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Abstract

We prove sharp bounds for the growth rate of eigenfunctions of the Ornstein-Uhlenbeck
operator and its natural generalizations. The bounds are sharp even up to lower order terms
and have important applications to geometric flows.

Mathematics Subject Classification 53C44

1 Introduction

The Ornstein—Uhlenbeck operator (or drift Laplacian), £ on R" is the second order operator
Lu = Au — (Vf,Vu), where f = J%E. It is self-adjoint with respect to the Gaussian
L? inner product whose norm is ||u||%2 = f u*e~f. The drift Laplacian is important in
geometric flows (see, e.g., [7] and [8]) and the results here are ingredients in the proof of the
René Thom gradient conjecture for the arrival time function; see [5,6].

We study here the rate of growth of drift eigenfunctions u with £ u = — Au. It is easy to see
that if Lu = O and |lu]| ;2 < oo, then u must be constant. More generally, if Lu = — Au and
lull 2 < oo, then A is a half-integer and u is a polynomial of degree 2A. When n = 1, these
polynomials are the Hermite polynomials and the equation Lu = — Au is known as Hermite’s
equation. Hermite’s equation has a dichotomy where either a solution is polynomial, or it
grows faster than any exponential.

Our results apply to drift Schrodinger equations with more general weight functions f
and a zero-th order term V. Namely, consider solutions u of

Lru=Au—(Vf,Vu)=-Vu, (1.1)
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for some function V and some C! function f(x) = f(|x|), where f only depends on the
distance to the origin. For the Omnstein—Uhlenbeck operator, f(r) = L; and, thus, f'(r) = 5.

We will define a frequency function U : Rt — R that measures the rate of polynomial
growth of a function u at each scale. We delay the precise definition to (2.3), but emphasize
that U = d if u(x) = |x|¢, while U — oo if u grows exponentially. We show:

Theorem 1.1 Suppose that f'(r) > 5. Given € > 0 and § > 0, there exist r1 > 0 such that

ifU(r1) = 8§ + 2 sup{0, V} for some r1 > ry, then forallr > R(r1,€,8,n,sup V)

2
U(r)>-r2——n——25upV—e. (1.2)

We will construct examples that show that the lower bound for U is sharp in all dimensions;
not only is the quadratic coefficient % sharp, but also the constant —z cannot be improved.

The theorem is also sharp in the dependence on the sup V. Namely, if V = % is a positive
half-integer, then the polynomial solutions mentioned above have U asymptotic to k. Thus,
the threshold & + 2 sup V is sharp. Furthermore, we will see that (1.2) is also sharp in sup V.

Theorem 1.1 shows that there is a sharp dichotomy for the growth: either U is bounded

2
and u grows at most polynomially, or z grows at least like r =2 %PV e7.

For eigenfunctions of the Ornstein—Uhlenbeck operator, where f(r) = %, we also get a
lower bound for the derivative of the frequency:

Theorem 1.2 If £(x) = EL and Lu + u = 0, then either lim sup, _, o U(r) < 2|3] or
there exists R so that for allr > R

2 l—n
2 8 A (0]
v=l(1+ d SR . il ST
2 2n+4+4U@F)—r2 2n+4U(r) —r? 2n+4U(r) —r?
where O (r'=") is a term that is bounded by a constant times rl=n,
Ifweset W =U — %2— + %, then (1.3) becomes W’ > ¢ (W’il - %) up to lower

order terms. Integrating leads to the bound U > % r?2 —n — 1 — 2 A, which is slightly worse
than (1.2). However, this inequality gives a (positive) derivative bound for all values of U.
Our arguments are quite flexible and generalize. For instance:

Theorem 1.3 Suppose that f'(r) > % Let M be an open manifold with nonnegative Ricci

curvature, Euclidean volume growth and Green’s function G. Fix xo € M and let b be given
by b>™" = G(xo, -). Given € > 0 and § > 0, there exist r| > 0 such that ifLrpyu =0and
U(r) = 8 for some v > ry, then forallr > R(r, M, €, §)
72
U(r)>-§——n——e. (1.4)

In this theorem, L ¢y u = A — (Vu, V f(b)) and I, D, and U are defined in terms of b;
see (4.1), (4.2) and (4.3).
2 The sharp lower bound for U

