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Abstract

Measuring the similarity of two polygonal curves is a fundamental computational task.
Among alternatives, the Fréchet distance is one of the most well-studied similarity
measures. Informally, the Fréchet distance is described as the minimum leash length
required for a man on one of the curves to walk a dog on the other curve continuously
from the starting to the ending points. In this paper we study a variant called the
Fréchet gap distance. In the man and dog analogy, the Fréchet gap distance minimizes
the difference of the longest and smallest leash lengths used over the entire walk. This
measure in some ways better captures our intuitive notions of curve similarity, for
example giving distance zero to translated copies of the same curve. The Fréchet gap
distance was originally introduced by Filtser and Katz [ 19] in the context of the discrete
Fréchet distance. Here we study the continuous version, which presents a number of
additional challenges not present in discrete case. In particular, the continuous nature
makes bounding and searching over the critical events a rather difficult task. For this
problem we give an O (n° log n) time exact algorithm and a more efficient O (n2 log n+
(n?/e)log(1/e)) time (1 + &)-approximation algorithm, where 7 is the total number
of vertices of the input curves. Note that, ignoring logarithmic factors, for any constant
& our approximation has quadratic running time, matching the lower bound, assuming
SETH [Bringmann, K.: Why walking the dog takes time: Fréchet distance has no
strongly subquadratic algorithms unless SETH fails (2014)], for approximating the
standard Fréchet distance for general curves.
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Fig.1 Left: A 2D “airplane roll”. Right: Turning in 2D by pivoting on one side at a time

1 Introduction

Polygonal curves arise naturally in the modeling of a number computational problems,
and for such problems assessing the similarity of two curves is one of the most fun-
damental tasks. There are several competing measures for defining curve similarity.
Among these, there has been strong interest in the Fréchet distance, particularly from
the computational geometry community, as the Fréchet distance takes into account the
continuous “shape” of the curves rather than just the set of points in space they occupy.
The Fréchet distance and related measures have been used for a variety of applications
[9,12,23,25,26], and it is typically illustrated as follows. Let the two polygonal curves
be denoted 7 and o, with n vertices in total. Imagine a man and a dog are respectively
placed at the starting vertices of 7 and o, and they must each move continuously along
their curves to their respective ending points. The man and dog are connected by a
leash, and the Fréchet distance is the minimum leash length required over all possible
walks of the man and dog, where the man and dog can independently control their
speed but cannot backtrack.

In this paper we consider a variant called the Fréchet gap distance, originally
introduced by Filtser and Katz in the context of the discrete Fréchet distance [19].
In the man and dog analogy, this variant minimizes the difference of the lengths of
the longest and shortest leashes used over the entire walk. As discussed in [19], since
this measure considers both the closest and farthest relative positions of the man and
dog, in many cases it is closer to our intuitive notion of curve similarity. Notably, two
translated copies of the same curve have Fréchet gap distance zero, as opposed to the
magnitude of the translation under the standard Fréchet distance. Though this is not to
say that it is the same as minimizing the standard Fréchet distance under translation.
For instance, fix any two points on a rigid body in two or three dimensions. The pair
of curves traced out by these points as we arbitrarily rotate and translate the rigid body
will always have Fréchet gap distance zero (see Fig. 1).

A natural scenario for the gap distance is planning the movement of military units,
where one wants them to be sufficiently close to support each other in case of need,
but sufficiently far from each other to avoid unintended interaction (i.e., friendly fire).
Such units might move on two major roads that are roughly parallel to each other, thus
matching our setup.

Previous work. Alt and Godau [4] presented an 0 (n? log n) time algorithm to com-
pute the standard Fréchet distance. More recently Buchin et al. [13] improved the
logarithmic factor in the running time (building on [1]), however Bringmann [10]
showed that assuming the Strong Exponential Time Hypothesis (SETH), no strongly
subquadratic time algorithm is possible. Moreover, Bringmann showed that assuming
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SETH there is no strongly subquadratic 1.001-approximation algorithm, thus ruling
out the possibility of a strongly subquadratic PTAS for general curves. On the other
hand, there are fast approximation algorithms for several families of nicely behaved
curves, for example Driemel et al. [17] gave an O(cn/e + cnlogn) time algorithm
for the case of c-packed curves.

Many variants of the Fréchet distance between polygonal curves have been consid-
ered. Alt and Godau [4] gave a quadratic time algorithm for the weak Fréchet distance,
where backtracking on the curves is allowed. Driemel and Har-Peled [16] considered
allowing shortcuts between vertices, and for this more challenging variant, they gave a
near linear time 3-approximation for c-packed curves. Later Buchin et al. [15] proved
the general version, where shortcutting is also allowed on edge interiors, is NP-hard
(and gave an approximation for the general case and an exact algorithm for the vertex
case). The discrete Fréchet distance only considers distances at the vertices of the
polygonal curves, i.e., rather than a continuously walking man and dog, there is a pair
of frogs hopping along the vertices. This somewhat simpler variant can be solved in
O (n?) time using dynamic programming [18]. Interestingly, Agarwal et al. [1] showed
the discrete variant can be solved in weakly subquadratic O (n” loglogn/logn) time,
however the above results of Bringmann [10] also imply there is no strongly sub-
quadratic algorithm for the discrete case, assuming SETH. Ben Avraham et al. [6]
considered shortcuts in the discrete case, providing a strongly subquadratic running
time, showing shortcuts make it more tractable, which was the reverse for the contin-
uous case. The Fréchet distance has also been extended to more general inputs, such
as graphs [3], piecewise smooth curves [24], simple polygons [14], surfaces [2], and
complexes [21]. These listed previous works are just a sampling of the many Fréchet
distance results.

Minimizing Fréchet distance under translation (and other transformations) was
previously considered, though running times are typically large. For example, Alt et
al. [5] gave an O (n®) time algorithm, where O(-) hides log factors, though they also
gave an O(n?/e?) time (1 + &)-approximation. For the discrete Fréchet case, Jiang
et al. [22], Ben Avraham et al. [7], and Bringmann et al. [11] gave algorithms with
respective running times 6(n6), (3(115), and 6(n14/3). Bringmann et al. [11] also
showed a lower bound of n4_0(1), assuming SETH. Filtser and Katz [20] considered
two variants of the discrete Fréchet distance under translation, namely weak Fréchet
and Fréchet with shortcuts. They remarked how the similarity of their approach for
the 1D case of these problems and for the discrete Fréchet gap problem [19], indicates
a connection between discrete Fréchet gap and discrete Fréchet under translation.

