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ABSTRACT

We present FastRP, a scalable and performant algorithm for learning
distributed node representations in a graph. FastRP is over 4,000
times faster than state-of-the-art methods such as DeepWalk and
node2vec, while achieving comparable or even better performance
as evaluated on several real-world networks on various downstream
tasks. We observe that most network embedding methods consist
of two components: construct a node similarity matrix and then
apply dimension reduction techniques to this matrix. We show that
the success of these methods should be attributed to the proper
construction of this similarity matrix, rather than the dimension
reduction method employed.

FastRP is proposed as a scalable algorithm for network embed-
dings. Two key features of FastRP are: 1) it explicitly constructs
a node similarity matrix that captures transitive relationships in
a graph and normalizes matrix entries based on node degrees;
2) it utilizes very sparse random projection, which is a scalable
optimization-free method for dimension reduction. An extra ben-
efit from combining these two design choices is that it allows the
iterative computation of node embeddings so that the similarity
matrix need not be explicitly constructed, which further speeds
up FastRP. FastRP is also advantageous for its ease of implementa-
tion, parallelization and hyperparameter tuning. The source code
is available at https://github.com/GTmac/FastRP.
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1 INTRODUCTION

Network embedding methods learn low-dimensional distributed
representation of nodes in a network. These learned representations
can serve as latent features for a variety of inference tasks on graphs,
such as node classification [23], link prediction [16] and network
reconstruction [36].

Research on network embeddings dates back to early 2000s in the
context of dimension reduction, when methods such as LLE [27],
IsoMap [32] and Laplacian Eigenmaps [4] were proposed. These
methods are general in that they embed an arbitrary n ×m feature
matrix (n is the number of data points) into an n × d embedding
matrix, where d ≪ m. Although these methods produce high-
quality embeddings, their time complexity is at least O(n2) which
is prohibitive for large n.

More recent work in this area shifts their focus to embedding
graph data, which represents a special class of sparse feature matrix,
where n =m. The sparsity and discreteness of real-world graphs
permit the design of more scalable network embedding algorithms.
The pioneering work here is DeepWalk [23], which essentially
samples node pairs from k-step transition matrices with different
values of k , and then train a Skip-gram [22] model on these pairs
to obtain node embeddings.

The most significant contribution of DeepWalk is that it intro-
duces a two-component paradigm for representation learning on
graphs: first explicitly constructing a node similarity matrix or im-
plicitly sampling node pairs from it, then performing dimension
reduction on the matrix to produce node embeddings. Much subse-
quent work has since followed to propose different strategies for
both steps [16, 30, 33, 36].

Although most such methods are considered scalable with time
complexity being linear to the number of nodes and/or edges, we
note that the constant factor is often too large to be ignored. The
reason is two-fold. First, many of these methods are sampling-based
and a huge number of samples is required to learn high-quality
embeddings. For example, DeepWalk samples about 32,000 context
nodes per node under its default setting1. Second, the dimension
reduction methods being used also incur substantial computational

1We consider the recommended hyperparameter settings in the DeepWalk paper,
where 80 random walks of length 40 are sampled per node and the window size for
Skip-gram is 10.
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(a) FastRP. (b) DeepWalk. (c) RandNE.

Figure 1: Visualization of the embeddings produced by FastRP, DeepWalk and RandNE on the WWW network for websites from

five country code top-level domains. We use t-SNE to project the embeddings to two-dimensional space.

cost, making this constant factor even larger. Popular methods
such as DeepWalk [23], LINE [30] and node2vec [16] all adopt
Skip-gram for learning node embeddings. However, optimizing
the Skip-gram model is time-consuming due to the large number
of gradient updates needed before the model converges. As such,
despite being the most scalable state-of-the-art network embedding
algorithms, it still takes DeepWalk and LINE several days of CPU
time to embed the Youtube graph [31], a moderately sized graph
with 1M nodes and 3M edges.

Can we design a truly scalable network embedding method that
produces node embeddings for million-scale graphs in several min-
utes without compromising the representation quality? To answer
this question, we analyze several state-of-the-art network embed-
ding methods by examining their design choices for both similarity
matrix construction and dimension reduction. Our analysis moti-
vates us to propose FastRP, which presents much more scalable
solutions to both steps without compromising embedding quality.

To illustrate the effectiveness of FastRP, we visualize the node
representations produced by FastRP, DeepWalk [23] and an earlier
random projection-based method, RandNE [38] on the WWW net-
work (Figure 1). The nodes are hostnames such as youtube.com
and instagram.com. For the purpose of visualization, we use t-
SNE [21] to project the node embeddings to two-dimensional space.
We take the websites from five countries: United Kingdom (.uk),
Japan (.jp), Brazil (.br), France (.fr) and Spain (.es) as indicated
by the color of the dots. Observe that for FastRP and DeepWalk,
the websites from each top-level domain form clusters that are
very well separated. For the RandNE embeddings, there is no clear
boundary between the websites from different top-level domains.
FastRP achieves similar quality to DeepWalk while being over 4,000
times faster.

