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Abstract

Most existing research on visual question an-
swering (VQA) is limited to information ex-
plicitly present in an image or a video. In this
paper, we take visual understanding to a higher
level where systems are challenged to answer
questions that involve mentally simulating the
hypothetical consequences of performing spe-
cific actions in a given scenario. Towards that
end, we formulate a vision-language question
answering task based on the CLEVR (Johnson
et al., 2017a) dataset. Wethen modify the best
existing VQA methods and propose baseline
solvers for this task. Finally, we motivate the
development of better vision-language models
by providing insights about the capability of di-
verse architectures to perform joint reasoning
over image-text modality'.

1 Introduction

In 2014, Michael Jordan, in an interview (Gomes,
2014) said that “Deep learning is good at certain
problems like image classification and identifying
objects in the scene, but it struggles to talk about
how those objects relate to each other, or how a
person/robot would interact with those objects. For
example, humans can deal with inferences about
the scene: what if I sit down on that?, what if 1
put something on top of something? etc. There
exists a range of problems that are far beyond the
capability of today’s machines."

While this interview was six years ago, and since
then there has been a lot of progress in deep learn-
ing and its applications to visual understanding.
Additionally, a large body of visual question an-
swering (VQA) datasets (Antol et al., 2015; Ren
etal., 2015; Hudson and Manning, 2019) have been
compiled and many models have been developed

* corresponding author
'Dataset setup scripts and code for baselines are made
available at https://github.com/shailajal83/clevr_hyp. For ad-
ditional details about the dataset creation process, refer sup-
plementary material.
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How many blue objects will
be present in the scene?

Figure 1: Motivation for the proposed CLEVR_HYP
dataset: an example demonstrating how humans can do
mental simulations and reason over resulting scenario.

over them, but the above mentioned “inferences
about the scene” issue stated by Jordan remains
largely unaddressed.

In most existing VQA datasets, scene under-
standing is holistic and questions are centered
around information explicitly present in the image
(i.e. objects, attributes and actions). As a result, ad-
vanced object detection and scene graph techniques
have been quite successful in achieving good per-
formance over these datasets. However, provided
an image, humans can speculate a wide range of
implicit information. For example, the purpose of
various objects in a scene, speculation about events
that might have happened before, consider numer-
ous imaginary situations and predicting possible
future outcomes, intentions of a subject to perform
particular actions, and many more.

Among the above, an ability to imagine taking
specific actions and simulating probable results
without actually acting or experiencing is an impor-
tant aspect of human cognition (Figure 1 gives an
example of this). Thus, we believe that having au-
tonomous systems equipped with a similar capabil-
ity will further advance Al research. This is particu-
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larly useful for robots performing on-demand tasks
in safety-critical situations or navigating through
dynamic environments, where they imagine possi-
ble outcomes for various situations without execut-
ing instructions directly.

Motivated by the above, we propose a challenge
that attempts to bridge the gap between state-of-
the-art Al and human-level cognition. The main
contributions of this paper? are as follows;

* We formalize a novel question answering task
with respect to a hypothetical state of the
world (in a visual form) when some action
(described in a textual form) is performed.

* We create a large-scale dataset for this task,
and refer it as CLEVR_HYP i.e. VQA with
hypothetical actions performed over images
in CLEVR (Johnson et al., 2017a) style.

e We first evaluate the direct extensions of
top VQA and NLQA (Natural language QA)
solvers on this dataset. Then, we propose
new baselines to solve CLEVR_HYP and re-
port their results.

» Through analysis and ablations, we provide
insights about the capability of diverse archi-
tectures to perform joint reasoning over image-
text modality.

2 Related Work

In this section we situate and compare our work
with related areas such as implicit text genera-
tion/retrieval for a visual, visual question answer-
ing (VQA) over synthetic images, question answer-
ing (QA) involving hypothetical reasoning, and
language-based manipulation in visual domains
closest to CLEVR_HYP.

Implicit Text Generation for a Visual:
VisualComet (Park et al.,, 2020) and
Video2Commonsense (Fang et al.,, 2020)

have made initial attempts to derive implicit
information about images/videos contrary to
traditional factual descriptions which leverage only
visual attributes. VisualComet aims to generate
commonsense inferences about events that could
have happened before, events that can happen after
and people’s intents at present for each subject
in a given image. They use a vision-language

20ur work focuses on the capability of neural models to

reason about the effects of actions given a visual-linguistic
context and not on models that deal with intuitive physics.

transformer that takes a sequence of inputs (image,
event, place, inference) and train a model to
predict inference in a language-model style.
Video2Commonsense focuses on generating video
descriptions that can incorporate commonsense
facts related to intentions, effects, and implicit
attributes about actions being performed by a
subject. They extract top-ranked commonsense
texts from the Atomic dataset and modify training
objective to incorporate this information.

While both involve a visual-textual component
and actions, their key focus is about generating
plausible events and commonsense respectively.
Whereas, our work is related to performing cer-
tain actions and reasoning about its effect on the
overall visual scene.

Language-based Manipulation in Visual Do-
main: Learning a mapping from natural lan-
guage instructions to a sequences of actions to
be performed in a visual environment is a com-
mon task in robotics (Kanu et al., 2020; Gaddy and
Klein, 2019; Shridhar et al., 2020). Another rele-
vant task is vision-and-language navigation (Ander-
son et al., 2018; Chen et al., 2019; Nguyen et al.,
2019), where an agent navigates in a visual envi-
ronment to find goal location by following natural
language instructions. Both above works include
visuals, natural language instructions and a set of
actions that can be performed to achieve desired
goals. In this way, it is similar to our CLEVR_HYP,
but in our case, models require reasoning about
the effect of actions performed rather than deter-
mining which action to perform. Also, we frame
this in a QA style evaluation rather than producing
instructions for low-level controls.