The most relevant previous work is that of Filtser and Katz [19], who first proposed
the Fréchet gap distance. The technical content of the two papers differs significantly
however, as [19] considers the discrete case, avoiding many of the difficulties faced
in our continuous setting. In particular, a solution to the gap problem is a distance
interval. In the continuous case the challenge is bounding the number of possible
intervals, while in the discrete case a bound of O (n*) holds, as each interval endpoint
is a vertex, to vertex distance. Using a result of Ben Avraham et al. [7], Filtser and Katz
improve this to an O (n?) time algorithm to compute the minimum discrete Fréchet
gap. They also provide O (n”log?n) time algorithms for one-sided discrete Fréchet
gap with shortcuts and the weak discrete Fréchet gap distance.
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Contributions and overview. Here we consider the continuous Fréchet gap distance
problem (defined informally above, and formally below). This is the first paper to
consider the more challenging continuous version of this problem. We provide for it
an O (n° log n) time exact algorithm and a more efficient O (n? log n+(n*/¢) log(1/¢))
time (1 + &)-approximation algorithm, and we now outline our approach and main
contributions.

The standard approach for computing the Fréchet distance starts by solving the
decision version for a given query distance § > 0, by using the free space diagram,
which describes the pairs of points (one from each curve) which are within distance
6. The convexity of the free space cells allows one to efficiently propagate reacha-
bility information, leading to a quadratic time procedure overall. For the Fréchet gap
problem the free space cells are no longer convex, but despite this we show that they
have sufficient structure to allow efficient reachability propagation, again leading to a
quadratic time decider, which in our case determines whether a given query interval
[s, t] is feasible.

The next step in computing the Fréchet distance is to find a polynomially sized
set of critical events, determined by the input curves, to search over. For the standard
Fréchet distance this set has O (n°) size. For the Fréchet gap case however the number
of critical events can be much larger as they are determined by two rather than one
distance value. As mentioned above, for the discrete case only pairs of vertex distances
are relevant and so there are O (n*) events. On the other hand, for the continuous case
there can now be “floating” monotonicity events where increasing (or decreasing)
the gap interval endpoint values simultaneously may lead to an entire continuum of
optimum intervals. Despite this we show there is an O(n°) sized set of canonical
intervals containing an optimum solution.

The last step is efficiently searching over the critical events. For the standard Fréchet
distance this can be done via parametric search [4] or sampling [21], yielding an
O (n? log n) running time. Searching in the gap case however is more challenging, as
there is no longer a natural linear ordering of events. Specifically, the set of feasible
intervals may not appear contiguously when ordering candidate intervals by width.
Despite this, we similarly get a near linear factor speed up, by using a more advanced
version of the basic approach in [21].

Our approximation uses the observation that all feasible intervals share a common
value. Roughly speaking, at the cost of a 2-approximation, this allows us to consider
the radius of intervals centered at this common value, rather than two independent
interval endpoints, reducing the number of critical events. This is improved toa (1+¢)-
approximation, and finally the running time is reduced by a linear factor, again using
a modified version of [21].

2 Preliminaries
Throughout, given points p,q € R?, ||p — ¢| denotes their Euclidean distance.

Moreover, given two (closed) sets P, O C R4, dist(P, Q) = minyep geo P — ¢l
denotes the distance between P and Q.
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2.1 Fréchet Distance and Fréchet Gap Distance

A polygonal curve 7 of length n is a continuous mapping from [0, n] to R, such that
for any integer 0 < i < n, the restriction of 7 to the interval [, i 4 1] is defined by
m7i+a)=((0—-—a)r@)+arx@ + 1) forany « € [0, 1], i.e., a straight line segment.
When it is clear from the context, we often use 7 to denote the image 7 ([0, n]). The
set of vertices of m is defined as V() = {mg, 7 ..., ,}, where m; = 7 (i), and
the set of edges is E(w) = {momy, ..., Ty—17,}, Where ;7,4 is the line segment
connecting m; and ;4.

A reparameterization for a curve m of length n is a continuous non-decreasing
bijection f: [0, 1] — [0, n] such that f(0) = 0, f(1) = n. Given reparameteriza-
tions f, g of an n length curve 7 and an m length curve o, respectively, the width
between f and g is defined as

width ¢ ¢ (7, 0) = aren[gfl] I (f () —o(gl@)].

The (standard) Fréchet distance between  and o is then defined as

dr(m,0) = I}lil’l width ¢ ¢ (7, 0)
-8

where f, g range over all possible reparameterizations of 7 and 0. A gap is an interval
[s, #] where O < s < t are real numbers, and the gap width is t — s. Similarly, given
reparameterizations f, g for curves 7, o, define their gap and gap width as

gap; ,(m, o) = Lg;gl” I (@) — o (g, max lr(f (@) - o(g(a))n] ,

gapwidth, (7, 0) = max, I (f (@) — o (gl — arerﬁi)nu 7z (f (@) — o (gle)ll-

The Fréchet gap distance between two curves w and o is then defined as

dg(m,0) = I}ﬁn gapwidthf’g(n, o)
.8

where f, g range over all possible reparameterizations of 7 and o. If there exist
reparameterizations f and g for curves w and o satisfying the inequalities

Jmax 7z (f (@) —o(gla)l =1, arerf(i)l,ll] 7 (f (@) —o(g@)] = s,

we say [s, t] is a feasible gap between curves 7 and o. Throughout the paper [s*, 1*]
denotes an arbitrary optimal gap, that is t* — s* = dg(m, o). (Note there may be more
than one such optimal gap, and moreover a feasible gap does not necessarily contain
an optimal gap.)

Note that in the later sections of the paper we refer to gaps or intervals [s, ¢] instead
as parametric points or pairs (s, 7), in which case feasibility is defined analogously.
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Fig.2 On right, two segments in 2D, and lengths s and 7. Left and center, corresponding ¢ free space and
s, t relative free space cells

2.2 Free Space

To compute the standard Fréchet distance one normally looks at the so-called free
space. The t free space between curves  and o, with n and m edges respectively, is
defined as

Fr={(a,8) €[0,n] x [0,m] : |7(a) —o(B)]l <1}

Similarly define F,= = {(«, B) € [0,n] x [0,m] : ||[m(a) — o (B)|| < t} to be F;
without its boundary. C(i, j) = [i, i + 1] x [j, j + 1] is referred to as the cell of the
free space diagram determined by edges ;7w; 41 and 0011, and the free space within
this cell is

Fi@i, j)={(a.p)eli,i+ 11 x[j,j+1]: (@) —o(B) <1}

Alt and Godau [4] showed that the free space within a cell is always a convex set
(specifically, the clipping of an affine transformation of a disk to the cell). Moreover,
any x, y monotone path in the free space from (0, 0) to (n, m) corresponds to a pair
of reparameterizations f, g of 7, o such that width¢ (7, o) < t. The converse also
holds and hence dr(m, o) < ¢t if and only if such a monotone path exists. These two
statements together imply that in order to determine if dr (i, o) < t, it suffices to
restrict attention to the free space intervals on the boundaries of the cells. Specifically,
let Lf j (resp. Bf j) denote the left (resp. bottom) free space interval of C(i, j), i.e.,
LI, = FG, )0 di) x [j,j+ 1D @esp. Bf; = Fi(i, j) 0 (i, i + 11 x {(j)).
See Fig. 2(a).