To sum up, our contributions are the following:
Improved Understanding of Existing Network Embedding

Algorithms. By viewing representative network embedding al-
gorithms as a procedure with two components, similarity matrix
construction and dimension reduction, we gain an improved un-
derstanding of why these algorithms work and why do they have
scalability issues. This improved understanding motivates us to
propose new solutions for both components.

Better Formulation of the Node Similarity Matrix. We con-
struct a node similarity matrix with two unique properties: 1) it
considers the implicit, transitive relationships between nodes; 2) it
normalizes pairwise similarity of nodes based on node degrees.
More ScalableDimensionReductionAlgorithm.Different from
previous work that relies on time-consuming dimension reduction
methods such as Skip-gram and SVD, we obtain node embeddings
via very sparse random projection of the node similarity matrix.
An additional benefit from combining these two design choices is
that it allows the iterative computation of node embeddings, which
has linear cost in the size of the graph.
DeepWalk Quality Embeddings that is Produced Over 4,000

Times Faster. Extensive experimental results show that FastRP
produces high-quality node embeddings comparable to state-of-
the-art methods while being at least three orders of magnitude
faster.

2 PRELIMINARIES

In this section, we give the formal definition of network embed-
dings and introduce the paradigm of network embeddings as a
two-component process. We then detail the design decisions of
several state-of-the-art methods for both components and show
why they have scalability issues.

2.1 Notation and Task Definition

We consider the problem of embedding a network: given an undi-
rected graph, the goal is to learn a low-dimensional latent repre-
sentation for each node in the graph2. Formally, let G = (V ,E) be
a graph, where V is the set of nodes and E is the set of edges. Let
n = |V | be the number of nodes,m = |E | be the number of edges,
di be the degree of the i-th node, and S be the adjacency matrix
of G. The goal of network embeddings is to develop a mapping

Φ : V 7→ N ∈ Rn×d ,d ≪ n. For a node v ∈ V , we call the d-
dimensional vector Nv its embedding vector (or node embedding).

Network embeddings can be viewed as performing dimension

reduction on graphs: the input is an n × n feature matrix associated
with the graph, on which we apply dimension reduction techniques
to reduce its dimensionality to n × d . This leads to two questions:

2We use network and graph interchangeably.
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(1) What is an appropriate node similarity matrix to perform
dimension reduction on?

(2) What dimension reduction techniques should be used?

We now review the existing solutions to both questions.

2.2 Node Similarity Matrix

The most straightforward input matrices to consider is the adja-
cency matrix S or the transition matrix A:

A = D−1S

where D is the degree matrix of G:

Di j =

{ ∑
p Sip if i = j,

0 otherwise.

However, directly applying dimension reduction techniques on S or
A is problematic. Real-world graphs are usually extremely sparse,
which means most of the entries in S are zero. However, the absence
of edge between two nodes u and v does not imply that there is
no association between them. In particular, if two nodes are not
adjacent but are connected by a large number of paths, it is still
likely that there is a strong association between them.

The intuition above motivates us to exploit higher-order rela-
tionships in the graph. A natural high-order node similarity matrix
is the k-step transition matrix:

Ak
= A · · ·A︸  ︷︷  ︸

k

(1)

The ij-th entry of Ak denotes the probability of reaching j from i in
exactly k steps of random walk. We will show that many existing
methods adopt variations of this definition of similarity matrix.

2.3 Dimension Reduction Techniques

Once an n ×n similarity matrix is constructed, network embedding
methods perform dimension reduction on it to obtain node repre-
sentations. In this section, we introduce two commonly used di-
mension reduction techniques: singular value decomposition (SVD)
and Skip-gram.
SVD. SVD [17] is a classical matrix factorization method for dimen-
sion reduction. SVD factorizes a feature matrixM into the product
of three matrices: M = U · Σ · V⊤, where U and V are orthonormal
and Σ is a diagonal matrix consisting of singular values. To perform
dimension reduction with SVD, it is common to take the top d

singular values Σd from Σ and the corresponding columns from U

and V .
Skip-gram. Skip-gram [22] is a method for learning word em-
beddings, which is also shown to be performant in the context of
network embeddings. Skip-gram works by sampling word pairs (or
node pairs) from a word co-occurrence matrix (or node similarity
matrix) C and modeling the probability that a given word-context
pair (u,v) is from C or not. Goldberg and Levy [19] showed that
Skip-gram is implicitly factorizing a shifted pointwise mutual infor-
mation (PMI) matrix of word co-occurrences. Formally, the matrix
Skip-gram seeks to factorize has elements:

Muv = log
#(u,v) · |C |
#(u) · #(v) − logb = log (PMI(u,v)) − logb (2)

where #(u) denotes the occurrence count of u in C and b denotes
the number of negative samples in Skip-gram.

2.4 Representative Network Embedding
Methods

In this section, we discuss how three representative network em-
bedding methods: DeepWalk [23], LINE [30] and GraRep [7] fit into
the two-component procedure described above. The analysis of
node2vec [16] is similar to that of DeepWalk, which we omit here.
DeepWalk [23]. DeepWalk’s core idea is to sample node pairs from

a weighted combination of A,A2
, · · · ,Ak , and then train a Skip-

gram model on these samples. Making use of Eq. 2, it can be shown
that DeepWalk is implicitly factorizing the following matrix [26]:

M = log

(

vol(G)
(
1

k

k∑

r=1

ArD−1
))

− logb (3)

where vol(G) = ∑
i
∑
j Si j .

