
Discrete & Computational Geometry (2021) 65:1244–1274
https://doi.org/10.1007/s00454-020-00224-w

Computing the Fréchet Gap Distance

Chenglin Fan1 · Benjamin Raichel1

Received: 4 January 2019 / Revised: 22 May 2020 / Accepted: 5 June 2020 / Published online: 3 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Measuring the similarity of two polygonal curves is a fundamental computational task.

Among alternatives, the Fréchet distance is one of the most well-studied similarity

measures. Informally, the Fréchet distance is described as the minimum leash length

required for a man on one of the curves to walk a dog on the other curve continuously

from the starting to the ending points. In this paper we study a variant called the

Fréchet gap distance. In the man and dog analogy, the Fréchet gap distance minimizes

the difference of the longest and smallest leash lengths used over the entire walk. This

measure in some ways better captures our intuitive notions of curve similarity, for

example giving distance zero to translated copies of the same curve. The Fréchet gap

distance was originally introduced by Filtser and Katz [19] in the context of the discrete

Fréchet distance. Here we study the continuous version, which presents a number of

additional challenges not present in discrete case. In particular, the continuous nature

makes bounding and searching over the critical events a rather difficult task. For this

problem we give an O(n5 log n) time exact algorithm and a more efficient O(n2 log n+
(n2/ε) log(1/ε)) time (1 + ε)-approximation algorithm, where n is the total number

of vertices of the input curves. Note that, ignoring logarithmic factors, for any constant

ε our approximation has quadratic running time, matching the lower bound, assuming

SETH [Bringmann, K.: Why walking the dog takes time: Fréchet distance has no

strongly subquadratic algorithms unless SETH fails (2014)], for approximating the

standard Fréchet distance for general curves.

Editor in Charge: Kenneth Clarkson

Work on this paper was partially supported by NSF CRII Award 1566137 and CAREER Award 1750780.

Chenglin Fan

cxf160130@utdallas.edu

https://sites.google.com/site/chenglinfanresearch/

Benjamin Raichel

benjamin.raichel@utdallas.edu

http://utdallas.edu/~benjamin.raichel

1 Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

123

Discrete & Computational Geometry (2021) 65:1244–1274 1245

Fig. 1 Left: A 2D “airplane roll”. Right: Turning in 2D by pivoting on one side at a time

1 Introduction

Polygonal curves arise naturally in the modeling of a number computational problems,

and for such problems assessing the similarity of two curves is one of the most fun-

damental tasks. There are several competing measures for defining curve similarity.

Among these, there has been strong interest in the Fréchet distance, particularly from

the computational geometry community, as the Fréchet distance takes into account the

continuous “shape” of the curves rather than just the set of points in space they occupy.

The Fréchet distance and related measures have been used for a variety of applications

[9,12,23,25,26], and it is typically illustrated as follows. Let the two polygonal curves

be denoted π and σ , with n vertices in total. Imagine a man and a dog are respectively

placed at the starting vertices of π and σ , and they must each move continuously along

their curves to their respective ending points. The man and dog are connected by a

leash, and the Fréchet distance is the minimum leash length required over all possible

walks of the man and dog, where the man and dog can independently control their

speed but cannot backtrack.

In this paper we consider a variant called the Fréchet gap distance, originally

introduced by Filtser and Katz in the context of the discrete Fréchet distance [19].

In the man and dog analogy, this variant minimizes the difference of the lengths of

the longest and shortest leashes used over the entire walk. As discussed in [19], since

this measure considers both the closest and farthest relative positions of the man and

dog, in many cases it is closer to our intuitive notion of curve similarity. Notably, two

translated copies of the same curve have Fréchet gap distance zero, as opposed to the

magnitude of the translation under the standard Fréchet distance. Though this is not to

say that it is the same as minimizing the standard Fréchet distance under translation.

For instance, fix any two points on a rigid body in two or three dimensions. The pair

of curves traced out by these points as we arbitrarily rotate and translate the rigid body

will always have Fréchet gap distance zero (see Fig. 1).

A natural scenario for the gap distance is planning the movement of military units,

where one wants them to be sufficiently close to support each other in case of need,

but sufficiently far from each other to avoid unintended interaction (i.e., friendly fire).

Such units might move on two major roads that are roughly parallel to each other, thus

matching our setup.

Previous work. Alt and Godau [4] presented an O(n2 log n) time algorithm to com-

pute the standard Fréchet distance. More recently Buchin et al. [13] improved the

logarithmic factor in the running time (building on [1]), however Bringmann [10]

showed that assuming the Strong Exponential Time Hypothesis (SETH), no strongly

subquadratic time algorithm is possible. Moreover, Bringmann showed that assuming

123

1246 Discrete & Computational Geometry (2021) 65:1244–1274

SETH there is no strongly subquadratic 1.001-approximation algorithm, thus ruling

out the possibility of a strongly subquadratic PTAS for general curves. On the other

hand, there are fast approximation algorithms for several families of nicely behaved

curves, for example Driemel et al. [17] gave an O(cn/ε + cn log n) time algorithm

for the case of c-packed curves.

Many variants of the Fréchet distance between polygonal curves have been consid-

ered. Alt and Godau [4] gave a quadratic time algorithm for the weak Fréchet distance,

where backtracking on the curves is allowed. Driemel and Har-Peled [16] considered

allowing shortcuts between vertices, and for this more challenging variant, they gave a

near linear time 3-approximation for c-packed curves. Later Buchin et al. [15] proved

the general version, where shortcutting is also allowed on edge interiors, is NP-hard

(and gave an approximation for the general case and an exact algorithm for the vertex

case). The discrete Fréchet distance only considers distances at the vertices of the

polygonal curves, i.e., rather than a continuously walking man and dog, there is a pair

of frogs hopping along the vertices. This somewhat simpler variant can be solved in

O(n2) time using dynamic programming [18]. Interestingly, Agarwal et al. [1] showed

the discrete variant can be solved in weakly subquadratic O(n2 log log n/ log n) time,

however the above results of Bringmann [10] also imply there is no strongly sub-

quadratic algorithm for the discrete case, assuming SETH. Ben Avraham et al. [6]

considered shortcuts in the discrete case, providing a strongly subquadratic running

time, showing shortcuts make it more tractable, which was the reverse for the contin-

uous case. The Fréchet distance has also been extended to more general inputs, such

as graphs [3], piecewise smooth curves [24], simple polygons [14], surfaces [2], and

complexes [21]. These listed previous works are just a sampling of the many Fréchet

distance results.

Minimizing Fréchet distance under translation (and other transformations) was

previously considered, though running times are typically large. For example, Alt et

al. [5] gave an Õ(n8) time algorithm, where Õ(·) hides log factors, though they also

gave an O(n2/ε2) time (1 + ε)-approximation. For the discrete Fréchet case, Jiang

et al. [22], Ben Avraham et al. [7], and Bringmann et al. [11] gave algorithms with

respective running times Õ(n6), Õ(n5), and Õ(n14/3). Bringmann et al. [11] also

showed a lower bound of n4−o(1), assuming SETH. Filtser and Katz [20] considered

two variants of the discrete Fréchet distance under translation, namely weak Fréchet

and Fréchet with shortcuts. They remarked how the similarity of their approach for

the 1D case of these problems and for the discrete Fréchet gap problem [19], indicates

a connection between discrete Fréchet gap and discrete Fréchet under translation.

The most relevant previous work is that of Filtser and Katz [19], who first proposed

the Fréchet gap distance. The technical content of the two papers differs significantly

however, as [19] considers the discrete case, avoiding many of the difficulties faced

in our continuous setting. In particular, a solution to the gap problem is a distance

interval. In the continuous case the challenge is bounding the number of possible

intervals, while in the discrete case a bound of O(n4) holds, as each interval endpoint

is a vertex, to vertex distance. Using a result of Ben Avraham et al. [7], Filtser and Katz

improve this to an O(n3) time algorithm to compute the minimum discrete Fréchet

gap. They also provide O(n2 log2 n) time algorithms for one-sided discrete Fréchet

gap with shortcuts and the weak discrete Fréchet gap distance.

123

Discrete & Computational Geometry (2021) 65:1244–1274 1247

Contributions and overview. Here we consider the continuous Fréchet gap distance

problem (defined informally above, and formally below). This is the first paper to

consider the more challenging continuous version of this problem. We provide for it

an O(n5 log n) time exact algorithm and a more efficient O(n2 log n+(n2/ε) log(1/ε))

time (1 + ε)-approximation algorithm, and we now outline our approach and main

contributions.

The standard approach for computing the Fréchet distance starts by solving the

decision version for a given query distance δ ≥ 0, by using the free space diagram,

which describes the pairs of points (one from each curve) which are within distance

δ. The convexity of the free space cells allows one to efficiently propagate reacha-

bility information, leading to a quadratic time procedure overall. For the Fréchet gap

problem the free space cells are no longer convex, but despite this we show that they

have sufficient structure to allow efficient reachability propagation, again leading to a

quadratic time decider, which in our case determines whether a given query interval

[s, t] is feasible.

The next step in computing the Fréchet distance is to find a polynomially sized

set of critical events, determined by the input curves, to search over. For the standard

Fréchet distance this set has O(n3) size. For the Fréchet gap case however the number

of critical events can be much larger as they are determined by two rather than one

distance value. As mentioned above, for the discrete case only pairs of vertex distances

are relevant and so there are O(n4) events. On the other hand, for the continuous case

there can now be “floating” monotonicity events where increasing (or decreasing)

the gap interval endpoint values simultaneously may lead to an entire continuum of

optimum intervals. Despite this we show there is an O(n6) sized set of canonical

intervals containing an optimum solution.

The last step is efficiently searching over the critical events. For the standard Fréchet

distance this can be done via parametric search [4] or sampling [21], yielding an

O(n2 log n) running time. Searching in the gap case however is more challenging, as

there is no longer a natural linear ordering of events. Specifically, the set of feasible

intervals may not appear contiguously when ordering candidate intervals by width.

Despite this, we similarly get a near linear factor speed up, by using a more advanced

version of the basic approach in [21].

Our approximation uses the observation that all feasible intervals share a common

value. Roughly speaking, at the cost of a 2-approximation, this allows us to consider

the radius of intervals centered at this common value, rather than two independent

interval endpoints, reducing the number of critical events. This is improved to a (1+ε)-

approximation, and finally the running time is reduced by a linear factor, again using

a modified version of [21].

2 Preliminaries

Throughout, given points p, q ∈ Rd , �p − q� denotes their Euclidean distance.

Moreover, given two (closed) sets P, Q ⊆ Rd , dist(P, Q) = minp∈P,q∈Q �p − q�
denotes the distance between P and Q.

123

1248 Discrete & Computational Geometry (2021) 65:1244–1274

2.1 Fréchet Distance and Fréchet Gap Distance

A polygonal curve π of length n is a continuous mapping from [0, n] to Rd , such that

for any integer 0 ≤ i < n, the restriction of π to the interval [i, i + 1] is defined by

π(i + α) = (1 − α)π(i) + απ(i + 1) for any α ∈ [0, 1], i.e., a straight line segment.

When it is clear from the context, we often use π to denote the image π([0, n]). The

set of vertices of π is defined as V (π) = {π0, π1 . . . , πn}, where πi = π(i), and

the set of edges is E(π) = {π0π1, . . . , πn−1πn}, where πiπi+1 is the line segment

connecting πi and πi+1.