In this section, f : R” — R is a function that only depends on the distance to the origin.
With slight abuse of notation we write f(x) = f(]x|) and denote 3, f by f'.
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Define quantities 7 (r), D(r), and the frequency U (r) by

)= rl_”/ W, @.1)
3B,
D(r) = rz_”/ uu, = r¥ el / (|Vu|2 -V uz) e/, (2.2)
9B, 3
D
Ur)= - (2.3)

The frequency U is the logarithmic derivative of % logl,ie., (logl) = ZTU and thus mea-
sures the polynomial rate of growth of V/T. This frequency was recently used by Bernstein,
[2], to study the asymptotic structure of ends of shrinkers for mean curvature flow. It is anal-
ogous to a similar quantity for harmonic functions known as Almgren’s frequency function,
[1], cf. [3,9-12].

An easy calculation together with that div (e=/ Vv) = e~/ £ v shows

d 1—n / 1-n [ dv 1—n ) / i
— i, -~ R . 2.
——~r<r arv r ar_" r e rﬁfve 2.4)

Using (2.4) with £y u = 0 gives that the spherical average of a £ y-harmonic function is
constant in r.

Lemma2.1 If Lru+ Vu =0, then

=220 s
2U
(log 1) (r) = r(r) ’ (2.6)
D=2 D4 Sy D4 / (IVulP = vu?). @7)
dB,

Proof Since L ¢ u? =2|Vu|* — 2V u?, (2.4) gives

I'(ry =2r1""e/® / (IVuP? —vu?) e/ = 2D(r). (2.8)

r

T

This gives the first two claims. Differentiating (2.2) gives (2.7). m]

Define a (non-linear) first order differential operator on positive functions g on (0, co) by

n—2 ra
Pf,;tg:(logg)’+————~f/+§+——. 2.9)
r r g
We will later use that if f; > f], then P, ¢ > Pp 5 8.
The key will be that U is a sub-solution of P:
Lemma22 If Lyu+Vu=0andoo > U(r) > 0, then
Pf supv U = 0. (2.10)

Proof The Cauchy—Schwarz inequality

D? 2
s 2 g 320 (f uu,) < 1r2—"/ u? < 1r2*"f |Vu|? (2.11)
r 9B, 9B, 9B,
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together with (2.7) gives
; 2—m ; U D
D(r)z—D—l-f(r)D—k—D—rsupVE, (2.12)
r r

Since (logU) = % - 2TU and D(r) > 0, dividing (2.12) by D gives (2.10). ]
The next lemma shows a maximum principle for the operator Py ;.
Lemma 2.3 Suppose that g, h : R — (0, o0) are c! and satisfy forr > ry
Prih>0> Psyg. (2.13)

If h(R) > g(R) for some R > ry, then h(r) > g(r) forallr > R.
Moreover, ife > 0 > A, and g satisfies

€
—=>Pgrgforr=ry, (2.14)
r
then there exists R = R(h(r1), g(r1), r1, €) so that h > g forr > R.

Proof We will prove the first claim by contradiction. Suppose not, then there exists s > R
such that 4(s) = g(s) and h(z) > g(¢) for all s > ¢ > R. This implies that

/

(logh)'(s) < (log g)/(s) = & 2.15)
8
On the other hand, by assumption Py ; h > 0 and thus
2 — h A 2— A
(oghy(s) > 2=l 4 flis) =2 g 2 270 gy 89 2
s s h(s) s s g(s)
(2.16)

Together these two inequalities gives that Py ; g > 0 which is the desired contradiction.

