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Abstract—In this paper, we study an energy-efficient compu-

tation offloading for vehicular edge computing systems, where

multiple roadside units assist vehicular users to offload com-

putation tasks to edge servers. Our goal is to minimize the

users’ energy consumption by optimizing user association, data

partition, transmit power, and computation resources, subject to

the constraints of partial tasks offloading, user latency, maximum

transmit power, outage performance, and computation capacity

of edge servers. We utilize deep learning for user association

to avoid combinatorial complexity, and develop an efficient

optimization algorithm to optimize other variables. The resulting

algorithm has scalable complexity with convergence guarantee,

as confirmed by our theoretical analysis. Simulation results

demonstrate that the introduced resource allocation algorithm

can significantly reduce the total energy consumption of users.

Index Terms—Energy-efficient communications, computation

offloading, vehicular communications, deep learning.

I. INTRODUCTION

I
N vehicular networks, vehicle and in-vehicle users need to
process a set of computation tasks, such as road traffic ser-

vices, infotainment applications, which involve the execution
of data [1]. Due to the extensive workloads and the limited
computation capacity at the user side, it is usually difficult
to meet the latency requirements when users locally process
their computation tasks. Moreover, as users are mobile, they
are often subject to strict energy consumption restrictions. As
such, it is expected to develop energy-efficient methods to
reduce users’ energy consumption and guarantee their latency
requirements in computing. To this end, vehicular edge com-
puting (VEC) has been proposed as a promising computing
architecture for vehicular networks, where users’ computation
tasks can be offloaded to edge servers via roadside units
(RSUs) that can receive computation tasks from users.

In conventional mobile edge computing systems, full chan-
nel state information (CSI) is assumed to be available at base
stations [2], [3]. This assumption does not always hold in
VEC systems, since the channel varies fast due to the mobility
of vehicles and it is quite challenging to estimate CSI and
feed back to the RSUs [4]. Under the uncertainty of small-
scale fading, it remains an open question as to how to jointly
allocate both communication and computation resources based
on large-scale fading channel information in VEC systems.

Prior Art: To date, several works in the literature in-
vestigated the energy minimization of VEC systems. In [5],
an energy-efficient workload offloading problem was stud-
ied. However, [5] considered the workload problem within
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the coverage of a single RSU, which lacks the cooperation
among multiple edge servers. In [6], the overall system energy
consumption was minimized by optimizing the offloading
decisions and the number of allocated resource blocks. Note
that [6] considered the binary offloading model for tasks,
which is suitable only for the highly integrated or relatively
simple tasks that cannot be partitioned. In [7], a cloud-fog-
vehicular edge cloud architecture was proposed to holistically
utilize the available computation resources in a smart city,
which minimizes the total power consumption of the end-
to-end architecture. However, the computation offloading for
vehicles was not analyzed. [8] aimed at minimizing the total
energy consumption by by optimizing the offloading decisions.
The partial offloading scheme in VEC systems was not studied.
[9] minimized vehicles’ total energy consumption by jointly
optimizing the offloading proportion and bit allocation of
vehicles. However, [9] considered the nearest RSU association
but did not provide any algorithms or analytical forms of
solutions. Furthermore, the above works assumed full CSI or
line-of-sight links between vehicle and RSUs. The large-scale
shadow fading and the uncertain small-scale fading due to
vehicle mobility were neglected, but these factors critically
affect the resource allocation.

Contributions: The main contributions of our work are
summarized in the following.

• We develop a computation offloading algorithm for VEC
systems. Specifically, we minimize the total energy con-
sumption of users by jointly optimizing the variables
of user association, data partition, transmit power, and
computation resources at edge servers, subject to the
constraints of partial offloading, the maximum transmit
power, user latency, outage performance, and computa-
tion capacity of edge servers.