Manipulation of natural images with language is
an emerging research direction in computer vision.
(Teney et al., 2020) proposed a method for gener-
ating counterfactual of VQA samples using image
in-painting and masking. Also, there are works
(Dong et al., 2017; Nam et al., 2018; Reed et al.,
2016) which use Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014) for language
conditioned image generation and manipulation.
However, both the above tasks are more focused at
object and attribute level manipulation rather than
at action level.

VQA over Synthetic Images: While natural
images-based VQA datasets reflect challenges one
can encounter in real-life situations, the require-
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Qg Are there

Qu: things are

1. Ta4: Paint the small green ball with cyan color.
yellow cubes on left of purple object and cyan spheres? (A: yes)

2. Ta: Add a brown rubber cube behind the blue sphere that inherits its size from the green object.

brown or small? (A: 6)

3. Ta: John moves the small red cylinder on the large cube that is to the right of purple cylinder.
Qu: is the object that is at the bottom of the small red cylinder? (A: yellow)

Figure 2: Three examples from CLEVR_HYP dataset: given image (I), action text (T 4), question about hypothetical
scenario (Qz) and corresponding answer (A). The task is to understand possible perturbations in I with respect

to various action(s) performed as described in T 4. Questions test various

respect to the results of those action(s).

ment of costlier human annotations and vulnerabil-
ity to biases are two major drawbacks. Contrary to
them, synthetic datasets allow controlled data gen-
eration at scale while being flexible to test specific
reasoning skills.

For the above reasons, following benchmark
VQA datasets have incorporated synthetic im-
ages; COG (Yang et al., 2018) and Shapes (An-
dreas et al., 2016) contain images with rendered
2D shapes; SHRDLU (Winograd, 1971), CLEVR
(Johnson et al., 2017a), and CLEVR-dialog (Kot-
tur et al., 2019) have rendered scenes with 3D ob-
jects; DVQA (Kafle et al., 2018) and FigureQA
(Kahou et al., 2017) have synthetically generated
charts (bar chart, pie chart, dot-line etc.); VQA-
abstract (Antol et al., 2015) and IQA (Gordon et al.,
2018) involves question-answering over syntheti-
cally rendered clipart-style scenes and interactive
environments respectively. Our proposed dataset
CLEVR_HYP uses CLEVR (Johnson et al., 2017a)
style rendered scenes with 3D objects as a visual
component. It is distinct from all other synthetic
VQA datasets for two key reasons; first, integration
of action domain in synthetic VQA and second,
the requirement of mental simulation in order to
answer the question.

QA involving Hypothetical Reasoning: In the
language domain, WIQA (Tandon et al., 2019)
dataset tests the model’s ability to do what-if rea-
soning over procedural text as a 3-way classifica-
tion (the influence between pair of events as pos-
itive, negative or no-effect). In vision-language
domains, a portion of TQA (Kembhavi et al., 2017)
and VCR (Zellers et al., 2019) are relevant. Ques-
tions in TQA and VCR involve hypothetical scenar-
ios about multi-modal science contexts and movie
scenes respectively. However, none of the above
two datasets’ key focus is on the model’s capability
to imagine changes performed over the image.

As shown in Figure 3, the setting of TIWIQ

of a model with

Input Scene And Action ‘Output Description

Ground Truth “the foam is pushed a little by
the screw driver”

Human Baseline “the foam is pushed because
the screw driver drops on it”

Hybrid Model Prediction “the foam is pushed
1) “the robot drops the screw driver by the screw driver”

on the foam” — what happens to Data-Driven Model Prediction “the foam is

the foam? pushed by the mustard container”

Figure 3: Example from TIWIQ (Wagner et al., 2018).

(a benchmark dataset for “physical intelligence”)
(Wagner et al., 2018) has some similarity with ours.
It has synthetically rendered table-top scenes, four
types of actions (push, rotate, remove and drop) be-
ing performed on an object and what-if questions.

To our best knowledge, TIWIQ dataset is not
publicly available. Based on our understanding
from their manuscript, we observe following impor-
tant distinction with this work. Our questions focus
on the impact of actions on the whole image, while
in TIWIQ questions are about impact of actions
on a specific object in the image. Moreover, we
frame CLEVR_HYP as a classification task, con-
trary to TIWIQ which is a generative task. Our
CLEVR_HYP dataset has 175k automatically gen-
erated image-action text-question samples which
is much larger compared to TIWIQ which has only
1020 samples and manually crafted ground-truths.

3 CLEVR_HYP Task and Dataset

Figure 2 gives a glimpse of CLEVR_HYP task. We
opt for synthetic dataset creation as it allows auto-
mated and controlled data generation at scale with
minimal biases. More details are described below.

3 Inputs: Image(I), Action Text (T 4) and Hypo-
thetical Question (Qz)

1. Image(I): It is a given visual for our task.
Each image in the dataset contains 4-10 ran-
domly selected 3D objects rendered using Blender
(Blender Online Community, 2019) in CLEVR
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(Johnson et al., 2017a) style. Objects have 4 at-
tributes listed in the Table 1. Additionally, these
objects can be referred using 5 relative spatial re-
lations (left, right, in front, behind and on). We
provide scene graphs® containing all ground-truth
information about a scene, that can be considered
as a visual oracle for a given image.

Attr. Possible values in CLEVR_HYP
Color gray, blue, brown, yellow,
red, green, purple, cyan
Shape cylinder, sphere or cube
Size small or big
Material metal (shining) or rubber (matte)

Table 1: Object attributes in CLEVR_HYP scenes.

2. Action Text (T4): It is a natural language
text describing various actions performed over the
current scene. The action can be one of four:

(i) Add new object(s) to the scene
(i1)) Remove object(s) from the scene
(iii) Change attributes of the object(s)
(iv) Move object(s) within scene (might be in
plane i.e. left/right/front/back or out of plane
i.e. move one object on top of another object*)

To generate action text, we start with manually writ-
ten templates involving the aforementioned actions.
For example, action involving change in the at-
tribute of object(s) to a given value, we have a tem-
plate of the following kind; ‘Change the <A> of
<Z><C><M><S> to <v>'. Where <A>, <Z>,
<C>,<M>,<S>,<V> are placeholders for the
attribute, size, color, material, shape and a value
of attribute respectively. Each action text in the
CLEVR_HYP is associated with a functional pro-
gram which if executed on an image’s scene graph,
yields the new scene graph that simulates the ef-
fects of actions.