The second claim will follow from the first once we show that there is some R > r; so
that 4 > g for some r with R > r > ry. To see this, we suppose that h < g forr; <r <R
and then get an upper bound on R. On this interval, since A < 0 we get that

€
(logh)'(s) — (log 8)'(s) = Prah — Prig > = (2.17)
Integrating this from r; to R gives
€
15 M) o) (RY (2.18)
T g(R) T gt \n
(rp)

Thus, we see that R€ < r{ 7% O
Lemma 2.4 Suppose that f(r) = é, € > 0andlet g(r) = % —n — € — 2, then there

exists r1 = ry(€, n) so that forr > ry

€
—_ > p , 2.19
5 = fr8 (2.19)

Proof Choose r; so that for r > r;
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For r > ry, (2.20) implies that

2r(A+1) 1 200+ 1) <2+2A+%e (i
rP2=2m+e+22) r\1—-2m+e+21)/r2 r ’ ’
Using the definitions of f and g, we get

2—n rA T 24€e+2A 2r(A+1) €
—Prag=—T4f-f-2E o -5 > =
r g g r re—2m+e€e+21) ~ 2r

(2.22)

O

Combining the two previous results and Lemma 2.2 (to see that Py gpv U > 0) gives
Theorem 1.1 in the case where A < 0. The argument for a general A is similar but a little
more involved since we need a replacement for the second half of Lemma 2.3. We will deal
with this in the next subsection.

2.1 Thecased >0

The next lemma will replace the second half of Lemma 2.3 when A > 0.

Lemma 2.5 Suppose that . > 0 and for r > r| we have that g,h > 0, f' > %, Pryh >
0,—% > Pryg andrg’ > g If§ > 0andry > r| satisfies 2—;54 +%-n HLZA > +/Aand
h(rp) > 2146, then there exists R = R(r2, g(r2), 8, A, €) such that h(r) > g(r) forr > R.

Proof By the first part of Lemma 2.3, once # is above g it stays above. Thus, we must show
that there exists R so that h(r) > g(r) for some r € (2, R). We do this in steps: 4 gets above
/A r, then stays above /A r if it is below g, and finally overtakes g.

First, if 2L + 8 < h(r) < ~Ar forr > rp, then Py ;. h > 0 implies that

2—n r
logh) (r) > —— 4+ = — VA — 0. 2.23
logh)() z ——+35 —VA-rs—m> (2.23)
Thus, & stays above 2A + 8. Moreover, the derivative of the middle term in (2.23) is at least
1 A )
0. (2.24)

2 5+2r 28+%4r

It follows that log /4 is not only increasing, but starts to grow at least linearly and, thus, 4 will
overtake v/ r in a bounded interval.
Suppose r > rp satisfies JAr < h(r) < g(r). Since Ps 3 h > 0 and —f—. > Py g, we
have
g—nh 1 Ar

og ™) = Prh— Prgt E2R 2 8= L e—h 27 225
og — = ' — 2 = r = = - == H .
gg S fr8 r gh ~r g r gh

Therefore, using that VAr <h(r) < g(r), we have

h /7
(10g —) r) >
g

and hence, using also that rg’ > g (this is the only place where this is used), we have

(2.26)

’

N m

(logh) (r) = = + (log ¢ (r) > 1# 2.27)
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It follows that

(h—ﬁr)’zaifr)—}lﬂz—ﬁz(lJre)«/X—«/X:e x> 0. (2.28)

We conclude from (2.28) that & stays above /A r if /4 is below g. Finally, (2.26) implies
that 2 grows at least polynomially in this region and, thus, 4 must overtake g in a bounded
interval. This completes the proof. m}

We can now get rid of the assumption that r g’ > g in Lemma 2.5 to get:

Theorem 2.1 Suppose that A > 0 and forr > r; we have that g, h > 0, f' > %, Prih >0,
—15, > Py g, then there exists rp > 0 so that if h(s) > 2 + § for some s > ry, then there
exists R so that h(r) > g(r) forr > R.

In particular, h(r) > é —n—2A—¢€forr > R.

Proof We show thezsecond claim first and then use it to show the first claim. To do that
note that if go = 5 —n — 21 — ¢, then r g; = r? > go. Moreover, Lemma 2.4 gives

—f; > Py 5 go. It follows from Lemma 2.5 that for some R > 0 and all » > R we have that

h(r) > é—n—ZA—e.

To show the first claim, note that in the proof of Lemma 2.5 the only place where the
assumption r g’ > g was used was to show that there exists some R so that once » > R and
h(r) > ~/A r the function & would stay above the function /A r. However, this follows from

h(r) > % —n — 2 X — € for r large enough. m]
Proof of Theorem 1.1 We have already proven the case A < 0. The case A > 0 follows from

Lemma 2.2 and Theorem 2.1. |

2.2 Sharpness of Theorem 1.1

The next theorem uses standard solutions of Hermite’s equation to show that Theorem 1.1 is
sharp even up to the lower order term.