A reparameterization for a curve π of length n is a continuous non-decreasing

bijection f : [0, 1] → [0, n] such that f (0) = 0, f (1) = n. Given reparameteriza-

tions f , g of an n length curve π and an m length curve σ , respectively, the width

between f and g is defined as

width f ,g(π, σ) = max
α∈[0,1]

�π(f (α)) − σ(g(α))�.

The (standard) Fréchet distance between π and σ is then defined as

dF (π, σ) = min
f ,g

width f ,g(π, σ)

where f , g range over all possible reparameterizations of π and σ . A gap is an interval

[s, t] where 0 ≤ s ≤ t are real numbers, and the gap width is t − s. Similarly, given

reparameterizations f , g for curves π, σ , define their gap and gap width as

gap f ,g(π, σ)=
�

min
α∈[0,1]

�π(f (α)) − σ(g(α))�, max
α∈[0,1]

�π(f (α)) − σ(g(α))�
�

,

gapwidth f ,g(π, σ)= max
α∈[0,1]

�π(f (α)) − σ(g(α))� − min
α∈[0,1]

�π(f (α)) − σ(g(α))�.

The Fréchet gap distance between two curves π and σ is then defined as

dG(π, σ) = min
f ,g

gapwidth f ,g(π, σ)

where f , g range over all possible reparameterizations of π and σ . If there exist

reparameterizations f and g for curves π and σ satisfying the inequalities

max
α∈[0,1]

�π(f (α)) − σ(g(α))� ≤ t, min
α∈[0,1]

�π(f (α)) − σ(g(α))� ≥ s,

we say [s, t] is a feasible gap between curves π and σ . Throughout the paper [s∗, t∗]
denotes an arbitrary optimal gap, that is t∗ − s∗ = dG(π, σ). (Note there may be more

than one such optimal gap, and moreover a feasible gap does not necessarily contain

an optimal gap.)

Note that in the later sections of the paper we refer to gaps or intervals [s, t] instead

as parametric points or pairs (s, t), in which case feasibility is defined analogously.

123

Discrete & Computational Geometry (2021) 65:1244–1274 1249

B Fi+1 ,j

B Fi,j

LFi,j

LFi,j +1

(a) t free space cell

B Fi+1 ,j

B Fi,j

LFi,j

LaFi,j +1

LbFi,j +1

(b) s, t relative free space cell

πi

πi+1

σj σj +1

s t

(c) Generating segments

Fig. 2 On right, two segments in 2D, and lengths s and t . Left and center, corresponding t free space and

s, t relative free space cells

2.2 Free Space

To compute the standard Fréchet distance one normally looks at the so-called free

space. The t free space between curves π and σ , with n and m edges respectively, is

defined as

Ft = {(α, β) ∈ [0, n] × [0, m] : �π(α) − σ(β)� ≤ t}.

Similarly define F<
t = {(α, β) ∈ [0, n] × [0, m] : �π(α) − σ(β)� < t} to be Ft

without its boundary. C(i, j) = [i, i + 1] × [j, j + 1] is referred to as the cell of the

free space diagram determined by edges πiπi+1 and σ jσ j+1, and the free space within

this cell is

Ft (i, j) = {(α, β) ∈ [i, i + 1] × [j, j + 1] : �π(α) − σ(β)� ≤ t}.

Alt and Godau [4] showed that the free space within a cell is always a convex set

(specifically, the clipping of an affine transformation of a disk to the cell). Moreover,

any x, y monotone path in the free space from (0, 0) to (n, m) corresponds to a pair

of reparameterizations f , g of π, σ such that width f ,g(π, σ) ≤ t . The converse also

holds and hence dF (π, σ) ≤ t if and only if such a monotone path exists. These two

statements together imply that in order to determine if dF (π, σ) ≤ t , it suffices to

restrict attention to the free space intervals on the boundaries of the cells. Specifically,

let L F
i, j (resp. B F

i, j) denote the left (resp. bottom) free space interval of C(i, j), i.e.,

L F
i, j = Ft (i, j) ∩ ({i} × [j, j + 1]) (resp. B F

i, j = Ft (i, j) ∩ ([i, i + 1] × { j})).
See Fig. 2(a).

2.3 Relative Free Space

We extend the standard free space definitions of the previous section to the Fréchet

gap distance problem. First we define the s, t relative free space between π and σ as

123

1250 Discrete & Computational Geometry (2021) 65:1244–1274

F[s,t] = {(α, β) ∈ [0, n] × [0, m] : s ≤ �π(α) − σ(β)� ≤ t} = Ft \ F<
s ,

describing all pairs of points, one on π and one on σ , whose distance is contained in

[s, t]. For a point (α, β) in a cell of F[s,t] or Ft , throughout we use the colloquial terms

higher or lower (resp. right or left) to refer to larger or smaller values of α (resp. β).

Again we seek an x, y monotone path in the relative free space from (0, 0) to (n, m),

since such a path corresponds to a pair of reparameterizations f , g of π, σ such that

gapwidth f ,g(π, σ) ≤ t − s, and hence dG(π, σ) ≤ t − s. Conversely, if no such path

exists then [s, t] is not a feasible gap for π and σ , implying that [s∗, t∗] � [s, t],
but note however that unlike for the standard Fréchet distance, it may still hold that

t∗ − s∗ ≤ t − s.

The relative free space in the cell C(i, j) determined by edges πiπi+1 and σ jσ j+1

is

F[s,t](i, j) = {(α, β) ∈ [i, i + 1] × [j, j + 1] : s ≤ �π(α) − σ(β)� ≤ t}
= Ft (i, j) \ F<

s (i, j).

Another technical challenge with the Fréchet gap problem arises from the fact that

the relative free space in a cell may not be convex (see Fig. 2(b)). However, there is

some structure. Observe that F[s,t](i, j) = Ft (i, j) \ F<
s (i, j), and hence the set is a

difference of two convex sets, where one is contained in the other. In other words, it

looks like a standard free space cell with a hole removed. In particular, we can again

look at the free space intervals on the cell boundaries. As Ft (i, j) is convex, it still

determines a single interval on each cell boundary, however, this interval may be broken

into two subintervals by the removal of Fs(i, j) (whose convexity implies it is at most

two subintervals). Let L F
i, j = LbF

i, j ∪ LaF
i, j denote the relative free space on the left

boundary of C(i, j), where LbF
i, j denotes the bottom and LaF

i, j the top interval (note

if Fs(i, j) does not intersect the boundary then LbF
i, j = LaF

i, j = L F
i, j). Similarly, let

B F
i, j = Bl F

i, j ∪ Br F
i, j denote the relative free space on the bottom boundary of C(i, j),

where Bl F
i, j denotes the left and Br F

i, j the right interval.

3 The Fréchet Gap Decision Problem

The Fréchet gap decision problem is defined as follows.

Problem 3.1 Given polygonal curves π and σ , is a given interval [s, t] a feasible gap

for π, σ?

As discussed in Sect. 2.3, [s, t] is a feasible gap for π and σ if and only if there exists

an x, y monotone path from (0, 0) to (n, m) in the [s, t] relative free space F[s,t]. This

motivates the definition of the reachable relative free space,

123

Discrete & Computational Geometry (2021) 65:1244–1274 1251

RF[s,t] = {(α, β) ∈ [0, n] × [0, m] : there exists an x, y monotone

path from (0, 0) to (α, β)}.

Hence the answer to Problem 3.1 is ‘yes’ if and only if (n, m) ∈ RF[s,t]. As was

the case with the relative free space, the relevant information for the reachable relative

free space is contained on the cell boundaries. We now describe how to propagate the

reachable information from the left and bottom boundary to the right and top boundary

of a cell, which ultimately will allow us to propagate the reachable information from

(0, 0) to (n, m). (Note this is a typical approach to solving the standard Fréchet distance

decision problem.)

Let L R
i, j and B R

i, j denote the reachable subsets of the left and bottom boundaries

of C(i, j). First we argue that like L F
i, j , L R

i, j is composed of at most two disjoint

intervals. Let Lx F
i, j be either LaF

i, j or LbF
i, j . The reachable subset of Lx F

i, j is a single

connected interval. To see this, observe that wherever the lowest reachable point in

Lx F
i, j lies, all points above it in Lx F

i, j are reachable by a monotone path. As L R
i, j is

a subset of L F
i, j , this implies it is composed of at most two intervals denoted LaR

i, j

and LbR
i, j (if L F

i, j is a single interval then L R
i, j = LaR

i, j = LbR
i, j). Bl R

i, j and Br R
i, j are

defined similarly.

Propagating in a cell: Given L R
i, j and B R

i, j , we now describe how to compute L R
i, j+1

(B R
i+1, j is handled similarly). There are four cases, determined by whether we are

propagating L R
i, j or B R

i, j , and whether we are going above or below the hole Fs(i, j).

First, some notation.

Definition 3.2 Label the leftmost and rightmost vertical lines tangent to the hole

Fs(i, j) as v�l
i, j and v�r

i, j , and label the topmost and bottommost horizontal tan-

gent lines as h�a
i, j and h�b

i, j [see Fig. 3(a)]. Similarly define the leftmost point Hl
i, j ,

the rightmost point Hr
i, j , the topmost point Ha

i, j , and the bottommost point Hb
i, j , of

Fs(i, j). Note that if one of the tangent lines v�l
i, j , v�r

i, j , h�a
i, j , or h�b

i, j lies on the

boundary of the cell, then we consider the corresponding point to be undefined. (For

example, in Fig. 3(a), Hr is undefined as vlr lies on the boundary.) Finally, let Ia
i, j

be the highest and Ib
i, j the lowest point of L F

i, j+1. When i, j is fixed, the subscript is

often dropped.

The above notation will be used throughout the paper as it defines the relevant

extent measures of the relative free space. Here we also define the point wa to be the

intersection point of LaF
i, j+1 with h�a , or, more generally, if they do not intersect,

wa is the lowest point of LaF
i, j+1 that is above h�a . (Note wa is the lowest reachable

point when passing over the hole Fs(i, j), and may possibly be undefined.) For the

four cases below we consider four points pr , pl , pb, and pa . We assume these points

are defined, though they may not be depending on the structure of L R
i, j and B R

i, j , in

which case there is nothing to propagate.

123

1252 Discrete & Computational Geometry (2021) 65:1244–1274

b

a

l

hlb

hla

vlrvll

a

b

wa

(a) Free space cell (b) BRi, j to LRi, j +1 (c) LRi, j to LRi, j +1

Fig. 3 Left, labeled parts of the relative free space from the segments in Fig. 2(c). Center and right,

propagating reachable relative free space from B R
i, j

and L R
i, j

, respectively

1) Propagating B R
i, j

a) Below Fs(i, j): Let pr be the rightmost point of Br R
i, j (note we may have

Br F
i, j = B F

i, j). In this case there is a monotone path along the boundary of

Ft (i, j) from pr to Ib, and hence all of LbF
i, j+1 is reachable, i.e., LbR

i, j+1 =
LbF

i, j+1. See the green path in Fig. 3(b).

b) Above Fs(i, j): Let pl be the intersection point of Bl R
i, j and the line v�l , and

let wa be as described above. If either pl or wa is undefined there is nothing

to propagate. Otherwise there is a monotone path from pl to wa . Specifically,

follow the line of v�l from pl to Hl , then continue along the boundary of Fs(i, j)

to Ha , and then follow h�a to wa . Hence all the points in LaF
i, j+1 that are at

least as high as wa are reachable from pl , see the blue path in Fig. 3(b).