• We consider the unknown small-scale fading in vehicle-
to-RSU (V2R) channels and the outage performance in
VEC systems. Moreover, our work is not restricted to
a single RSU and an edge server. We consider multiple
edge servers and users in VEC systems. Furthermore, we
focus on the partial offloading model for computation
tasks, making it possible to implement fine-grained com-
putation offloading in VEC systems.

• We utilize deep learning method to obtain user associ-
ation and integrate it with the developed optimization
algorithm. Based on this approach, the computational
complexity for obtaining the user association is very low,
where the input network parameters simply go through a
designed neural network model.
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Fig 1: An architecture of vehicular edge computing systems.

II. SYSTEM MODEL

A. Network Layout

We consider a VEC system with M edge servers and K

users as shown in Fig. 1. The set of edge servers is denoted
by M = {1, 2, · · · ,M}, and the set of users is indicated
by K = {1, 2, · · · ,K}. Each RSU has a wire-connected edge
server that has a certain computation resource to process users’
computation tasks.

B. Communication Model

Based on the channel modeling for vehicular communica-
tions in [4], the V2R channel between the k-th user and the m-
th RSU at time slot t is given by hkm (t) = hkmgkm (t), where
hkm = href &km(Lkm)�↵ accounts for the large-scale fad-
ing component and gkm (t) represents the small-scale fading
component at time slot t. Specifically, href is channel power
gain at reference distance, &km is the shadowing component,
Lkm denotes the distance between k-th user and m-th RSU,
and ↵ is the pathloss exponent. The instantaneous uplink data
rate Rkm (t) of the k-th user connected to the m-th RSU at
the time slot t is given by Rkm (t) = Blog2

⇣
1 + hkm(t)pk

N0

⌘
,

where B is the channel bandwidth, pk indicates the transmit
power of the k-th user and N0 represents the noise power. We
consider that users are allocated with orthogonal resources for
uplink transmissions in a specific road segment. The adjacent
road segments operate on different frequency bands. Thus, the
interference from other road segments on the same frequency
band is neglected. The maximum transmit power of the k-th
user is denoted by p

max
k .

In the time domain, time is equally divided by time slots
of length T on the order of hundreds of microseconds. Many
consecutive time slots construct a time block on the order of
hundreds of milliseconds. The large-scale fading component
is typically determined by users’ locations which vary little
within each time block. We assume that the large-scale fading
component is known at RSUs, because the locations of vehi-
cles are usually available at RSUs. However, the small-scale
fading component varies rapidly during a time block due to
the high mobility of vehicles, which is unavailable at RSUs,
but its statistical characterization is assumed to be known. We
assume that the small-scale fading component remains con-
stant during one time slot but fluctuates as an independent and
identically distributed (i.i.d.) random variable across different

time slots. We consider the Rayleigh distribution for small-
scale fading with parameter �g [4]. The time average data rate
of the k-th user connected to the m-th RSU in a time block
is given by Rkm =

R1
0 Blog2

⇣
1 + hkmpk

N0
x

⌘
fg (x)dx =

B�g

ln 2 �
⇣

N0�g

hkmpk

⌘
, where fg (x) = �ge

��gx, � (x) = e
x
E1 (x),

E1 (x) =
R1
x

e�y

y dy (x > 0) is the exponential integral
function, and the exponential distribution of small-scale fading
component (i.e., fg (x)) is introduced.

C. Computation Offloading

In partial computation offloading, the k-th user offloads
�k (�k 2 [0, 1]) portion of its data to an edge server, while
the remaining 1� �k portion of data is executed locally at
the k-th user. The association vector of the k-th user is given
by ak = {ak1, · · · , akM}, where akm = 1 is defined if partial
task of the k-th user is offloaded on the m-th server, otherwise,
akm = 0. Each user can offload partial data to only one edge
server, obeying the constraint as follows

MX

m=1

akm = 1, 8k 2 K. (1)

Note that if the k-th user executes all of its data locally, we
can set �k to zero, regardless of the values of ak. In (1),
each user is associated with one RSU, facilitating the control
information exchange in VEC systems.