Theorem 2.2 For every n and k € Z, there is a function v on R" with Lv = —%— v whose
Sfrequency U goes to infinity but for every € > 0 has a sequence r; going to infinity with
1
Ury) < 5r,?—n—/<+e. (2.29)

The second order ODE Lu = 0 on R, where f(r) = é, has a two-parameter family
of solutions. The first solution is a constant. The second, #y(x), can be normalized to have
2

uo(0) = 0 and u6(0) = 1. The next lemma shows that 7 (r) ~ = e7T.

x2
Lemma 2.6 The function ug is odd, u/o(x) =ed,andforx > 2

2 2
s 2
ed <xupg(x) <6be4s (2.30)
Moreover, there are functions uy for all k € Z with Lu, = —é ug, so that u}< = up_1 and,
furthermore, there are constants cy so that
—k—1 o
[u(x)| < cg |x| eT forl < |x|. (2.31)
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) %2 x2 ! x2 . .
Proof Since Luo =ug—Suy=e+« (uae"T) , we see that { uje™ % ) is constant. Using

the normalization u6(0) = 1, the constant is one. For the lower bound given r > 2, we have

S

7

roa roo32 +2 2
ruo(r)=r/ erxZ/ xeTdx=2e7|;=2e7 —2>e7. (2.32)
0 0

To get the upper bound, we divide the integral into three parts

I 2 /2 o 2 22 1 2 1 4 2
ug(r)f/erx+/ xerx+—/ xerxfeK+2(eﬁ—eZ>+—eT
0 1 r Jr2 r
2 2 6 2
<2eT® 4+ —e¥ < -7, (2.33)
r r

[S)

r

; : LILAN . 2 Lo
where the last inequality used r~! eTs is increasing for r > 2 and el < ,—l_e Tatr =2.
For k > 0, we inductively define

X
Upy1(x) = / ur(s)ds +drt1, (2.34)
0
where the constant dj1 is chosen to make Luyy = —% ur+1- To see that we can choose

dr1 so that it satisfies the equation, note that

k+1 ' , X k+1 '
Lujt1 + Ukl | = uk—iuk+ 7 Wkt
% 1 k+1

=u,’<,—-iu;(—§uk+ 5 uy = 0. (2.35)

Using integration by parts, it is easy to see that ug; grows one degree slower than u; and,
thus, satisfies (2.31).
We construct the u’s for k inductively for k < 0 by defining uy = uj, 41~ Differentiating

the equation Lug41 = —% U1 gives that Luy = —% ug. The equation for ug4o gives

k+2 X X

4
Upta = LUgy = U p — s Uy = B — 5 Uil (2.36)

Since we already know that w1 and ugo satisfy (2.31), it follows that so does uy. O

Proof of Theorem 2.2 1t suffices to construct vy with Lv, = —§ v where v grows at least
exponentially and has (for all x sufficiently large)

lul < C F || =%, (2.37)

|2
This is because the failure of (2.29) for all r; larger than some fixed R implies eJ"il_ [x[e—k—
growth r > R, contradicting (2.37).
The function u; from Lemma 2.6 satisfies (2.37) forn = 1. Forn > 1, we set

v (X1, .o, X)) = up(xug(x2) ..o (xp). (2.38)

O
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3 Lower bound for U’

In this section, we specialize to the Ornstein—Uhlenbeck operator £ where f(r) = %. In

this case, £ f = % — £, |VfI? = f, and the Hessian of f is diagonal with fij = %(SU.
The next lemma is a drift version of the classical Rellich identity that is used to prove
monotonicity of Almgren’s frequency for harmonic functions.