2) Propagating L R
i, j

a) Below Fs(i, j): Let pb be the lowest point of LbR
i, j (note we may have LbF

i, j =
L R

i, j). If pb lies above h�b, then there is nothing to propagate. Otherwise, the

reachable points on LbF
i, j+1 coming from monotone paths from pb (that pass

below Fs(i, j)) can be found by walking as low as possible through the cell.

Specifically, if there is a point LbF
i, j+1 at the same height as pb then we can

walk horizontally directly to it, otherwise when we walk horizontally we bump

into the boundary of Ft (i, j) and follow it up to Ib [green path in Fig. 3(c)]. In

either case all higher points on LbF
i, j+1 are reachable.

b) Above Fs(i, j): Let pa be the lowest point of LaR
i, j . If pa lies above h�a then

by walking horizontally to the right boundary of the cell, we can reach all points

of LaF
i, j+1 that are at least as high as pa (note there may be no such points).

Otherwise, there is a monotone path from pa to wa (if wa is defined). There are

two cases based on the relative heights of pa and the point Hl . If pa lies below

Hl , then the monotone path walks horizontally from pa to v�l , then vertically

on v�l to Hl , then continues along the boundary of Fs(i, j) to Ha , and then

horizontally to wa [lower blue path in Fig. 3(c)]. If pa lies above Hl , then the

123

Discrete & Computational Geometry (2021) 65:1244–1274 1253

monotone path walks horizontally from pa to the boundary of Fs(i, j), then

continues along the boundary of Fs(i, j) to Ha , and then horizontally to wa

[upper blue path in Fig. 3(c)]. In either case all the points in LaF
i, j+1 that are at

least as high as wa are reachable.

Theorem 3.3 Given polygonal curves π of length n, σ of length m, and an interval

[s, t], the Fréchet gap decision problem, Problem 3.1, can be solved in O(nm) time.

Proof First compute L F
i, j and B F

i, j for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Next initialize the

reachable subset of left boundary of the entire relative free space diagram, i.e.,
�

i L R
i,1.

To do so, consider the entire free space of the left boundary,
�

i L F
i,1, and mark all

points in this set that are reachable (by paths restricted to
�

i L F
i,1) from (0, 0). Note

if (0, 0) is not in the free space, we return ‘no’ as the answer to the decision problem.

Similarly initialize the reachable subset of bottom boundary of the entire relative free

space diagram. Now propagate the reachable sets using any topological ordering of

the cells (e.g. go in increasing column order, and for each column go by increasing

row order). Specifically, for each cell C(i, j) we use L R
i, j and B R

i, j (and L F
i, j+1 and

B F
i+1, j) to compute L R

i, j+1 and B R
i+1, j , as described above. We then return ‘yes’ if

(n, m) is in the reachable space and ‘no’ otherwise.

As for the running time, L F
i, j and B F

i, j take O(1) time to compute per cell, and there

are O(nm) cells. Initializing the reachable sets then takes O(n + m) time. As argued

above, for any i, j, L R
i, j and B R

i, j are composed of at most two disjoint intervals hence

propagating the reachable information to L R
i, j+1 and B R

i+1, j takes O(1) time per cell,

and again there are O(nm) cells, so this is the total running time. ��

4 Finding the Relative Free Space Critical Events

In this section we describe the relative free space critical events, that is a polynomially

sized subset of possible intervals, which must contain an optimal interval [s∗, t∗]. The

relative free space events are significantly more complicated than the free space events

for the standard Fréchet distance. The following definitions will be used throughout

this section.

Definition 4.1 Two free space cells C(i, j) and C(k, l) are adjacent if they share a

horizontal or vertical boundary, i.e., k = i and |l− j | = 1, or l = j and |k−i | = 1. Call

any monotone path from (0, 0) to (n, m) in the relative free space a valid path. Given

any valid path p, the cell sequence of p, denoted cp(p) = (C1, . . . , Cn+m−1), is the

ordered sequence of cells p intersects (so C1 = C(0, 0), Cn+m−1 = C(n −1, m −1)).

We now define a number of other sequences determined by p. Let the entry point

ei be the point where p first intersects the cell Ci , and define the entry sequence of p

as entry(p) = (e1, . . . , en+m), where e1 = (0, 0) and en+m is defined as (n, m). Let

int(p) = (I2, I3, . . . , In+m−1) denote the sequence of boundary free space intervals

passed by p, i.e., ei lies on Ii . For horizontally adjacent cells C(i, j) and C(i, j +1) in

the cell sequence, p either passes above or below Fs(i, j), specifically if p intersects

the vertical segment connecting Ha to the top boundary of C(i, j) then p passes above

123

1254 Discrete & Computational Geometry (2021) 65:1244–1274

Fs(i, j), and otherwise p passes below. Similarly, for vertically adjacent cells C(i, j)

and C(i + 1, j) in the cell sequence, p either passes to the left or right of Fs(i, j);

specifically if p intersects the horizontal segment connecting Hr to the right boundary

of C(i, j) then p passes to the right of Fs(i, j), and otherwise p passes to the left.

This defines the passing sequence of p, denoted pass(p) = (h1, . . . , hn+m−1), where

hi ∈ {above, below, left, right}.
For the standard Fréchet distance, Alt and Godau [4] specified the following set of

distance values, called the critical events, which must contain the optimal Fréchet

distance.

• Initialization event: The minimum value ε such that (0, 0) ∈ Fε and (n, m) ∈ Fε.

• Connectivity events: For any cell Ci , the minimum ε such that L F
i or B F

i is non-

empty, corresponding to the distance between a vertex of one curve and an edge

of the other.

• Monotonicity events: Let I j and Ik be two non-empty vertical free space boundary

intervals in the same row with I j left of Ik (or horizontal intervals in the same

column). The minimum ε such that Ib
j ≤ Ia

k , that is, there is a monotone path

between I j and Ik .

Since any valid path can be decomposed into a set of row and column subpaths, proving

that dF (π, σ) is one of the above defined critical events is a straightforward task.

For the Fréchet gap distance, the critical events will be a superset of the standard

Fréchet events. As an optimal gap is defined by an interval [s, t], the events below

can either be a value of s or a value of t . A critical interval is then any valid s ≤ t

pair from the first three critical event types defined below. Additionally, there is now

a fourth type called a floating monotonicity event. These events directly specify the

s, t pair (i.e., these “events” are also “critical intervals”), and there are potentially an

infinite number of such events.

1) Initialization events: The values s = min {�π0 − σ0�, �πn − σm�} and t =
max {�π0 − σ0�, �πn − σm�}. That is, the supremum of values for s such that

(0, 0) /∈ Fs and (n, m) /∈ Fs , and the minimum value of t such that (0, 0) ∈ Ft

and (n, m) ∈ Ft .

2) Connectivity events: For any row i and column j , the values dist(πi , σ jσ j+1),

dist(πi+1, σ jσ j+1), dist(πiπi+1, σ j), dist(πiπi+1, σ j+1), for either s or t . In other

words, for cell Ci, j , the maximum value s such that Ha , Hb, Hl , or Hr are defined,

or minimum value t such that Ia, Ib (or similarly any of the other three cell bound-

ary intervals) are defined. Note Ia, Ib are first defined at the same location/value

where Hr is last defined, yet we still regard these as separate events, one for s and

the other for t . (For s this is when the free space intervals may break into two, and

for t it is when the interval is first non-empty.)

3) Standard monotonicity events: For any cells C j , Ck in the same row with C j to the

left of Ck :

(a) The value t such that height(Ib
j) = height(Ia

k); Fig 4(a).

(b) The value s such that height(Ha
j) = height(Hb

k); Fig. 4(b).

4) Floating monotonicity events: For any cells C j , Ck in the same row with C j to the

left of Ck :

123

Discrete & Computational Geometry (2021) 65:1244–1274 1255

(a) (b)

(c) (d)

b
j

a
k

a
j

b
k

b
j

a
j

a
k

b
k

Fig. 4 Opening of a horizontal passage

(a) Any pair s, t such that height(Ib
j) = height(Hb

k); Fig. 4(c).

(b) Any pair s, t such that height(Ha
j) = height(Ia

k); Fig. 4(d).

Here height(·) denotes the vertical coordinate of a point in the relative free space.

Analogous definitions apply to the case when cells are in the same column. Note that

depending on the geometry such events may not be defined.

Let Ss and St denote the set of values for s and t , respectively, determined by the

initialization, connectivity and standard monotonicity critical events, and let Ss × St

denote the corresponding set of valid critical intervals determined by these values. Let

SF be the set of s, t intervals determined by floating monotonicity events. The set of

all critical intervals is then SI = SF ∪ (Ss × St).

Lemma 4.2 SI contains any optimal Fréchet gap interval [s∗, t∗].
Proof For the sake of contradiction, suppose [s∗, t∗] /∈ SI . As [s∗, t∗] is a feasi-

ble Fréchet gap, there must exist a valid path p in F[s∗,t∗]. Let the cell, passing,

entry, and interval sequences of p be cp(p) = (C1, . . . , Cn+m−1), pass(p) =
(h1, . . . , hn+m−1), entry(p) = (e1, . . . , en+m), and int(p) = (I2, I3, . . . , In+m−1)

(see Definition 4.1). In this proof we will show that if [s∗, t∗] /∈ SI then the canonical

form of p which, subject to having the same cell and passing sequences as p, locally

remains as low and left as possible (i.e., follows the reachable free space propagation

rules of Sect. 3), will also define a valid path in the free space after either increasing

s∗ or decreasing t∗.

Let S∗
F = {t : (s∗, t) ∈ SF } (which may possibly be empty). Since [s∗, t∗] /∈ SI

it must be that t∗ /∈ S∗
F . Also since [s∗, t∗] /∈ SI , either s∗ /∈ Ss or t∗ /∈ St , and

we will assume it is the t∗ /∈ St case (the s∗ /∈ Ss case is argued similarly). Let

tinit = max {�π0 − σ0�, �πn − σm�} be the corresponding t value of the initialization

event, and hence tinit ∈ St . Note that because [s∗, t∗] is feasible, tinit ∈ [s∗, t∗] (as any

valid path contains (π0, σ0) and (πn, σm)). Since we assumed t∗ /∈ St , this implies

tinit ∈ [s∗, t∗), and so [s∗, t∗) ∩ St
= ∅ (moreover, s∗
= t∗). So let T = St ∪ S∗
F ,

and let t− be the largest value in T that is ≤ t∗, which we just argued must exist and

t− ∈ [s∗, t∗) (in particular we later use that (t−, t∗] ∩ T = ∅).

