f )(x) = f (adS−1(h)(x)) for any x ∈ H . We denote H∗ with this left
H -module structure by H∗

ad.

Lemma 2.19 (i) The space of ad∗-invariants in H is equal to cl(H).
(ii) The Radford isomorphism is an H-intertwining map ψl : Had −→ H∗

ad.

Proof Since S−1 is a bijection of H and ε ◦ S−1 = ε, the first statement is a direct
corollary of Proposition 2.13.
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The second statement follows from the easy computation:

ψl(adh(x)) =
∑

λl((-)h1xS(h2)) =
∑

λl(S
−1(h2)(-)h1x)

=
∑

λl(S
−1(h)1(-)S(S−1(h)2)x) =

∑

λl(adS
−1(h)(-)x)

= ad∗h(λl((-)x)) = ad∗h(ψl(x)).


�

The Drinfeld isomorphism We start this part by recalling some basic notions of [11].
A (finite-dimensional) Hopf algebra H is called quasi-triangular if there exists an
invertible element R = ∑

R1 ⊗ R2 ∈ H ⊗ H , such that

(i) For any x ∈ H , we have �op(x) = R�(x)R−1;
(ii) (� ⊗ Id)(R) = R13R23 and (Id ⊗ �)(R) = R13R12.

Here we adopt the usual convention that R13 = ∑

R1 ⊗ 1 ⊗ R2 ∈ H⊗3 etc.
Denote by u = ∑

S(R2)R1, where R21 = ∑

R2 ⊗ R1 ∈ H ⊗ H . Then S2(h) =
uhu−1 for any h ∈ H . In this case, S2 acts trivially on z(H), cl(H) and cr (H) (see
Remark 2.11). Furthermore, there are isomorphisms of commutative algebras

μl : c(H) ∼= cl(H), f (-) �→ f (u(-)), (2.8a)

μr : c(H) ∼= cr (H), f (-) �→ f (u−1(-)). (2.8b)

Under these isomorphisms, the natural subspaces of (projective) characters (2.5) give
rise to shifted characters:

rl(H) := μl(r(H)), pl(H) := μl(p(H)), (2.9a)

rr (H) := μr (r(H)), pr (H) := μr (p(H)). (2.9b)

The following result (without the left shifting) is more generally true for symmetric
Frobenius algebras (see, for instance, [10, Proposition 2.1]).

Lemma 2.20 Let H be a quasi-triangular Hopf algebra, then

ψl(zHig(H)) = pl(H).

Definition 2.21 Let H be a (finite-dimensional) quasi-triangular Hopf algebra. Define
the Drinfeld map jr : H∗ −→ H by

jr ( f ) = m( f ⊗ id)(R21R),

where m : H ⊗ H −→ H is the multiplication map.
A quasi-triangular Hopf algebra H is called factorizable if jr is surjective.
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When H is factorizable, the Drinfeld map restricts to an isomorphism of commuta-
tive algebras jr : cr (H) −→ z(H) [11]. To translate the result to left shifted trace-like
functionals cl(H), let us define the left shifted Drinfeld isomorphism to be

jl := jr ◦ S−1 : H∗ −→ H , f �→ m( f ◦ S−1 ⊗ Id)(R21R). (2.10)

The next result is implicitly known from [23], and we give a direct proof for the
sake of completeness.

Lemma 2.22 The Drinfeld ismorphism is an H-intertwining map jl : H∗
ad −→ Had.

Proof Below we write

R21R =
∑

R′
2R1 ⊗ R′

1R2

to differentiate the two different copies of R.
For an h ∈ H , we compute

jl(ad
∗h( f )) = jl( f (adS

−1(h)(-))) =
∑

f (S−1(h)1S
−1(R′

2R1)S(S−1(h)2))R
′
1R2

=
∑

f (S−1(h2)S
−1(R′

2R1)h1)R
′
1R2

=
∑

f (S−1(R′
2R1h2)h1)R

′
1R2h3S(h4)

=
∑

f (S−1(R′
2h3R1)h1)R

′
1h2R2S(h4)

=
∑

f (S−1(h2R
′
2R1)h1)h3R

′
1R2S(h4)

=
∑

f (S−1(R′
2R1)S

−1(h2)h1)h3R
′
1R2S(h4)

=
∑

f (S−1(R′
2R1))h1R

′
1R2S(h2)

= f (S−1(R′
2R1))adh(R′

1R2) = adh(jl( f )).

Here we have repeated used the first condition of the quasi-triangular structure that

∑

R1h1 ⊗ R2h2 =
∑

h2R1 ⊗ h1R2.

The Lemma follows. 
�
Definition 2.23 Given a finite-dimensional factorizable Hopf algebra H , the Fourier
transform on H is the composition

F = jl ◦ ψl : H −→ H

of the Drinfeld and Radford maps. Likewise, the Fourier transform on H∗ is the
composition

F∗ = ψl ◦ jl : H∗ −→ H∗.
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Corollary 2.24 The Fourier transforms are isomorphisms of H-modules under the
adjoint actions:

F : Had
∼=−→ Had, F∗ : H∗

ad

∼=−→ H∗
ad.

Consequently, the Fourier transform restricts to automorphisms

F : z(H) −→ z(H), F∗ : cl(H) −→ cl(H),

and the Higman ideal zHig(H) is invariant under the Fourier transform:

F(zHig(H)) = zHig(H).

Proof The first statement follows from Lemmas 2.19 and 2.22. Using the first state-
ment, the Fourier transforms F and F∗ preserve adH -invariant subspaces of Had and
H∗
ad, which are identified with z(H) and cl(H) respectively via Lemmas 2.3 and 2.19.

Finally, the ad-invariance of F gives us

F(ad�(H)) = ad�(F(H)) = ad�(H).

The result follows. 
�
Definition 2.25 Let H be a quasi-triangular Hopf algebra. TheHarish-Chandra center
of H is the subspace of z(H)

zHC(H) := jl(rl(H)),

We document the following properties of zHig(H) and zHC(H), which are known
in [10]. We give the proofs for completeness while weakening some assumptions.

Proposition 2.26 Let H be a factorizable Hopf algebra.

(i) The Higman ideal of H is spanned by the images under the Drinfeld map of the
characters of the projective modules:

zHig(H) = jl(pl(H)).

In particular, this implies that zHig(H) is an ideal in z(H) of dimension equal to
the rank of the Cartan matrix of H.

(ii) If dim(H) is invertible in k, then the Higman ideal always contains a nonzero
idempotent.

(iii) The Higman ideal zHig(H) is contained in the intersection of the Harish-Chandra
center and its Fourier transform:

zHig(H) ⊂ zHC(H) ∩ F(zHC(H)).

(iv) The Fourier transform of zHC(H) is also equal to F(zHC(H)) = ψ−1
l (rl(H)).
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Proof (i). Since the Higman ideal is invariant under the Fourier transform (Corollary
2.24), we have

zHig(H) = F(zHig(H)) = F(ψ−1
l (pl(H))) = jl(pl(H)).

As theDrinfeldmap jl , when restricted to the center, is an isomorphismof commutative
algebras, and zHig(H) is an ideal in z(H), we deduce that pl(H) is an ideal in cl(H)

of dimension rank(CH ) (see Example 2.12 (2)). The dimension count then follows.
(ii). Since jl is an isomorphism of commutative algebras, it suffices to show that

pl(H) always has an idempotent. This follows from the fact that tensor productmodule
decomposition H ⊗ H ∼= Hdim(H). Thus, if char(k) � dim(H), then 1

dim(H)
χH (u-) is

an idempotent in pl(H).
(iii). Next, as pl(H) ⊂ rl(H) by definition of (shifted) characters (see Eq. (2.5)),

we have the inclusion

zHig(H) = jl(pl(H)) ⊂ jl(rl(H)) = zHC(H).

Again, using the invariance of zHig under F gives us

zHig(H) = F(zHig(H)) ⊂ F(zHC(H)).

The result now follows.
(iv). For the last result, we will use that [22, Theorem 5.1]

F2
∣

∣

z(H)
= S|z(H).

Then we have

F2(zHC(H)) = S(zHC(H)).