Lemma 3.1 Suppose that Lu + V u = 0 on R". Givenr > 0, we have

2 2
2r/ u% - ’”/ (lvu|2 - Vuz) =2-ne? / IVulze_f +2e7 IVu|2fe_f
3B, 3B, B, B,
2
+2e7 / V u? (E —f) e
B, 2
.2
+2e7/ W (Vv vyet. (3.1)
Proof Using that f;; = %(Sij, the divergence of (V f, Vu)Vu — %IVul2 Vfis

1 1
(fiu,'uj — Eulzf]> = fiujujj + fiuijuj + fijuiu; — 5 uizfjj —ujju; fj
J

2—n 2

= fiujujj + u;. 3.2)
In particular, since divy X = e/ div (e‘f X) =divX — (Vf, X), we see that
divy ( (Vf, Vu)Vu — 5|Vu| Vi) =(Vf,Vu)lu+ TIVuI + 3 [Vul® f,
where the equality also used that |V f|> = f. The divergence theorem gives
2 2 .
Zr/ uf—rf Vul?=@2-n)e7 | |Vul?eF +2e7 | |Vul> fe !
3B, 3B, B, B,
7'2 ~
+4e7 f (Vf,Vu)Lue 7. (3.3)
The lemma follows from this and taking div s of % V u?Vf to get
: 1
/ (Vf,Vu) Lue ™/ = —5/ V(VF,Vutye S
] V'Z
= —f vV u? (z —f) e/ — le 7 / Vu?
2 B, 2 4 9B,
1 .
+5/ uwr (Vv,vfye t. (3.4)
O

We specialize next to drift eigenfunctions, i.e., where V = A is constant.

Lemma3.2 If Lu = — Au on R", then

uDn _ 2 . 2

D'(r) > —;:D +2——2e7 r‘—"/ (IVul* = au?) fel —22e7 rl*"/ ute ™t
r r By

3.5
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Proof Multiplying Lemma 3.1 by »!=" gives that
2_ 2 2 D Z
2r2_"/ u; —r _”/ (IVul* - )»uz) =Q-n)=+2e7 "
3B, 3B, r
xf (|Vu|2 —Auz) feff

B,

2

+21e7T r]_"/ ute 7. (3.6)

B,

Using this in the formula for D’ from Lemma 2.1 gives

D'(y="""D+=D+r2" / (IVu? — xu?)
r 2 9B,
)
= %D +2r2_”/ uf —2e7 rlf"/ (IVu* = au?) fe’
3B, B,
7'2 X

—22e7T rl_”/ ure . (3.7)
The lemma follows from this since r2~" ) B, o UT by (2.11). ]

The next corollary shows that U is monotone for drift-harmonic functions.

Corollary 3.1 [f Lu = 0 on R", then

2 [y, IVul? (5 = 1) e/
Iy VaPed = G

(logU)' >

Proof Dividing by D in (3.5) with A = 0, we see that

2
toguy s [ 2n IVuE e 2y 1VuE (7-9) b
oglU) > = — = : > 0. ;
2 r fpIVulZe=f r [, 1Vulte=t

]

When u is not drift harmonic, then we will need to rewrite the right hand side of equation
(3.5). This is done next (we record the result for a general V).

Lemma3.3 IfLu+ Vu=0onR" then
r2 3 l r2
eTr]"’/r (IVuI2 — Vuz) fel = % D-0+ EeTrl_"]r u? <% - f) e /.
(3.10)

. 3
Proof Observe first that since Lu = —V u, % faB, U, = 2 D, and

divy u f Vu) = (IVul> = Vu?) f+u(Vu, V), (3.11)
we have

e%rl‘"/ (qul?‘— Vuz) fef :%D—e%rl'”/ u(Vu, Vye . (3.12)
r Br
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Next since div s (u?V f) = 2u(Vu, V f) + u> Lf = 2u(Vu, Vf) + u® (% — f), we have

I’2 1 7'2
eTrl_”/ wiVu, Ve f =l1- —eTrl*"f u? (ﬁ - f) e, (3.13)
X 4 2 B, 2
Combining these two equations gives the claim. O

As a corollary, we get a lower bound for U’.
Corollary3.2 If Lu + 2 u = 0 on R", then
- r2
U'(r) > -+ 17 (e rl_”f u? (f — e ZA) e/ (3.14)
2 B, 2
Furthermore, given § > 0, there exists ry so that if U(r) > § + 2|A| for some ¥ > ry, then
there exists R so that for allr > R

; r
HOEES (3.15)
Proof Combining Lemmas 3.2 and 3.3 gives

DU 2 ,
D’(r)22—+%]+e7' rl'"/ u? (f—g—ZA)e_f. (3.16)
r

-

The first claim follows from this since U’ = (% - ZTU) U.