LINE [30]. LINE can be seen as a variation of DeepWalk that only
considers node pairs that are at most two hops away. Using a similar
derivation, it can be shown that LINE implicitly factorizes:

M = log
(
vol(G)

(
AD−1

))
− logb (4)

GraRep [7]. GraRep can be regarded as the matrix factorization

version of DeepWalk. Instead of sampling from A,A2
, · · · ,Ak , it

directly computes these matrices and then factorizes the corre-
sponding shifted PMI matrix for each power of A.

2.5 Scalability of Representative Methods

Putting existing methods into this two-component framework re-
veals their intrinsic scalability issues as following:
Node Similarity Matrix Construction. Many previous studies
have demonstrated the importance of preserving high-order prox-
imity between nodes [7, 23, 26, 38, 39], which is typically done by
raising A to k-th power and optionally normalize it afterward (see
Eq. 3 for an example). This causes scalability issues since both com-

puting Ak and applying a transformation to each element in Ak are
at least quadratic. For methods such as DeepWalk and node2vec,

this problem is slightly mitigated by sampling node pairs from Ak

instead. But still, a huge number of samples is required for them to

get an accurate enough estimation of Ak .
DimensionReduction.The dimension reduction techniques adopt-
ed by these methods also affect their scalability. Both Skip-gram and
SVD are not among the fastest dimension reduction algorithms [35].

In the next section, we present our solutions to both problems
that allow for better scalability.

3 METHOD

In this section, we introduce FastRP. We first describe the usage of
very sparse randomprojection for dimension reduction and itsmerit
in preserving high-order proximity. Then, we present our design
of the node similarity matrix. This matrix is carefully designed so
that: 1) it preserves transitive relationships in the input graph; 2) its
entries are properly normalized; 3) it can be formulated as matrix
chain multiplication, so that applying random projection on this
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matrix only costs linear time. Lastly, we discuss several additional
advantages of FastRP.

3.1 Very Sparse Random Projection

Random projection is a dimension reduction method that preserves
pairwise distances between data points with strong theoretical
guarantees [35]. The idea behind this is very simple: to reduce an
n ×m (for graph data, we have n =m) feature matrixM to an n ×d
matrix N where d ≪m, we can simply multiply the feature matrix
with anm × d random projection matrix R:

N = M · R (5)

As long as the entries of R are i.i.d with zero mean, N is able to
preserve the pairwise distances in AA⊤ [2].

The difference among different random projection algorithms is
mostly in the construction of R. The most studied one is Gaussian
random projection, where entries of R are sampled i.i.d. from a
Gaussian distribution: Ri j ∼ N (0, 1/d). Since R is a densem × d
matrix, the time complexity of Gaussian random projection isO(n ·
m · d).

As an improvement to Gaussian random projection, Achliop-
tas [1] proposed sparse random projection, where entries of R are
sampled i.i.d. from

Ri j =





√
s with probability

1

2s

0 with probability 1 − 1

s

−
√
s with probability

1

2s

(6)

where s = 3 is used. This leads to a 3x speedup since 2/3 of the
entries of R are zero. Additionally, this configuration of R does not
require any floating-point computation since the multiplication
with

√
s can be delayed, providing additional speedup.

Li et al. [20] extend Achlioptas [1] by showing that s ≫ 3 can be
used to further speed up the computation. They recommend setting
s =
√
m, which achieves

√
m times speedup over Gaussian random

projection while ensuring the quality of the embeddings. In this
work, we consider this very sparse random projection method for
dimension reduction of the node similarity matrix.

As an optimization-free dimension reductionmethod, very sparse
random projection wins over SVD and Skip-gram for its superior
computational efficiency. The fact that it only requires matrix mul-
tiplication also enables faster computation on accelerators such as
GPUs, as well as easy parallelization.

Apart from these advantages, the random projection approach
also benefits from the associative property of matrix multiplication.
To see why this is important, consider the basic form of high-order

similarity matrix Ak , as defined in Eq. 1. To compute its random

projection N = Ak ·R, there is no need to calculate Ak from scratch
since the computation can be done iteratively:

N = (A · · · · (A · (A
︸           ︷︷           ︸

k

·R))) (7)

This reduces the time complexity from O(n3 · k · d) to O(m · k · d).

3.2 Similarity Matrix Construction

The next step is to construct a proper node similarity matrix lever-
aging the associative property of matrix multiplication. We make
two key observation about the similarity matrices used by the exist-
ing method. First, it is important to preserve high-order proximity
in the input graph ś this is typically done by raising A to k-th
power. Second, element-wise normalization is performed (taking
logarithm for DeepWalk, LINE and GraRep) on the raw similarity
matrix before dimension reduction.

Most previous matrix-based network embedding methods em-
phasize on the importance of high-order proximity but skip the
element-wise normalization step for either better scalability or
ease of analysis [25, 26, 38]. Is normalization of the node similarity
matrix important? If so, is there any other normalization method
that allows for scalable computation? We answer these questions

by analyzing the properties of Ak from a spectral graph theory
perspective.