2.3 Relative Free Space

We extend the standard free space definitions of the previous section to the Fréchet
gap distance problem. First we define the s, ¢ relative free space between 7 and o as
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Fisn={(a, ) €[0,n] x [0,m] : s < |w(a) —o (Bl <t} = F, \ F,

describing all pairs of points, one on 7 and one on o, whose distance is contained in
[s, ¢]. For a point («, B) in a cell of Fi; ;) or F;, throughout we use the colloquial terms
higher or lower (resp. right or left) to refer to larger or smaller values of « (resp. ).

Again we seek an x, y monotone path in the relative free space from (0, 0) to (n, m),
since such a path corresponds to a pair of reparameterizations f, g of , o such that
gapwidthf,g(n, 0) <t —s,andhence dg(w, o) <t —s. Conversely, if no such path
exists then [s, 7] is not a feasible gap for = and o, implying that [s*, £*] ;(_ [s, t],
but note however that unlike for the standard Fréchet distance, it may still hold that
t*—s* <t —s.

The relative free space in the cell C(i, j) determined by edges 7;7; 11 and 0011
is

FionG, j) =l p) eli,i+11x[j,j+11:s < |w@) — o) <1}
= Fi(i, )\ F G, )).

Another technical challenge with the Fréchet gap problem arises from the fact that
the relative free space in a cell may not be convex (see Fig. 2(b)). However, there is
some structure. Observe that Fis ;(i, j) = F;(i, j) \ F;~(i, j), and hence the setis a
difference of two convex sets, where one is contained in the other. In other words, it
looks like a standard free space cell with a hole removed. In particular, we can again
look at the free space intervals on the cell boundaries. As F;(i, j) is convex, it still
determines a single interval on each cell boundary, however, this interval may be broken
into two subintervals by the removal of F; (i, j) (whose convexity implies it is at most
two subintervals). Let L], = Lb/"; U La[; denote the relative free space on the left

boundary of C(i, j), where Lbf j denotes the bottom and Laf j the top interval (note
if Fy(i, j) does not intersect the boundary then Lbf ;= Laf i = Lf ;)- Similarly, let
Bf = Bl lF Y Bri{F j denote the relative free space on the bottom boundary of C(i, j),
where Blf j denotes the left and Br,.{p f the right interval.

3 The Fréchet Gap Decision Problem

The Fréchet gap decision problem is defined as follows.

Problem 3.1 Given polygonal curves 7w and o, is a given interval [s, t] a feasible gap
form,o?

As discussed in Sect. 2.3, [s, t] is a feasible gap for 7 and o if and only if there exists
an x, y monotone path from (0, 0) to (n, m) in the [s, 7] relative free space Fis ;]. This
motivates the definition of the reachable relative free space,
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RFis = {(a, B) € [0,n] x [0, m] : there exists an x, y monotone
path from (0, 0) to (&, B)}.

Hence the answer to Problem 3.1 is ‘yes’ if and only if (n, m) € RFjs ;. As was
the case with the relative free space, the relevant information for the reachable relative
free space is contained on the cell boundaries. We now describe how to propagate the
reachable information from the left and bottom boundary to the right and top boundary
of a cell, which ultimately will allow us to propagate the reachable information from
(0, 0) to (n, m). (Note this is a typical approach to solving the standard Fréchet distance
decision problem.)

Let LR ; and B, .R. denote the reachable subsets of the left and bottom boundaries

of C(i, ]) First we argue that like LF LR . is composed of at most two disjoint

intervals. Let Lx o be either La ijor LbF The reachable subset of Lx o is a single

connected interval. To see this, observe that wherever the lowest reachable p01nt in
F . lies, all points above it in Lx i j are reachable by a monotone path. As L

a subset of LF , this implies it is composed of at most two intervals denoted La

and Lbf; (if LFJ is a single interval then L[, = La; = Lbf')). BIF; and Brf; ar

defined similarly.

i,J

Propagating in a cell: Given LR and B; R , we now describe how to compute LR

(B i+1,j

J
propagating L lR jor BI.R I and whether we are going above or below the hole F (i, j).
First, some notation.

i,j+1
is handled similarly). There are four cases, determined by whether we are

Definition 3.2 Label the leftmost and rightmost vertical lines tangent to the hole

Fs(i, j) as vﬁl j and vﬂf i and label the topmost and bottommost horizontal tan-

gent lines as hZ“ and hﬁb [see Fig. 3(a)]. Similarly define the leftmost point Hl j,

the rightmost pomt H’ the topmost point H“ and the bottommost point Hl 0
F;(i, j). Note that if one of the tangent lines vﬁl e vEl’ i hE“] or thJ lies on the
boundary of the cell, then we consider the correspondlng point to be undefined. (For

example, in Fig. 3(a), H" is undefined as vl" lies on the boundary.) Finally, let Z¢ i

be the highest and Ib the lowest point of L
often dropped.

HFRE When i, j is fixed, the subscript is

The above notation will be used throughout the paper as it defines the relevant
extent measures of the relative free space. Here we also define the point w, to be the
intersection point of LaF +1 with #£“, or, more generally, if they do not intersect,

w, is the lowest point of La i+ that is above h¢“. (Note w, is the lowest reachable
point when passing over the hole Fs(i, j), and may possibly be undefined.) For the
four cases below we consider four points p,, p;, pp, and p,. We assume these points
are defined, though they may not be depending on the structure of Lf j and Bf I in
which case there is nothing to propagate.
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(a) Free space cell (M) Bf o LF, ., ©Lf oLl .

Fig. 3 Left, labeled parts of the relative free space from the segments in Fig. 2(c). Center and right,
propagating reachable relative free space from BiRj and L lRJ respectively

1) Propagating BI.R ;

a) Below Fs(i, j): Let p, be the rightmost point of Brf/. (note we may have

BrlF I BF ). In this case there is a monotone path along the boundary of

Fi(, ) from p, to I, and hence all of Lbl it is reachable, i.e., LbR
Lbl Lj+1

b) Above F(i, j): Let p; be the intersection point of BlR] and the line v¢/, and
let w, be as described above. If either p; or w, is undefined there is nothing
to propagate. Otherwise there is a monotone path from p; to w,. Specifically,
follow the line of v¢/ from p; to ', then continue along the boundary of Fs(i, j)
to H%, and then follow A€ to w,. Hence all the points in La .1 that are at
least as high as w, are reachable from p;, see the blue path in F1g 3(b).

i+l T
See the green path in Fig. 3(b).