As S sends the character of a simple H -module to the character of its dual module, it
follows that S preserves zHC, and

jlψl(F(zHC(H))) = zHC(H).

Taking j−1
l on both sides gives the desired equality. 
�

Corollary 2.27 For a factorizable Hopf algebra H, the subspace F(zHC(H)) is an
ideal in z(H) that is annihilated by the radical of z(H).

Proof By part (iv) of Proposition 2.26, we may identify F(zHC(H)) = ψ−1
l (rl(H)).

We will also need the fact that (Theorem 2.16)ψl : z(H) → cl(H) is an isomorphism
of z(H)-modules.

Let z ∈ z(H), and consider the functional χL(K2ρ(-)z), where L is a simple
H -module. Since central elements act by scalars in simple modules, the resulting
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functional is a scalar αz multiple of χL(K2ρ(-)), and αz must be zero if z is nilpotent.
Therefore

zψ−1
l (χL) = αzψ

−1(χL)

with αz = 0 if z is nilpotent. This shows that ψ−1
l (rl) = F(zHC(H)) is an ideal in

z(H) that is annihilated by the nilradical of z(H). 
�

Remark 2.28 We would like to correct the mistake in [22] and point out that the sub-
space annihilating the radical of z(H) does not in general coincide with F(zHC(H)),
but contains it as a subspace.

Modular group action on the adjoint representationWe recall another important notion
from [11].

Definition 2.29 A factorizable Hopf algebra H is called ribbon if there is a central
element v ∈ H such that

S(v) = v v2 = uS(u), �(v)(R21R) = v ⊗ v.

When H is a factorizable ribbon Hopf algebra, Lyubashenko and Majid [23] have
introduced an extended modular group action on Had.

Define
L : H −→ H , h �→ vh, (2.11)

where v is the ribbon element of H .

Theorem 2.30 Let H be a factorizable ribbon Hopf algebra. Then the maps F , L
define an extended modular group action on Had. Furthermore, this action descends
to a projective SL2(Z) action on z(H) and on zHig(H)2.

Proof Corollary 2.24 shows that F preserves the H -module structure on Had. Next,
note that, since v ∈ H is central, left multiplication by v (or any central element of H )
defines an endomorphism of Had. The fact that F and L satisfy the extended SL2(Z)

relations follows from [23, Theorem 1.1], and in a slightly modified, but equivalent,
form (see [22, Theorem 5.1]). Furthermore, this action preserves the center z(H), since
F preserves the subspace of ad-invariants in Had and v ∈ z(H) is central. Finally, F
preserves zHig(H) again by Corollary 2.24 and v preserves it since zHig(H) ⊂ z(H)

is an ideal. Therefore the same action preserves zHig(H).
The extended modular group action descends to a projective SL2(Z) action on the

center as shown in [23] (see also [22, Theorem 5.1]). This is, essentially, because S2

acts on H as conjugation by the invertible element u ∈ H . 
�
2 This result is first stated in [24], and the authors would like to thank C. Schweigert for pointing out the
references to us.
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3 Derived center of the small quantum group as a g-module

Quantum groups at roots of unity For the rest of the paper, we will take k = C to be
the field of complex numbers, and fix q ∈ C an primitive lth root of unity.

Given a complex semisimple Lie algebra g, denote by I = {αi } its simple root
system. To define the quantum groups at a root of unity, we will always make the
assumption that

• q is of odd order l which is greater than or equal to the Coxeter number of g, and
coprime to the determinant of the Cartan matrix of g.

The algebras Uq(g), U (g) and uq(g) carry a Hopf algebra structure satisfying

�(Ei ) = Ei ⊗ 1 + Ki ⊗ Ei , �(Fi ) = 1 ⊗ Fi + Fi ⊗ K−1
i , �(Ki ) = Ki ⊗ Ki

and

S(Ei ) = −K−1
i Ei , S(Fi ) = −Fi Ki , S(Ki ) = K−1

i

for all i = 1, . . . , r .
When no confusion can be caused, we will usually abbreviate U = Uq(g), U =

U (g) and u = uq(g) in what follows.
A U-action on z(u) Now we will define an action of the universal enveloping algebra
U (g) on the center of the corresponding small quantum group z(u) arising from the
Hopf-adjoint action of U on itself.

Lemma 3.1 The Hopf-adjoint action of U on itself preserves the small quantum group
u. In other words, we have uad ⊂ Uad as a U-submodule.

Proof We only need to check that the action of the l-th divided powers {E (l)
i , F (l)

i }ri=1
preserves u. We use the formulas derived in the series of papers [27–29].

�(E (l)
i ) =

∑

0≤k≤l

qdi k(l−k)E (l−k)
i K k

i ⊗ E (k)
i .

Let a ∈ u. Then we have

adE (l)
i (a) =

∑

El
i,1 a S(E (l)

i,2) =
∑

0≤k≤l

qdi k(l−k)E (l−k)
i K k

i a S(E (k)
i )

=
∑

0≤k≤l

qdi k(l−k)E (l−k)
i K k

i a (−1)kqdi k(k−1)K−k
i E (k)

i

= E (l)
i a − aE (l)

i +
∑

0<k<l

qdi k(l−1)(−1)k E (l−k)
i K k

i a K−k
i E (k)

i .

The last term belongs to u. The commutation relations in U given in [28,29] ensure
that for any x ∈ u, such that x is one of the generators {E j , Fj , K

±1
j } we have

E (l)
i x = xE (l)

i + terms in u.
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For example, we have in the case 〈αi , α j 〉 = −1 in the simply laced case:

E (l)
i E j = E j E

(l)
i + Ei E j E

(l−1)
i , E (l)

i Fi = Fi E
(l)
i + Kiqdi − K−1

i q−di

qdi − q−di
.

Therefore for any a ∈ u we have

E (l)
i a = aE (l)

i + terms in u.

The computation for adF (l)
i (a) is similar. 
�

Lemmas 2.3 and 3.1 show that u is a U-module algebra with respect to the adjoint
action. Furthermore, it is a normal Hopf subalgebra in the sense of Definition 2.4. The
Hopf quotient algebra can be identified, via the quantum Frobenius map (1.1), with
the classical universal enveloping algebra of g:

Uq(g)//uq(g) = U (g). (3.1)

Lemma 3.2 (i) TheHopf-adjoint action of the l-th divided powers preserves the center
of the small quantum group z(u).

(ii) For any z ∈ z(u) and for all i = 1, . . . r we have

adE (l)
i (z) = E (l)

i z − zE (l)
i , adF (l)

i (z) = F (l)
i z − zF (l)

i .

Proof The first statement follows from Lemmas 3.1, 2.3 and 2.2: since u is a U -
module algebra with respect to the adjoint action, this action preserves the center of
u. In particular the action of the l-th divided powers preserves the center of u.

Now let z ∈ z(u). Then from the proof of Lemma 3.1 we have

adE (l)
i (z) = E (l)

i z − zE (l)
i +

∑

0<k<l

qdi k(l−1)(−1)k E (l−k)
i K k

i zK
−k
i E (k)

i

= E (l)
i z − zE (l)

i +
∑

0<k<l

qdi k(l−1)(−1)k
[l]di !

[k]di ![l − k]di !
E (l)
i z

= E (l)
i z − zE (l)

i .

The computation for adF (l)
i (a) is similar. 
�

Theorem 3.3 The Hopf-adjoint action of Uq(g) on uq(g) induces a U (g)-module
structure on the center z of the small quantum group u via the quantum Frobenius
homomorphism. Furthermore, the action is given by taking commutators with the
generators E (l)

i , F (l)
i , i = 1, . . . r .

Proof We use the quantum Frobenius homomorphism of Eq. (1.1), identifying U (g)
as the quotient U//u under the quantum Frobenius map φ (for the detailed treatment
see [29], Sect. 8). By Lemma 3.2 the generators E (l)

i , F (l)
i , i = 1, . . . r preserve the
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center z(u) under the adjoint action. On the other hand, the adjoint action of the
small quantum group u is trivial on its center. Therefore, the action factors through
the Frobenius homomorphism and gives rise to the action of a (completion of) the
universal enveloping algebra U (g). 
�

According to the linkage principle [3,4], the category of representations ofu decom-
poses into a direct sum of blocks

Rep(uq(g)) ∼=
⊕

λ∈P/(W�l P)

Rep(uλ) (3.2)

The blocks are parametrized by the orbits of the extended affine Weyl W � l P group
on the weight lattice P . The block acting nontrivially on the trivial representation of
u is called the principal block of the category, and denoted u0 in what follows. The
Jantzen translation principle tells us that, if the stablizer subgroup of a weight λ ∈ P
in W is trivial, then Rep(uλ) is equivalent to Rep(u0).