The computation task of the k-th user is expressed as
Vk = (Dk, Tk, Fk) , 8k 2 K, where Dk is the data size of
its computation task, Tk is the latency requirement of this
task and Fk is the required number of central processing unit
(CPU) cycles for processing this task. In general, the required
number of CPU cycles is given by Fk = cbcDk, where cbc is
the coefficient for bit-to-cycle conversion [2].

D. Computation Model

Each edge server has a limited computation capacity, upper
bounded by f

max
m , which indicates the maximum number of

allocated CPU cycles per second at the m-th edge server. The
allocated computation resource for the k-th user at the m-
th edge server is denoted by fkm, 8k,m. The computation
capacity constraint at the m-th edge server is given by

KX

k=1

akmfkm 6 f
max
m , 8m 2 M. (2)

We consider that the k-th user transmits at the rate of Rkm in a
time block to reduce implementation complexity. Accordingly,
the latency constraint of the k-th user is given by

max

(
MX

m=1

akm�k

✓
Dk

Rkm
+

Fk

fkm

◆
,
(1� �k)Fk

fk0

)
6 Tk,

(3)
where fk0 denotes the local computation capacity of the k-th
user. The computing power consumption of k-th user is given
by p

c
k = ⇢(fk0)

& , 8k 2 K, where ⇢ and & are constants that
depend on the average switched capacitance and the average
activity factor, respectively [2].
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E. Outage Probability

The outage probability of data transmission for the k-th
user connected to the m-th RSU in a time slot is expressed as
Po
km = P {Rkm (t) 6 Rkm}. In addition, the required number

of time slots for data transmission is denoted by Nkm, where
Nkm = �kDk

TRkm
. We consider that the user’s average number

of outage time slots is less than a certain threshold µo, i.e.,
NkmP {Rkm (t) 6 Rkm} 6 µo, 8k 2 K, where µo denotes
the threshold of the expected maximum outage time slots for
transmitting �k portion of data to the RSU.
Lemma 1. The outage constraint of the k-th user connected

to the m-th RSU is given by

MX

m=1

⇢
1� exp


�
✓
2

�g
ln 2�

⇣
N0�g

hkmpk

⌘

� 1

◆
N0�g

hkmpk

��

⇥ akm�kDk ln 2

TB�g�
⇣

N0�g

hkmpk

⌘ 6 µo, 8k 2 K.

(4)

Proof. Given akm, we have Nkm = �kDk

T
B�g
ln 2 �

⇣
N0�g

hkmpk

⌘ . Consid-

ering the distribution of small-scale fading, we have

NkmP {Rkm (t) 6 Rkm}

= NkmP
⇢
log2

✓
1 +

hkmpkgkm (t)

N0

◆
6 �g

ln 2
�

✓
N0�g

hkmpk

◆�

= NkmP
⇢
gkm (t) 6

✓
2

�g
ln 2�

⇣
N0�g

hkmpk

⌘

� 1

◆
N0

hkmpk

�

= Nkm

⇢
1� exp


�
✓
2

�g
ln 2�

⇣
N0�g

hkmpk

⌘

� 1

◆
N0�g

hkmpk

��
.

(5)
Then, according to NkmP {Rkm (t) 6 Rkm} 6 µo, 8k 2

K, we have

1� exp


�
✓
2

�g
ln 2�

⇣
N0�g

hkmpk

⌘

� 1

◆
N0�g

hkmpk

�

TB�g

�kDk ln 2�
⇣

N0�g

hkmpk

⌘ 6 µo, 8k 2 K.

(6)
Combining akm in (6), we obtain the desired result.