We now show there is a valid path in the free space F[s∗,t−], which is a contradiction

as t− < t∗, but [s∗, t∗] was optimal. Specifically, we argue there is a valid canonical

path p� in F[s∗,t−] with the same cell and passing sequences as p. To this end, define

entry(p�) = (e�
1, . . . , e�

n+m) such that (i) e�
1 = e1 = (0, 0), (ii) e�

n+m = en+m =
(n, m), and (iii) for 1 < i < n + m, if Ii is vertical (resp. horizontal) then e�

i is the

123

1256 Discrete & Computational Geometry (2021) 65:1244–1274

lowest (resp. leftmost) point in F[s∗,t−] ∩ Ii that is above (resp. right of) e�
i−1, and also

above Ha
i−1, (resp. right of Hr

i−1) if hi−1 equals above (resp. right). We now argue

that the points in this entry sequence are well defined, and hence p� is a valid path

through F[s∗,t−].
First observe that as (t−, t∗]∩T = ∅, initialization events cannot lie in this interval,

and so e�
1 and e�

n+m must be in F[s∗,t−]. Now we inductively argue that for all other

1 < i < n+m, e�
i is well defined. Again since (t−, t∗]∩T = ∅, F[s∗,t−]∩Ii is not empty

for all 1 < i < n+m. So fix an index β, and assume e�
β−1 is well defined. Without loss

of generality assume Iβ is a vertical edge (the horizontal case is handled similarly).

If Iβ−1 is on a horizontal edge then clearly, if hβ−1 equals below, e�
β = Ib

β−1, which

is well defined as s∗ is fixed and (t−, t∗] ∩ T = ∅. If hβ−1 equals above, then in

F[s∗,t−] it must be that e�
β−1 is on the left of Hl

β−1 and height(Ha
β−1) ≤ height(Ia

β−1),

as this was true in F[s∗,t∗] and we assumed there were no monotonicity events in

(t−, t∗] ∩ T . In other words we can pass to the left and above the hole, and thus

e�
β is well defined. Also note in this case that either height(e�

β) = height(Ha
β−1) or

height(e�
β) = height(Ib

β−1).

Now suppose Iβ−1 is a vertical edge and moreover, let Iα, Iα+1, . . . , Iβ be the earlier

boundary intervals in this row, i.e., it is the maximal length contiguous subsequence

of vertical boundary intervals ending at Iβ . As e�
β−1 is well defined, we must have

either height(e�
β−1) = height(Ha

j) for j < β � − 1 or height(e�
β−1) = height(Ib

j)

for j ≤ β − 1, as p� locally remained as low as possible (i.e., there must be a

free space object responsible for pushing e�
β−1 to that height). Therefore if the point

e�
β is not well defined then it must be that either height(Ia

β−1) < height(Ha
j) or

height(Ia
β−1) < height(Ib

j) for j ≤ β −1. The latter case is not possible, as it implies

there must have been a standard monotonicity event in (t−, t∗] (as clearly for F[s∗,t∗]
there was a monotone path and so height(Ia

β−1) ≥ height(Ib
j)), but we assumed

(t−, t∗] ∩ St = ∅. For the former case, observe that height(Ha
j) is unchanged from

F[s∗,t∗] to F[s∗,t−], and so it would imply there was a floating monotonicity event in

(t−, t∗] ∩ S∗
F , but we assumed this intersection was empty. ��

4.1 Bounding the Number of Critical Intervals

In this subsection we bound the number of critical intervals, i.e., |SI |, by carefully

considering their geometry. An interval [s, t] ∈ SI , is either in Ss × St or SF . Thus to

bound SI we first bound the sizes of Ss and St , which are determined by initialization,

connectivity, and standard monotonicity events. Initialization events are determined

by either the distance between the starting vertices �π0 − σ0� or the distance between

the ending vertices �πn −σm� and thus there are only two of them. Connectivity events

are determined by the distance of a vertex σ j from an edge πiπi+1 (or a vertex πi from

an edge σ jσ j+1). That is, the smallest value δ such that the ball B(σ j , δ) intersects

πiπi+1. Thus there are O(n2) such events.1 A standard monotonicity event of type (a)

[Fig. 4(a)] is determined by a pair of vertices σ j and σk , where j < k, and an edge

1 For simplicity, from this point onwards we assume without loss of generality that m ≤ n and only write

sizes and running times with respect to n.

123

Discrete & Computational Geometry (2021) 65:1244–1274 1257

πiπi+1. Specifically, such an event occurs at the minimum value δ such that B(σ j , δ),

B(σk, δ), and πiπi+1 have a common intersection point. Thus there are O(n3) such

events. A standard monotonicity event of type (b) [Fig. 4(b)] is determined by a pair

of edges σ jσ j+1 and σkσk+1, where j < k, and an edge πiπi+1. Specifically, let

B(σ jσ j+1, δ) = σ jσ j+1 ⊗ B(δ), where B(δ) is the δ radius ball centered at the origin,

and ⊗ denotes Minkowski sum. Then such an event occurs at the minimum value δ

such that B(σ jσ j+1, δ), B(σkσk+1, δ), and πiπi+1 have a common intersection point.

Thus again there are O(n3) such events. Thus as |Ss |, |St | = O(n3), we have that

|Ss × St | = O(n6).

Before moving on to bounding the size SF , we make a few remarks about the

above. First, observe that the above geometric descriptions immediately specify how

to compute each of the corresponding event values, by solving a constant size set of

equations. (Type (b) standard monotonicity events can be computed by considering

a constant number of cases, as B(σ jσ j+1, δ) and B(σkσk+1, δ) are each individually

the union of two δ radius balls and a δ radius cylinder, as in Fig. 5). Specifically, the

equations governing height(Ia) and height(Ha) are discussed in detail in the next sub-

section, where they are needed to bound floating monotonicity events. Second, note

that initialization, connectivity, and standard monotonicity type (a) events all occur

in the classical (non-gap) Fréchet distance. While standard monotonicity events of

type (b) are technically new, observe that in their above geometric description they are

very similar to type (a) standard monotonicity events. Namely, they differ simply by

replacing a δ expanded vertex B(σ j , δ) with a δ expanded edge B(σ jσ j+1, δ). More-

over, like type (a) standard monotonicity events, they only depend on one parameter

(namely, the s parameter), which significantly distinguishes them and previous critical

events from floating monotonicity events, which depend on two parameters.

Bounding the size of SF is significantly more complicated. In particular, the floating

monotonicity events may give rise to an entire continuum of critical intervals. For

example, consider the second type of floating monotonicity event, shown in Fig. 4(b).

The value of height(Ha
j) is governed only by a function of s and the value of height(Ia

k)

only by a function of t . These functions might be such that if we increase or decrease s,

but keep t −s constant (i.e., the gap value we are optimizing), height(Ha
j) = height(Ia

k)

remains an invariant. (Hence the term “floating” events.)

We next describe the functions which govern how s and t can vary so that

height(Ha
j) = height(Ia

k) remains an invariant. Ultimately our understanding of these

functions will yield a polynomially sized set of canonical critical intervals (determined

by vertices of the arrangement of these functions), which must contain an optimum

gap interval.

4.1.1 Function Description of Floating Monotonicity Events

Consider the floating monotonicity event of type 4(b) (similar statements will hold for

type 4(a). Such an event is specified by a triple of indices, i, j, k, where i specifies an

edge πiπi+1 (i.e., a row of the relative free space), j specifies an edge σ jσ j+1 (i.e., a

column), and k > j specifies a vertex σk (i.e., the right boundary of a column). The

event occurs when height(Ha
j) = height(Ia

k) = h.

123

1258 Discrete & Computational Geometry (2021) 65:1244–1274

i+1

i

j +1

j

k

p

(a) Distance from k

i+1

i

j +1

j

p

(b) Distance from j

i+1

i

j +1

j

p

(c) Distance from j j +1

Fig. 5 How point p determines s and t . In general segments may not lie in a single plane

Geometrically, a fixed height h corresponds to a point p on πiπi+1. The point

Ha
j is determined by s, and Ia

k by t . First let us understand Ia
k . In order to have

h = height(Ia
k), t must be such that t = �σk − p�, and moreover p must be the higher

(i.e., closer to πi+1) of the possibly two points on πiπi+1 satisfying this condition (the

other point determining Ib
k). Consider the plane determined by πi , πi+1, and σk , and

let πi = (0, 0), p = (0, h), and σk = (χ, γ) [see Fig. 5(a)]. Then as a function of

h, t is described by the equation t = �
χ2 + (γ − h)2. Note that Ia

k is only defined

when t ∈ [t1, t2], where t1 = dist(σk, πiπi+1) and t2 = �σk − πi+1�, and hence the

equation is only relevant in this interval.

height(Ha
j) on the other hand is determined by s, however the relationship is a bit

more complicated. Observe that Ha
j is the only point on the horizontal line h�a

j that is

in the set Fs(i, j), meaning the point on σ jσ j+1 that Ha
j corresponds to must be the

closest point on σ jσ j+1 to p [see Fig. 5, (b) and (c)].

If this closest point is either σ j or σ j+1, then the form of the equation for s in terms

of h is the same as it was for t , namely s =
�

α2 + (β − h)2 (where α, β are now

the coordinates of either σ j or σ j+1). Otherwise this closest point is in the interior

of σ jσ j+1 in which case the equation is of the form s = ch + d, for some constants

c and d (since as one walks along a line, the distance to another fixed line is given

by a linear equation). Similarly to Ia
k , Ha

j is only defined when s ∈ [s1, s2], where

s1 = dist(σ jσ j+1, πiπi+1) and s2 = dist(σ jσ j+1, πi+1), and hence the equation is

only relevant in this interval.

Now that we have a description of height(Ha
j) in terms of s and height(Ia

k) in terms

of t , we can describe the function for t in terms of s, denoted fi, j,k(s), which describes

when height(Ha
j) = height(Ia

k) = h. There are two cases based on the form of the

function describing s.

• Interior of σ jσ j+1 case: s = ch + d and t = �
χ2 + (γ − h)2 imply

fi, j,k(s) =
��

s − d

c
− γ

�2

+ χ2 .

123

Discrete & Computational Geometry (2021) 65:1244–1274 1259

t2

t1

sr s2sl s1

t2

t1
sr s2s1 sl

Fig. 6 Two cases for curve piece fi, j,k , and shaded satisfying points in s, t parametric space

• Endpoint of σ jσ j+1 case: s =
�

α2 + (β − h)2 and t = �
χ2 + (γ − h)2 imply

fi, j,k(s) =
���

s2 − α2 + β − γ
�2 + χ2 .

To summarize, fi, j,k(s) is composed of at most three hyperbola2 pieces (each piece

corresponding to the closest point to p being σ j , the interior of σ jσ j+1, or σ j+1),

and is only (possibly) defined within the region s ∈ [s1, s2] and t ∈ [t1, t2], see

Fig. 6. Also, the geometry of the problem implies that when fi, j,k(s) is defined, it is

a monotone increasing function. Hence the intersection of fi, j,k with the bounding

box [s1, s2] × [t1, t2] is connected, and so rather than using this box to define fi, j,k ,

we instead say fi, j,k is either completely undefined or is defined only in the interval

[sl , sr] where sl and sr are the s coordinates where fi, j,k respectively enters and leaves

the bounding box. Note that one can argue if fi, j,k is defined then sr = s2, however, it

may be that sl > s1 (if the closest point to σ jσ j+1 is lower on πiπi+1 than the closest

point to σk).

The exact form of the equation fi, j,k(s) is not needed in our analysis, however, the

above discussion implies the following simple observation which will be used later.

Observation 4.3 In the s, t parametric space fi, j,k is either undefined or defines a

constant complexity monotonically increasing curve piece, with endpoints at values

sl
i, j,k ≤ sr

i, j,k . In particular, fi, j,k has only a constant number of local minima and

maxima (i.e., points of tangency) with respect to translations of the line t = s.