To begin with, we consider a transformation of A defined as B =

D
1
2AD−

1
2 . Since B is a real symmetric matrix, it can be decomposed

as B = QΛQ⊤ where Λ is a diagonal matrix of eigenvalues λ1 ≥
λ2 ≥ . . . ≥ λn of B, and Q is an orthogonal matrix consisting of
the corresponding eigenvectors q1, . . . , qn .

It is easy to verify that
(
1,w =

(√
d1, · · · ,

√
dn

))
is an eigenpair

of B. Following the Frobenius-Perron Theorem [15], we have:

λ1 = 1 > λ2 ≥ . . . ≥ λn ≥ −1
and

q1 =

(√
d1

2m
, · · · ,

√
dn

2m

)

Now:

Ak
= D−

1
2 BkD

1
2 = D−

1
2 (QΛQ⊤)kD

1
2

= D−
1
2QΛkQ⊤D

1
2

=

n∑

t=1

λkt D
− 1

2 qtq
⊤
t D

1
2

= P +

n∑

t=2

λkt D
− 1

2 qtq
⊤
t D

1
2

where Pi j = dj/2m.

For a particular entry Ak
i j we have:

Ak
i j =

dj

2m
+

n∑

t=2

λkt qt iqt j

√
dj

di
(8)

This derivation illustrates the importance of normalization. Since
|λt | < 1 holds for t = 2, . . . ,n (assuming G is non-bipartite), we

have Ak
i j → dj/2m when k → ∞. Since many of the real-world

graphs are scale-free [3], it follows that the entries in Ak also has a
heavy-tailed distribution.

The heavy-tailed distribution of data causes problems for di-
mension reduction methods [20]. The pairwise distances between
data points are dominated by the columns with exceptionally large
values, rending them less meaningful. In practice, term weighting
schemes are applied to heavy-tailed data to reduce its kurtosis and
skewness [28]. Here, we consider a scaled version of the Tukey
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Algorithm 1 FastRP(A)

Input:

graph transition matrix A, embedding dimensionality d , maxi-
mum powerk , normalization strength β , weights α1,α2, . . . ,αk

Output: matrix of node representations N ∈ Rn×d
1: Produce R ∈ Rn×d according to Eq. 6

2: N1 ← A · L · R where Li j =
(
dj
2m

)β

3: for i = 2 to n do

4: Ni ← A · Ni−1
5: end for

6: N = α1N1 + . . . + αkNk

7: return N

transformation [34]. Concretely, we transform a feature y into yλ ,
where λ controls the strength of normalization. Now the only prob-

lem is that the exact feature values in Ak are not known, and we
do not want to calculate these values for better scalability. But

again, we can rely on the fact that Ak
i j converges to dj/2m. The

normalization we consider is therefore:

Ãk
i j = Ak

i j ·
(
dj

2m

)λ−1
≈ Ak

i j ·
(
Ak
i j

)λ−1
≈

(
Ak
i j

)λ
(9)

3.3 Our Algorithm: FastRP

Let β = λ− 1, the normalization scheme in Eq. 9 can be represented

in matrix form: Ãk
= Ak · L where L = diag

((
d1
2m

)β
, . . . ,

(
dn
2m

)β )
.

This allows for matrix chain multiplication when performing ran-
dom projection:

N = Ãk · R = (A · · · · (A · (A
︸           ︷︷           ︸

k

·L · R)))

We further consider a weighted combination of different powers of
A, so that the embeddings of G is computed as follows:

N =
(
α1Ã + α2Ã

2
+ . . . + αk Ã

k
)
· R

where α1,α2, . . . ,αk are the weights. The outline of FastRP is pre-
sented in Algorithm 1.

3.4 Time Complexity

The time complexity of FastRP is O ((n · d)/s) = O
(
n ·
√
d
)
for

constructing the sparse random projection matrix (line 1), O(m ·
k · d) for random projection (line 2 to 5) for each power of A and
O(n · k · d) for merging embedding matrices (line 6). Overall, the
time complexity of FastRP is O((n +m) · k · d), which is linear to
the number of nodes and edges in G.

3.5 Implementation, Parallelization and
Hyperparameter Tuning

Implementation. The implementation of FastRP is very simple
and straightforward, with less than 100 lines of Python code.
Parallelization. Besides the ease of implementation, our algorithm
is also easy to parallelize, since the only operation involved is matrix
multiplication. One easy way to speed up matrix multiplication

C = A · B is to perform block partitioning on the input matrices A
and B:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12
B21 B22

)
(10)

Then it is easy to see that:

C =

(
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

)
(11)

The recursive matrix multiplications and summations can be per-
formed in parallel. The smaller blockmatricesA11,A12, · · · ,B11,B12, · · ·
can be further partitioned recursively for execution on more pro-
cessors [5].
EfficientHyperparameter Tuning. FastRP also allows for highly
efficient hyperparameter tuning. The idea is to first pre-compute
the embeddings N1,N2, · · · ,Nk derived from different orders of
proximity matrices. Since the final embedding matrix is a weighted
combination of N1,N2, · · · ,Nk , we only need to perform weighted
summation during hyperparameter optimization. Furthermore, ac-
cording to the Johnson-Lindenstrauss lemma [12], the embedding
dimensionality d determines the approximation error of random
projection. The implication of this is that we can efficiently tune
hyperparameters on smaller values of d . This is in contrast to most
of the existing algorithms, which require retraining of the entire
model for each hyperparameter configuration.