F. Problem Formulation

In this paper, we focus on minimizing the total energy
consumption of users in VEC systems, which is expressed
as follows

min
a,b,p,f

KX

k=1

(1� �k)Fkp
c
k

fk0
+

KX

k=1

MX

m=1

akmpk ln 2�kDk

B�g�
⇣

N0�g

hkmpk

⌘ (7)

s.t. (1), (2), (3), (4),
akm = {0, 1} , 8k 2 K, 8m 2 M, (7a)
0 6 pk 6 p

max
k , 8k 2 K, (7b)

0 6 �k 6 1, 8k 2 K, (7c)
0 6 fkm, 8k 2 K, 8m 2 M, (7d)

where a = {akm}k2K,m2M is user association, b = {�k}k2K
indicates users’ data partition, p = {pk}k2K denotes users’
transmit power, and f = {fkm}k2K,m2M represents compu-
tation resource allocation. In the objective function of problem
(7), the first term is the energy consumption for users’ local

computing, and the second term captures the energy consump-
tion of users’ data transmission.

III. PROPOSED ALGORITHM

We study an efficient algorithm to solve the users’ energy
consumption minimization problem (7) in VEC systems.

A. Joint Data Partition and Computation Resource Allocation

Given the user’s association a and power allocation p,
we jointly optimize users’ data partition b and computation
resource allocation f , where the sub-problem is given by

min
b,f

KX

k=1

(1� �k)Fkp
c
k

fk0
+

KX

k=1

akmpk�kDk

Rkm
(8)

s.t. (2), (4), (7c), (7d),
akm�kDk

Rkm
+

akmFk�k

fkm
� Tk 6 0, 8k 2 K, (8a)

(1� �k)Fk

fk0
� Tk 6 0, 8k 2 K. (8b)

It can be verified that the left hand side (LHS) of constraint
(8a) is not jointly convex for �k and fkm. To circumvent this
issue, we introduce �k =

p
�k to transform (8) as follows

min
c,f

�
KX

k=1

�k
2
ck (9)

s.t. (2), (7d),
akm�k

2
Dk

Rkm
+

akm�k
2
Fk

fkm
� Tk 6 0, 8k 2 K, (9a)

�
lb
k 6 �k 6 �

ub,1
k , 8k 2 K, (9b)

where ck = Fk
fk0

p
c
k�

akmpk�kDk

Rkm
, �lb

k = max
n
1� Tkfk0

Fk
, 0
o 1

2
,

�
ub,1
k = min

⇢
1,

r
µoTB�g

ln 2Dk
⇥
⇣

N0�g

hkmpk

⌘�
, ⇥ (·) is given by

⇥ (x) = � (x)


1� exp

✓
1� e

⇣
1�2�g�(x)/ln 2

⌘
x
◆��1

. (10)

It can be verified that the LHS of constraint (9a) is jointly
convex for �k and fkm. However, the convexity of the ob-
jective function of problem (9) depends on ck, k 2 K. We
partition the set of users K into two subsets K� and K+,
where K� = {k| k 2 K, ck 6 0}, K+ = {k| k 2 K, ck > 0}.
With the successive convex optimization technique, in each
iteration, the objective concave functions are approximated by
more tractable functions at given local points. Recall that any
concave function is globally upper-bounded by its first-order
Taylor expansion at any point. For k 2 K+, we have

�
X

k2K+

�k
2
ck 6 �

X

k2K+

⇣�
�
i
k

�2
ck + 2�i

kck

�
�k � �

i
k

�⌘
,

(11)
where �

i
k is the value of �k in the ith iteration. Given �

i
k,

problem (9) is reformulated by
min
c,f

�
X

k2K�

�k
2
ck �

X

k2K+

�
i
kck

�
2�k � �

i
k

�
, (12)

s.t. (2), (7d), (9a), (9b),

which is a convex problem. In the sequel, we apply the
Lagrangian dual method to solve the problem in (12) effi-
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L (c, f ,$,#) =�
X

k2K�

�k
2
ck �

X

k2K+

�
i
kck

�
2�k � �

i
k

�

+
MX

m=1

$m

 
KX

k=1

a
⇤
kmfkm � f

max
m

!
+

KX

k=1

#k

✓
a
⇤
km�k

2
Dk

R⇤
km

+
a
⇤
km�k

2
Fk

fkm
� Tk

◆
,

(14)

ciently by investigating the analytical form of solutions. The
Lagarange function of (12) is given by

min
c,f

L (c, f ,$,#) , (13)
where L (c, f ,$,#) is given in (14) at the top of the page,
{$m}m2M and {#k}k2K are the Lagrangian multipliers.