2) Propagating LiR f

a) Below Fs (i, j): Let p;, be the lowest point of Lbfj (note we may have Lbfj =
R ) If pj, lies above hf”, then there is nothing to propagate. Otherwise, the

reachable points on Lb s coming from monotone paths from p, (that pass
below F(i, j)) can be found by Walklng as low as possible through the cell.
Specifically, if there is a point Lbl’ 1 at the same height as p; then we can
walk horizontally directly to it, otherwise when we walk horizontally we bump
into the boundary of F, (i, j) and follow it up to Z? [green path in Fig. 3(c)]. In

either case all higher points on Lbl 1 are reachable.

b) Above F;(i, j): Let p, be the lowest point of LaR If p, lies above he? then
by walkmg horizontally to the right boundary of the cell we can reach all points
of Lal’ i1 that are at least as high as p, (note there may be no such points).
Otherwise, there is a monotone path from p, to w, (if w, is defined). There are
two cases based on the relative heights of p, and the point H!. If p, lies below
H', then the monotone path walks horizontally from p, to v£/, then vertically
on ve! to H!, then continues along the boundary of F(i, j) to H%, and then
horizontally to w, [lower blue path in Fig. 3(c)]. If p, lies above H/, then the
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monotone path walks horizontally from p, to the boundary of Fy(i, j), then
continues along the boundary of Fs(i, j) to H“, and then horizontally to wy
[upper blue path in Fig. 3(c)]. In either case all the points in La 4 thatare at
least as high as w, are reachable.

Theorem 3.3 Given polygonal curves i of length n, o of length m, and an interval
[s, t], the Fréchet gap decision problem, Problem 3.1, can be solved in O(nm) time.

Proof First compute LI jand BF jforalll <i <n, 1< j<m. Nextinitialize the
reachable subset of left boundary of the entire relative free space diagram, i.e., |_; LiRl .
To do so, consider the entire free space of the left boundary, Ui Lf 1» and mark all

points in this set that are reachable (by paths restricted to |J; LE ) from (0, 0). Note
if (0, 0) is not in the free space, we return ‘no’ as the answer to the decision problem.
Similarly initialize the reachable subset of bottom boundary of the entire relative free
space diagram. Now propagate the reachable sets using any topological ordering of
the cells (e.g. go in increasing column order, and for each column go by increasing
row order). Specifically, for each cell C(i, j) we use LR and BR (and LF it and

B, +1 j) to compute L, i+ and Bl 1) , as described above. We then return ‘yes’ if
(n, m) is in the reachable space and no otherwise.
As for the running time, L; F and B; Ftake O(1) time to compute per cell, and there
are O (nm) cells. Initializing the reachable sets then takes O (n + m) time. As argued
above, forany i, j, LR and BR are composed of at most two disjoint intervals hence

propagating the reachable 1nf0rmat10n to LR 41 and Bl iy takes O (1) time per cell,
and again there are O (nm) cells, so this is the total running time. O

4 Finding the Relative Free Space Critical Events

In this section we describe the relative free space critical events, that is a polynomially
sized subset of possible intervals, which must contain an optimal interval [s*, *]. The
relative free space events are significantly more complicated than the free space events
for the standard Fréchet distance. The following definitions will be used throughout
this section.

Definition 4.1 Two free space cells C(i, j) and C(k, () are adjacent if they share a
horizontal or vertical boundary, i.e.,k = iand|/—j| = l,or!/ = jand |[k—i| = 1.Call
any monotone path from (0, 0) to (n, m) in the relative free space a valid path. Given
any valid path p, the cell sequence of p, denoted cp(p) = (C1, ..., Chtm—1), is the
ordered sequence of cells p intersects (so C1 = C(0, 0), Cyym—1 = C(n—1,m—1)).

We now define a number of other sequences determined by p. Let the entry point
e; be the point where p first intersects the cell C;, and define the entry sequence of p
asentry(p) = (e1, ..., en+m), where e; = (0, 0) and e, 4, is defined as (n, m). Let
int(p) = (I, I3, ..., I,+m—1) denote the sequence of boundary free space intervals
passed by p,i.e., e; lies on [;. For horizontally adjacent cells C (i, j) and C(i, j+1) in
the cell sequence, p either passes above or below F (i, j), specifically if p intersects
the vertical segment connecting ¢ to the top boundary of C (i, j) then p passes above
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F;(i, j), and otherwise p passes below. Similarly, for vertically adjacent cells C (i, j)
and C(i + 1, j) in the cell sequence, p either passes to the left or right of Fi(i, j);
specifically if p intersects the horizontal segment connecting H’ to the right boundary
of C(i, j) then p passes to the right of F(i, j), and otherwise p passes to the left.
This defines the passing sequence of p, denoted pass(p) = (hy, ..., hyym—1), where
h; € {above, below, left, right}.

For the standard Fréchet distance, Alt and Godau [4] specified the following set of
distance values, called the critical events, which must contain the optimal Fréchet
distance.

e [nitialization event: The minimum value ¢ such that (0, 0) € F; and (n, m) € Fp.

e Connectivity events: For any cell C;, the minimum & such that L/ or B/ is non-
empty, corresponding to the distance between a vertex of one curve and an edge
of the other.

e Monotonicity events: Let I; and Iy be two non-empty vertical free space boundary
intervals in the same row with /; left of I; (or horizontal intervals in the same
column). The minimum & such that Ii.’ < I, that is, there is a monotone path
between /; and .

Since any valid path can be decomposed into a set of row and column subpaths, proving

that dr(r, o) is one of the above defined critical events is a straightforward task.
For the Fréchet gap distance, the critical events will be a superset of the standard

Fréchet events. As an optimal gap is defined by an interval [s, ¢], the events below

can either be a value of s or a value of 7. A critical interval is then any valid s < ¢

pair from the first three critical event types defined below. Additionally, there is now

a fourth type called a floating monotonicity event. These events directly specify the

s, t pair (i.e., these “events” are also “critical intervals”), and there are potentially an

infinite number of such events.

1) Initialization events: The values s = min{||7rg — op||, |7y, — owll} and ¢t =
max {||ro — ooll, |7n — o |l}. That is, the supremum of values for s such that
(0,0) ¢ Fs and (n,m) ¢ Fs, and the minimum value of 7 such that (0,0) € F;
and (n, m) € F;.

2) Connectivity events: For any row i and column j, the values dist(7t;, 0j0j+1),
dist (1, 0j0j41), dist(w; w41, 0}), dist (w; 7w 41, 0 4+1), for either s or 7. In other
words, for cell C; ;, the maximum value s such that 7¢, HP, H!, or H" are defined,
or minimum value ¢ such that Z¢, Z? (or similarly any of the other three cell bound-
ary intervals) are defined. Note 7¢, TP are first defined at the same location/value
where H" is last defined, yet we still regard these as separate events, one for s and
the other for ¢. (For s this is when the free space intervals may break into two, and
for 7 it is when the interval is first non-empty.)