Besides these merits, the biggest advantage of FastRP is its su-
perior computational efficiency. In the next section, we will show
that FastRP is orders of magnitude faster than the state-of-the-art
methods while achieving comparable or even better performance.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance
of FastRP. We first provide an overview of the datasets. Then, we
compare FastRP with a number of baseline methods both in terms
of running time and performance on downstream tasks. We fur-
ther discuss the performance of our method with regard to several
important hyperparameters and its scalability.

4.1 Datasets

Table 1 gives an overview of the datasets used in experiments.

• WWW-200K and WWW-10K [11]: these graphs are derived
from the Web graph provided by Common Crawl, where
the nodes are hostnames and the edges are the hyperlinks
between these websites. For simplicity, we treat this graph
as an undirected graph. The original graph has 385 million
nodes and 2.5 billion edges, which is too large to be loaded
into the memory of our machine. Thus, we construct sub-
graphs of this graph by taking the top 200,000 and 10,000
websites respectively as ranked by Harmonic Centrality [6].
We also use the WWW-10K graph for node classification, for
which the label of a node is its top-level domain name such
as .org, .edu and .es.
• Blogcatalog [31]: this is a network between bloggers on the
Blogcatalog website. The labels are the categories a blogger
publishes in.
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Name # Vertices # Edges # Classes Task

WWW-200K 200,000 32,822,166 - K-Nearest Neighbors
WWW-10K 10,000 3,904,610 50 Node Classification
Blogcatalog 10,312 333,983 39 Node Classification
Flickr 80,513 5,899,882 195 Node Classification

Table 1: Statistics of the graphs used in our experiments.

• Flickr [31]: this is a network between the users on the photo
sharing website Flickr. The labels represent the interest
groups a user joins.

4.2 Baseline Methods

We compare FastRP against the following baseline methods:

• DeepWalk [23] ś DeepWalk is a network embedding method
that samples short randomwalks from the input graph. Then,
these random walks are fed into the Skip-gram model to
produce node embeddings.
• node2vec [16] ś node2vec extends DeepWalk by performing
biased random walks that balance between DFS and BFS. It
also adopts SGNS as the dimension reduction method.
• LINE [30] ś LINE samples node pairs that are either adjacent
or two hops away. LINE adopts Skip-gram with negative
sampling (SGNS) to learn network embeddings from the
samples.
• RandNE [38] ś RandNE constructs a node similarity matrix
that preserves the high-order proximity by raising the adja-
cency (or transition) matrix to the k-th power. Then, node
embeddings are obtained by applying Gaussian random pro-
jection to this matrix.

We realize that there are many other recently proposed network
embedding methods. We do not include these methods as baselines
since their performance are generally inferior to DeepWalk accord-
ing to a recent comparative study [18]. Moreover, many of them
are not scalable [18].

4.3 Parameter Settings

Here we present the parameter settings for the baseline models and
our model.

FastRP . For FastRP, we set embedding dimensionality d to 512
and maximum power k to 4. For the weights α1,α2, · · · ,αk , we
observe that simply use a weighted combination of A3 and A4 is
already enough for achieving competitive results. Thus, we set
α1,α2,α3 to 0, 0, 1 respectively and tune α4.

Overall, we only have two hyperparameters to tune: normal-
ization strength β and the weight α4 for A4. We use optuna3, a
Bayesian hyperparameter optimization framework to tune them.
The hyperparameter optimization is performed for 20 rounds on
a small validation set of 1% labeled data; the search ranges for β
and α4 are set to [−1, 0] and [2−3, 26] respectively. We also use a
lower embedding dimensionality of d = 64 to speed up the tuning
process.

3https://github.com/pfnet/optuna

RandNE. For RandNE, we set embedding dimensionality d to
512 and maximum order q to 3. We note that for RandNE, incor-
porating the embeddings from A4 does not improve the quality of
embeddings according to our experiments. To ensure a fair com-
parison, we also conduct hyperparameter search for the weights in
RandNE using the same procedure as FastRP. The only difference
is that instead of tuning β and α4, we optimize the weights of A2

and A3.
DeepWalk. For DeepWalk, we need to set the following param-

eters: the number of random walks γ , walk length t , window size
w for the Skip-gram model and representation size d . We adopt
the hyperparameter settings recommended in the original paper:
γ = 80, t = 40,w = 10,d = 128.

node2vec. Since node2vec is built upon DeepWalk, we use the
same parameter settings for node2vec as DeepWalk: γ = 80, t =

40,w = 10,d = 128. We notice that these parameter settings lead
to better results than the default settings as described in the paper,
possibly because the total number of samples is larger. For the in-
out parameter p and return parameter q, we conduct grid search
over p,q ∈ {0.25, 0.50, 1, 2, 4} as suggested in the paper.

LINE. We use LINE with both the first order and second order
proximity with the recommended hyperparameters. Concretely, we
set the dimensionality of embeddings to 200, the number of node
pair samples to 10 billion and the number of negative samples to 5.