Since (13) is convex, we use the coordinate descent method
to find the optimal solution to (13). Specifically, given f , we
first optimize c; then, given the optimized c, we optimize f ,
which are shown as follows

cj+1 = argmin
c

L
�
c, f j ,$,#

�
, (15)

f j+1 = argmin
f

L
�
cj+1

, f ,$,#
�
, (16)

where cj+1 and f j+1 denote the optimized c and f in the
(j + 1)th iteration, respectively.

Theorem 1. Given f j , for k-th user, if ck 6 0, we have �
j+1
k =

�
lb
k ; if ck > 0, we have

�
j+1
k =

8
<

:

�
ub
k , if �

ub
k 6 �

opt
k

�
opt
k , if �

lb
k 6 �

opt
k < �

ub
k

�
lb
k , if �

opt
k < �

ub
k

, (17)

where �
opt
k = �

i
kck

⇣
#k⌥

j
k

⌘�1
, (18)

�
ub
k = min

⇢
Tk

⇣
⌥j

k

⌘�1
, �

ub,1
k

� 1
2

, (19)

and ⌥j
k =

MX

m=1

akmDk

Rkm
+

akmFk

f
j
km

. (20)

Given the optimized cj+1
, the optimal f

j+1
km is given by

f
j+1
km = �

j+1
k

✓
#kFk

$m

◆ 1
2

. (21)

Proof. The results can be obtained by exploring the first-order
optimality conditions of the quadratic function L (c, f ,$,#).
The detailed proof is omitted here to save space.

Once obtaining the optimized c and f , we update La-
grangian multipliers, as follows

$
i+1
m =

"
$

i
m + ⇡$

 
KX

k=1

akmfkm � f
max
m

!#+
, (22)

#
i+1
k =


#
i
k + ⇡#

✓
�k

2
akm

✓
Dk

Rkm
+

Fk

fkm

◆
� Tk

◆�+
,

(23)
where ⇡$ and ⇡# are the chosen step-sizes.

By optimizing c, f , and updating $, #, we obtain the
optimal c and f . Then, we calculate back b from c.

B. Power Allocation

Given the user’s association a, data partition b, and compu-
tation resource allocation f , the power allocation sub-problem
is given by

min
p

KX

k=1

MX

m=1

akmpk ln 2�kDk

B�g�
⇣

N0�g

hkmpk

⌘ (24)

s.t. (4), (7b),
MX

m=1

akm ln 2�kDk

B�g�
⇣

N0�g

hkmpk

⌘ +
akm�kFk

fkm
6 Tk, 8k 2 K. (24a)

Problem (24) can be decomposed into K sub-problems. For
ease of analysis, we introduce the variable ⌘k = N0�g

hkmpk
. The

power allocation sub-problem for the k-th user is given by

min
⌘k

ln 2�kDkN0

Bhkm� (⌘k) ⌘k
(25)

s.t.
ln 2�kDk

B�g� (⌘k)
+

�kFk

fkm
6 Tk, (25a)

✓
1� e

⇣
1�2�g�(⌘k)/ln 2

⌘
⌘k

◆
�kDk ln 2

TB�g� (⌘k)
6 µo, (25b)

⌘k > N0�g

hkmpmax
k

. (25c)

In the following Theorem, we provide the optimal expres-
sion of ⌘k regarding the problem (25).