Functional programs for action texts® are
built from the basic functions that correspond
to elementary action operations (right part
of Figure 4a). For the above mentioned
‘change’ attribute action template, the equiv-
alent functional program can be written as;
‘change_attr (<A>, filter_size (<Z>,filter

3Scene graphs and Functional Programs (for action text
and question) are not provided at the test-time.

*For simplicity, we assume that any object can be put on
another object regardless of its size, material or shape.

_color(<C>, filter material (<M>filter_
shape (<S>, scene())))),<v>)’. It essentially
means, first filter out the objects with desired
attributes and then update the value of their current
attribute A to value V.

3. Question about Hypothetical Situation (Qy):
It is a natural language query that tests various vi-
sual reasoning abilities after simulating the effects
of actions described in T4. There are 5 possible
reasoning types similar to CLEVR;

(i) Counting objects fulfilling the condition
(i) Verify existence of certain objects
(iii)) Query attribute of a particular object
(iv) Compare attributes of two objects
(v) Integer comparison of two object sets (same,
larger or smaller)

Similar to action texts, we have templates and
corresponding programs for questions. Functional
programs for questions® are executed on the
image’s updated scene graph (after incorporating
effects of the action text) and yields the ground-
truth answer to the question. Functional programs
for questions are made of primitive functions
shown in left part of the Figure 4a).

Paraphrasing: In order to create a challenging
dataset from linguistic point of view and to prevent
models from overfitting on templated representa-
tions, we leverage noun synonyms, object name
paraphrasing and sentence-level paraphrasing. For
noun synonyms, we use a pre-defined dictionary
(such as cubeblock, sphereBall and so on). We
programmatically generate all possibilities to
refer to an object in the image (i.e. object name
paraphrasing) and randomly sample one among
them. For sentence level paraphrasing, we use
Text-To-Text Transfer Transformer (T5) (Raffel
et al., 2020) fine-tuned over positive samples from
Quora Question Pairs (QQP) dataset (Iyer et al.,
2017) for question paraphrasing. We use Fairseq
(Ott et al., 2019) for action text paraphrasing which
uses round-trip translation and mixture of experts
(Shen et al., 2019).

Note that we keep the action text and question
as separate inputs for the purpose of simplicity
and keeping our focus on building solvers that can
do mental simulation. One can create a simple
template like “<Qpg > if <proper-noun/pronoun>
<Ta>7?" or “If <proper-noun/pronoun> <T 4>,
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(a) Function Catalog for CLEVR_HYP, extended from CLEVR (Johnson et al., 2017a)

Question Function Catalog

Action Text Function Catalog

exist boolean

obise > and value —>]
bjs: equal boolean
set—»| or value —>|
g equal
> less/more > boolean

] I same <attr>
object value object —)@ objset

count |

value = filter <attr> objset add biset
et —»| change <attr> object remove
velue I ) add_rel
i relate >—> object—» 292
object —>|
) object remove_rel

change loc
objse object value —>
7

(b) Dataset creation pipeline

small brown rubber cube
small green metal cube
small green rubber eylinder

small brown rubber cube
small green metal cube

A . small green rubbar cylindar
HF;‘:“ '"L",_]_ o [ Blender® [ F*.erlzj:eru‘d
Scene-Grap Image AN
Updated . Updated A Mo
Er— ER— Scene-Graph? > Blender” = Rendered Image* Answer
assage i + assage i Generation®
Templates® Function Catelog” - -
Femove <Z> <C= <M= <85> <R of — —EIEI]I: Dd“[irl e ngi:-lisﬂii.[alw .
<72 <C2> <M2><S2> from the scene. . plates unction Lalalog
— = Are there equal number of <Z= <C> <M= =
<5=5 and <72> <C2= <M2> <52>57
Man.+Auto. Generated
Baranhracinad | P
Paraphrasing NL Passage Man.+Auto. |, Generated

F: The small green cylinder in front of Remove small green rubber cylinder in front of

large cylinder is removed from the scene. large gray rubber

“Portion of code adapted from CLEVH, *Our work or modified CLEVA code

Paraphrasing® | NL Question®

cylindar fram the scans. 0 Does the scene have same number Are there equal number of gray

of gray cbjects and green cylinders? objects and green cylinders?

Figure 4: CLEVR_HYP dataset creation process with example and function catalog used for ground-truth answer

generation. (for more details, see Appendix A.4)

<Qg>7?"if they wish to process action and ques-
tion as a single text input. For example, “How
many things are the same size as the cyan cylin-
der if I add a large brown rubber cube behind the
blue object." or “If I add a large brown rubber cube
behind the blue object, how many things are the
same size as the cyan cylinder?". However, hav-
ing them together adds further complexity on the
solver side as it first has to figure out what actions
are performed and what is the question.

By providing ground-truth object information
(as a visual oracle) and machine-readable form of
questions & action texts (oracle for linguistic com-
ponents). This information can be used to develop
models which can process semi-structured repre-
sentations of image/text or for the explainability
purposes (to precisely know which component of
the model is failing).

Output: Answer (A) to the Question (Qp),
which can be considered as a 27-way classification
over attributes (8 colors + 3 shapes + 2 sizes + 2
material), numeric (0-9) and boolean (yes/no).