Corollary 3.4 The Hopf-adjoint action of Uq(g) on uq(g) preserves the block decom-
position of uq(g).

Proof By [22, Proposition 4.2], the central idempotents of u arise from (Lagrangian
interpolations of) Harish-Chandra elements ofU restricted to the small quantumgroup.
Such central elements are then U-adjoint invariant. 
�
Hopf cohomology and g-action on the derived center of u Now we will define the
action of U = U (g) on the total Hochschild cohomology of u. We will show that,
restricted to the center HH0(u), this action coincides with the U -action defined in the
previous section.

We recall a result of Ginzburg–Kumar [14] which interprets the Hochschild coho-
mology groups, or the derived center of a Hopf algebra H , as its Hopf cohomology
with coefficients in the adjoint representation Had. Let us denote by H e := H ⊗ Hop

the enveloping algebra of H , and the algebra embedding

δ : H −→ H e, h �→
∑

h1 ⊗ S(h2). (3.3)

Clearly, restriction of the natural bimodule structure of H along δ gives rise to Had.
Furthermore, it is an easy exercise to show that H e is a free module over H along δ,
and

H ∼= H e ⊗δ,H k ∼= k ⊗H ,δ H e. (3.4)

Theorem 3.5 (Ginzburg-Kumar) Given a Hopf algebra H, there is an algebra iso-
morphism

HH•(H) ∼= Ext•H e(H , H) ∼= Ext•H (k, Had) ∼= H•(H , Had).

Sketch of proof (For details, see [14, Sect. 5.6]) The two outer isomorphisms are just
definitions of the cohomology groups. It suffices to show the middle one. To do this,
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it suffices to show that Ext•H e(H , -) and Ext•H (k,ResH
e

H (-)) are isomorphic as derived
functors on the category of H e-modules. Now using derived induction-restriction
adjunction and equation (3.4), we have:

Ext•H e(H , M) ∼= Ext•H e(IndH
e

H k, M) ∼= Ext•H e(k,ResH
e

H M).

Applying the isomorphism to M = H gives us the desired isomorphism. The algebra
structure H•(H , Had) arises from the multiplication of m : Had ⊗ Had −→ Had, and
it is an easy exercise to show that it is compatible with the isomorphism. 
�

Although it is not explicitly stated in [14], the following result is obtained similarly.

Corollary 3.6 Given a Hopf algebra H, there is an isomorphism

HH•(H) = TorH
e

• (H , H) ∼= TorH• (k, Had).

Proof Similar as in the proof of the previous result, we have, using equation (3.4),

TorH
e

• (H , H) ∼= (k ⊗H ,δ H e) ⊗L
H e H ∼= k ⊗L

H ,δ H ∼= TorH• (k, Had).

The result follows. 
�
For finite dimensional Hopf algebras, there is a well-known duality between

Hochschild homology and cohomology groups.

Lemma 3.7 Let H be a finite dimensional Hopf algebra. Then there is an isomorphism
of graded vector spaces

HH•(H) ∼= (HH−•(H))∗.

Proof We have, via the derived tensor-hom adjunction,

(TorH• (k, Had))
∗ ∼= Homk(k ⊗L

H Had,k)

∼= RHom•
H (k,Homk(Had,k)) ∼= RHomH (k, Had).

The last isomorphism follows from the ad-invariance of the Radford isomorphism
2.19. The lemma follows. 
�

For this reason, we will mostly focus on the Hochschild cohomology groups of
small quantum groups from now on.

When H = uq(g), equipped with the left adjoint action by the big quantum group
Uq(g), Theorem 3.5 immediately implies the following result due to Ginzburg-Kumar,
whose proof we recall for completeness.

Corollary 3.8 (i) There is a natural action of the universal enveloping algebraU (g) on
the Hochschild cohomology HH•(u) and homology HH•(u) of the small quantum
group.



Remarks on the derived center of small quantum groups Page 21 of 40    68 

(ii) Restricted to the center z(u) = HH0(u), this action coincides with the action given
in Theorem 3.3.

Proof (i). Suppose H ⊂ A is a normal Hopf subalgebra, such that A is flat as an H -
module. ThenH•(H , Had) carries a natural A//H action, defined via the isomorphism:

H•(H , Had) ∼= Ext•H (k, Had) ∼= Ext•A(A ⊗H k, Had) ∼= Ext•A(A//H , Had).

Here the middle isomorphism is the usual (derived) induction-restriction adjunction,
where the tensor in Ext•A(A ⊗H k, Had) does not need to be derived because of the
flatness assumption on A.

The isomorphism, applied to H = u and A = U, implies that U (g) ∼= U//u acts
on the Hochschild cohomology HH•(u).

(ii). The action restricted to the center HH0(u) is given by the adjoint action of the
l-th divided powers (via the quantum Frobenius map φ (equation (1.1))). 
�
Corollary 3.9 Let N ⊂ g denote the nilpotent cone of g. Then we have the inclusion
C[N ] ⊂ HH•(u) and C[N ] ⊂ HH•(u). In particular, C[N ] is a U (g)-summand of
HH•(u) and HH•(u) with respect to the standard (co)adjoint action.

Proof Let L(0) denote the trivial u-module. We have, by Theorem 3.5,

HH•(u) ∼= H•(u, uad) ∼= Ext•u(L(0), uad) ⊃ Ext•u(L(0), L(0)) ∼= H•(u),

where H•(u) stands for the usual cohomology of the Hopf algebra u (with coefficients
in the trivial representation).

The main result in [14] states that the odd cohomologies Hodd(u) vanish, and there
is a graded algebra isomorphism H2•(u) ∼= C•[N ] for the even cohomologies of
u. Moreover, this isomorphism intertwines the g-actions on both sides. The g-action
on H•(u) is induced from the Frobenius pullback of g just as in Corollary 3.8. The
g-action on C[N ] is induced from the standard (co)adjoint action on N . 
�
The action of g in the geometric realization of the derived center Recall that the finite
dimensional Hopf algebra u decomposes as a direct sum of blocks: two-sided ideals
parametrized by the orbits of the extended affine Weyl group W � l P in the weight
lattice P . Denote by uλ ⊂ u the unique block corresponding to the orbit of the weight
λ.

In this section we will use the geometric realization of the total Hochschild coho-
mology of the block uλ to construct a natural g-action on HH•(uλ). Restricted to the
center of the block z(uλ) this action coincides with the action defined in the previous
two sections.

Recall the geometric construction for HH•(uλ) described in [1,8]. Let G be the
reductive algebraic group over C with the Lie algebra g, Pλ its fixed parabolic sub-
group whose Weyl group stablizes λ, X = G/Pλ the (partial) flag variety classifying
subgroups conjugate to Pλ. Let ˜Nλ

∼= T ∗X ∼= G ×Pλ n denote the Springer resolu-
tion, where n stands for the nilpotent radical of the Lie algebra of Pλ. Elements in
˜Nλ are given by pairs (g, x), where g ∈ G and x ∈ n, subject to the identification
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(g, x) = (gb−1,Adb(x))). Let the groupC∗ act onG/Pλ trivially, and define its action
on ˜Nλ by rescaling the fibers of pr : ˜Nλ −→ G/Pλ, which are all isomorphic to the
vector space n, via the character z �→ z−2. This action commutes with the action of
G on ˜Nλ and G/Pλ.

Theorem 3.10 Let uλ ⊂ u be the block of u that corresponds to the weight λ. Then we
have

HH•(uλ) ∼= HH•
C∗( ˜Nλ) ∼=

⊕

i+ j+k=•
Hi ( ˜Nλ,∧ j T ˜Nλ)

k

where k is the grading induced by the C∗-action.