3) Standard monotonicity events: For any cells C;, Cy in the same row with C; to the
left of C:

(a) The value ¢ such that height(l'j.’ ) = height(Z}); Fig 4(a).
(b) The value s such that height(H?) = height(Hl}Z); Fig. 4(b).

4) Floating monotonicity events: For any cells C;, Cy in the same row with C; to the
left of Cy:
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Fig.4 Opening of a horizontal passage

(a) Any pair s, t such that height(l'jb. ) = height(H,l: ); Fig. 4(c).
(b) Any pair s, ¢ such that height(H?) = height(Z}}); Fig. 4(d).

Here height(-) denotes the vertical coordinate of a point in the relative free space.
Analogous definitions apply to the case when cells are in the same column. Note that
depending on the geometry such events may not be defined.

Let S and S; denote the set of values for s and ¢, respectively, determined by the
initialization, connectivity and standard monotonicity critical events, and let S; x S;
denote the corresponding set of valid critical intervals determined by these values. Let
SF be the set of s, ¢ intervals determined by floating monotonicity events. The set of
all critical intervals is then S; = Sg U (S; x ;).

Lemma 4.2 S; contains any optimal Fréchet gap interval [s*, t*].

Proof For the sake of contradiction, suppose [s*,t*] ¢ S;. As [s*,1*] is a feasi-
ble Fréchet gap, there must exist a valid path p in Fjs« . Let the cell, passing,
entry, and interval sequences of p be cp(p) = (Ci,...,Chim—1), pass(p) =
(h1, ... hpem—1), entry(p) = (e1,...,entm), and int(p) = (12, I3, ..., Ln+m—1)
(see Definition 4.1). In this proof we will show that if [s*, 1*] ¢ S; then the canonical
form of p which, subject to having the same cell and passing sequences as p, locally
remains as low and left as possible (i.e., follows the reachable free space propagation
rules of Sect. 3), will also define a valid path in the free space after either increasing
s* or decreasing r*.

Let S7. = {r : (s*,1) € Sr} (which may possibly be empty). Since [s*, t*] ¢ S;
it must be that t* ¢ Sy. Also since [s*,1*] ¢ Sy, either s* ¢ S; or t* ¢ §;, and
we will assume it is the t* ¢ S; case (the s* ¢ S case is argued similarly). Let
tinit = max {||mo — ooll, ||[rn — om ||} be the corresponding ¢ value of the initialization
event, and hence tjpit € S;. Note that because [s*, t*] is feasible, finie € [s*, t*] (as any
valid path contains (779, 0p) and (7, 0,,,)). Since we assumed t* ¢ S;, this implies
tinit € [s%,1%), and so [s*, 1) N S; # @ (moreover, s* # t*). Solet T = §; U S},
and let 1~ be the largest value in 7 that is < t*, which we just argued must exist and
t~ € [s*, t*) (in particular we later use that (¢, t*] N T = @).

We now show there is a valid path in the free space Fj+ ;~—1, which s a contradiction
ast~ < t*, but [s*, r*] was optimal. Specifically, we argue there is a valid canonical
path p’ in Fs+ ;1 with the same cell and passing sequences as p. To this end, define
entry(p’) = (e}, ...,e,,,,) such that (i) e] = e; = (0,0), (ii) €,,,,, = €pym =
(n, m), and (iii) for 1 < i < n 4+ m, if I; is vertical (resp. horizontal) then el’. is the
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lowest (resp. leftmost) point in Fj;« .~ N I; that is above (resp. right of) e/ _,, and also
above H{_,, (resp. right of H!_,) if h;_; equals above (resp. right). We now argue
that the points in this entry sequence are well defined, and hence p’ is a valid path
through Fig« ;.

First observe thatas (+—, t*]NT = @, initialization events cannot lie in this interval,
and so ¢} and e, ,, must be in Fj;+ ;). Now we inductively argue that for all other
1<i< n+m,e; is well defined. Againsince (¢, t*]NT = @, Fg« ,—1N1; is notempty
forall 1 <i < n+m.So fix anindex 8, and assume el’g_l is well defined. Without loss
of generality assume Ig is a vertical edge (the horizontal case is handled similarly).
If Ig_1 is on a horizontal edge then clearly, if hg_; equals below, e//3 = Ié?f] , which
is well defined as s* is fixed and (+7,t*1 N T = . If hg_1 equals above, then in
Fig+ ;-1 it must be that 61/3*1 is on the left of Hfafl and height(H%fl) < height(ngl ),
as this was true in Fj¢+ ;] and we assumed there were no monotonicity events in
(t—,t*] N T. In other words we can pass to the left and above the hole, and thus
e;g is well defined. Also note in this case that either height(el’g) = height(H%_l) or
height(ejy) = height(Igfl).

Now suppose /g_1 is a vertical edge and moreover, let Iy, Iy11, . .., Ig be the earlier
boundary intervals in this row, i.e., it is the maximal length contiguous subsequence
of vertical boundary intervals ending at /g. As el’s_1 is well defined, we must have
either height(e}#]) = height(H‘]‘.) forj < B/ —1or height(e:gfl) = height(Ij?)
for j < B — 1, as p’ locally remained as low as possible (i.e., there must be a
free space object responsible for pushing e/’g_1 to that height). Therefore if the point

/

€y is not well defined then it must be that either height(Ig_l) < height(H?) or
height(Ig_l) < height(IjJ ) for j < B — 1. The latter case is not possible, as it implies
there must have been a standard monotonicity event in (¢, *] (as clearly for Fis« ;]
there was a monotone path and so height(Ig_l) > height(I;? )), but we assumed
(t—,t*1 N S; = @. For the former case, observe that height(H‘]’.) is unchanged from
Fig+ ) to Fg« ;—1, and so it would imply there was a floating monotonicity event in

(t—, t*] N S%, but we assumed this intersection was empty. O

4.1 Bounding the Number of Critical Intervals

In this subsection we bound the number of critical intervals, i.e., |S;|, by carefully
considering their geometry. An interval [s, t] € Sy, is either in S; x S; or Sg. Thus to
bound S7 we first bound the sizes of S and S;, which are determined by initialization,
connectivity, and standard monotonicity events. Initialization events are determined
by either the distance between the starting vertices ||g — oy || or the distance between
the ending vertices ||7r,, — 0y, || and thus there are only two of them. Connectivity events
are determined by the distance of a vertex o; from an edge ;741 (or a vertex 7r; from
an edge oo 1). That is, the smallest value § such that the ball B(o;, §) intersects
7; i +1. Thus there are O (nz) such events.! A standard monotonicity event of type (a)
[Fig. 4(a)] is determined by a pair of vertices o; and oy, where j < k, and an edge

1 For simplicity, from this point onwards we assume without loss of generality that m < n and only write
sizes and running times with respect to n.
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;7 41. Specifically, such an event occurs at the minimum value § such that B(o;, ),
B(oy, 8), and ;i1 have a common intersection point. Thus there are O (n?) such
events. A standard monotonicity event of type (b) [Fig. 4(b)] is determined by a pair
of edges 0011 and oyoy 1, where j < k, and an edge m;m; 1. Specifically, let
B(ojojt1,0) = 0011 ® B(8), where B(9) is the § radius ball centered at the origin,
and ® denotes Minkowski sum. Then such an event occurs at the minimum value §
such that B(0oj41, ), B(0)0k+1,8), and 7; ;1 have a common intersection point.
Thus again there are O(n?) such events. Thus as |Ss|, |S;| = O(#3), we have that
|Ss X S| = O(nd).