Dataset Partitions and Statistics: We create
CLEVR_HYP dataset containing 175k image-
action text-question samples using the process men-

tioned in Figure 4b. For each image, we generate
5 kinds of action texts (one for each add, remove,
move in-plane and move out-of-plane and change
attribute). For each action text type, we generate 5
questions (one for each count, exist, compare inte-
ger, query attribute and compare attribute). Hence,
we get 5*5 unique action text-question pairs for
each image, covering all actions and reasoning
types in a balanced manner as shown in Figure
5a (referred as Original partition). However, it
leads to a skewed distribution of answers as ob-
served from 5b. Therefore, we curate a version of
the dataset (referred as Balanced partition) consist-
ing of 67.5k samples where all answer choices are
equally-likely as well.

Additionally, we create two small challenge
test sets (1500 image-action text-question samples
each)- 2HopActionText (2HopT 4) and 2HopQues-
tion (2HopQg) to test generalization capability of
the trained models. In 2HopT 4, we create action
text which requires model to understand two differ-
ent actions being taken on the scene. For example,
‘Add a small blue metal cylinder to the right of
large yellow cube and remove the large cylinder
from the scene.” and "Move the purple object on top
of small red cube then change its color to cyan.’. In

3696



(a) Distribution based on Action Text types and Question types
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Figure 5: Visualization of distributions for actions,
CLEVR_HYP.

2HopQp, we create questions which require model
to understand logical combinations of questions us-
ing ‘and’, ‘or’ and ‘not’. For example, ‘How many
objects are either red or cylinder?’ and ‘Are there
any rubber cubes that are not green?’.

In Table 2, we provide size of the various par-
titions and measure the diversity of the dataset in
various aspects. For images, we calculate average
number of objects present in the scene from the
length of scene graph. For balanced partition, the
number of images are much less compared to origi-
nal, but more average number of objects per image.
This is most likely due to the need to accommo-
date integers 4-9 more frequently as ground-truth
answers. For textual components, we show average
lengths (number of tokens separated by whites-
paces) and count unique utterances as a measure
of diversity. The original partition of the result-
ing dataset has 80% and 83% unique action text
and questions respectively. For balanced partition,
length and unique utterances for action text are
nearly same as the original partition but for ques-
tions, it decreases. Questions in the original parti-
tion have been observed to enforce more strict and
specific object references (such as small red metal
cubes) compared to balanced partition (small cubes,
red metal objects etc.), reducing the average length

questions and answers in Original_Train partition of

and uniqueness. It is intuitive for 2Hop partitions
to have higher average length and uniqueness for
T4 and Qg respectively. This shows that despite
having created this dataset from templates and ren-
dered images with a limited set of attributes, it is
still fairly challenging.

4 Models that we experiment with

Models trying to tackle CLEVR_HYP dataset have
to address four key challenges;

(1) understand hypothetical actions and questions

in complex natural language,

correctly disambiguate the objects of interest

and obtain the structured representation (i.e.

scene graphs or functional programs) of vari-

ous modalities if required by the solver,

understand the dynamics of the world based

on the various actions performed over it,

(iv) perform various kind of reasoning to answer
the question.

4.1 Random

The QA task in CLEVR_HYP dataset can be con-
sidered as a 27-class classification problem. Each
answer choice is likely to be picked with a proba-
bility of 1/27. Therefore, the performance of the
random baseline is 3.7%.

(ii)

(iii)
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. Avg. Unique Avg. Unique Avg.
Split Mowony T4 41, Taren. "7 $Q,  QuLen.
Original_Train 5k 64 25k 20.7k 12.8 125k 103.7k  22.6
Original_Val 1k 6.7 5k 3.8k 12.8 25k 20.9k 23.1
Original_Test 1k 64 5k 3.6k 12.6 25k 20.7k 22.8
Balanced_Train 5k 7.6 25k 21.1k 12.8 67.5k 58.2k 20.3
Balanced_Val 1k 7.6 S5k 3.9k 12.7 13.5k 11.5k 20.7
Balanced_Test 1k 7.5 Sk 3.7k 12.6 13.5k 11.4k 20.4
2HopT4_Test 1k 64 3k 2.6k 18.6 15k 12.5k 22.8
2Hop(Q _Test 1k 64 3k 2.2k 12.6 15k 13.7k 29.3

Table 2: CLEVR_HYP dataset splits and statistics (# represents number of, k represents thousand).

4.2 Human Performance

We performed human evaluation with respect to
500 samples from the CLEVR_HYP dataset. Ac-
curacy of human evaluations on original test,
2HopAr and 2HopQpy are 98.4%, 96.2% and
96.6% respectively.

4.3 Transformer Architectures

Pre-trained transformer-based architectures have
been observed (Li et al., 2020) to capture a rich
hierarchy of language-structures (text-only models)
and effectively map entities/words with correspond-
ing image regions (vision-language models). We
experiment with various transformer-based mod-
els to understand their capability to understand the
effects of actions on a visual domain.

Baseline 1- Machine Comprehension using
RoBERTa: To evaluate the hypothetical VQA
task through the text-only model, we convert im-
ages into the templated text using scene graphs.
The templated text contains two kind of sentences;
one describing properties of the objects i.e. “There
is a <Z> <C> <M> <S>", the other one de-
scribing the relative spatial location i.e. “The
<Z> <C> <M> <S> is <R> the <ZI1> <CI>
<M1> <S1>". For example, “There is a small
green metal cube.”" and “The large yellow rubber
sphere is to the left of the small green metal cube".
Then we concatenate templated text with the action
text to create a reading comprehension passage. We
use state-of-the-art machine comprehension base-
line RoBERTa (Liu et al., 2019) finetuned on the
RACE dataset (Lai et al., 2017)°. Finally, we pre-

Sarchitecture=roberta large, epochs=5, learning
rate=1e—05, batch size=2, update frequency=2, dropout=0.1,

dict an answer to the question using this reading
comprehension passage.

Baseline 2- Visual Question Answering using
LXMERT Proposed by (Tan and Bansal, 2019),
LXMERT is one of the best transformer based pre-
trainable visual-linguistic representations which
supports VQA as a downstream task. Typical VQA
systems take an image and a language input. There-
fore, to evaluate CLEVR_HYP in VQA style, we
concatenate action text and question to form a sin-
gle text input. Since LXMERT is pre-trained on the
natural images, we finetune it over CLEVR_HYP
dataset® and then use it to predict answer.