Proof See [1,8]. The singular weight case, stated in [26], follows similarly as in [8]
using the singular localization theorem of Backelin-Kremnizer [6,7]. 
�
Theorem 3.11 There is a natural action of the Lie algebra g on the total Hochschild
cohomology of the principal block of u. Restricted to the center of the principal block,
this action coincides with the action given in Theorem 3.3 and Corollary 3.8.

Proof We have shown in [25,26], that

HH1(uλ) ⊃ H0( ˜Nλ, T ˜Nλ)
0 ∼= g ⊕ C.

Global sections of T ˜Nλ consists of vector fields on ˜Nλ. Vector fields act, via the
Schouten bracket, on∧•T ˜Nλ. This in turn induces an action of g⊕C on theHochschild
cohomology groups (The C part comes from the Euler vector field generated by the
C∗-action along the fibers, and counts the k-degree of Hochschild cohomology group
elements). The Schouten bracket is defined by extending the natural commutator of
germs of vector fields on ˜Nλ to germs of poly-vector fields. By the main Theorem
of [9], this Schouten bracket defines a Gerstenharber structure on the Hochschild
cohomology of ˜Nλ.

On the other hand, the g action on ˜Nλ also arises as the infinitesimal G-action on
the variety ˜Nλ, and the Springer resolution π : ˜Nλ −→ Nλ, (g, x) �→ Adb(x) is G-
equivariant. Moreover, HH•

C∗( ˜Nλ) is a g-equivariant algebra over the function algebra
C[ ˜Nλ]. Hence, the Gerstenhaber action of g on HH•(uλ) ∼= HH•

C∗( ˜Nλ) is compatible
with the g action on C[ ˜Nλ] = C[Nλ]. As ι : Nλ ⊂ N is a closed G-orbit, the g action
on C[Nλ] agrees with the g-action on C[N ] under ι∗. By Ginzburg-Kumar’s Theorem
3.8, we identify this g-action with the (derived) Hopf adjoint action by the l-th divided
powers of generators of the big quantum group Uq(g). 
�
Remark 3.12 By the result of [9] the action ofH0( ˜Nλ, T ˜Nλ)

0 ⊂ HH1(uλ) onHH•(uλ)

by the Gerstenhaber bracket agrees, up to a twist by the square root of the Todd class,
with the action of the vector field g ⊕ C on HH•

C∗( ˜Nλ) by the Schouten bracket.

The action of g on the center in type A In [25,26], we have computed that, for all
blocks of uq(sln) when n = 2, 3, 4, the natural g-modules occurring z(sln) from The-
orem 3.11 only consist of trivial representations. Since, by Theorem 3.3, the nilpotent
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Chevalley generators of g acts on the center by taking commutators with E (l)
i and F (l)

i ,
the triviality of the g-action means that the central elements in z(sln) commutes with
E (l)
i and F (l)

i . We conjecture that this is not a coincidence in type A.

Conjecture 3.13 At a root of unity, central elements of small quantum groups uq(sln)
arise from restriction of central elements in the big quantum group Uq(sln).

The conjecture fails outside of type A, as shown in [26, Appendix 2]. There are
already nontrivial g-modules appearing in the center of uq(g) in type B2.

4 Higman ideal in the center of the small quantum group

In the section we derive further results on modular group action and the Higman ideal
in case when H is a factorizable ribbon Hopf algebra, or more specifically, the small
quantum group.
Modular group action on a factorizable ribbon Hopf algebra If H is a factorizable
ribbon Hopf algebra, the extended modular group action on Had (Theorem 2.30)
descends to an action on the Hochschild cohomology. This result has previously been
noted in [24,35]. In our approach it is also a direct consequence of Ginzburg-Kumar’s
Theorem 3.5.

Corollary 4.1 Let H be a factorizable ribbon Hopf algebra. Then there is a projective
SL2(Z)-action on HH•(H).

Proof This follows by combining Theorems 3.5 and 2.30. 
�
The small quantum group u is factorizable ribbon (see, for example, [30, Corollary

A.3.3, Theorem A.4.1. and Appendix B]). When H = u and we restrict the projective
action of the modular group to HH0(u) = z, the action agrees with the one studied
in [22]. This action, unlike in Corollary 3.4, preserves neither the algebra structure
of z nor the block decomposition of z. This is because the generating maps F , L :
Had −→ Had and do not preserve the multiplicative structure of Had.

Corollary 4.2 The Higman ideal constitutes a homogeneous ideal in the Hochschild
cohomology ring HH•(H). Furthermore, it is a direct summand, as a projective
SL2(Z)-module, in the Hochschild cohomology ring.

Proof Under the isomorphism of Theorem 3.5, the ring structure on HH•(H) arises
from the multiplication map m : H ⊗ H −→ H which is clearly ad-equivariant.
Thus, if z ∈ zHig(H) and y ∈ HHn(H), then z and y are respectively represented by
morphism z : k −→ P0 ⊂ Had, y : k −→ Had[n], where P0 is the injective envelope
of k. Their product cohomology class is then represented by

zy : k ∼= k ⊗ k −→ P0 ⊗ Had[n] ⊂ Had ⊗ Had[n] m−→ Had[n].

Since the tensor product P0 ⊗ Had is an injective H module, we have Hn(H , P0 ⊗
Had) = 0 whenever n > 0, and the result follows.
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For the second statement, since the projective SL2(Z)-action byF andL preserves
the module structure of uad, it follows that P0 ⊗ zHig is an SL2(Z)-summand of Had.
The result then follows by taking Hopf cohomology H∗(u, -), using Theorem 3.5
again. 
�
Higman ideal in case of the small quantum group We want to specialize Proposition
2.26 to the case of small quantum groups u = uq(g). We will always assume q is a
root of unity satisfying the conditions of Sect. 3.

Theorem 4.3 Let u = uq(g) be the small quantum group associated with a complex
semisimple Lie algebra g. Then

zHig(u) = zHC(u) ∩ F(zHC(u)).

Furthermore, under the block decomposition (3.2) of u = ∏

λ uλ, the Cartan matrix
of each block uλ has rank one and dim(zHig(u) ∩ uλ) = 1.

Proof It is known from [5] that the blocks of theHarish-Chandra center are isomorphic
to algebras of coinvariants S(h)Wλ/S(h)W+ , where Wλ ⊂ W is a subgroup stabilizing
the weight λ corresponding to the block uλ. Clearly these are local Frobenius algebras,
and thus each block has exactly a one-dimensional subspace that is annihilated by the
radical of zHC. Therefore, by Corollary 2.27, the dimension of zHC ∩ F(zHC) is less
than or equal to the number of blocks of u. Denote this number by b.

On the other hand, each block uλ has a non-zero Cartan matrix, and thus the rank of
CH is greater than or equal to the number of blocks of H . Now part (i i) of Proposition
2.26 (c.f. Proposition 2.9) implies that dim(zHig(u)) = rank(CH ). We conclude, using
part (i i i) of Proposition 2.26, that

b ≤ dim(zHig(u)) ≤ dim(zHC(u) ∩ F(zHC(u))) ≤ b,

and equality must hold everywhere.
In particular, the rank of the Cartan matrix of each block of u is precisely one. 
�

Remark 4.4 Together with Proposition 2.26, Theorem 4.3 implies that, for the small
quantum group uq(g), the intersection zHC(u) ∩ F(zHC(u)) is spanned by jl(χP ),
where P is a projective u-module:

zHC(u) ∩ F(zHC(u)) = zHig(u) = ψ−1
l (pl(u)) = jl(pl(u)).

In particular, the Higman ideal zHC(u) ∩ F(zHC(u)) is isomorphic to the ideal of
the projective characters in the Grothendieck ring G0(u-mod) ⊗Z C.

Corollary 4.5 In the adjoint representation uq(g)ad, the projective cover P(0) of the
simple module L(0) occurs with multiplicity equal to the number of blocks of uq(g).