Note that for 4(a), i.e., when height(Ib
j) = height(Hb

k), fi, j,k can be defined simi-

larly, and the above observation again holds. One must also define functions for the

analogous events in the free space columns. Such functions are again determined by

triples i, j, k, however now i, j refer to rows and k to the column. Below we will

denote these functions by gi, j,k .

4.1.2 Events Minimizing the Gap

As discussed above each fi, j,k , if defined, gives an entire continuum of critical inter-

vals. However, ultimately we are only interested in feasible intervals which minimize

2 Technically, the endpoint case is not a hyperbola, though it is similar.

123

1260 Discrete & Computational Geometry (2021) 65:1244–1274

the gap, and this will allow us to reduce this continuum to a polynomial number of

canonical intervals. This polynomially sized set is determined not only by the fi, j,k ,

but also by the other types of critical events. Note that initialization (1), connectivity

(2), and standard monotonicity events (3) only define constraints on either just s or t ,

whereas the fi, j,k and gi, j,k define a continuum of [s, t] intervals. Hence to put them

on equal footing we think of all of them as defining constraints in the two dimensional

s, t parametric space.

First observe that in the parametric space, for any point (s, t) of interest, 0 ≤ s ≤ t ,

and so we only consider points in the first quadrant that are above the line t = s.

Initialization, connectivity, and standard monotonicity events are simply defined by

horizontal or vertical lines. Specifically, for each such event the points satisfying the

corresponding constraint are those above (resp. left of) the corresponding horizontal

(resp. vertical) line:

1) Initialization events: s ≤ α0, t ≥ β0. Here α0 = min {�π0 − σ0�, �πn − σm�} and

β0 = max {�π0 − σ0�, �πn − σm�}.
2) Connectivity events: s ≤ αl

i, j or s ≤ αb
i, j , t ≥ βl

i, j or t ≥ βb
i, j . Here the αi, j

and βi, j are vertex-edge distances, that is αl
i, j = βl

i, j = dist(πiπi+1, σ j) or

αb
i, j = βb

i, j = dist(πi , σ jσ j+1). Note defining both αi, j and βi, j is not necessary

but useful to distinguish constraints on s from those on t .

3) Standard monotonicity events: s ≤ αi,(j,k) or s ≤ α(i, j),k , t ≥ βi,(j,k) or t ≥
β(i, j),k . This happens when the free space is such that αi,(j,k) = height(Ha

i, j) =
height(Hb

i,k) or α(i, j),k = height(Ha
i,k) = height(Hb

j,k), and when βi,(j,k) =
height(Ib

i, j) = height(Ia
i,k) or β(i, j),k = height(Ib

i,k) = height(Ia
j,k).

4) Floating monotonicity events: t ≥ fi, j,k(s) for s ∈ [sl f
i, j,k, s

r f
i, j,k], or t ≥ gi, j,k(s)

for s ∈ [slg
i, j,k, s

rg
i, j,k]. Note that, depending on the geometry, such constraints may

not be defined.

Note that the first three event types each partition the entire parametric space into

two connected sets, those which either satisfy or do not satisfy the constraint. The

fi, j,k (and gi, j,k) can also be thought of in this way, see the shaded regions in Fig. 6.

Specifically, (s, t) satisfies the constraint if t ≥ t1, s ≤ s2, and if s ∈ [sl , sr] then

(s, t) must lie above the curve fi, j,k . Otherwise (s, t) does not satisfy the constraint.

Any valid path in the relative free space must have a well-defined cell sequence

(C1, . . . , Cn+m−1) and passing sequence pass(p) = (h1, . . . , hn+m−1) (see Defini-

tion 4.1). Moreover, such a pair of sequences precisely determine a subset of the

constraints defined above, such that there is a valid path with this cell and passing

sequence if and only if all constraints in the subset are satisfied (this is implied by

Lemma 4.2). Thus for a given cell and passing sequence we want to solve the opti-

mization problem (see Fig. 7 for a visualization):

123

Discrete & Computational Geometry (2021) 65:1244–1274 1261

s

t t s c

Fig. 7 Constraints defining the shaded feasible region, and corresponding optimal point

min t − s

subject to

t ≥ s ≥ 0,

s ≤ α, where α = min
�
α0, α

l
i1, j1

, αb
i2, j2

, αi3,(j3,k3), α(i4, j4),k4

�
over all

(i1, j1) ∈ Z1, (i2, j2) ∈ Z2, (i3, j3, k3) ∈ Z3, (i4, j4, k4) ∈ Z4

t ≥ β, where β = max
�
β0, β

l
i5, j5

, βb
i6, j6

, βi7,(j7,k7), β(i8, j8),k8

�
over all

(i5, j5) ∈ Z5, (i6, j6) ∈ Z6, (i7, j7, k7) ∈ Z7, (i8, j8, k8) ∈ Z8

t ≥ fi, j,k(s), for s ∈ �
s

l f
i, j,k, s

r f
i, j,k

� ∀ (i, j, k) ∈ Z9

t ≥ gi, j,k(s), for s ∈ �
s

lg
i, j,k, s

rg
i, j,k

� ∀ (i, j, k) ∈ Z10

where the sets Z1, . . . , Z10 of index tuples are determined naturally by the cell and

passing sequences. We skip the tedious and unenlightening full description of these

sets, though give a quick example for clarity. For some index w, look at Cw and Cw+1

in the cell sequence, and suppose that Cw = Ci, j and Cw+1 = Ci, j+1. Then we

require t ≥ βl
i, j+1 and thus (i, j + 1) ∈ Z5. Similarly, if say hw+1 = above then we

require s ≤ αb
i+1, j+1 and thus (i + 1, j + 1) ∈ Z2.

Clearly the optimal value of this optimization problem must lie on the boundary of

at least one constraint. In particular, the optimum lies either at the intersection point

of the boundaries of two constraints, or at a local minimum of one of the boundary

constraints, with respect to the objective of minimizing t −s. By Observation 4.3, each

fi, j,k or gi, j,k has at most a constant number of local minima, and as the boundaries

of all other constraints are straight lines, this is also true for every boundary function.

Thus we have now determined the set of canonical critical intervals discussed earlier

in this section.

Lemma 4.4 The above defined constraints, determined by all types of critical events,

determine an O(n6) sized set of canonical critical intervals, i.e., (s, t) pairs that must

contain an optimal gap [s∗, t∗].

123

1262 Discrete & Computational Geometry (2021) 65:1244–1274

Proof Any optimal gap determines a cell and passing sequence of some valid path

in the corresponding relative free space. Above it was discussed how such sequences

determine a subset of constraints, where the optimum gap width is determined either

at an intersection of the boundaries of two constraints or at a local minimum of an

fi, j,k or gi, j,k . Now a priori we do not know the cell and passing sequence of a path

determining an optimal gap, hence we will consider them all. So consider the arrange-

ment of all planar curves defined by the boundaries of any of the possible constraints

defined above. There are a constant number of initialization constraints, O(n2) pos-

sible connectivity constraints, and O(n3) possible standard or floating monotonicity

constraints. Due to the particularly nice form of these curves, each pair intersect at

most a constant number of times, and hence there are O(n6) intersections overall.

Moreover, as discussed above, each curve has only a constant number of local minima

with respect to the objective of minimizing t − s. Hence this arrangement determines

as set of O(n6) points, at least one of which realizes the minimum gap width. ��
The above discussion also implies the following observation.

Observation 4.5 Whether or not a given (s, t)-pair is feasible for the Fréchet gap

problem, is solely determined by which constraints the point satisfies or does not

satisfy. So consider the arrangement of curves determined by the boundaries of all

the constraint types discussed above. Then within the interior of a given cell of the

arrangement all (s, t)-pairs are thus either all feasible or all infeasible.

5 Exact Computation of the Fréchet Gap Distance

The O(n6) critical intervals given by Lemma 4.4 together with the O(n2) decider of

Theorem 3.3, naively give only an O(n8) algorithm for computing the Fréchet gap

distance, as there is no immediate linear ordering to search over the events. However,

here we give a much faster O(n5 log n) time algorithm to compute the Fréchet gap

distance exactly.

The standard Fréchet distance is computed in O(n2 log n) time by searching over the

O(n3) critical events with an O(n2) time decision procedure. This searching originally

was done with parametric search [4], though for our purposes the simpler sampling

based approach of [21] is more relevant.

Searching is a far more challenging task in the Fréchet gap setting. Specifically, in

the standard Fréchet case there is a linear ordering of the critical events, and in this

ordering all events are infeasible up until the true Fréchet distance, and then feasible

afterwards. However, in our two dimensional parametric space there is no such natural

linear ordering. Moreover, recall that even if an interval [s, t] is feasible, it does not

imply [s, t] contains an optimal gap as a subinterval. Crucially, however, we have the

following observation.

Observation 5.1 Let (s, t) be a feasible point. Then observe that any point (s�, t �)
such that s� ≤ s and t � ≥ t is also feasible. Namely, all points in the upper left

quadrant centered at (s, t) are feasible. This implies that given any two feasible points

(s1, t1) and (s2, t2), there is a path between them consisting of only feasible points,

123

Discrete & Computational Geometry (2021) 65:1244–1274 1263

i.e., the set of all feasible points is connected. Specifically, the above implies the

line segments (0, t1)(s1, t1) and (0, t2)(s2, t2) consist solely of feasible points. Again

applying the above, the segment (0, t1)(0, t2) consists solely of feasible points. Thus

the path ((s1, t1), (0, t1), (0, t2), (s2, t2)), consists only of feasible points.

The algorithm for exact computing the Fréchet gap distance uses the following sub-

routines.

• deciderPoint(s, t): Decides whether or not the pair (s, t) is feasible, in O(n2)

time.

• deciderLine(c): Given a positive number c, returns “below” if there is any feasible

(s, t)-pair with t − s ≤ c, and returns “above” otherwise. The running time is

O(n5).

• sample(r): Samples r (s, t)-pairs, independently and uniformly at random, from

the set of O(n6) canonical critical pairs of Lemma 4.4. The running time is O(r).

• sweep(c1, c2): Returns the set of all canonical critical (s, t)-pairs of Lemma 4.4

such that c1 ≤ t − s ≤ c2, in O((n3 + k) log n) time, where k is the number of

such critical pairs.

First observe the subroutine deciderPoint(s, t) is given by Theorem 3.3.

deciderLine(c) is computed as follows. First compute the intersection points of

the line, t − s = c, with the O(n3) boundaries of all the constraints discussed in

Sect. 4.1.2. Since these constraints are horizontal/vertical lines or fi, j,k/gi, j,k , by

Observation 4.3, there are O(n3) intersection points. Thus calling deciderPoint on

each of these intersection points, takes O(n5) time as deciderPoint takes O(n2) time.

By Observation 4.5, if all these point queries return infeasible, then all points on the

line t − s = c are infeasible. In this case, the feasible region must lie entirely above

the line t − s = c, since by Observation 5.1, if a single point below the line were

feasible, then the point on the line directly above it must also be feasible. On the other

hand, if one of the point queries returned true then the optimal gap width is at most c,

and so any optimal gap pair must lie below (or on) the line t − s = c.