To prove the second claim, we just need to show that there is some R? > 25 + 81 with
/ u? (f—f—zx)e—fzo. (3.17)
Bg 2

2
This follows immediately since /(r) e~ # grows rapidly by Theorem 1.1. O

Proof (of Theorem 1.2.) We can assume that limsup,_, ., U(r) > 2|A|. Thus, the second
part of Corollary 3.2 applies and U’(z) > % for t > ro. In particular, W) = U () — %
satisfies W > 0 for t > rq. After possibly increasing rq, we can assume that rg >2n+8A
and, moreover, that W (rp) > 0 (using Theorem 1.1).

By Lemma 2.1, forr > s > rg

Ji Ty 2. w2 1 2 w2 2W(@r)
1ogﬁ:—2/ i S —2W(r)/ = St 1og(5) .
I1(r) s 1 4 s 1 4 r
(3.18)
It follows that for any constant ¢ < rg
2 rl—n r )
e (s2 —c) s" M) e T ds = FI2WED
1(r) o
” /r (sn+1+2 W) _ o gn—142 W(r)) ds
o
3
- 1
_ 2 cr O(rl—n—ZW(r)) , (3.19)

ThA+2+2W@F) n+2W() +n+2+2W(r)

where O(r!7"=2W ™) is a term that is bounded by a constant (depending on rg) times
r1=1=2W () Ingerting this in Corollary 3.2 with ¢ = 2n + 8 A gives the claim. m]
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4 Drift harmonic functions on open manifolds

In this section, we will show a natural generalization (Theorem 1.3) of (1.2) to open manifolds
with nonnegative Ricci curvature and Euclidean volume growth. In fact, the assumptions on
the Ricci curvature and volume growth are only used to show that the function b defined
below is proper.

Let again f be a function on (0, 00) with f” > 5. Suppose that M is an open manifold,
b : M — R is a proper function. For a function u : M — R, define (cf. [3] and [4])

l(r)zrl*”f u® |Vb|, (4.1)
b=r
D(r) = r¥"ef® / [Vu2e f® 4.2)
b<r
UG = D(r) 43
(r 0 (4.3)

Weset Lru = Au— (Vu, Vf(b)). It follows that

Vb Vb
I'(r) = rl—"/ —u? +/ u* —— (r'="|Vb| d Vol)
b=r |VD| b=r VD]

. Vb
=l ef(’)f Lru?e 7O +f W —— (r'=" |Vb| d Vol) , (4.4)
b<r b=r IVb|
where d Vol is the volume element of the level set of 5. The co-area formula gives
2— Vul?
D'(r) = =D + f'(rD + rz””/ ﬂ (4.5)
r b=r VD]
If £ u =0, then £su® = 2|Vu|>. Therefore
1 : Vb
D(r) = —r*™" ef(’)/ Ly u?e S® = p2-n / u <Vu, ——> (4.6)
2 b<r b=r |Vb|

The Cauchy—-Schwarz inequality (cf. (2.11)) gives for Ly u =0

D2 2 \v/ 2
e (/ uu,-) < 1r2_”/ Ve ) 4.7
r b=r b=r VDI

It follows that for L u =0

2 Vul> _ 2-— U
D’(r)z—”D+f’D+r2—”f vul "D+ fD+=—D. @B
r b=r |Vb| A
If Lfu=0and
Vb
VBE (r'=" Vbl d Vol) = 0, (4.9)

then /' = 2 £ and (log 1)’ = 2L Hence, by (4.8)
ProlU =0. (4.10)

By [3] if b~ is harmonic, then (4.9) holds. This is due to the following:
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Lemma4.1 Let d Vol denote the volume element of the level set of a function v, then

Av
——d Vol. 4.11
Vol 0 4.11)

Proof An easy calculation shows that the change in volume element (of the level set) is