Proof Follows from Proposition 2.8 and Theorem 4.3. 
�
Proposition 4.6 The action of U (g) defined in Theorem 3.3 is trivial on the Higman
ideal zHig(u).
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Proof The action ofU (g) on z is trivial on zHC, as the Harish-Chandra center of u also
arises as the restriction of the Harich-Chandra center of the big quantum group to the
small quantum group. Since zHig ⊂ zHC by Theorem 4.3, the statement follows. 
�
Example 4.7 Consider the principal block of the small quantum group uq(g) for g =
sl3. The block contains 6 simple and 6 projective modules. The Cartan matrix of the
block has the entries [Pi : L j ] for 1 ≤ i, j ≤ 6. Recall that the l-restricted dominant
weights in case g = sl3 include two open alcoves. Below {L1.L2.L3} and {P1, P2, P3}
denote the simple modules in the lower alcove of the l-restricted dominant weights
and their projective covers. The modules {L4, L5, L6} and {P4, P5, P6} denote the
simple modules in the second alcove and their projective covers.

C0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

24 24 24 12 12 12
24 24 24 12 12 12
24 24 24 12 12 12
12 12 12 6 6 6
12 12 12 6 6 6
12 12 12 6 6 6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Up to equivalence, there is a unique nontrivial singular block using. The simple module
L1 has its highest weight in the closure of the lower alcove, and L2, L3 in the closure
of the upper alcove.

Csing =
⎛

⎝

12 6 6
6 3 3
6 3 3

⎞

⎠

The Steinberg block is semisimple and, has the Cartan matrix CSt = (1).
Figure 1 shows a regular and a nontrivial singular orbit for g = sl3. The l-restricted

dominant weights are bounded by the red cone from below (the dominant chamber)
and by the black boundary of the upper alcove from above. The weights on the black
lines are the singular dominant l-restricted weights. The upper vertex corresponds to
the Steinberg weight (l − 1)ρ. The root system is shown in red.

In case of g = sln we can give an explicit formula for the number of blocks of u,
or equivalently, for the dimension of the Higman ideal in the center z(u).

Theorem 4.8 The number of blocks for uq(sln) is equal to

(l + n − 1) · · · (l + 1)

n! = 1

l + n

(

l + n
n

)

.

Consequently, the Higman ideal for uq(sln) has the same dimension.

Proof Let � ⊂ Q ⊂ P denote the root system, the root lattice and the weight lattice
of sln . We assume that l greater than or equal to n + 1 and coprime to n. The linkage
principle [3,4] implies that the number of blocks of uq(sln) equals to the number of
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Fig. 1 Orbits of W � l P in the l-restricted weights for g = sl3, l = 7

the orbits of the extended affine Weyl group W � l P in the set of l-restricted weights,
or, equivalently, in the weight lattice. We can compute this number as follows. Let A
denote the l-extended closed first dominant alcove:

A = {μ ∈ P+ : 〈μ, α̌〉 ≤ l, ∀α ∈ �+}.

Then A is the fundamental domain for the action of the affine Weyl group W � lQ
on the weight lattice. Since W � lQ acts simply transitively on the set of all alcoves,
there is a one-to-one correspondence between the integer weights in A and the orbits
of W � lQ. To find the number of orbits of the extended affine Weyl group W � l P
in A, we notice that W � l P = (W � lQ) � �, where � � P/Q is the subgroup of
W � l P stabilizing A. Therefore, the number of orbits of W � l P in A equals to the
number of root weights in A: |A ∩ Q|. By the work of Gorsky, Mazin and Vazirani
[15, Theorem 3.4], this number is known to be equal to the rational Catalan number

cl,n = 1
l+n

(

l + n
n

)

. 
�

Remark 4.9 A similar argument in [26] shows that the number of regular blocks of

uq(sln) equals to the rational Catalan number cl−n,n =
(

l
n

)

.

Geometric interpretation of Higman ideal Let Xλ = G/Pλ be the (partial) flag variety
of a complex semisimple Lie group, and ˜Nλ = T ∗Xλ be the Springer variety. Denote
by pr : ˜Nλ −→ Xλ the natural cotangent projection map. Set m = dimC(Xλ). Since
pr is an affine map, the coherent-cohomological dimension of ˜Nλ is equal to m.

Following [25,26], it will be beneficial to arrange the Hochschild cohomology ring
of ˜N into the direct sum of two tables, accounting for the even and old cohomology
groups.



Remarks on the derived center of small quantum groups Page 27 of 40    68 

Hi (∧ j T ˜Nλ) j−i=0 j−i=2 . . . j−i=m

i+ j=0 C[Nλ] 0 . . . 0
i+ j=2 ∗ ∗ . . . 0

... ∗ ∗ . . . 0
i+ j=2m ∗ ∗ . . . C[Nλ]{−2m}

⊕

Hi (∧ j T ˜Nλ) j−i=1 j−i=3 . . . j−i=2m−1

i+ j=1 ∗ 0 . . . 0
i+ j=3 ∗ ∗ . . . 0

... ∗ ∗ . . . 0
i+ j=2m−1 ∗ ∗ . . . ∗

(4.1)
One reason to exhibit the Hochschild cohomology table this way is to exhibit an

apparent sl2(C) action along the Northwest-Southeast diagonals of the table. The
action is generated by wedging with the Poisson bivector field and contraction with
the holomorphic symplectic form on ˜Nλ. We refer the reader to [25, Theorem 4.3],
[26, Theorem 2.11] for the details.

Because of this sl2(C) action, one deduces that the main diagonal entries in the
even table contains copies of C[Nλ]{−2k}, k = 0, . . . ,−2m. The degree shift arises
from the fact that the Poisson bivector field on ˜Nλ has degree −2.

As follows fromTheorem 4.3, TheCartanmatrix of a block uλ of the small quantum
group uq(g) has rank one. Consequently, the projective center of uλ has dimension
one.

Geometrically, we may identify the position of the projective center:

Proposition 4.10 There is an isomorphism of Hochschild cohomology group

Hm( ˜Nλ,∧mT ˜Nλ)
• ∼= C{−2m}.

Proof The coherent sheaf pr∗(∧mT ˜Nλ) has a natural filtration whose subquotients
consist of coherent sheaves of the form ∧r�X ⊗∧m−r T X ⊗ S•(T X). Then, by Serre
duality, we have

Hm(X ,∧r�X ⊗ ∧m−r T X ⊗ Sk(T X)) ∼= H0(X ,∧r T X ⊗ ∧m−r�X ⊗ Sk(�X ) ⊗ O(K ))∗

∼= H0(X ,∧m−r�X ⊗ ∧m−r�X ⊗ Sk(�X ))∗

∼=
{

C{−2m} r = m, k = 0,
0 otherwise.

It follows that, by an easy induction on the filtration, we have

Hm( ˜Nλ,∧mT ˜Nλ)
k ∼=

{

C{−2m} k = −2m,

0 k �= −2m.

The proposition follows. 
�
This one-dimensional subspace in Proposition 4.10 is in the Higman ideal: it is in

the Harish-Chandra center and annihilates the radical of the block (or in the Fourier
transform of zHC.

We can use Theorem 3.10 and the techniques developed in [25,26] to compute
higher Hochschild cohomologies for g = sl3. In particular, we have the following
result.
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Example 4.11 Let V (0) and V (ρ) denote the trivial and the adjoint representation of
sl3, respectively. Then we have an isomorphism of the bigraded vector spaces

HH1(u0(sl3)) ∼=
⊕

i+ j+k=1

Hi ( ˜N ,∧ j T ˜N )k

with the bigraded components isomorphic to sl3-modules as shown in the following
table

i + j = 1 V (ρ) ⊕ V (0)
i + j = 3 V (ρ)⊕2 ⊕ V (0)⊕3 V (ρ) ⊕ V (0)
i + j = 5 V (0)⊕2 V (ρ)⊕2 ⊕ V (0)⊕3 V (ρ) ⊕ V (0)

j − i = 1 j − i = 3 j − i = 5

5 Derived center of the small quantum sl2

The center of small quantum sl2 We first recall the following description of the center
of u(sl2) by Kerler [18] (see also [12]).

Theorem 5.1 At a primitive odd lth root of unity q, the center z(sl2) of uq(sl2) is
isomorphic to the commutative algebra

z(sl2) ∼=
l−1
2

∏

i=1

C[xi , yi ]
(x2i , xi yi , y

2
i )

× C

The last factor of C corresponds to the center of the semisimple Steinberg block.
We will denote by ei the central idempotent in u(sl2) that corresponds to the element
(0, . . . , 1, . . . , 0), where the only nonzero entry appears in the i th position. The last
central idempotent corresponds to the Steinberg block and will be denoted by eSt.