The subroutine sample(r) is also straightforward. Specifically, every canonical

critical pair is either a local minimum or an intersection of the boundaries of two

constraints from Sect. 4.1.2. Thus in order to sample a canonical critical pair, we

sample either one or two constraints3, where whether we sample one or two is done

in proportion to the number of pairs versus single constraints. Each constraint is

determined by either a pair or triple of indices (and a few bits, such as whether the side

of bottom of a cell, etc.), and hence each can be sampled in O(1) time (again done

proportionally to the number of triples versus pairs of indices). Thus r canonical pairs

can be sampled in O(r) time.

Thus what remains is to describe the subroutine sweep, for which we have the

following.

Lemma 5.2 Given two real values 0 ≤ c1 ≤ c2, one can compute the set of all

canonical critical (s, t)-pairs of Lemma 4.4 such that c1 ≤ t − s ≤ c2, in O((n3 +
3 Note the number of local minima per constraint and the number of times two constraints intersect is

a constant, but the constant may be larger than one. Thus technically the described sampling is not truly

uniform. One can make it uniform, though this distinction is irrelevant for our asymptotic analysis.

123

1264 Discrete & Computational Geometry (2021) 65:1244–1274

k) log n) time, where k is the number of such critical pairs. This algorithm is denoted

sweep(c1, c2).

Proof It is well known that one can compute the set of all k intersection points of a

set of m x-monotone constant-complexity curves in O((m + k) log m) time using a

horizontal sweep line in the standard sweep line algorithm of Bentley and Ottmann

[8]. In our case the curves are given by the O(n3) constraints of Sect. 4.1.2, clipped

to only be defined in the region bounded by the lines t − s = c1 and t − s = c2.

The constraints with straight line boundaries are s-monotone, and by Observation 4.3

so are the fi, j,k and gi, j,k . Thus the claim follows by applying the standard sweep

line algorithm to our case. Note that our problem involves degenerate horizontal line

segments, which can still be handled (with some care) when using a horizontal sweep

line, though alternatively one could avoid such issues using a diagonal t − s = c

sweep line in which case one should first cut the fi, j,k /gi, j,k into pieces at their local

maxima/minima (with respect to the line t − s = c), to maintain monotonicity. ��

1 R = sample(αn4) // α a sufficiently large constant

2 Sort �R = {c = t − s : (s, t) ∈ R} in increasing order

3 Binary search over �R using deciderLine(c) for the interval [c1, c2] s.t.

deciderLine(c1) = above and deciderLine(c2) = below // Set
initial values c1 = 0, c2 = ∞

4 S = sweep(c1, c2)

5 Call deciderPoint(s, t) on each (s, t) ∈ S, and

return the feasible pair with smallest t − s value.

Algorithm 1: Computing the Fréchet gap distance

The algorithm for computing the Fréchet gap distance is shown as Algorithm 1.

We need the following lemma to bound the number of critical pairs that we end up

searching over.

Lemma 5.3 Let [c1, c2] be the interval described in Algorithm 1. Then with exponen-

tially high probability, this interval contains O(n3) canonical critical pairs.

Proof Let C be the set of all canonical critical pairs as described in Lemma 4.4, thus

|C| ≤ βn6 for some constant β. Let �C = {c = t − s : (s, t) ∈ C}, and let �R be the

sampled subset of �C as described in Algorithm 1. Note that multiple values in C may

map to a single value in �C. This technicality is discussed below, but for now assume

|C| = |�C|.
Consider the sorted placement of the values in �C along the real line, and let x be

any point on the real line. Let U+ (resp. U−) be the closest n3 values from �C larger

(resp. smaller) than x . Suppose |U+| = n3 (note it may happen that |U+| < n3, if x

is large enough). Then the probability it does not contain a value in �R is

�
1 − |U+|

βn6

�αn4

=
�

1 − n3

βn6

�αn4

≤ exp
−αn7

βn6
= exp

−αn

β
≤ e−ĉn

123

Discrete & Computational Geometry (2021) 65:1244–1274 1265

for any constant ĉ, by choosing α sufficiently large. A similar statement holds for

|U−|, and thus taking the union bound, a similar statement holds simultaneously for

both U− and U+.

Note there are only a polynomial number of possibilities for each value in �R (specifi-

cally O(n6)). Thus by setting x to each one of these values, and taking the union bound,

it holds that between any two adjacent values in �R (or in the unbounded end intervals),

with high probability there are at most O(n3) values of �C, thus implying the claim.

As mentioned above, technically multiple pairs in C may map to a single value in �C.

This can be remedied by treating �C as a multiset. Then by defining an arbitrary order

over multivalues, the above analysis will still hold, except potentially at the endpoints

of the interval [c1, c2] (as we include all critical pairs with these values). Observe

however that (in the absolute worst case) there are at most O(n3) pairs which get

mapped to either value c1 or c2 in �C, and so the lemma holds. ��
Note that there is a huge amount of slack in the above argument, and in more than

one way. Specifically, even though we have an exponentially high probability bound,

it can be further improved by taking a larger random sample. Also we could have

argued, with polynomially high probability, that the number of canonical critical pairs

in [c1, c2] is only O(n2 log n) (taking more care in the argument at the endpoints).

However, ultimately this would not change the asymptotic running time, as the real

bottleneck for the algorithm is in searching with the O(n5) time deciderLine.

Theorem 5.4 Given polygonal curves π and σ , each of length at most n, Algorithm 1

computes the Fréchet gap distance in O(n5 log n) time.

Proof The correctness of Algorithm 1 has essentially already been argued. Specifically,

the random sample R partitions the real line into intervals based on the values in �R.

One of these intervals contains the optimal gap width, implying the interval [c1, c2]
found by searching using deciderLine(c) is well defined. Moreover, S contains a

canonical critical pair with optimal gap width as sweep(c1, c2) returns all canonical

critical pairs in the region bounded by the lines t − s = c1 and t − s = c2, and by

Lemma 4.4 the set of canonical critical pairs contains a pair with optimal gap width.

As deciderPoint is called on all pairs in S, the algorithm will find this optimal gap

pair.

For the running time, calling sample(αn4) takes O(n4) time. Sorting �R takes

O(n4 log n) time, and searching over �R takes O(n5 log n) time as deciderLine takes

O(n5) time. By Lemma 5.2, sweep(c1, c2) takes O((n3 + |S|) log n) time. Call-

ing deciderPoint on each pair in S takes O(|S|n2) time, as deciderPoint takes

O(n2) time. By Lemma 5.3, with high probability |S| = O(n3), so sweeping and all

deciderPoint calls combined take O(n5) time. Thus the overall time is O(n5 log n),

i.e., dominated by the time to search with deciderLine. ��

6 Approximation

In this section, we propose an efficient algorithm to approximate the Fréchet gap

distance, based on the following simple fact. Let do be the average of the starting and

123

1266 Discrete & Computational Geometry (2021) 65:1244–1274

t

do, do

s

t s

Fig. 8 Two centered points and their projections

ending vertex pair distances of π and σ , that is do = (db+de)/2 where db = �π0−σ0�
and de = �πn − σm�.

Observation 6.1 If a parametric point (s, t) is feasible then s ≤ do ≤ t .

This implies we only need to consider parametric points such that s ≤ do ≤ t ,

which we call centered points. Define the radius of any such point (s, t) to be rs,t =
max {t − do, do − s}, and define the projection to be proj(s, t) = (do − rs,t , do + rs,t).
See Fig. 8.

Observe that in order to get a 2-approximation it suffices to restrict our attention

to projected points (as [s, t] ⊆ [do − rs,t , do + rs,t] for any centered point (s, t)), and

the advantage is that projected points are more nicely behaved. Specifically, projected

points define a linear ordering by the parameter r with the nice property that if (do −
r, do + r) is feasible then for any r� ≥ r it holds that (do − r�, do + r�) is also feasible.

Moreover, below we show that the O(n6) critical intervals of Lemma 4.4, can be

reduced to O(n3) in this setting, intuitively since now there is only a single parameter

r, rather than independent s and t parameters.

6.1 Simplification of Critical Events

In Sect. 4.1.2 we described a set of four different types of constraints over the (s, t)

parametric space (relating to initialization, connectivity, and standard and floating

monotonicity events), and saw that the Fréchet gap distance is realized by minimizing

t − s over some (unknown) subset of these constraints. Recall from that section that

each such constraint partitions the parametric space into two sets, those satisfying and

those violating that constraint. Label these O(n3) constraints in an arbitrary fashion

from 1 to cn3, and for the ı th constraint let Pı denote the set of satisfying points in the

parametric space (which is a single connected region). We will assume that the Pı are

clipped to the subset of centered points such that s ≤ do ≤ t , as we know any optimal

gap pair must lie in this region.

Note that any given constraint in Sect. 4.1.2 is satisfied by lying to the left and

above a straight line or nicely behaving monotonically increasing function, hence we

have the following.

123

Discrete & Computational Geometry (2021) 65:1244–1274 1267

Observation 6.2 If (s, t) ∈ Pı then (s�, t �) ∈ Pı for any s� ≤ s, t � ≥ t . This implies:

1. proj(Pı) ⊆ Pı , where proj(Pı) = {proj(s, t) : (s, t) ∈ Pı }.
2. If (do − r, r − do) ∈ proj(Pı) then (do − r�, r� − do) ∈ proj(Pı) for any r� ≥ r.

For each Pı let Dı be the minimum radius of a point in proj(Pı), and let D denote the

set of all Dı . Note that each Pı is a constant complexity region, and so computing Dı

is a constant time operation.

Lemma 6.3 There is a value D ∈ D such that [do − D, d0 + D] is a 2-approximation

to an optimal Fréchet gap, that is [do − D, d0 + D] is feasible and D ≤ dG(π, σ).

Proof Let (s∗, t∗) be a point realizing the Fréchet gap distance. Then (s∗, t∗) is deter-

mined by some k constraints from Sect. 4.1.2, and let I = {ı1, ı2, . . . ık} be the set

of indices of these constraints. Specifically, in that section we argued any point in�
ı∈I Pı is feasible and (s∗, t∗) is the point in the intersection with minimum gap.

Let D = maxı∈I Dı . Since for all ı , (do − Dı , do + Dı) ∈ proj(Pı), the second

part of Observation 6.2 implies (do − D, do + D) ∈ �
ı∈I proj(Pı). The first part

of Observation 6.2 implies any point in
�

ı∈I proj(Pı) is also in
�

ı∈I Pı , and hence

(do − D, do − D) is feasible.

Let proj(s∗, t∗) = (do − r∗, do + r∗), which is in
�

ı∈I proj(Pı) as (s∗, t∗) ∈�
ı∈I Pı . For some index ı , D = Dı , and since each Dı is defined as the min-

imum radius of a point in proj(Pı), (do − D, do + D) must therefore be the

minimum radius point in
�

ı∈I proj(Pı), and so clearly r∗ ≥ D. By definition,

r∗ = max {do − s∗, t∗ − do} and so D ≤ max {do − s∗, t∗ − do} ≤ t −s = dG(π, σ).

��

6.2 Approximate Decider

Here we show how to efficiently convert any constant factor approximation into a

(1 + ε)-approximation, which is relevant as the previous section proved one of the

O(n3) values in D is a 2-approximation. Specifically, we seek an efficient version of

the following decider.

Definition 6.4 appDeciderLine(c, ε): Given positive numbers c, ε, returns “true” if

dG(π, σ) ≤ c, and returns “false” if dG(π, σ) > (1 + ε)c. Either “true” or “false” can

be returned if dG(π, σ) ∈ (c, (1 + ε)c].
Lemma 6.5 There exists an O(n2/ε) time algorithm for appDeciderLine(c, ε).