4.4 Systematically incorporating effects of
actions into neural models

Baseline 3- Text-editing Image Baseline: In
this method, we break-down the QA task with men-
tal simulation in two parts; first, learn to generate
an updated image (such that it has incorporated the
effects of actions) and then perform visual ques-
tion answering with respect to the updated image.
We use the idea from Text Image Residual Gat-
ing proposed in (Vo et al., 2019) to implement the
first part. However there are two important dis-
tinctions; Their focus is on the retrieval from the
given database. We modify their objective and de-
velop text-adaptive encoder-decoder with residual
connections to generate new image. Also, editing
instructions in their CSS dataset (Vo et al., 2019)
were quite simple. For example, ‘add red cube’ and
‘remove yellow sphere’. In this case, one can add
the red cube anywhere in the scene. We modify
their architecture to precisely place objects to their
optimizer=adam with eps=1e—06.
6epochs=4, learning rate=5e—05, batch size=8
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Nomenclature I: Image, SG: Scene Graph, TT: Templated Text, T4: Action Text, ) rr: Hypothetical
Question, A: Answer, FP: Functional Program, ’: Updated Modality

Baseline 1:

I>5G->TT + Ty
T
ROBERTCLRACE + A

/
Qu
Baseline 2:
I
LXMERIcLEvR HYP > A
Ty+ Qu

Baseline 3:

I

I' — LXMERTCLEVR + A
/

Ty>FP Qg
Baseline 4:

I — SG

~
SG’
A

—  Symbolic > A

Tr—-FP Q- FP

Figure 6: Graphical visualization of baseline models over CLEVR_HYP described above.

relative spatial references (on left/right/front/ be-
hind). Once we get the updated image, we feed it
to the LXMERT (Tan and Bansal, 2019) finetuned
over the CLEVR (Johnson et al., 2017a) dataset
along with the question and predict the answer.

Baseline 4- Scene Graph Update Model: In-
stead of directly manipulating images, in this
method, we leverage image scene graphs to convert
image-editing problem into graph-editing problem,
conditioned on the action text. This is an emerging
research direction to deal with changes in the visual
modality over time or with new sources of informa-
tion, as observed from recent parallel works (chang
Chen et al., 2020; He et al., 2020).

We first use Mask R-CNN (He et al., 2017) to get
the segmentation mask of the objects and predict
attributes (color, material, size, and shape) with an
acceptance threshold of 0.9. Segmentation mask
of each object along with original image is then
passed through ResNet-34 (He et al., 2016) to ex-
tract precise 3D coordinates of the object. We get
the structured scene graph for the image. Then we
use seq2seq with attention model originally pro-
posed in (Johnson et al., 2017b) to generate func-
tional programs (FP) for action text and question.
The execution engine executes programs on scene
graph, implemented as a neural module network
(Andreas et al., 2016) to update the scene represen-
tation and answer questions.

We learn to update scene graphs according to
functional program for the action text using rein-
forcement learning’. The reward function is as-

"finetuning learning rate=1e—05, IM iterations with early

sociated with our ground-truth program executor
and generates reward if prediction exactly matches
with ground-truth execution. Once we get the up-
dated scene representation, we use neural-symbolic
model® proposed by (Yi et al., 2018) to obtain the
final answer. It is notable that (Yi et al., 2018)
achieved near-perfect performance on the CLEVR
QA task in addition to being fully explainable.

5 Baseline Results

In this section, we benchmark models described
above on the CLEVR_HYP. The dataset is formu-
lated as a classification task with exactly one cor-
rect answer, so we use standard accuracy as eval-
uation metric. We then analyze their performance
according to question and action types.
Quantitative results from above experiments can
be visualized in top part of the Table 3. Among the
methods described above, the scene graph update
model has the best overall performance 70.5% on
original test data. Text-editing model is best over
balanced set, but observed to have the poor gener-
alization capability when two actions or reasoning
capabilities have to be performed. CLEVR_HYP
requires models to reason about effect of hypothet-
ical actions taken over images. LXMERT is not
directly trained for this objective therefore, it strug-
gles to do well on this task. The reason behind the
poor performance of text-only baseline is due to its
limitation to incorporate detailed spatial locations

stopping, batch size=32

8supervised pretraining learning rate=7e—04, num itera-
tions=20k, batch size=32 and then finetuning 1e—05, at most
2M iterations with early stopping, batch size=32
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Overall Baseline Performance for Various Test Sets of CLEVR_HYP

Original Test Balanced Test
BL1 BL2 BL3 BL4 | BL1 BL2 BL3 BL4
572 639 647 705|553 652 69.5 68.6

2HopTA Test 2HopQH Test
BL1 BL2 BL3 BIL4 | BL1 BL2 BL3 BL4
533 492 556 644|552 529 587 66.5

Performance break-down by Action Types and Reasoning Types for Baseline 3 and 4

Original Test 2Hop At Test Original Test 2HopQp Test

BL3 BL4 BL3 BL4 BL3 BL4 BL3 BL4
Add 582 659 Add+Remove 53.6 632 Count 60.2 743 And 592 67.1
Remove 89.4 88.6 Add+Change 554 64.7 Exist 69.6 72.6 Or 588 674
Change 88.7 91.2 Add+Move 49.7 575 CompInt  56.7 673 Not 58.1 65.0
Move(in-plane) 61.5 69.4 Remove+Change 82.1 85.5 CompAttr  68.7 70.5
Move(on) 533 66.1 Remove+Move 52.6 66.4 QueryAttr 654 68.1

Change+Move 53.8 633

Table 3: Baseline performance over CLEVR_HYP (BLx represents one of the four Baselines described above).

into the templates that we use to convert image into
a machine comprehension passage.