The generators xi , yi for the regular blocks can be identified, via the Radford maps,
as follows.

Define the shifted trace-like functionals

χi (h) := Tr
∣

∣

L(i)(Kh), i = 0, . . . , l − 1.

Then each χi ∈ cl(sl2) since S2 = adK :

χi (ab) = Tr
∣

∣

L(i)(Kab) = Tr
∣

∣

L(i)(KaK−1Kb) = Tr
∣

∣

L(i)(KbKaK−1) = χi (bS
2(a)).

(5.1)
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According to [12], we can define the variables {xi , yi }
l−1
2

i=1 and eSt in Theorem 5.1 via
the Radford isomorphism (Theorem 2.16) as follows:

xi+1 = ψ−1
l (χi ), yi+1 = ψ−1

l (χl−2−i )

(

i = 0, . . . ,
l − 3

2

)

. (5.2a)

and

eSt = 1

l
√
l
ψ−1
l (χl−1). (5.2b)

The adjoint representationWewill use the following result of Ostrik to obtain the total
Hochschild cohomology of the small quantum group uq(sl2).

Theorem 5.2 [31] Let l ≥ 3 be an odd integer. Let L(m) denote the simple uq(sl)-
module of highest weight m such that 0 ≤ m ≤ l − 1, and P(m) its projective cover.
Let φ∗(V (1)) denote the U-module obtained as the Frobenius pullback of the simple
sl2-module of highest weight 1. Then the small quantum group u(sl2) has the following
decomposition with respect to the Hopf-adjoint action by Uq(sl2):

uq(sl2)ad ∼= L(l − 1)⊕l
⊕

⎛

⎜

⎝

l−3
2

⊕

i=0

P(2i)⊕( l+1
2 +i)

⎞

⎟

⎠

⊕

⎛

⎜

⎝

l−3
2

⊕

i=0

L(2i)⊕(l−1−2i)

⎞

⎟

⎠

⊕

⎛

⎜

⎝

l−3
2

⊕

i=0

(φ∗V (1) ⊗ L(l − 2 − 2i))⊕( l−1
2 −i)

⎞

⎟

⎠
.

Corollary 5.3 The submodule in uq(sl2)ad with composition factors in the principal
block has the following decomposition:

(

uq(sl2)ad
)

0
∼= P(0)⊕

l+1
2 ⊕ L(0)⊕(l−1) ⊕ (φ∗V (1) ⊗ L(l − 2))⊕

l−1
2 .

It follows from Ostrik’s theorem, together with Lemma 2.3, Proposition 2.13 that
the dimension of the center and shifted trace-like functionals are equal to

dimC(z(sl2)) = dim(Homu(L(0), uad)) = l + 1

2
+ l − 1 = 3l − 1

2
, (5.3a)

dimC(cl(sl2)) = dim(Homu(uad, L(0))) = l + 1

2
+ l − 1 = 3l − 1

2
, (5.3b)

since L(0) occurs with multiplicity two inside P(0), once as a subrepresentation and
once as its head. We would then like to analyze how Kerler’s explicit central elements
are contained in projective or simple summands of u(sl2)ad.

Theorem 5.4 For uq(sl2) at a primitive odd lth root of unity q, the following results
holds.
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(i) dim(zHig(uq(sl2)) = l+1
2 . Moreover, zHig(uq(sl2)) = Soc

(

P(0)⊕ l+1
2

)

.

(ii) The central idempotents ei , i = 1, . . . , l−1
2 and the central elements xi , i =

1, . . . , l−1
2 , are contained in the direct sum of trivial summands of u(sl2)ad.

(iii) The central elements xi + yi , i = 1, . . . , l−1
2 , and the Steinberg idempotent eSt

span the subspace Soc
(

P(0)⊕ l+1
2

)

.

(iv) The integral � is contained in a trivial summand.

Proof The first statement follows from Propositions 2.8 and 2.9 by computing the
Cartan matrix for each regular block to be

(

2 2
2 2

)

,

while the Steinberg block has its Cartan matrix (1).
Using Proposition 2.13, each shifted trace-like functional in f ∈ cl defines a u-

module map

f : uad −→ C.

If z is a central element and f ∈ cl satisfies f (z) �= 0, then the composition map

C
ιz−→ uad

f−→ C, 1 �→ f (z) (5.4)

provides the inclusion ιz : C −→ uad, 1 �→ z with a splitting, so that Cz ∼= L(0) is a
direct summand of uad.

Next, we observe that, when decomposing

u =
l−1
2

∏

i=1

uei × ueSt

into a direct product of indecomposable two-sided ideals (blocks), the adjoint represen-
tation preserves the two sided-ideals. Here the first l−1

2 factors correspond to regular
blocks, while the last one stands for the Steinberg block. Each uei must contribute the
same number of P(0)’s and L(0)’s into uad, for, otherwise, the regular blocks would
have non-isomorphic Hochschild cohomology groups, violating the translation prin-
ciple. Therefore, we may restrict our attention to each block, and compute the effect
of cl restricted to the center of each block.

For the functions χ j , j ∈ {0, 1, . . . , l − 1}, we have that, when evaluated on the
central idempotents ei , i = 1, . . . , l−1

2 ,

χ j (ei ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q j+1 − q− j−1

q − q−1 = dimq(L( j)) j = i − 1, l − i − 1,

0 j �= i − 1, l − i − 1.
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When they are evaluated on xi , yi , i = 1, . . . , l−1
2 , we have

χ j (xi ) = χ j (yi ) = 0.

For the functional λl , we compute that

λl(xi ) = λl(xi1) = χi−1(1) = dimq(L(i − 1)) = [i − 1]q ,
λl(yi ) = λl(yi1) = χl−i−1(1) = dimq(L(l − i − 1)) = [l − i − 1]q = −[i − 1]q .
λl(eSt) = λl(eSt1) = χSt(1) = dimq(L(l − 1)) = 0.

It follows that, in the regular blocks, the product homomorphism

χi−1 × χl−i−2 × λl : C〈ei , xi , yi 〉 −→ C3

has two-dimensional image, andC〈xi+yi 〉 lies in the kernel of thismap. It follows that,
a complementary subspace to the kernel, say either C〈ei , xi 〉 or C〈ei , yi 〉, constitutes
a trivial summand in (uei )ad.

Denote by C〈ei , xi 〉
l−1
2

i=1 the central subalgebra spanned by the elements in the
bracket, then

dimC 〈ei , xi 〉
l−1
2

i=1 = l − 1,

which is already equal to the number of trivial summands in uad. It follows that the
complementary subspace in the center agrees with ad�(u):

C 〈eSt, xi + yi 〉
l−1
2

i=1 =
l−1
2

⋂

i=1

Ker(χi
∣

∣

z)
⋂

Ker(λl
∣

∣

z) = zHig.

The last statement follows from the fact that λl(�) = 1. This finishes the proof of
the theorem. 
�
The uq(sl2) derived center Combined with the result [14] on the cohomology of the
small quantum group, this decomposition allows us to derive the total Hochschild
cohomology of the small quantum group u(sl2).

Denote byC[N ]+ the augmentation ideal generated by all positive degree elements
in the graded ring C[N ]. We will consider separately the odd and even degree of the
Hochschild cohomology.

First we compute the odd Hochschild cohomology part of uq(sl2). In order to do so,
we need to compute the cohomology of the module φ∗(V (1))⊗ L(l−2) appearing as
direct summands of u(sl2). Although the factor φ∗(V (1)) restricts to a trivial module
over uq(sl2), it carries a nontrivial action by Uq(sl2)//u(sl2) = U (sl2).



   68 Page 32 of 40 A. Lachowska, Y. Qi

Proposition 5.5 There are isomorphism of U (sl2)-modules

Extiu(sl2)(L(0), φ∗(V (1)) ⊗ L(l − 2)) ∼=
{

V (i − 1) ⊕ V (i + 1) i odd,
0 i even.