Theorem 2. The optimal ⌘k in (25) is given by

⌘
⇤
k = max

n
⌘
lb
k ,min

n
⌘
ub,1
k , ⌘

ub,2
k

oo
, (26)

where ⌘
lb
k = N0�g

hkmpmax
k

, ⌘
ub,1
k = ��1

⇣
ln 2�kDkfkm

B�g(Tkfkm��kFk)

⌘
, and

⌘
ub,2
k = ⇥�1

⇣
�k ln 2Dk

µoTB�g

⌘
. ��1 (·) and ⇥�1 (·) are the inverse

functions of � (·) and ⇥ (·) (defined in (10)), respectively.

Proof. Due to the fact that @�(x)x
@x = � (x)x+� (x)�1 > 0,

the function � (x)x increases with x. Thus, the objective value
in (25) decreases with ⌘k, and the optimal ⌘⇤k takes as large
value as possible. Since @�(x)

@x = � (x) � 1
x 6 0, the LHS

of (25a) increases with ⌘k. The upper bound of ⌘k in (25a),
i.e., ⌘ub,1k , is obtained by taking equality in (25a). In addition,
the LHS of (25b) is an increasing function with respect to ⌘k.
Thus, the upper bound of ⌘k in (25b), i.e., ⌘ub,2k , is obtained
by taking equality in (25b). Combining the upper bounds (i.e.,
⌘
ub,1
k , ⌘ub,2k ) and the lower bound of ⌘k (i.e., ⌘lbk = N0�g

hkmpmax
k

),
we obtain the desired results.

Then, we can reach the optimal pk by using pk = N0�g

hkm⌘k
.

C. User Association

We apply a deep neural network (DNN) to obtain user asso-
ciation schemes. The motivation is two-fold: a) this achieves
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Fig 2: Deep learning model for obtaining user association a in VEC systems.

Algorithm 1 Energy-efficient RSU-assisted VEC algorithm.
Require:

The tolerance "obj , the maximum iteration number Nmax
itera.

Ensure:

1: Given network conditions, obtain a with deep learning;
2: while i 6 Nmax

itera do

3: Updating iteration index i = i+ 1;
4: With fixed p(i�1), jointly optimize b(i) and f (i) according to

problem (8);
5: With fixed b(i) and f (i), optimize p(i) in problem (24);
6: Obtain the objective value E

�
bi,pi, f i

�
;

7: If
�
Ei�1 � Ei

��
Ei 6 "obj : Break; End If;

8: end while

9: return (a⇤,b⇤,p⇤, f⇤); The energy consumption E⇤.

a low computational complexity by simply going through a
neural network model implemented in a real-time manner; b)
we can enlarge and update the training dataset to obtain the
desired system performance. The inputs of the DNN are the
large-scale fading components h =

�
hkm

 
, users’ data size

D = {Dk}, and user latency requirements T = {Tk}, while
the output of the DNN is the user association scheme.

We utilize a exploitation and exploration policy to generate
the dataset. Specifically, given h,D,T, we first obtain a user
association scheme based on the nearest RSU association
scheme. Then, we develop one-step exploration, where we
change the association scheme of one of the K users while
keeping other user associations the same. Since each user can
access the other M � 1 RSUs in the one-step exploration,
there are None = K (M � 1) possible schemes in the whole
one-step exploration. Next, Nran user association schemes are
generated with random exploration, where each user randomly
selects one of M RSUs with probability 1

M . Given each user
association scheme, by optimizing b, f , and p, we select the
one with the lowest energy consumption from 1+None+Nran

schemes as the output of the data pair.
In Fig. 2, we show the deep learning model for obtaining

a in VEC systems. In the output layer, we obtain the output
values with the value range of [0, 1] by using Sigmoid func-
tions. Then, we obtain the binary output values by selecting
the RSU with the maximum output value for each user.
Considering the difference of input values, we execute the
data pre-processing procedure, including the integration and
normalization methods, as shown in Fig. 2. Specifically, for

any k and m, we obtain xkm = 10 log

✓
e
Dk/(106Tk)�1

hkm

◆
by

considering the units of the variables. Then, we normalize the
inputs based on xkm�min{x}

max{x}�min{x} to scale input values between
0 and 1. The numbers of neurons in the input and output
layers are equal to KM . After the training phase, we can use
the trained DNN to calculate a for any h,D,T.