. Vv Vv Vv =~ Av _Vv(]Vv])
d‘V(|Vv12)_(VI‘5—5(|Vv|2)’|Vv|>_|wz 2

From this the claim follows. m]

Vv

It follows from (4.10) together with Theorem 2.1 that:

Theorem 4.1 Suppose that f' > 5. Givene > 0and § > 0, if A b>~" = 0, then there exist
r1 > 0so that if U(r) > § for some r > r| and Liu =0, thenforallr > R(r, M, ¢, §)

1
U(r)>§r2—-n—e. (4.13)

In particular, it follows from [3] that if M is an open manifold with nonnegative Ricci
curvature and Euclidean volume growth and b is given by b>~" = G, then b is proper and thus
the conclusion of Theorem 4.1 holds giving Theorem 1.3. (Here G is the Green’s function.)

5 Approximation of eigenfunctions

Theorem 1.1 implies thatif Lu = — Au on R”, then either u grows at most polynomially or at

2
least as fast as r "Pe 7 for some power p. In the first case, |[u]| ;2 < 00, s0 u is a polynomial
and A a half-integer. The next theorem gives a local version of this; we will see a more general
version of this in the next section.

k

Theorem 5.1 Given k € Z and Ry, there exist C and Ry so that if Lu = —75 u on Bg for
some R > Ry, then there is a polynomial v of degree at most k so that
R2
sup |u — l)|2 <0 R4n~1+max{0,2k+2} e——z—/ u2. (5.1
Bg, B’“%r \19R_71E

Proof We will prove this in two steps. Suppose first that k < —1. Lemma 2.2 gives

Goguy = 2=t r U (5.2)
e =T T w T '
We will show first that U goes above n on any interval [rg, rg + 1] for ry > 2n. To see this,

suppose that U < n on such an interval and use (5.2) to get that

jio 2—n r n
U>-+U + === >n. (5.3)
2 r 2 r

This is impossible since 0 < U < n, giving the claim. Thus, Theorem 1.1 gives R depending
onn so that U(r) > & — n forall r > R. Given r > R, integrating this from r to R gives

I(R) Res omy 1o R
1ogm32/r (E—E)ds_ (R —r)—2n]0g7. (5.4)
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Letting » = min{R, 2R}, exponentiating and applying elliptic estimates gives

2 2n _B?
sup|u|“ <cl(r) < CR“"e 7 I(R). 5.5)

Bg,

The case k < — 1 follows from this since /(R) < ¢ R*™" Iz | \Bx u?.
R+

Suppose now that k > 0 and let w be any (k + 1)-st partial derivative of u. It follows that
Lw = —% w, so (5.5) implies that

2
sup [VKEH 12 < ¢ R e*%/ Lraaz M (5.6)
BRO dBRr

Elliptic estimates on balls of radius R~! centered on 8 Bg give that

sup Ivk+1u'2 < C R2k+2+ll / u2 (57)
JdBR BR+11e \BR;%
The theorem follows with v given by the degree k Taylor polynomial for u at 0. O

6 Approximate eigenfunctions on cylinders

In this section, we let M = N x R” be a product manifold where N is closed. Let x be
2

coordinates on R”, define f = J—%L and the drift Laplacian £ = A — % Vi = AN + Lro.

Given a function u, we define 7 and D by

= [, 6.1)
|x|=r
2
D(r) = r?™" / uu, =7 pn / (IVul* + ulu) e/ 6.2)
Ixl=r Ix|<r

Here u, denotes the normal derivative of u on the level set |x| = r. Since N is compact, f
is proper and the integrals exist. It is easy to see that I’ = ZTD and (log 1) = 27U, where the
frequency U is given by U = %

The next theorem gives a strong approximation for approximate eigenfunctions on M.
The theorem is stated for eigenvalue —% for simplicity, but can be modified easily for other
eigenvalues by arguing as in the previous section. This result is a key ingredient in [5].