Consequently, for the odd degrees, there is an isomorphism of gradedC[N ]�U (sl2)-
modules

Ext2•+1
uq (sl2)

(L(0), φ∗(V (1)) ⊗ L(l − 2)) ∼= C[N ][−1] ⊕ C[N ]+[1].

Proof Regarding L(l − 2) as a (tilting) module over U = Uq(sl2), we will construct
an injective resolution for L(l − 2) over U. The resolution would then restricts to an
injective resolution L(l − 2) over u = uq(sl2) (see e.g. [2–4]).

The module L(l − 2) = T (l − 2) is a tilting module over U. There is a resolution
of tilting modules

0 −→ T (l − 2) −→ T (l)
d0−→ T (3l − 2)

d1−→ T (3l)
d2−→ T (5l − 2)

d3−→ . . . (5.5)

The differentials (k = 0, 1, . . . ,)

· · · −→ T ((2k + 1)l − 2)
d2k−→ T ((2k + 1)l)

d2k+1−−−→ T ((2k + 2)l − 2) −→ · · · (5.6)

are given by the unique maps, up to rescaling, of tilting modules whose neighboring
highest weights lie in the same orbit of l − 2 by the affine Weyl group action on the
weight lattice.

Lusztig’s tensor product decomposition theorem implies that, in this case, there is
a tensor product decomposition

T ((2k + 1)l) ∼= φ∗V (2k) ⊗ T (l), T ((2k + 1)l − 2) ∼= φ∗V (2k − 1) ⊗ T (2l − 2).

Here V (m) denotes the simpleU (sl2)-module of highest weightm ≥ 0 and dimension
m + 1.

Restrict to the small quantum group, and keeping track of the U (sl2) action at the
same time, we obtain an injective resolution

0 → L(l − 2) → P(l − 2) → φ∗V (1) ⊗ P(0) → φ∗V (2) ⊗ P(l − 2)

→ φ∗V (3) ⊗ P(0) → . . . ,

where we have used that

T (l)
∣

∣

u
∼= P(l − 2), T (2l − 2)

∣

∣

u
∼= P(0).
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The Frobenius pullbacks are flat over u. Then to compute Ext•u(L(0), φ∗V (1)⊗ L(l−
2)) we take the tensor product of the above resolution with φ∗(V (1)) to obtain

0 → φ∗V (1) ⊗ L(l − 2) → φ∗V (1) ⊗ P(l − 2) → φ∗(V (0) ⊕ V (2)) ⊗ P(0) →
→ φ∗(V (1) ⊕ V (3)) ⊗ P(l − 2) → φ∗(V (2) ⊕ V (4)) ⊗ P(0) → . . . (5.7)

Equivalently, this resolution can be obtained from the injective resolution for L(0)
constructed in a similar fashion as above:

0 → L(0) → P(0) → φ∗V (1)⊗ P(l − 2) → φ∗V (2)⊗ P(0) → φ∗V (3)⊗ P(l − 2) → . . .

(5.8)
by tensoring it with the module φ∗V (1) ⊗ L(l − 2).

Note that Homu(L(i), P( j)) = δi, jC for i, j ∈ {0, l−2}. Using this and resolution
(5.8) we obtain that

C•[N ] ∼= Ext•u(L(0), L(0)) ∼=
⊕

k∈N

V (2k), (5.9)

where V (2k) sits in homological degree 2k. Likewise, using resolution (5.7), we have

Ext•(L(0), φ∗V (1) ⊗ L(l − 2)) =
⊕

k∈N

(V (2k) ⊕ V (2k + 2)) , (5.10)

where the summand V (2k) ⊕ V (2k + 2) appears in homological degree 2k + 1.
Comparing the expressions (5.9) and (5.10), the Proposition follows. 
�
Proposition 5.6 The even part of the Hochschild cohomology ring of uq(sl2) is iso-
morphic to the graded algebra

HH2•(uq(sl2)) ∼= C[N ] ⊗ z(sl2)
(

C[N ]+ ⊗ (xi + yi ), C[N ]+ ⊗ est|i = 1, . . . , l−1
2

) .

Here the terms in the denominator stands for the ideal generated by the corresponding
elements in the tensor product commutative algebra.

Proof We use Theorem 3.5 and Corollary 5.3. The contribution from L(0) is obtained
by using the injective resolution 5.8 and results in the term 5.9. The contribution from
the injective module P(0) is contained entirely in the zeroth cohomology. Comparing
with Theorem 5.4, we see that C(xi + yi ) and C(est) are contained in projective
summands of uad. Each of their contribution, say, the term C(xi + yi ), to the entire
Hochschild cohomology can be computed to be

Ext•u(L(0), P(0)) ∼= Homu(L(0), P(0)) ∼= C ∼= C[N ] ⊗ C(xi + yi )

C[N ]+ ⊗ C(xi + yi )
.

Here the first isomorphism holds since P(0) is also injective over u, so that there are
no higher ext groups. The term (φ∗V (1)⊗L(l−2)) does not contribute to even-degree
cohomology by Proposition 5.5. The proposition follows. 
�
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Combining Proposition 5.6 and 5.5, we immediately obtain

Theorem 5.7 The total Hochschild cohomology group of uq(sl2), where q is an odd
primitive lth root of unity, is isomorphic to the graded C[N ] � U (sl2)-module

HH•(uq(sl2)) ∼=
l−1
2

∏

i=1

(

C[N ]ei ⊕ C[N ]μi ⊕ C[N ]+νi ⊕ C[N ]xi ⊕ C[N ]yi
C[N ]+(xi + yi )

)

× Cest,

where the module generators ei , μi , νi , xi , yi , est have homological degrees

deg(ei ) = deg(est) = deg(xi ) = deg(yi ) = 0, deg(μi ) = 1, deg(νi ) = −1.

Furthermore, the product structure respects the block decomposition of uq(sl2).

Proof Only the last part needs some remark. The Steinberg block is semisimple and
does not have any higher Hochschild cohomology. On the other hand, the regular
blocks uλ are all equivalent to the principal block u0 by Jantzen’s translation principle,
and therefore φ∗V (1) ⊗ L(l − 2) must appear exactly once in (uλ)ad, and the total
odd Hochschild cohomology groups are evenly distributed among the l−1

2 regular
blocks. 
�

However, Theorem 5.7 does not provide the algebra structure of the Hochschild
cohomology ring yet. This will be done in the next subsection.
Geometric construction and algebra structure In the final part of this section, we use
Theorem 3.10 to compare the Hochschild cohomology of each block with with the
algebraic computations above, and determine the algebra structure of the Hochschild
cohomology ring.

Proposition 5.8 The C∗-equivariant Hochschild cohomology of the Springer variety
is isomorphic to

HHs
C∗( ˜N ) =

⎧

⎨

⎩

V (0)⊕3, s = 0,
V (s)⊕2, s ≥ 2, s even
V (s − 1) ⊕ V (s + 1), s ≥ 1, s odd

Proof Denote for simplicity the SL2(C) flag variety by P = SL2(C)/B, where B is
a Borel subgroup, and ˜N = T ∗P is the Springer variety.

By theHochschild-Rosenberg-Kostant Theorem, there is an isomorphism of graded
vector spaces

HH•
C∗( ˜N ) ∼=

⊕

i+ j+k=•
Hi ( ˜N ,∧ j T ˜N )k

We compute each cohomology group Hi ( ˜N ,∧ j T ˜N )k by pushing forward the poly-
tangent bundles along the projection pr : ˜N = T ∗P → P and making use of the short



Remarks on the derived center of small quantum groups Page 35 of 40    68 

exact sequence

0 −→ pr∗�P −→ T ˜N −→ pr∗TP −→ 0.

Below, we identify TP ∼= O(2) and T ∗P = �P
∼= O(−2). It is important to keep

track of the C∗-degree of the sheaves: �P has C∗-degree −2, TP has C∗-degree 0.
The pushforward

pr(O
˜N ) ∼= SL2(C) ×B C[n] ∼=

⊕

t≥0

O(2t)k=2t

splits into C∗-homogeneous summands indicated as superscripts. Here n is the nilpo-
tent radical of the Lie algebra of B.