D. Algorithm, Convergence and Complexity

1) Algorithm: Algorithm 1 shows an iterative algorithm for
solving problem (7), where E

i = E
�
bi
,pi

, f i
�

represents the
total energy consumption of users in the i-th iteration.

2) Convergence: Algorithm 1 has theoretical guarantee of
convergence which is shown as follows

E
�
bi�1

,pi�1
, f i�1

� (a)
= E

ub
�
bi�1

,pi�1
, f i�1

�

(b)
> E

ub
�
bi
,pi�1

, f i
� (c)
> E

�
bi
,pi�1

, f i
� (d)
> E

�
bi
,pi

, f i
�
,

(27)
where E

ub denotes the total energy consumption of users
based on problem (12), (a) holds since the first-order Taylor
expansion in (11) is tight at given local points, (b) holds since
bi and f i are jointly solved optimally in problem (12); (c)
holds since E

ub is an upper bound of E with bi and f i;
(d) holds since p(i) is the optimal solution to problem (24).
Therefore, we have E

�
bi�1

,pi�1
, f i�1

�
> E

�
bi
,pi

, f i
�
.

Since E is always positive, Algorithm 1 converges.
3) Complexity: Algorithm 1 incurs polynomial complexity

in computation. The complexity to obtain a by DNN is CDL =PLayers
l=1

�
n
(l)
n
(l�1) + n

(l)
�
+KM , where n

(l) is the number
of neurons including the bias unit in the l-th layer. To solve
problem (8), the complexity of updating c and f in (13) is
O (K) due to the closed-form solutions based on Theorem 1.
The complexity of updating dual variables is O (K +M). The
total complexity of problem (8) is O (Nbf (K +M)), where
Nbf denotes the number of iterations of problem (8).

To solve problem (24), we denote the complexity of inverse
functions ��1 (·) and ⇥�1 (·) as O

⇣
1
"1

⌘
and O

⇣
1
"2

⌘
, respec-

tively. Since the solution to (25) is in closed-form, the total
complexity of problem (24) is O

⇣
Klog2

⇣
1

"1"2

⌘⌘
.

The total complexity of Algorithm 1 is given by

O

✓
NI

✓
Nbf (K +M) +Klog2

✓
1

"1"2

◆◆
+ CDL

◆
, (28)

where NI is the number of outer iterations of Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results are provided to assess
the proposed algorithm for VEC systems. Default parameter
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Fig 3: Average users’ energy consumption versus K.

Table I: Default Parameters Setup

Parameter Value

K, M , pmax
k 10, 2, 0.5 W

Server’s computation capacity fmax
m 1⇥ 1010 cycles/s

Data size Dk [0.5,1.5] Mbits
Latency requirement Tk, time slot T 500 ms, 1 ms

Bit and cycle conversion cbc 1⇥ 103 cycles/bit
User’s computation capacity fk0 2⇥ 109 cycles/s

Coefficients ⇢, & 1⇥ 10�27, 3
Threshold of outage time slots µo 250

Noise spectral density n0 -80 dBm
Path loss exponent ↵, bandwidth B 3, 0.5 MHz

settings are shown in Table I. The road length is 200 m and
the number of lanes is 4. RSUs are equally spaced beside the
road. Users are randomly distributed on the lanes. Given an
average data size Dave = 1 Mbits, user’s data size is randomly
generated within [0.5Dave,1.5Dave]. For each setup, the result
is averaged over 1,000 tests. The learning rate is 0.01 with
decay rate 0.1. The number of samples is 2,048. The number
of neurons in hidden layer is 800. The size of mini-batch is
10. The number of random exploration Nran is 50.