Theorer31 6.1 There exist R and C depending on n so that if v is a function on {|x| < R},
where R < R, and

(D) l—% v? + v£v| <yl+e (”—22 + [Vv|2>, where ¥ is a function and € < %

then we get for any A € (0, 1/2) that

(1—e—A) R2

2 _
[ et = 2+ R R (6.3)
|x|<4n A
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In the proof, we will need a modified version of the frequency. Define E(r) by

’2 1
E(r)=r*"e7 f {|Vu|2 +3 vz} e~/

|x|<r

We define a modified frequency Ur by

E(r)
Lemma 6.1 We have
2—n r r U (D
logUg) > —— + = —|==-2}. 6.5
g lhad &= +2+2UE+r(E ) 6
Proof Differentiating gives that
2 — 2 — UbD
E()= "E+5E+i1+r2—"f o> e+ lEs L 22
r 2 2 |x|=r r 2 2 r
(6.6)

where the inequality used the Cauchy—Schwarz inequality, (2.11). The lemma follows from

. . i
this since IT = 27U O

Proof of Theorem 6.1 We get (6.3) immediately if

2
2 —f 2
vie™ < —|[¥lle. (6.7)
-/le<4n A s
Suppose, therefore, that (6.7) fails. Given any r > 4n, it follows from (1) that
2 2 ) 2 2 112
ID—E|<€eE+r""e7 Yyl <€eE+Ar"e7 / —e/ <(+MNE.
|x|<4n
(6.8)
Therefore, if 4n < r, then: 0 < I'(r),
U = Ug|(r) < (e + A) Ug(r), (6.9)
,_2—=n r r 2 UE
(logUg)" = + =+ —(+e+A)y—, (6.10)
r 2 2Ug r

where the last inequality also used Lemma 6.1.
We first show that maxys, g,) Ug > n. To see this, suppose instead that Ug < n on
[4n, 8n] and use (6.10) to get

2
(logUg) > —%. 6.11)
Ug

Multiplying by Ug, we get an interval of length 4n where 0 < Ug < n but 2n < Uy, This
is impossible, so we conclude _that max4, gn] Ug > n as claimed._
We claim that there exists R = R(n) > 5n so that for all » > R we have

r?2 —2n

WA rerA)r ol

Ug(r) >
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The key is that if (6.12) fails for some r > 4n, then (6.10) implies that

6.13)

r 6
"

2
logUg) > = >
(log E)_r+2UE_

On the other hand, for r > 4n, we have

: r2—2n 2r 3 —
0 = < -. :
g2(1—|—e+A)2 r2—=2n " r

Integrating (6.13) and (6.14) and using that max[4,,8,] Ug > n, gives an upper bound for
the maximal interval where (6.12) fails. The first derivative test, (6.13), and (6.14) imply that

once (6.12) holds for some R > 4n, then it also holds for all » > R. This gives the claim.
Using (6.9) and (6.12), we get for » > R that

UGr)> (1 —e— AU Mop=dd fr, W (ﬁ— 6.15
rHN=0-¢ )E(r)>(1+e+A)27 n|= 5~} (6.15)

where the last equality defines «. Integrating this from R to R gives that
I(R Ry R 2 R* - R? R
log(—_) 22/ ﬁerK/ (r—-—n> dr =« <—- —2n log—_>.
I(R) R T R r 2 R
(6.16)
Since R is uniformly bounded, exponentiating gives that

sup I(r) = I(R) < cn I(R) R¥* e~ 5 R, (6.17)

4n<r<R

We use the reverse Poincaré to get the integral bound on |x| < 4n. Let n < 1 be a cutoff
that is one on {|x| < 4n}, zero for |x| > 5n, and has [Vn| < 1. Integration by parts gives

2 2 Uz —f 3 1)2 —f
/n (leI +7 e :—/ 2nv(Vv, Vn) +1n (vﬁv— 7)) e . (6.18)

Using (2) on the last term (note that € < 1/2) and absorbing the first term gives

1 2
3 /n2 (|w|2+1’2-> e = |y, —f(zanv, v e

1
<yl + 3 /nzvinl e*f+2f|vn|2v2e—f. (6.19)
Since n = 1 for |x| < 4n and |Vn| < 1 is only nonzero for 4n < |x| < 5n, it follows that

[ el st [ e <4yl +CIGn,  (620)
{lx]|<4n} {4n<|x|<5n}

where we used that I’(r) > 0 for r > 4n. Combining (6.17) and (6.20) gives (6.3). m]
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