Proof By Observation 6.1, do ∈ [s, t] for any feasible interval [s, t]. Thus any fea-

sible interval [s, t] with t − s ≤ c is contained in the interval [do − c, do + c],
and hence we restrict our attention to this interval. We cover this interval with

successive overlapping subintervals of width (1 + ε)c, and each shifted by cε

from the previous one. Specifically, let Sg be the set of subintervals of the form

[do −c+icε, do −c+icε+(1+ε)c], for i = 0, . . . , �1/ε� (note, to make calculations

easier below we stop at do −c+�1/ε�cε+(1+ε)c ≥ do +(1+ε)c rather than do +c).

Our algorithm for appDeciderLine(c, ε) simply checks each one of these intervals for

123

1268 Discrete & Computational Geometry (2021) 65:1244–1274

feasibility using deciderPoint, and if any interval returns “true” then it returns “true”

and otherwise it returns “false”. deciderPoint correctly checks feasibility in O(n2)

time by Theorem 3.3 and we are testing O(1/ε) intervals, so the running time bound

is immediate. We now prove this procedure satisfies the properties of Definition 6.4.

If dG(π, σ) ≤ c, then there is a feasible interval [s, t] with t − s ≤ c, which implies

[s, t] ⊆ [s, s+c] ⊆ [do−c+ jcε, do−c+ jcε+(1+ε)c]where j = �(s−do+c)/(cε)�.

One can easily verify that 0 ≤ j ≤ �1/ε�, and so this interval is in Sg . Hence at least one

interval in Sg is feasible (as containing a feasible subinterval implies feasibility), and

so appDeciderLine(c, ε) returns “true”. On the other hand, if dG(π, σ) > (1 + ε)c,

then no interval in Sg is feasible as each interval in Sg has width (1 + ε)c, and so

appDeciderLine(c, ε) returns “false”. Finally, if c < dG(π, σ) ≤ c(1 + ε), then

appDeciderLine(c, ε) returns “false” or “true”, and we don’t care which one. ��
Using binary search the above appDeciderLine(c, ε) can be used to convert a constant

factor approximation (i.e., constant spread interval) into a (1 + ε)-approximation.

Lemma 6.6 Given a value c ≥ 0, one can decide if dG(π, σ) > c, or dG(π, σ) < c,

or obtain (1 + ε)-approximation to dG(π, σ), in O(n2/ε) time.

Proof If c = 0, just test whether [do, do] is feasible, and if not return dG(π, σ) > c.

Otherwise, call appDeciderLine(c, ε�) and appDeciderLine(c/(1 + 2ε�), ε�), for

a value ε� to be determined shortly. Taking the contrapositive of the statements in

Definition 6.4, if appDeciderLine(c, ε) returns “true” then dG(π, σ) ≤ c(1+ε), and

if appDeciderLine(c, ε) returns “false” then dG(π, σ) > c.

So if appDeciderLine(c, ε�) returns “false” then dG(π, σ) > c, and if

appDeciderLine(c/(1 + 2ε�), ε�) returns “true”, then dG(π, σ) ≤ c(1 + ε�)/
(1 + 2ε�) < c. Otherwise

dG(π, σ) ∈
�

c

1 + 2ε� , c(1 + ε�)
�

= c

1 + 2ε� (1, (1 + ε�)(1 + 2ε�)]

⊂ c

1 + 2ε� (1, 1 + 5ε�) = c

1 + 2ε/5
(1, 1 + ε)

where ε� = ε/5 < 1. ��
Lemma 6.7 Given an interval [α, β], with α > 0, one can either report “dG(π, σ) /∈
[α, β]” in O(n2/ε) time, or obtain (1+ε)-approximation to dG(π, σ) in O((n2/ε) log

(β/(αε))) time, which simplifies to O((n2/ε) log(1/ε)) time when β = O(α).

Proof By using Lemma 6.6, one can decide whether dG(π, σ) < α, dG(π, σ) > β, or

obtain (1 + ε)-approximation to dG(π, σ) in O(n2/ε) time.

If dG(π, σ) ∈ [α, β], divide the interval [α, β] into subintervals with equal step

distance αε and perform a binary search over these subintervals. When we try the

subinterval [γ, γ + α�], by using Lemma 6.6, one can decide whether dG(π, σ) < γ ,

dG(π, σ) > γ +α�. If dG(π, σ) < γ , continue binary search on the median subinterval

between α and γ . Else if dG(π, σ) > γ +α�, then continue binary search on the median

subinterval between γ +α� and β, otherwise dG(π, σ) ∈ [γ, γ +αε] ⊂ [γ, γ (1+�)].

123

Discrete & Computational Geometry (2021) 65:1244–1274 1269

We searched over O(β/(αε)) values, requiring O(log(β/(αε)) calls to

appDeciderLine(c, ε/5), hence our procedure takes O((n2/ε) log(β/(αε)) time

overall as claimed. ��
Corollary 6.8 One can (1+ε)-approximate dG(π, σ) inO(n3+n2 log n·(1/ε) log(1/ε))

time.

Proof By Lemma 6.3 there is some D ∈ D such that dG(π, σ) ∈ [D, 2D]. Thus if

for each D ∈ D we call the procedure of Lemma 6.7 to search the interval [D, 2D],
then we are guaranteed to find a (1 + ε)-approximation. Note that we may query the

value D = 0, which does not satisfy the conditions of Lemma 6.7, though we can

easily check if dG(π, σ) = 0, as then s = do = t . Each interval we query takes

O((n2/ε) log(1/ε)) time. Thus by using standard linear time median selection over

the O(n3) values in D, the running time follows. ��

6.3 Improving the Running Time

Here we show how to use sampling to improve the running time of Corollary 6.8 by

nearly a linear factor. Specifically, our goal is to find the value D ∈ D for which by

Lemma 6.3, [do − D, do + D] is a 2-approximation to an optimum gap interval.

The approach is similar to that in Sect. 5 (and even closer to the algorithm in [21]).

The main difference is that the description of the functions used in the sweeping

procedure is more involved, and so we describe this subroutine first before describing

the full algorithm.

6.3.1 Sweeping

Given values α ≤ β, we seek a procedure sweep(α, β) which returns a superset of all

values Dı ∈ D such that Dı ∈ [α, β]. The Pı regions differ based on which constraint

type from Sect. 4.1.2 they correspond to. In particular, D = Dconn ∪ Dmono, where

Dmono is the set of Dı ∈ D corresponding to regions which represent monotonicity

events (either standard or floating), and Dconn is the set corresponding to all connec-

tivity events (plus the initialization events). The set Dconn has size O(n2), and thus all

values from this set in [α, β] can be found by brute force in quadratic time, so from

now on we only consider the set Dmono.

Consider all Dı ∈ Dmono corresponding to a fixed row, i.e., a fixed edge πiπi+1, of

the free space. As discussed in Sect. 4.1.1, for any column indices j < k, a standard

monotonicity event occurs at a value of t such that height(Ib
j) = height(Ia

k) or a

value of s such that height(Ha
j) = height(Hb

k), and a floating monotonicity event

occurs at pairs s, t such that height(Ib
j) = height(Hb

k) or height(Ha
j) = height(Ia

k).

From that section we also know the functions for s and t in terms of these heights.

Specifically, height(Ia
k) is determined by the distance from σk , and so the function

for t in terms of the height h = height(Ia
k) is given by t = �

χ2 + (γ − h)2, where

χ, γ are the coordinates of vertex σk (in the πi , πi+1, σk plane). Note this is also the

function for t in terms of h = height(Ib
k) (i.e., the function is symmetric with one

123

1270 Discrete & Computational Geometry (2021) 65:1244–1274

h

D

Fig. 9 Possible do − s functions (in red) and t − do functions (in blue). The horizontal axis is the height h

and the vertical axis is the radius D, i.e., distance from do

side representing Ia
k and the other Ib

k). height(Ha
j) on the other hand is determined

by the distance from the edge σ jσ j+1, and so the function for s in terms of the height

h = height(Ha
j) has three cases, based on whether it is a distance to one of two edge

endpoints or an interior point. For the endpoint cases again we have functions of the

form s =
�

α2 + (β − h)2, for some constants α, β, and just as before these functions

also describe the endpoint cases for height(Hb
j). For the interior case the function is

of the form s = c · h + d for both height(Ha
j) and height(Hb

j), although the constants

in the linear functions for height(Ha
j) and height(Hb

j) can differ. (Slopes may have

opposite sign when dist(πiπi+1, σ jσ j+1) is realized at the interior of both edges, a

case not shown in Fig. 5.)

Fix a row of the free space, and for all pairs of column indices j < k plot the above

described function for t and all the functions for s (endpoints and interior functions).

Specifically, in the plot of these functions the horizontal axis is h and the vertical

axis is both s and t . Consider a standard monotonicity event. This happens at a value

of t (resp. s) such that h = height(Ib
j) = height(Ia

k) (resp. h = height(Ha
j) =

height(Hb
k)), i.e., at an intersection point of two of the plotted t (resp. s) functions.

Floating monotonicity events as always are a bit trickier (actually the easier standard

monotonicity case was already described in [21], though in a different way). Specifi-

cally, while any floating event still occurs at a single h value, such events in general do

not occur at intersections of the s and t functions since s and t may differ in value. The

key observation however is that now we are only concerned with projected points, i.e.,

points such that do − s = t −do. So instead plot all functions of the form do − s, t −do

where s and t are any of the functions described above. In this new plot the horizontal

coordinate is again h but the vertical coordinate is now the radius D (i.e., distance

from do), and projected points now occur at the intersections of these transformed s

and t functions, see Fig. 9. (Note the standard events still occur at intersections.)

Definition 6.9 For a fixed row i of the free space, consider the arrangement of all

functions of the form do − s and t −do in the 2-dimensional D, h space, where s and t

are given by the above described functions of h for any pair of columns j < k. Define

Zr
i to be the set of radius D values of all intersection points in this arrangement for

123

Discrete & Computational Geometry (2021) 65:1244–1274 1271

row i , and similarly define Zc
i for column i . The set of all intersection radii over all

rows and columns is denoted as Z .

It would appear from the above discussion that Z is a superset of Dmono, though there

is one subtlety. Consider the line in the s, t parametric space defined by the equation

do − s = t − do, i.e., the line defining all projected points. For a standard monotonic-

ity event the boundary of Pı is a single horizontal (or vertical) line, which intersects

do − s = t − do and thus the minimum projected point in the region lies on this line

boundary4. On the other hand, if Pı is from a floating monotonicity event then the

boundary is more complicated, as shown in Fig. 6. In this figure, only the blue curve

relates to an intersection point from the D, h space, and thus we also must consider

when the minimum projected point is not on this curve, i.e., when do − s = t − do

intersects a different part of the boundary. There are three cases. The first two cases

are when the minimum projected point lies on either the horizontal line at t1 or the

vertical line at s2, however, as mentioned in Sect. 4.1.1 these boundaries correspond to

connectivity events and hence are already covered by in the set Dconn. The third case is

when the minimum point lies on the vertical line at sl = s1 (i.e., the left part of Fig. 6).