Before moving on to bounding the size Sr, we make a few remarks about the
above. First, observe that the above geometric descriptions immediately specify how
to compute each of the corresponding event values, by solving a constant size set of
equations. (Type (b) standard monotonicity events can be computed by considering
a constant number of cases, as B(c;0j41,d) and B(ox0x41, §) are each individually
the union of two § radius balls and a § radius cylinder, as in Fig. 5). Specifically, the
equations governing height(Z¢) and height(H“) are discussed in detail in the next sub-
section, where they are needed to bound floating monotonicity events. Second, note
that initialization, connectivity, and standard monotonicity type (a) events all occur
in the classical (non-gap) Fréchet distance. While standard monotonicity events of
type (b) are technically new, observe that in their above geometric description they are
very similar to type (a) standard monotonicity events. Namely, they differ simply by
replacing a § expanded vertex B(oj, §) with a § expanded edge B(o o041, 8). More-
over, like type (a) standard monotonicity events, they only depend on one parameter
(namely, the s parameter), which significantly distinguishes them and previous critical
events from floating monotonicity events, which depend on two parameters.

Bounding the size of SF is significantly more complicated. In particular, the floating
monotonicity events may give rise to an entire continuum of critical intervals. For
example, consider the second type of floating monotonicity event, shown in Fig. 4(b).
The value of height (H?) is governed only by a function of s and the value of height(Z})
only by a function of ¢. These functions might be such that if we increase or decrease s,
but keep ¢ — s constant (i.e., the gap value we are optimizing), height(ij) =height(Z}})
remains an invariant. (Hence the term “floating” events.)

We next describe the functions which govern how s and ¢ can vary so that
height(H?) = height(Z}) remains an invariant. Ultimately our understanding of these
functions will yield a polynomially sized set of canonical critical intervals (determined
by vertices of the arrangement of these functions), which must contain an optimum
gap interval.

4.1.1 Function Description of Floating Monotonicity Events

Consider the floating monotonicity event of type 4(b) (similar statements will hold for
type 4(a). Such an event is specified by a triple of indices, i, j, k, where i specifies an
edge m; ;41 (i.e., arow of the relative free space), j specifies an edge 0011 (i.e., a
column), and k > j specifies a vertex oy (i.e., the right boundary of a column). The
event occurs when height(H‘/‘.) = height(Z}}) = h.
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Ti+1

(a) Distance from oy, (b) Distance from o; (¢) Distance from 00+

Fig.5 How point p determines s and . In general segments may not lie in a single plane

Geometrically, a fixed height # corresponds to a point p on m;m;4+1. The point
H;? is determined by s, and Z; by ¢. First let us understand Z}. In order to have
h = height(Z}), t must be such that t = ||ox — p/||, and moreover p must be the higher
(i.e., closer to ;1) of the possibly two points on ;1 satisfying this condition (the
other point determining I}j ). Consider the plane determined by 7;, 7;41, and oy, and
let 7; = (0,0), p = (0, h), and o = (¥, y) [see Fig. 5(a)]. Then as a function of
h, t is described by the equation 1 = \/x? + (y — h)%. Note that Z{ is only defined
when t € [t1, t2], where #; = dist (o, wi7;i4+1) and t = |lox — wi+1]], and hence the
equation is only relevant in this interval.

height(H;f) on the other hand is determined by s, however the relationship is a bit
more complicated. Observe that H‘]‘. is the only point on the horizontal line hZ‘; that is
in the set F(i, j), meaning the point on 0041 that H‘; corresponds to must be the
closest point on 0041 to p [see Fig. 5, (b) and (¢)].

If this closest point is either o; or o1, then the form of the equation for s in terms
of i is the same as it was for ¢, namely s = /a? + (8 — h)? (where «, 8 are now
the coordinates of either o or o;41). Otherwise this closest point is in the interior
of 0041 in which case the equation is of the form s = ch + d, for some constants
c and d (since as one walks along a line, the distance to another fixed line is given
by a linear equation). Similarly to Z¢, H¢ is only defined when s € [s1, s2], where
s1 = dist(ojoj41, mimwiq41) and sp = dist(o0;41, wi+1), and hence the equation is
only relevant in this interval.

Now that we have a description of height (H‘]‘.) in terms of s and height(Z}) in terms
of z, we can describe the function for  in terms of s, denoted f; ; x (s), which describes
when height(H?) = height(Z}!) = h. There are two cases based on the form of the
function describing s.

e Interior of 0joj41 case: s = ch +d andt = /x> + (y — h)? imply

—d 2
fijk(s) = \/(ST - J/) + x2.
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Fig.6 Two cases for curve piece f; j k. and shaded satisfying points in s, ¢ parametric space

e Endpoint of o041 case: s = /o> + (B —h)? and t = \/x? + (y — h)? imply
2
fijk(s) =\/(vs2—a2+ﬂ—y) +x2.

To summarize, f; j x(s) is composed of at most three hyperbola? pieces (each piece
corresponding to the closest point to p being o}, the interior of 0011, or 0j41),
and is only (possibly) defined within the region s € [s, s2] and ¢ € [f1, 2], see
Fig. 6. Also, the geometry of the problem implies that when f; ; (s) is defined, it is
a monotone increasing function. Hence the intersection of f; ; x with the bounding
box [s1, s2] x [1, 2] is connected, and so rather than using this box to define f; ; .
we instead say f; ; x is either completely undefined or is defined only in the interval
[s!, s"] where s/ and s” are the s coordinates where fi,j.k respectively enters and leaves
the bounding box. Note that one can argue if f; ; i is defined then s” = s, however, it
may be that s' > s; (if the closest point to 0j0j+11s lower on 7r; ;11 than the closest
point to o).

The exact form of the equation f; ; x(s) is not needed in our analysis, however, the
above discussion implies the following simple observation which will be used later.

Observation 4.3 In the s, t parametric space f; ;i is either undefined or defines a
constant complexity monotonically increasing curve piece, with endpoints at values
sf’jyk < Sir,j,k' In particular, f; jx has only a constant number of local minima and

maxima (i.e., points of tangency) with respect to translations of the line t = s.