All the experiments are conducted on a single machine with 128
GB memory and 40 CPU cores at 2.2 GHz. We note that FastRP and
all the baseline methods support multi-threading. However, for a
fair running time comparison, we run all methods with a single
thread and measure the CPU time (process time) consumed by each
method.

4.4 Runtime Comparison

Wefirst showcase the superior efficiency of ourmethod by reporting
the CPU time of FastRP and the baseline methods on all datasets in
Table 2. FastRP achieves at least 4,000x speedup over the state-of-
the-art method DeepWalk. For example, it takes FastRP less than 3
minutes to embed the WWW-200K graph, whereas DeepWalk takes
almost a week to finish. Node2vec is even slower; although LINE
is several times faster than DeepWalk and node2vec, it is still a
few hundreds of times slower than FastRP. The only method with
comparable running time is RandNE which uses Gaussian random
projection for dimension reduction, but it is also slightly slower
than FastRP. Moreover, in the experiments below, we will show
that the quality of embeddings produced by FastRP is significantly
better than that of RandNE.
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Dataset Algorithm Speedup over
FastRP RandNE LINE DeepWalk node2vec DeepWalk

WWW-200K 136.0 seconds 169.8 seconds 4.6 hours 6.9 days 63.8 days 4383x

WWW-10K 7.8 seconds 13.6 seconds 3.2 hours 9.2 hours 59.8 hours 4246x

Blogcatalog 6.0 seconds 10.5 seconds 3.0 hours 8.7 hours 41.2 hours 5220x

Flickr 33.1 seconds 45.1 seconds 4.2 hours 3.1 days 28.5 days 8091x

Table 2: CPU time comparison on all test datasets. FastRP is over 4,000 times faster than the state-of-the-art algorithm Deep-

Walk.

Table 3: Top 5 nearest neighbors of four representative websites calculated from the node embeddings generated by FastRP,

DeepWalk and RandNE respectively. Rows are arranged from the highest cosine similarity to lowest cosine similarity.

Methods FastRP DeepWalk RandNE FastRP DeepWalk RandNE

Websites nytimes.com delta.com

Neighbors

huffingtonpost.com washingtonpost.com huffingtonpost.com aa.com aa.com aa.com

washingtonpost.com huffingtonpost.com washingtonpost.com united.com united.com southwest.com

cnn.com cnn.com forbes.com usairways.com usairways.com united.com

npr.org cbsnews.com cnn.com alaskaair.com southwest.com expedia.com

latimes.com time.com npr.org jetblue.com jetblue.com priceline.com

Methods FastRP DeepWalk RandNE FastRP DeepWalk RandNE

Websites vldb.org arsenal.com

Neighbors

sigmod.org sigmod.org comp.nus.edu.sg chelseafc.com chelseafc.com liverpoolfc.com

comp.nus.edu.sg morganclaypool.com cs.sfu.ca mcfc.co.uk tottenhamhotspur.com manutd.com

sigops.org kdd.org cs.rpi.edu nufc.co.uk manutd.com chelseafc.com

cidrdb.org doi.acm.org nlp.stanford.edu avfc.co.uk mcfc.co.uk skysports.com

cse.iitb.ac.in informatic.uni-trier.de theory.stanford.edu tottenhamhotspur.com thefa.com tottenhamhotspur.com

4.5 Qualitative Case Study: WWW-200K
Network

We first conduct a case study on the WWW-200K network to com-
pare the embeddings produced by different network embedding al-
gorithms qualitatively. For this part, we take RandNE and DeepWalk
as the baselines since the results produced by LINE and node2vec
are very similar to those of DeepWalk on this network.

Examining theK-nearest neighbors (KNN) of aword is a common
way to measure the quality of word embeddings [22]. In the same
spirit, we examine theK-nearest neighbors of several representative
websites in the node embedding space. Cosine similarity is used as
the similarity metric. Table 3 lists the top 5 nearest neighbors of four
representative websites: nytimes.com, delta.com, vldb.org, and
arsenal.com based on the node embeddings produced by FastRP,
RandNE and DeepWalk.

nytimes.com is the website of The NewYork Times, which is one
of themost influential newswebsites in the US.We find that all three
methods produce high-quality nearest neighbors for nytimes.com:
huffingtonpost.com, washingtonpost.com and cnn.com are al-
so well-known American news sites. It is also interesting to see
that FastRP lists latimes.com (The Los Angeles Times) among the
top 5 nearest neighbors of nytimes.com.

delta.com is the homepage of Delta Air Lines, which is a ma-
jor American airline. Again, we find that the most similar web-
sites discovered by FastRP and DeepWalk are the official web-
sites of other major American airlines: American Airlines (aa.com
and usairways.com), United Airlines (united.com), Alaska Air-
lines (alaskaair.com), etc. The nearest neighbors list provided by
RandNE is worse, since it includes general purpose travel websites
such as expedia.com and priceline.com.