We will also use the Borel-Bott-Weil Theorem for SL2(C):

Hi (P,O(m)) ∼=
⎧

⎨

⎩

V (m) i = 0, m ≥ 0,
V (−m − 2) i = 1, m ≤ −2,

0 otherwise.

We divide the cases according the wedge power ∧ j T ˜N of j . Since T ˜N has rank
two, j ranges over 0, 1, 2.

Let j = 0. Then we have pr∗(∧0T ˜N ) = pr∗(O ˜N ) ∼= ⊕t≥0O(2t). We get the
contribution of this component to the total Hochschild cohomology is equal to

H0( ˜N ,∧0T ˜N )2t ∼= V (2t) (t ∈ N).

Let j = 1. Pushing forward the short exact sequence of sheaves 0 → pr∗O(−2) →
T ˜N → pr∗O(2) → 0 to P gives us a short exact sequence of bundles of infinite rank

0 −→
∞

⊕

t=0

O(−2 + 2t)2t−2 −→
∞

⊕

t=0

(

pr∗T ˜N )2t−2 −→
∞

⊕

t=0

O(2 + 2t)2t −→ 0,

since pr : ˜N −→ P is an affine morphism. Taking cohomology, we obtain, as part of
a long exact sequence, the short exact sequences

0 → H0(P,O(2t − 2)) → H0( ˜N , T ˜N )2(t−1) → H0(P,O(2t)) → 0,

0 → H1(P,O(−2)) → H1( ˜N , T ˜N )−2 → 0 → 0.

Here we have used that H1(P,O(2t − 2)) = 0 for all t ≥ 1. Therefore we have:

H0( ˜N , T ˜N )2t−2 ∼= V (2t − 2) ⊕ V (2t), (t ≥ 1) H1( ˜N , T ˜N )−2 ∼= V (0)

Let j = 2. Then we have ∧2T ˜N ∼= O
˜N , but with the C∗-degree shifted down by

−2. Therefore, we have, as in the j = 0 case, the nonzero contribution to Hochschild
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cohomology comes from

H0( ˜N ,∧2T ˜N )2t−2 ∼= V (2t) (t ∈ N),

and vanishes otherwise. The Proposition follows. 
�
Comparing the injective resolution for L(0) over u(sl2), given in the proof of

Proposition 5.5, with the result Ext2•u (L(0), L(0)) ∼= C•[N ], we findCs[N ] ∼= V (2s)
for all s ≥ 0.

Perhaps it is more illustrative to exhibit the computation results of Proposition 5.8
into the following table:

Hi ( ˜N ,∧ j T ˜N ) j−i=0 j−i=2

i+ j=0 C[N ] 0
i+ j=2 C{−2} C[N ]{−2}

⊕
Hi ( ˜N ,∧ j T ˜N ) j−i=−1 j−i=1

i+ j=1 0 C[N ][−1]⊕C[N ]+[1]
i+ j=3 0 0

(5.11)

The table splits the total Hochschild cohomology of u0(sl2) into a direct sum of even
and odd parts, and the notation {−2} stands for a C∗-degree shift down by 2.

This shows that Theorem 5.7 agrees with the result for the principal block given in
Proposition 5.8. Indeed, taking product over the l−1

2 regular blocks, which are Morita
equivalent to the principal block, of the above table, as well as a copy of C for the
Steinberg block, one recovers the statement of Theorem 5.7.

Furthermore, the table exhibits a triply-graded module structure of HH•(u(sl2))
over the graded ring C[N ] � U (sl2). Namely, the i , j and k (or C∗) gradings in
Hi ( ˜N ,∧ j T ˜N )k . The Hochschild cohomological grading is equal to i + j +k. In gen-
eral the Hochschild-Rosenberg-Kostant Theorem is only an isomorphism of algebras
after twisting by the square root of Todd class (see, for instance, [9]). We expect the
Hochschild cohomology ring structure of u(sl2) to only inherit the C∗-grading from
this table. But for ˜N = T ∗P, the Todd class is trivial, and the algebra structure is
untwisted. See the next remark.

Remark 5.9 Using the projective covers P(0) and P(l − 2) of the simples L(0) and
L(l − 2) in Rep(u0(sl2)), we may identify the principle block Rep(u0) with module
over the endomorphism algebra E := Endu(P(0)⊕ P(l−2)) The algebra can readily
be computed to be equivalent to the quiver algebra with two vertices

•
a2
a1 •
b2
b1

modulo relations

aib j = 0 = b jai (i �= j), a1b1 = a2b2, b1a1 = b2a2.

One may readily check that the algebra is Koszul, and thus there is a hidden grading
on Rep(u0(sl2))whose graded representation theory is equivalent to the graded repre-
sentation theory of E . One can check that the C∗-grading above in Table 5.11 agrees
with the Koszul grading.
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Corollary 5.10 The algebra structure of HH•(u(sl2)) is determined by

μ2
i = ν2i = νiμi + μiνi = 0, eiμi = μi ei = μi , eiνi = νi ei = νi ,

xiμi = μi xi = yiμi = μi yi = 0, xiνi = νi xi = yiνi = νi yi = 0,

μiνi = −νiμi = xi − yi .

Proof The associative algebra structure on HH(u0) ∼= HHC∗(T ˜N ), as given in the
Theorem 3.10, is determined by the exterior algebra structure on ˜N up to a Todd class
twist by [9]. For ˜N = T ∗P, the Todd class is trivial, and we may compute the algebra
structure directly.

Cover P by affine lines

P = Spec(C[z]) ∪ Spec(C[w]),

where z = 1/w over the common intersection. Then ˜N = T ∗P is covered by the
affine planes

T ∗P = Spec(C[z, pz]) ∪ Spec(C[w, pw]),

with it understood that pz is dual to dz and pw is dual to dw.
In the first affine chart, we may identify H0( ˜N , T ˜N ) with the vector space

C

〈

pz
∂

∂ pz
,

∂

∂z
, z

∂

∂z
, z2

∂

∂z

〉

We note that ∂
∂ pz

∧ ∂
∂z is the restriction of the Poisson bivector field τ in the coordinate

chart.
Identify

C

〈

pz
∂

∂ pz

〉

∼= V (0) ⊗ μi , C

〈

∂

∂z
, z

∂

∂z
, z2

∂

∂z

〉

∼= V (2) ⊗ νi .

The natural map

H0( ˜N , T ˜N )0 ⊗ HH0( ˜N , T ˜N )0
∧−→ H0( ˜N ,∧2T ˜N )0 ∼= V (2)(xi − yi )

factors through

(V (0) ⊗ μi ) ⊗ (V (2) ⊗ νi )) ∼= V (2)τ.

It follows that we have to set μiνi = −νiμi to be a degree-2 central element, which
we may choose to be xi − yi up to isomorphism. The result follows. 
�
Modular group action In [18], it is established that there is the following decompostion
of z(sl2) = z(uq(sl2)) as a module over the modular group.
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Theorem 5.11 At a primitive root of unity q of order l, the projective modular group
SL2(Z) action on the center of uq(sl2) decomposes into

z(sl2) ∼= Pl+1
2

⊕ C2 ⊗ Vl−1
2

,

where Pl+1
2

is an l+1
2 -dimensional module of SL2(Z), C2 stands for the standard

matrix representation and Vl−1
2

is an l−1
2 -dimensional representation of SL2(Z).

Corollary 5.12 Inside the adjoint representation, there is a decomposition

Pl+1
2

∼= C 〈xi + yi , est〉
l−1
2

i=1 , C2 ⊗ Vl−1
2

∼= C 〈xi − yi , ei 〉
l−1
2

i=1 .

Proof Since the modular group action preserves the module structure of uq(sl2)ad
(Theorem 2.30), it preserves the sum of trivial submodules contained in projective
summands as well as trivial summands of uq(sl2)ad. The result now follows from
counting dimensions from the Kerler’s Theorem and Theorem 5.4. 
�
Corollary 5.13 The even part of the Hochschild cohomology decomposes, as a projec-
tive SL2(Z)-module, into

HH2•(uq(sl2)) ∼= Pl+1
2

⊕ C2 ⊗ Vl−1
2

⊗ C[N ].

It remains an interesting question to investigate the projective SL2(Z)-action on
C[N ] so as to determine the exact modular group structure in the above results.
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