Two of our models (scene graph update and text-
editing image) are transparent to visualize interme-
diate changes in the scene after performing actions.
We analyse their ability to understand actions and
make appropriate changes as shown in below part
of Table 3. For the scene graph method, we com-
pare the ground-truth functional program with the
generated program and measure their exact-match
accuracy. For the text-editing image method, we
generate scene graphs for both images (original
image and image after text-editing) and compare
them. For attributes, we do exact-match, whereas
for location information we consider matching only
on the basis of relative spatial location.

Both scene graph and text-editing models do
quite well on ‘remove’ and ‘change’ actions
whereas struggle when new objects are added or
existing objects are moved around. The observa-
tion is consistent when multiple actions are com-
bined. Therefore, actions remove+change can
be performed with maximum accuracy whereas
other combinations of actions accomplish relatively
lower performance. It leads to the conclusion that
understanding the effect of different actions are of
varied complexity. Most models demonstrate better
performance over counting, existence and attribute
query type of questions than comparison questions.
The scene graph update and text-editing methods
show a performance drop of 6.1% and 9.1% respec-
tively when multiple actions are performed on the
scene. However, there is less of a performance gap
for models on 2HopQg compared to the test set,

suggesting that models are able to better general-
ize with respect to multiple reasoning skills than
complex actions.

6 Conclusion

We introduce CLEVR_HYP, a dataset to evaluate
the ability of VQA systems after hypothetical ac-
tions are performed over the given image. We cre-
ate this dataset by extending the data generation
framework of CLEVR (Johnson et al., 2017a) that
uses synthetically rendered images and templates
for reasoning questions. Our dataset is challeng-
ing because rather than asking to reason about ob-
jects already present in the image, it asks about
what would happen in an alternative world where
changes have occurred. We provide ground-truth
representations for images, hypothetical actions
and questions to facilitate the development of mod-
els that systematically learn to reason about un-
derlying process. We create several baseline mod-
els to benchmark CLEVR_HYP and report their
results. Our analysis shows that the models are
able to perform reasonably well (70.5%) on the
limited number of actions and reasoning types, but
struggle with complex scenarios. While neural
models have achieved almost perfect performance
on CLEVR and considering human performance
as upperbound (98%), there is a lot of room for
improvement on CLEVR_HYP. Our future work
would include relaxing constraints by allowing a
larger variety of actions, attributes and reasoning
types. By extending this approach further for natu-
ral images, we aim to contribute in the development
of better vision+language models.
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A Appendix

A.1 Relation of CLEVR_HYP dataset with
real-world situations

Teaching methodologies leverage our ability
to mentally simulate scenarios along with the
metaphors to aid understanding about new con-
cepts. In other words, to explain unfamiliar con-
cepts, we often reference familiar concepts and
provide additional clues to establish mapping be-
tween them. This way, a person can create a mental
simulation about unfamiliar concept and aid basic
understanding about it.

For example, we want to explain a person how
a ‘zebra’ looks like, who has previously seen a
‘horse’, we can do so using example in Figure 7a.
This naturally follows for more complex concepts.
Let say, one wants to describe the structure of an
atom to someone, he might use the analogy of a
planetary system, where the components (planets
~ electrons) circulate around a central entity (sun
~ nucleus). One more such example is provided in
Figure 7b.

(a) learning the concept ‘zebra’ from the ‘horse’

How many legs does a Zebra have?

Zebra looks like a horse 4k
painted with black-and-white
stripes all over its body. A

(b) learning about ‘animal cell’ by comparison with
‘plant cell’

Animal Cell have 3 key differences
compared to the Plant Cell;

Plant Cell

/W;"(\‘““ —— chloroplast
farg oucha 1. They do not have a cell membrane.
[ 2. They have smaller vacuoles
| 81\ —— mitochondrion compared to a plant cell.
- 3. They do not contain chloroplast
le——— cell wall of cellulose N
therefore unable to create their own

#4——— cell membrane

food through photosynthesis.

vacuole

cytoplasm
fibosome Do Animal cells

have nucleus?

Figure 7: Extension of CLEVR_HYP for more complex
real-world scenarios.

For humans, learning new concepts and perform-

ing mental simulations is omnipresent in day-to-
day life. Therefore, CLEVR_HYP dataset is very
much grounded in the real world. Models devel-
oped on this dataset can serve a broad range of
applications, particularly the ones where possible
outcomes have to be predicted without actually ex-
ecuting the actions. For example, robots perform-
ing on-demand tasks in safety-critical situations
or self-driving vehicles. In addition, these models
can be an important component for other vision
and language tasks such as automatic expansion of
existing knowledge bases, zero shot learning and
spatio-temporal visual reasoning.

A.2 Rejecting Bad Samples in CLEVR_HYP

Automated methods of question generation some-
times create invalid items, classified as ‘ill-posed’
or ‘degenerate’ by CLEVR (Johnson et al., 2017a)
dataset generation framework. They consider ques-
tion “What color is the cube to the right of the
sphere?" as ill-posed if there were many cubes right
of the sphere, or degenerate if there is only one cube
in the scene and reference to the sphere becomes
unnecessary. In addition to this, we take one more
step of quality control in order to prevent ordinary
VQA models from succeeding over CLEVR_HYP
without proper reasoning.

In CLEVR_HYP, one has to perform actions de-
scribed in T over image I and then answer question
Q with respect to the updated scenario. Therefore,
to prevent ad-hoc models from exploiting biases in
CLEVR_HYP, we pose the requirement that a ques-
tion must have different ground-truth answers for
CLEVR_HYP and image-only model. One such ex-
ample is shown in Figure 8. For image (1), Q1 leads
to different answers for CLEVR and CLEVR_HYP,
making sure that one needs to correctly incorporate
the effect of T. Q2 is invalid for a given image-
action text pair in the CLEVR_HYP as one can an-
swer it correctly without understanding T.