vldb.org is the official website for VLDB Endowment, which
steers the VLDB conference, a leading database research conference.
Both FastRP andDeepWalk list sigmod.org as themost similar web-
site to vldb.org; this is a positive sign since SIGMOD is another top
database research conference. On the other hand, all three methods
include several universities’ CS department websites in the nearest
neighbors list, such as comp.nus.edu.sg and cs.sfu.ca. In partic-
ular, all top five websites provided by RandNE are CS department
websites. In our opinion, this is reasonable but less satisfactory
than having other CS research conferences’ websites in the list,
such as sigops.org (The ACM Special Interest Group in Operating
Systems ) and cidrdb.org (The Conference on Innovative Data
Systems Research).

arsenal.com represents a football club that plays in the Pre-
mier League. It can be seen that all three methods list the other
football clubs in the Premier League as the nearest neighbors of
arsenal.com, such as Chelsea (chelseafc.com) and Manchester
City (mcfc.co.uk). The only exception is RandNE, which also lists
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skysports.com (the dominant subscription TV sports brand in the
United Kingdom) as one of the nearest neighbors. skysports.com
has higher popularity but is less relevant to arsenal.com. In con-
trast, FastRP avoids this problem by properly downweights the
influence of popular nodes. Overall, we find that the quality of
nearest neighbors produced by FastRP is comparable to DeepWalk
and significantly better than that of RandNE.

The experiments above serve as a qualitative evaluation of Fas-
tRP. In the following sections, we will conduct quantitative eval-
uations of FastRP on different downstream tasks across multiple
datasets.

Algorithm Dataset

WWW-10K BlogCatalog Flickr

LINE 6.66 19.63 10.69
node2vec 27.42 21.44 11.89
DeepWalk 25.54 21.30 14.00
RandNE 15.68 20.88 13.64
FastRP 26.92 23.43 15.02

Table 4: Macro F1 scores of all methods on WWW-10K,

BlogCatalog, and Flickr in percentage (Section 4.6).

4.6 Multi-label Node Classification

For the task of node classification, we evaluate our method using
the same experimental setup in DeepWalk [23]. Firstly, a portion of
nodes along with their labels are randomly sampled from the graph
as training data, and the goal is to predict the labels for the rest of
the nodes. Then, a one-vs-rest logistic regression model with L2
regularization is trained on the node embeddings for prediction. We
use the logistic regression model implemented by LibLinear [13].
To ensure the reliability of our experiment, the above process is
repeated for 10 times, and the average Macro F1 score is reported.
The other evaluation metrics such as Micro F1 score and accuracy
follow the same trend as Macro F1 score, thus are not shown.

Table 4 reports the Macro F1 scores achieved on WWW-10K,
Blogcatalog and Flickr with 1%, 10% and 1% labeled nodes respec-
tively. FastRP achieves the state-of-the-art result on two out of three
datasets and matches on the third. On Blogcatalog and Flickr,
FastRP achieves gains of 9.3% and 7.3% over the best performing
baseline method respectively. On WWW-10K, the absolute difference
in F1 score between FastRP and node2vec is only 0.5%, but FastRP
is over 10,000 times faster.

To have a detailed comparison between FastRP and the baseline
methods, we vary the portion of labeled nodes for classification
and present the macro F1 scores in Figure 2. We can observe that
FastRP consistently outperforms or matches the other neural base-
line methods, while being at least three orders of magnitude faster.
It is also clear that FastRP always outperforms RandNE by a large
margin, proving the effectiveness of our node similarity matrix
design.

4.7 Parameter Sensitivity

To examine how do the hyperparameters affect the quality of
learned representations, we conduct a parameter sensitivity study

on BlogCatalog. The parameters we investigate are the normaliza-
tion strength β , A4’s weight α4, and the embedding dimensionality
d . We report the Macro F1 score achieved with 10% labeled data in
Figure 3.
Normalization strength. Figure 3a shows the effectiveness of our
normalization scheme. At β = −0.9, FastRP achieves the highest F1
score of over 20.6%. By setting β to 0.0, no normalization is applied
to the node similarity matrix and the F1 score drops to 19.5%. We
set d to 128 for this experiment.
Weight α4. Figure 3b shows that the weight α4 also plays an im-
portant role. The best F1 score is achieved when α4 is set to 2 or 4
on this dataset.
Embedding Dimensionality. Figure 3c shows that increasing the
embedding dimensionality in general yields better node embed-
dings. On the other hand, we notice that FastRP already achieves
better performance than all baseline method with embedding di-
mensionality of 256.

4.8 Scalability

In Section 3.4, we show that the time complexity of FastRP is linear
to the number of nodes n and the number of edges m. Here, we
empirically verifies this by learning embeddings on random graphs
generated by the Erdos-Renyi model. In Figure 4a, we fixm to 107

and vary n from 105 to 106. In Figure 4b, we fix n to 106 and varym
from 107 to 108. For both figures, we report the CPU time for FastRP
to embed the graph. It can be seen that the empirical running time
of FastRP also scales linearly with n andm.

5 RELATEDWORK

Network embeddings.Most of the early methods view network
embeddings as a dimension reduction problem, where the goal is
to preserve the local or global distances between data points in a
low-dimensional manifold [4, 27, 32]. With time complexity at least
quadratic in the number of data points (or nodes), these methods
do not scale to graphs with hundreds of thousands of nodes.