In Fig. 3, we compare the average energy consumption of
users, versus the number of users, under different methods.
When K increases, users will consume more energy to ex-
ecute their computation tasks due to the reduced allocated
computation resource for each user. In addition, we com-
pare the proposed deep learning method with other methods,
including exhaustive search, Lagrangian dual method [3],
nearest RSU association, and random RSU association. It
shows that the proposed deep learning-assisted computation
offloading method approaches the optimal one (i.e., exhaustive
search). Moreover, it achieves a smaller E than the other
three methods. This is because the DNN model can capture
the relationships between input and output data pairs, and
thus it gives a near-optimal solution. Moreover, note that
connecting to the nearest RSUs leads to reliable data rates,
but the system neglects the cooperation among edge servers
for load balancing.

In Fig. 4, we examine the different algorithms in terms of
E. Specifically, we compare the proposed deep learning +
joint b,p, f optimization (Opt) method (labeled as ‘DL-Opt’),
the deep learning + equal computation resource allocation

1 1.1
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Fig 4: Average users’ energy consumption versus Dave.

(ECA) method (labeled as ‘DL-ECA’), the Lagrangian dual
+ Opt method (labeled as ‘Lag-Opt’), the Lagrangian dual
+ ECA method (labeled as ‘Lag-ECA’), the random RSU
association + Opt method (labeled as ‘Ran-Opt’), the random
RSU association + ECA method (labeled as ‘Ran-ECA’). It is
observed that the proposed algorithm achieves the lowest en-
ergy consumption than other algorithms, which demonstrates
the advantage of this work.

V. CONCLUSIONS

In this paper, we have developed a deep learning-assisted
energy-efficient computation offloading algorithm for VEC
systems. The algorithm can solve the complex VEC problem
and find a near-optimal solution in a real-time manner with low
complexity. Simulation results demonstrate the advantages of
the proposed algorithm in substantially reducing users’ total
energy consumption compared with other methods.

REFERENCES

[1] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge Computing
for Autonomous Driving: Opportunities and Challenges,” Proceedings of

the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.
[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey

on Mobile Edge Computing: The Communication Perspective,” IEEE

Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
[3] B. Shang and L. Liu, “Mobile-Edge Computing in the Sky: Energy

Optimization for Air–Ground Integrated Networks,” IEEE Internet of

Things Journal, vol. 7, no. 8, pp. 7443–7456, 2020.
[4] L. Liang, G. Y. Li, and W. Xu, “Resource Allocation for D2D-Enabled

Vehicular Communications,” IEEE Transactions on Communications,
vol. 65, no. 7, pp. 3186–3197, 2017.

[5] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-Efficient Edge
Computing Service Provisioning for Vehicular Networks: A Consensus
ADMM Approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 5, pp. 5087–5099, 2019.

[6] X. Li, Y. Dang, M. Aazam, X. Peng, T. Chen, and C. Chen, “Energy-
Efficient Computation Offloading in Vehicular Edge Cloud Computing,”
IEEE Access, vol. 8, pp. 37 632–37 644, 2020.

[7] A. A. Alahmadi, T. El-Gorashi, and J. M. Elmirghani, “Energy Efficient
Processing Allocation in Opportunistic Cloud-Fog-Vehicular Edge Cloud
Architectures,” arXiv preprint arXiv:2006.14659, 2020.

[8] T. Yang, Y. Zhu, Y. Hu, and R. Mathar, “Energy Minimization of Delay-
Constrained Offloading in Vehicular Edge Computing Networks,” in 2019

IEEE Wireless Communications and Networking Conference Workshop

(WCNCW), 2019, pp. 1–6.
[9] Y. Jang, J. Na, S. Jeong, and J. Kang, “Energy-Efficient Task Offloading

for Vehicular Edge Computing: Joint Optimization of Offloading and
Bit Allocation,” in 2020 IEEE 91st Vehicular Technology Conference

(VTC2020-Spring), 2020, pp. 1–5.

Authorized licensed use limited to: George Mason University. Downloaded on August 02,2021 at 15:32:37 UTC from IEEE Xplore.  Restrictions apply. 