A.3 More Examples from CLEVR_HYP

Beyond Figure 10, all rest of the pages show more
examples from our CLEVR_HYP dataset. Each
dataset item has 4 main components- image(l),
action text (T 4), question about the hypothetical
states (Qg) and answer (A). We classify samples
based on what actions are taken over the image
and the kind of reasoning is required to answer
questions.
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I:

Image-only model:
Q1: Is there any large sphere? A: Yes
Q2: Is there any large cube? A: Yes

CLEVR_HYP:
T: Remove all matte objects from the scene.

I
Q1. Is there any large sphere? A: No v/
Q2: Is there any large cube? A: Yes X

Figure 8: Validity of questions in CLEVR_HYP

A.4 Function Catalog

As described in Section 3 and shown in Figure 4,
each action text and question is associated with
a functional program. We provide more details
about these basic functions in Table 4 that was used
to generate ground-truth answers for our dataset.
Each function has input and output arguments,
which are limited to following data types:

* object: a single object in the scene

* objset: a set of zero or more objects in scene

* integer: an integer in [0,10]

* boolean: ‘yes’ or ‘no’

e values: possible attribute values mentioned in
Table 1

A.5 Paraphrasing

In order to create a challenging dataset from the
linguistic point of view and to prevent models from
overfitting on templated representations, we lever-
age word synonyms and paraphrasing methods.
This section provides more details about paraphras-
ing methods used in our dataset.

small gray metal cube: [small gray object, small metal
object, small cube, small gray cube, small gray metal object,
gray metal cube, small gray metal cube]

large brown rubber cylinder: [brown object, large brown
object, large cylinder, brown rubber object, brown cylinder,
large brown rubber object, large brown cylinder, brown rubber
cylinder, large brown rubber cylinder]

Figure 9: Object paraphrases for 2 objects in the scene

Object Name Paraphrasing There can be many
ways an object can be referred in the scene. For ex-
ample, ‘large purple metal sphere’ in image below
can also be referred to as ‘sphere’ as there is no
other sphere present in the image. In order to make
templates more challenging, we use these alterna-
tive expressions to refer objects in the action text
or question. We wrote a python script that takes
scene graph of the image and generates all possible
names one can uniquely refer for each object in
the scene. When paraphrasing is performed, one
of the generated names is randomly chosen and
replaced. Figure 9 demonstrates list of all possible
name variants for two objects in the given image.

Synonyms for Paraphrasing We use word syn-
onyms file provided with CLEVR dataset genera-
tion code.

Sentence/Question Level Paraphrasing For ac-
tion text paraphrasing, we use Fairseq (Ott et al.,
2019) based paraphrasing tool which uses round-
trip translation and mixture of experts (Shen et al.,
2019). Specifically, we use pre-trained round-trip
models (En-Fr and Fr-En) and choose top-5 para-
phrases manually for each template. For question
paraphrasing, the quality of round-trip translation
and mixture of experts was not satisfactory. There-
fore, we use Text-To-Text Transfer Transformer
(T5) (Raffel et al., 2020) fine-tuned over positive
samples from Quora Question Pairs (QQP) dataset
(Iyer et al., 2017) and choose top-5 per template.

A.6 Computational Resources

All of our experiments are performed over Tesla
V100-PCIE-16GB GPU.

3705



Function

Input Type — Output Type

Return Value

scene
unique

relate

count

exist
filter_size
filter_color
filter_material
filter_shape
query_size
query_color
query_material
query_shape
same_size
same_color
same_material
same_shape
equal_size
equal_color
equal_material
equal_shape

o —
— object

object x relation —
—
— boolean
X size —
x color —
X material —
x shape —
object — size
object — color
object — material
object — shape
object —
object —
object —
object —
size X size — boolean
color x color — boolean

material x material — boolean

shape x shape — boolean

Set of all objects in the scene

Object if objset is singleton; else raise exception

(to verify whether the input is unique or not)

Objects satisfying given spatial relation for input object
Size of the input set

“Yes’ if the input set is non-empty and ‘No’ otherwise
Subset of input objects that match the given size
Subset of input objects that match the given color
Subset of input objects that match the given material
Subset of input objects that match the given shape

Size of the input object

Color of the input object

Material of the input object

Shape of the input object

Set of objects that have same size as input (excluded)
Set of objects that have same color as input (excluded)
Set of objects that have same material as input(excluded)
Set of objects that have same shape as input (excluded)
‘Yes’ if inputs are equal, ‘No’ otherwise

‘Yes’ if inputs are equal, ‘No’ otherwise

‘Yes’ if inputs are equal, ‘No’ otherwise

‘Yes’ if inputs are equal, ‘No’ otherwise

equal_integer X — boolean “Yes’ if two integer inputs are equal, ‘No’ otherwise
less_than X — boolean ‘Yes’ if first integer is smaller than second, else ‘No’
greater_than X — boolean “Yes’ if first integer is larger than second, else ‘No’
and X — Intersection of the two input sets
or X — Union of the two input sets.
not_size object — Subset of input objects that do not match given size
not_color object — Subset of input objects that do not match given color
not_material object — Subset of input objects that do not match given material
not_shape object — Subset of input objects that do not match given shape
add x object — Input set with input object added to it
remove x object — Input set with input object removed from it
add el X object x object Input set with new object (first input) added at the

- x relation — given spatial location relative to second input object
remove rel .>< object x object Input set with object (first input) removed from the

- x relation — given spatial location relative to second input object

change._loc x object x object Input set with object (first input) location changed to a

change_size
change_color
change_material
change_shape

x relation —
X size —
X color —
x material —
x shape —

given spatial location relative to second input object
Input set with size updated to the given value

Input set with color updated to the given value
Input set with material updated to the given value
Input set with shape updated to the given value

Table 4: (upper) Original function catalog for CLEVR proposed in (Johnson et al., 2017a), which we reuse in our
data creation process (lower) New functions added to the function catalog for the CLEVR_HYP dataset.
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1]

T 4: A small red sphere is added to the right of the green object.