Note that for 4(a), i.e., when height(Ij.’ ) = height(HZ), fi,j.k can be defined simi-
larly, and the above observation again holds. One must also define functions for the
analogous events in the free space columns. Such functions are again determined by
triples i, j, k, however now i, j refer to rows and k to the column. Below we will
denote these functions by g; ; «.

4.1.2 Events Minimizing the Gap

As discussed above each f; ; ¢, if defined, gives an entire continuum of critical inter-
vals. However, ultimately we are only interested in feasible intervals which minimize

2 Technically, the endpoint case is not a hyperbola, though it is similar.
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the gap, and this will allow us to reduce this continuum to a polynomial number of
canonical intervals. This polynomially sized set is determined not only by the f; ; «,
but also by the other types of critical events. Note that initialization (1), connectivity
(2), and standard monotonicity events (3) only define constraints on either just s or ¢,
whereas the f; ; x and g; ; x define a continuum of [s, ] intervals. Hence to put them
on equal footing we think of all of them as defining constraints in the two dimensional
s, t parametric space.

First observe that in the parametric space, for any point (s, ¢) of interest, 0 < s < ¢,
and so we only consider points in the first quadrant that are above the line t = s.
Initialization, connectivity, and standard monotonicity events are simply defined by
horizontal or vertical lines. Specifically, for each such event the points satisfying the
corresponding constraint are those above (resp. left of) the corresponding horizontal
(resp. vertical) line:

1) Initialization events: s < ag, t > Bo. Here g = min {||mg — oo ||, |77, — o ||} and
Bo = max {||lo — ooll, |70 — om I}

2) Connectivity events: s < ocll.’j ors < agj, t > ,81?’]. ort > ﬂﬁj. Here the «; ;
and B; ; are vertex-edge distances, that is af’j = :31?,] = dist(;m;41,0;)) or
aﬁj = ﬁﬁj = dist(77;, 00 j4+1). Note defining both ¢; ; and §; ; is not necessary
but useful to distinguish constraints on s from those on 7.

3) Standard monotonicity events: s < ; (jx) OF § < a(, j k>t = Bi (k) Ort >
B, j,k- This happens when the free space is such that o; (j x) = height(H?’ j) =
height(’Hf”k) or o j)k = height(Hf"k) = height(Hl;’k), and when B; (jx) =
height(Z} ;) = height(Z?}) or B jx = height(Z},) = height(Z9 ).

4) Floating monotonicity events: ¢ > f; ; x(s) fors € [sffj’k, sl.r,j;.’k], ort > giji(s)

fors € [sff k> 515 1] Note that, depending on the geometry, such constraints may

not be defined.
Note that the first three event types each partition the entire parametric space into
two connected sets, those which either satisfy or do not satisfy the constraint. The
fi.j.x (and g; j x) can also be thought of in this way, see the shaded regions in Fig. 6.
Specifically, (s, ¢) satisfies the constraint if # > #1, s < sp, and if 5 € [s’, s”] then
(s, 1) must lie above the curve f; ; x. Otherwise (s, t) does not satisfy the constraint.

Any valid path in the relative free space must have a well-defined cell sequence
(C1, ..., Crym—1) and passing sequence pass(p) = (h1, ..., hy+m—1) (see Defini-
tion 4.1). Moreover, such a pair of sequences precisely determine a subset of the
constraints defined above, such that there is a valid path with this cell and passing
sequence if and only if all constraints in the subset are satisfied (this is implied by
Lemma 4.2). Thus for a given cell and passing sequence we want to solve the opti-
mization problem (see Fig. 7 for a visualization):
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t J,,’t/—s =c

S

Fig.7 Constraints defining the shaded feasible region, and corresponding optimal point

min t—s
subject to
t>s5>0,
<, where a = min {ao, otfl’jl , af’z,jz, Uiy, (ja.ks)» Qs ja) ke | OVer all
(i1, 1) € Z1, (i2, j2) € Z2, (i3, J3,k3) € Z3, (i, ja. ka) € Z4
> B, where B = max { o, ﬂfs,js’ ,3;;,;67 Bir. Gy k) Blis. js) ks } over all
(is, js) € Zs, (s, Jo) € Zs, (i7, j7.k7) € Z7, (i3, j8. ks) € Zg

) ..
> fi jx(s), forse [si‘fj’k,s{fj’k] Y, j, k) e Zo

5

~

~

l r ..
1> gijk(s), forse[s’ ;%] VG, j k) e Zio

where the sets Z, ..., Zjo of index tuples are determined naturally by the cell and
passing sequences. We skip the tedious and unenlightening full description of these
sets, though give a quick example for clarity. For some index w, look at C,, and Cy,41
in the cell sequence, and suppose that C,, = C; j and Cyy1 = C; j41. Then we
require t > ﬂf’jﬂ and thus (i, j + 1) € Zs. Similarly, if say h,,+1 = above then we
require s < ag’+1,j+l andthus i + 1, j + 1) € Z».

Clearly the optimal value of this optimization problem must lie on the boundary of
at least one constraint. In particular, the optimum lies either at the intersection point
of the boundaries of two constraints, or at a local minimum of one of the boundary
constraints, with respect to the objective of minimizing r —s. By Observation 4.3, each
fi.jkor gi ik has at most a constant number of local minima, and as the boundaries
of all other constraints are straight lines, this is also true for every boundary function.
Thus we have now determined the set of canonical critical intervals discussed earlier
in this section.

Lemma 4.4 The above defined constraints, determined by all types of critical events,
determine an O (né) sized set of canonical critical intervals, i.e., (s, t) pairs that must
contain an optimal gap [s*, t*].
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Proof Any optimal gap determines a cell and passing sequence of some valid path
in the corresponding relative free space. Above it was discussed how such sequences
determine a subset of constraints, where the optimum gap width is determined either
at an intersection of the boundaries of two constraints or at a local minimum of an
fi.jkor g j k. Now a priori we do not know the cell and passing sequence of a path
determining an optimal gap, hence we will consider them all. So consider the arrange-
ment of all planar curves defined by the boundaries of any of the possible constraints
defined above. There are a constant number of initialization constraints, O (n2) pos-
sible connectivity constraints, and O (1) possible standard or floating monotonicity
constraints. Due to the particularly nice form of these curves, each pair intersect at
most a constant number of times, and hence there are 0(n6) intersections overall.
Moreover, as discussed above, each curve has only a constant number of local minima
with respect to the objective of minimizing ¢t — s. Hence this arrangement determines
as set of O (n®) points, at least one of which realizes the minimum gap width. O

The above discussion also implies the following observation.