Recall s1 = dist(σ jσ j+1, πiπi+1), that is even though there are O(n2) functions fi, j,k

in the i th free space row, there are only O(n) distinct s1 values, indexed by edges of

σ . Thus we find all intersections of the line do − s = t − do with the lines s = s1

for all possible s1. Let B be the corresponding radii of all such intersections over all

rows, and note that |B| = O(n2). Thus from the above discussion, Dconn ∪ Z ∪ B is

a superset of D and so we have the following.

Lemma 6.10 For any values α ≤ β, there is an algorithm sweep(α, β) which

in O((n2 + |W |) log n) time outputs a set W ⊇ D ∩ [α, β], such that |W | =
O(max {n2, |Z ∩ [α, β]|}), where Z is as defined in Definition 6.9.

Proof Above it was argued that D ⊆ Dconn ∪ Z ∪ B. Thus for W = Dconn ∪ (Z ∩
[α, β])∪B, it holds that W ⊇ D∩[α, β]. As mentioned above, |Dconn|, |B| = O(n2),

thus |W | = O(max {n2, |Z ∩ [α, β]|}). Moreover, Dconn and B are easily computable

in O(n2) time.

What remains is how to compute Z ∩ [α, β], which is done by using standard

sweeping. So for some row i consider the set Zr
i . As discussed above this is the set

of D values of the intersection points of a set of n constant complexity monotone

functions in the D, h space. Thus Zr
i ∩ [α, β] is determined by the set of all such

intersections in a given horizontal strip [α, β], which, just as in Lemma 5.2, can be

found using a standard horizontal sweep line [8], which given a set of n monotone

constant-complexity curves, finds all intersections in the interval [α, β] in O((n +
|Zr

i ∩ [α, β]|) log n) time. Thus doing this sweeping for every row and column finds

the set Z ∩ [α, β] in O((n2 + |Z ∩ [α, β]|) log n) time. ��

6.3.2 The Algorithm

The full algorithm is shown as Algorithm 2, which the reader may observe has the

same high level structure as Algorithm 1.

4 Technically, here we ignore irrelevant, but possible, constraints where the horizontal line lies below do.

123

1272 Discrete & Computational Geometry (2021) 65:1244–1274

The only yet unspecified step of this algorithm is the first line where we call the

subroutine sampler, which samples values from the set Z of Definition 6.9. Any value

in Z is determined by an intersection point of a do − s and a t − do function, which

in turn are specified by: (i) a triple of indices i, j, k, (ii) whether it is a row or column

of the free space, and (iii) which of the O(1) types of intersection points it is (i.e.,

whether it is standard or floating, if standard whether it is a t or s function intersection,

also which type of the three possible s functions). Note alternatively, at the cost of

increasing the sample size by a constant factor, after sampling i, j, k, one can include

all O(1) intersections this triple defines. Thus a value in Z can be sampled in constant

time by sampling these pieces of information and thus sampler(γ n2) runs in O(n2)

time.

1 R = sampler(γ n2) // γ a sufficiently large constant
2 Sort I = {[do − D, do + D] : D ∈ R} by the values in R
3 Binary search over I, using deciderPoint, for interval [Dα, Dβ] such that

deciderPoint(do − Dα, do + Dα) false and

deciderPoint(do − Dβ, do + Dβ) true

// Set initial values Dα = 0, Dβ = ∞
4 S = sweep(Dα, Dβ)

5 Sort I � = {[do − D, do + D] : D ∈ S} by the values in S
6 Binary search over I � using deciderPoint and return the smallest value

D̂ ∈ S such that [do − D̂, do + D̂] is feasible.

Algorithm 2: Sampling to compute a fast 2-approximation

Let [Dα, Dβ] be as defined in Algorithm 2. The number of values from Z which

fall in this interval affects the running time of sweep (see Lemma 6.10). We now prove

that with high probability this set has quadratic size. The proof is nearly identical to

Lemma 5.3 (and a proof in [21]), and is included for the sake of completeness.

Lemma 6.11 Let [Dα, Dβ] be as defined in Algorithm 2. Then with exponentially high

probability, sweep(Dα, Dβ) returns a set of size O(n2).

Proof sampler(γ n2) takes a γ n2 sized sample R from the set Z , which is a set of

values of size ζn3 for some constant ζ . Consider the sorted placement of the values

in Z along the real line, and let x be any point on the real line. Let U+ (resp. U−) be

the closest n2 values from Z larger (resp. smaller) than x . Suppose |U+| = n2 (note

it may happen that |U+| < n2, if x is large enough). Then the probability it does not

contain a value in R is

�
1 − |U+|

ζn3

�γ n2

=
�

1 − n2

ζn3

�γ n2

≤ exp
−γ n4

ζn3
= exp

−γ n

ζ
≤ e−ĉn

for any constant ĉ, by choosing γ to be sufficiently large. A similar statement holds

for |U−|, and taking the union bound, a similar statement holds simultaneously for

both U− and U+.

Note there are only O(n3) possibilities for each value in R. Thus by setting x to

each one of these values, and taking the union bound, it holds that between any two

123

Discrete & Computational Geometry (2021) 65:1244–1274 1273

adjacent values in (the sorted set) R, or in the unbounded end intervals, with high

probability there are at most O(n2) values of Z . Thus the lemma statement holds, as

sweep(Dα, Dβ) returns such a set of Z values, together with all of Dconn and B which

are each of size O(n2). ��
Theorem 6.12 Given polygonal curves π and σ , each of length at most n, one can

(1 + ε)-approximate the Fréchet gap distance in O(n2(log n + (1/ε) log(1/ε))) time.

Proof As discussed above, we only require Algorithm 2 to return a 2-approximation,

as such an approximation can then be transformed into (1 + ε)-approximation in

additive O((n2/ε) log(1/ε)) time, using Lemma 6.7. Now by Lemma 6.3, there is

some radius D� ∈ D whose corresponding projected point gives a 2-approximation.

Recall from Observation 6.2, that sorting projected points by increasing radius D,

induces a linear ordering of feasibility. Thus for the interval [Dα, Dβ] found by the

algorithm, it must be that D� ≥ Dα since Dα is infeasible (or zero). Now if D� ≤ Dβ

then D� ∈ [Dα, Dβ], and since sweep finds a superset of all D in [Dα, Dβ], when we

search over the returned values we must find at least a 2-approximation. Otherwise

D� > Dβ , and hence the feasible Dβ or something even better will be found and

returned from the sweeping, again getting at least a 2-approximation.

As for the running time, sampling O(n2) values and sorting takes O(n2 log n) time.

Binary searching with deciderPoint also takes O(n2 log n) time as deciderPoint
takes O(n2) time. By Lemma 6.11, with exponentially high probability the number of

values from Z in the found interval is O(n2), and thus by Lemma 6.10 sweep takes

O(n2 log n) time with exponentially high probability. Finally we do another round of

sorting and searching over the O(n2) values returned from sweep, which again takes

O(n2 log n) time. Adding the time to convert the result to a (1 + ε)-approximation

gives O(n2(log n + (1/ε) log(1/ε))) time overall. ��

References

1. Agarwal, P.K., Ben Avraham, R., Kaplan, H., Sharir, M.: Computing the discrete Fréchet distance in

subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014)

2. Alt, H., Buchin, M.: Can we compute the similarity between surfaces? Discrete Comput. Geom. 43(1),

78–99 (2010)

3. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. In: 14th Annual ACM-SIAM Symposium

on Discrete Algorithms (Baltimore 2003), pp. 589–598. ACM, New York (2003)

4. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput.

Geom. Appl. 5(1–2), 75–91 (1995)

5. Alt, H., Knauer, Ch., Wenk, C.: Matching polygonal curves with respect to the Fréchet distance. In:

Annual Symposium on Theoretical Aspects of Computer Science (Dresden 2001). Lecture Notes in

Comput. Sci., vol. 2010, pp. 63–74. Springer, Berlin (2001)

6. Ben Avraham, R., Filtser, O., Kaplan, H., Katz, M.J., Sharir, M.: The discrete and semicontinuous

Fréchet distance with shortcuts via approximate distance counting and selection. ACM Trans. Algo-

rithms 11(4), # 29 (2015)

7. Ben Avraham, R., Kaplan, H., Sharir, M.: A faster algorithm for the discrete Fréchet distance under

translation (2015). arXiv:1501.03724

8. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE

Trans. Comput. 28(9), 643–647 (1979)

9. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: 31st

VLDB Conference (Trondheim 2005), pp. 853–864 (2005)

123

1274 Discrete & Computational Geometry (2021) 65:1244–1274

10. Bringmann, K.: Why walking the dog takes time: Fréchet distance has no strongly subquadratic algo-

rithms unless SETH fails. In: 55th Annual IEEE Symposium on Foundations of Computer Science

(Philadelphia 2014), pp. 661–670. IEEE Computer Soc., Los Alamitos (2014)

11. Bringmann, K., Künnemann, M., Nusser, A.: Fréchet distance under translation: conditional hardness

and an algorithm via offline dynamic grid reachability. In: 30th Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 2902–2921. SIAM, Philadelphia (2019)

12. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by

clustering subtrajectories. Int. J. Comput. Geom. Appl. 21(3), 253–282 (2011)

13. Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four Soviets walk the dog—with an application

to Alt’s conjecture. In: 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1399–1413.

ACM, New York (2014)

14. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple polygons in

polynomial time. In: 22nd Annual Symposium on Computational Geometry, pp. 80–87. ACM, New

York (2006)

15. Buchin, M., Driemel, A., Speckmann, B.: Computing the Fréchet distance with shortcuts is NP-hard.

In: 30th Annual Symposium on Computational Geometry, pp. 367–376. ACM, New York (2014)

16. Driemel, A., Har-Peled, S.: Jaywalking your dog: computing the Fréchet distance with shortcuts. SIAM

J. Comput. 42(5), 1830–1866 (2013)

17. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near

linear time. Discrete Comput. Geom. 48(1), 94–127 (2012)

18. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Christian Doppler Laboratory for Expert

Systems, TU Vienna, Austria, CD-TR 94/64 (1994)

19. Filtser, O., Katz, M.J.: The discrete Fréchet gap (2015). arXiv:1506.04861

20. Filtser, O., Katz, M.J.: Algorithms for the discrete Fréchet distance under translation. In: 16th Scan-

dinavian Symposium and Workshops on Algorithm Theory. Leibniz Int. Proc. Inform., vol. 101, # 20.

Leibniz-Zent. Inform., Wadern (2018)

21. Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. ACM Trans. Algorithms 10(1),

3 (2014)

22. Jiang, M., Xu, Y., Zhu, B.: Protein structure-structure alignment with discrete Fréchet distance. J.

Bioinform. Comput. Biol. 6(1), 51–64 (2008)

23. Kim, M.-S., Kim, S.-W., Shin, M.: Optimization of subsequence matching under time warping in time-

series databases. In: ACM Symposium on Applied Computing (Santa Fe 2005), pp. 581–586. ACM,

New York (2005)

24. Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Comput. Geom. 37(3),

162–174 (2007)

25. Serrà, J., Gómez, E., Herrera, P., Serra, X.: Chroma binary similarity and local alignment applied to

cover song identification. IEEE Trans. Audio Speech Language Process. 16(6), 1138–1151 (2008)

26. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: Localizing global

curve-matching algorithms. In: 18th International Conference on Scientific and Statistical Database

Management (Vienna 2006), pp. 879–888. IEEE Computer Soc., Los Alamitos (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