Qu: There is a gray cylinder; how many spheres are to the right of it?
A:2

Classification: Add action, Counting question

Split: val

T 4: All the purple objects become metallic.

Qr: What number of shiny things are to the left of the small yellow sphere?
A:3

Classification: Change action, Counting question

Split: val

T 4: John puts a large red metal cube behind the blue rubber cylinder.

Qg There is a small green cylinder that is in front of the gray thing; are there any large
red things behind it?

A: Yes

Classification: Add action, Existence question

Split: val

T 4: Remove all matte objects from the scene.
Qum: Is there any large sphere?

A: No

Classification: Remove action, Existence question
Split: val

T 4: The large cylinder behind the red shiny sphere is moved in front of the green sphere.
Qum: Is there a purple object that is to the right of the big yellow cube that is behind the
cyan rubber sphere?

A: No

Classification: Move (in-plane) action, Existence question

Split: val

T 4: A small green metal sphere is added behind the small red cube.

Q#: What color is the large cylinder that is to the right of the green object?
A: Brown

Classification: Add action, Query Attribute question

Split: val

T a: The purple cylinder behind the cube disappers from the scene.
Qr: What material is the object on the left of brown metal cylinder?
A: Rubber

Classification: Remove action, Query Attribute question

Split: val

T 4: There is a sphere that is to the left of the gray cylinder; it shrinks in size.
Qg What size is the blue object?

A: Small

Classification: Change action, Query Attribute question

Split: val

T 4: The brown thing is moved in front of the pink rubber cube.

Qr: What shape is the object that is in front of the pink rubber cube?
A: Cylinder

Classification: Move (in-plane) action, Query Attribute question
Split: val

Figure 10: More examples from the CLEVR_HYP dataset
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[10]

T 4: The small red sphere is moved onto the small cube that is in front of the gray sphere.
Q#: What material is the object that is below the small metal sphere?

A: Rubber

Classification: Move (out-of-plane) action, Query Attribute question

Split: val

T 4: A small yellow metal object is placed to the right of red cylinder; it inherits its shape
from the blue object.

Qm: Are there any other things that have the same shape as the blue matte object?

A: Yes

Classification: Add action, Compare Attribute question

Split: val

T 4: Hide all the cylinders from the scene.

Qm: Are there any other things that have the same size as the gray sphere?
A: No

Classification: Remove action, Compare Attribute question

Split: val

T 4: The small block is displaced and put on the left of the blue cube.

Qu: Is there anything else on the right of the cyan sphere that has the same color as the
large metal cylinder?

A: No

Classification: Move (in-plane) action, Compare Attribute question

Split: val

[14]

T 4: Jill places the small cube on the large cube that is to the left of cyan cylinder.

Q#: There is an object below the brown cube; does it have the same shape as the green
object?

A: Yes

Classification: Move (out-of-plane) action, Compare Attribute question

Split: val

—
p—
(9]

—

T 4: A small brown cube is added to the scene which is made of same material as the
golden block.

Qm: Are there an equal number of green objects and brown cubes?

A: Yes

Classification: Add action, Compare Integer question

Split: val

T a: The tiny cylinder is withdrawn from the scene.

Qg : Is the number of rubber objects greater than the number of shiny objects?
A: No

Classification: Remove action, Compare Integer question

Split: val

T a: All small metal spheres are transformed into cylinders.

Qm: Are there fewer brown objects that are to the right of the red sphere than the cylinders?
A: Yes

Classification: Change action, Compare Integer question

Split: val

T 4: The sphere is placed in front of the large blue cube that is to the left of the yellow
shiny object.

Qm: Are there an equal number of gray things to the right of the brown rubber cube and
cylinders?

A: No

Classification: Move (in-plane) action, Compare Integer question

Split: val

— — —
— — —
0 ~ N\
—_ — [l

Figure 11: More examples from the CLEVR_HYP dataset
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T 4: John hides the big object to the right of the brown sphere.
Qr: How many yellow or cyan objects are there?

A:3

Classification: Remove action, Counting question with *Or’
Split: 2HopQp test

T 4: All brown things become matte.

Qp#: How many any other things are there which are made of the same material as the
small cyan object?

A:2

Classification: Change action, Counting + Compare Attribute question

Split: 2HopQp test

T 4: Make all the brown objects shiny.

Q: Are there any non metal things to the right of the shiny sphere?
A: No

Classification: Change action, Existence question with negation
Split: 2HopQx test

[22]

T 4: The gray object is moved to the right of the yellow thing.

Qu: There is a cyan block; what number of big objects are there to the left of it that has
the same material as the blue cube?

A:2

Classification: Move (in-plane) action, Counting + Compare Attribute question

Split: 2HopQp test

T 4: Remove all the yellow cylinders; Then clone the brown object and put it to the left
side of the cyan ball.

Q#: How many objects are made of the rubber?

A:4

Classification: Add+Remove actions, Count question

Split: 2HopT 4 test

T 4: Enlarge the purple object; Then add a large red matte sphere to the right of the large
purple cube.

Q#: Is there any small object in the scene?

A: No

Classification: Add+Change actions, Existence question

Split: 2HopT 4 test

T 4: Add a small brown rubber sphere to the left of yellow matte object; Then swap its
position with the purple shiny sphere.

Qg : There is a ball that is to the left of the blue cube; what is its color?

A: Brown

Classification: Add+Move actions, Query Attribute question

Split: 2HopT 4 test

T 4: Sam takes the purple block out of the scene; Then he paints the yellow object by
green color.

Q#: Is there anything else that has the same material as the small gray sphere?

A: No

Classification: Remove+Change actions, Compare Attribute question

Split: 2HopT 4 test

T 4: Remove the cyan balls from the scene and move the large cyan cube on top of the
yellow object.

Q#: Are there greater number of spheres to the right of the yellow object than cubes?
A: No

Classification: Remove+Move actions, Compare Integer question

Split: 2HopT 4 test

Figure 12: More examples from the CLEVR_HYP dataset
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