Inspired by the success of scalable neural methods for learning
word embeddings, in particular the Skip-gram model [22], neural
methods are proposed for network embeddings [16, 23, 30]. These
methods typically sample node pairs that are close to each other
and then train a Skip-gram model on the pairs to obtain node
embeddings. The difference mostly lies in the strategy for node
pairs sampling. DeepWalk [23] samples node pairs that are at most
k hops away via random walking on the graph. Node2vec [16]
introduces a biased random walk strategy using a mixture of DFS
and BFS. LINE [30] considers the node pairs that are 1-hop or 2-hops
away from each other. Thesemethods not only produce high-quality
node embeddings but also scale to networks with millions of nodes.

In Levy and Goldberg’s seminal work [19] on interpreting Skip-
gram with negative sampling (SGNS), they prove that SGNS im-
plicitly factorizes a shifted pointwise mutual information (PMI)
matrix of word co-occurrences. Using a similar methodology, it is
shown that methods like DeepWalk [23], LINE [23], PTE [29] and
node2vec [16] all implicitly approximate and factorize a node simi-
larity matrix, which is usually some transformation of the k-step

transition matrices Ak [26, 37] . Following these analyses, matrix

Session: Long - Network Embedding I CIKM ’19, November 3–7, 2019, Beijing, China

406



Figure 2: Detailed multi-label classification result on WWW-10K, BlogCatalog, and Flickr (Section 4.6).

(a) Normalization strength β . (b) Weight α4. (c) Embedding dimensionality d .

Figure 3: Parameter sensitivity study on Blogcatalog.

(a) Change n. (b) Changem.

Figure 4: Scalability study on Erdos-Renyi graphs.

factorization-based methods are also proposed for network embed-
dings [7, 26, 37]. A representative method is GraRep [7], which can
be seen as the matrix factorization version of DeepWalk: it uses SVD
to factorize the shifted PMI matrix of k-step transition matrices.
However, GraRep is not scalable due to the high time complexity
of both raising the transition matrix A to higher powers and taking

the element-wise logarithm of Ak , which is a dense n × n matrix.
A few recent work thus propose to speed up the construction

of such a node similarity matrix [25, 26, 39], which are inspired
by the spectral graph theory. The basic idea is that if the top-h

eigendecomposition of A is given by A = UhΛhU
⊤
h
, then Ak can be

approximated with UhΛ
k
h
U⊤
h
[26, 39]. The major drawback of these

methods is that they need to get rid of the element-wise normaliza-

tion (such as taking logarithm) on Ak to achieve better scalability;
this harms the quality of embeddings [8]. A recent method [25]

proposes to sparsify Ak for better scalability. However, the simi-
larity matrix is still dense even after the sparsification: for a graph

with n = 106 nodes andm = 107 edges, the number of entries in
the sparsified matrix can be as high as 1.4 × 1011 [25].

Perhaps the most relevant work is RandNE [38], which considers
a Gaussian random projection approach for network embeddings.
There are three key differences between our work and RandNE:

(1) We are the first to identify the two key factors for construct-
ing the node similarity matrix: high-order proximity preserva-
tion and element normalization. Specifically, the importance of
normalization is overlooked in many previous studies, including
RandNE [26, 38, 39].
(2) Based on theoretical analysis, we derive a normalization al-
gorithm that properly downweights the influence of high-degree
nodes in the node similarity matrix. An additional advantage of
our normalization approach is that it can be formalized as a sim-
ple matrix multiplication operation, which enables fast iterative
computation when combined with random projection.
(3) We explore the usage of very sparse random projection for net-
work embeddings, which is more efficient than traditional Gaussian
random projection. As shown in the experiments, FastRP achieves
substantially better performance on challenging downstream tasks
while being faster.

Graph-based Recommendation Systems. Our work is also re-
lated to graph-based recommendation systems, which consider a
special kind of graph: the bipartite graph between users and items.
Typically, the goal is to generate the top-K items that a user will be
most interested in.

Several early work in this field emphasis on the importance of
high-order, transitive relationships between users and items [9, 10,
14, 24] for top-K recommendation. Fouss et al. [14, 24] present P3,
which directly uses the entries in the third power of the transition
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matrix to rank items. Although achieving competitive recommen-
dation performance, it is observed that the ranking of items in P3

is strongly influenced by the popularity of items [9, 10]: popular
items tend to dominate the recommendation list for most users. To
this end, P3α [10] and RP3

β
[9] are proposed as re-weighted versions

of P3. Their idea of downweighting popularity items is similar to
the normalization strategy in this paper. However, these methods
are proposed as heuristics specifically for bipartite graphs and the
task of top-K recommendation, which do not generalize to other
scenarios. Moreover, the power of the transition matrix is either
computed exactly [10] or approximated by sampling a significant
number of random walks [9], both of which are not scalable.

6 CONCLUSION

We present FastRP, a scalable algorithm for obtaining distributed
representations of nodes in a graph. FastRP first constructs a node
similarity matrix that captures high-order proximity between nodes
and then normalizes the matrix entries based on the convergence

properties of Ak . Very sparse random projection is applied to this
similarity matrix to obtain node embeddings. Experimental results
show that FastRP achieves three orders of magnitudes speedup over
state-of-the-art method DeepWalk while producing embeddings of
comparable or even better quality.
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