Observation 4.5 Whether or not a given (s, t)-pair is feasible for the Fréchet gap
problem, is solely determined by which constraints the point satisfies or does not
satisfy. So consider the arrangement of curves determined by the boundaries of all
the constraint types discussed above. Then within the interior of a given cell of the
arrangement all (s, t)-pairs are thus either all feasible or all infeasible.

5 Exact Computation of the Fréchet Gap Distance

The O (n®) critical intervals given by Lemma 4.4 together with the O (n?) decider of
Theorem 3.3, naively give only an O (n®) algorithm for computing the Fréchet gap
distance, as there is no immediate linear ordering to search over the events. However,
here we give a much faster O (> logn) time algorithm to compute the Fréchet gap
distance exactly.

The standard Fréchet distance is computed in O (n2 log n) time by searching over the
O (n?) critical events with an O (n?) time decision procedure. This searching originally
was done with parametric search [4], though for our purposes the simpler sampling
based approach of [21] is more relevant.

Searching is a far more challenging task in the Fréchet gap setting. Specifically, in
the standard Fréchet case there is a linear ordering of the critical events, and in this
ordering all events are infeasible up until the true Fréchet distance, and then feasible
afterwards. However, in our two dimensional parametric space there is no such natural
linear ordering. Moreover, recall that even if an interval [s, ] is feasible, it does not
imply [s, ¢] contains an optimal gap as a subinterval. Crucially, however, we have the
following observation.

Observation 5.1 Let (s, t) be a feasible point. Then observe that any point (s',t')
such that s' < s and t' > t is also feasible. Namely, all points in the upper left
quadrant centered at (s, t) are feasible. This implies that given any two feasible points
(s1,t1) and (s2, t2), there is a path between them consisting of only feasible points,
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i.e., the set of all feasible points is connected. Specifically, the above implies the
line segments (0, t1)(s1, t1) and (0, t2)(s2, t2) consist solely of feasible points. Again
applying the above, the segment (0, t1)(0, t2) consists solely of feasible points. Thus
the path ((s1, t1), (0, 1), (0, £2), (s2, t2)), consists only of feasible points.

The algorithm for exact computing the Fréchet gap distance uses the following sub-
routines.

e deciderPoint (s, r): Decides whether or not the pair (s, ¢) is feasible, in 0 (n?)
time.

e deciderLine (¢): Given a positive number c, returns “below” if there is any feasible
(s, t)-pair with t — s < ¢, and returns “above” otherwise. The running time is
o).

e sample(r): Samples r (s, t)-pairs, independently and uniformly at random, from
the set of O (n°) canonical critical pairs of Lemma 4.4. The running time is O (r).

e sweep(cy, c2): Returns the set of all canonical critical (s, #)-pairs of Lemma 4.4
suchthatc; <7 —s < ¢, in O((n® + k) log n) time, where k is the number of
such critical pairs.

First observe the subroutine deciderPoint(s,?) is given by Theorem 3.3.
deciderLine(c) is computed as follows. First compute the intersection points of
the line, t — s = ¢, with the O(n3) boundaries of all the constraints discussed in
Sect. 4.1.2. Since these constraints are horizontal/vertical lines or f; j «/gi j.k» by
Observation 4.3, there are O (n3) intersection points. Thus calling deciderPoint on
each of these intersection points, takes O (n5 ) time as deciderPoint takes O (n?) time.
By Observation 4.5, if all these point queries return infeasible, then all points on the
line t — s = c are infeasible. In this case, the feasible region must lie entirely above
the line r — s = ¢, since by Observation 5.1, if a single point below the line were
feasible, then the point on the line directly above it must also be feasible. On the other
hand, if one of the point queries returned true then the optimal gap width is at most c,
and so any optimal gap pair must lie below (or on) the line t — s = c.

The subroutine sample (r) is also straightforward. Specifically, every canonical
critical pair is either a local minimum or an intersection of the boundaries of two
constraints from Sect. 4.1.2. Thus in order to sample a canonical critical pair, we
sample either one or two constraints®, where whether we sample one or two is done
in proportion to the number of pairs versus single constraints. Each constraint is
determined by either a pair or triple of indices (and a few bits, such as whether the side
of bottom of a cell, etc.), and hence each can be sampled in O (1) time (again done
proportionally to the number of triples versus pairs of indices). Thus r canonical pairs
can be sampled in O(r) time.

Thus what remains is to describe the subroutine sweep, for which we have the
following.

Lemma5.2 Given two real values 0 < c; < ¢, one can compute the set of all
canonical critical (s, t)-pairs of Lemma 4.4 such thatc; <t —s < ¢, in 0((n3 +

3 Note the number of local minima per constraint and the number of times two constraints intersect is
a constant, but the constant may be larger than one. Thus technically the described sampling is not truly
uniform. One can make it uniform, though this distinction is irrelevant for our asymptotic analysis.
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k) logn) time, where k is the number of such critical pairs. This algorithm is denoted
sweep(cy, €2).

Proof 1t is well known that one can compute the set of all k intersection points of a
set of m x-monotone constant-complexity curves in O ((m + k) logm) time using a
horizontal sweep line in the standard sweep line algorithm of Bentley and Ottmann
[8]. In our case the curves are given by the O (n?) constraints of Sect. 4.1.2, clipped
to only be defined in the region bounded by the lines t —s = ¢y and t — 5 = c3.
The constraints with straight line boundaries are s-monotone, and by Observation 4.3
so are the f; jx and g; j . Thus the claim follows by applying the standard sweep
line algorithm to our case. Note that our problem involves degenerate horizontal line
segments, which can still be handled (with some care) when using a horizontal sweep
line, though alternatively one could avoid such issues using a diagonal r — s = ¢
sweep line in which case one should first cut the f; ; «/g;, .« into pieces at their local
maxima/minima (with respect to the line ¢ — s = ¢), to maintain monotonicity. O

1R= sample(otn4) // o a sufficiently large constant

2 Sort R = {c=1t—s:(s,t) € R} in increasing order

3 Binary search over R using deciderLine (c) for the interval [c1, c2] s.t.
deciderLine (c¢;) = above and deciderLine (c;) = below // Set
initial values ¢; =0, ¢ =00

4 S =sweep(cy, ¢2)

5 Call deciderPoint (s, ) on each (s, t) € S, and
return the feasible pair with smallest # — s value.

Algorithm 1: Computing the Fréchet gap distance

The algorithm for computing the Fréchet gap distance is shown as Algorithm 1.
We need the following lemma to bound the number of critical pairs that we end up
searching over.

Lemma 5.3 Let [c1, c2] be the interval described in Algorithm 1. Then with exponen-
tially high probability, this interval contains O(n>) canonical critical pairs.

Proof Let C be the set of all canonical critical pairs as described in Lemma 4.4, thus
IC| < Bn® for some constant f. Let C = {c=1t—s:(s,t) € C}, and let R be the
sampled subset of C as described in Algorithm 1. Note that multiple values in C may
map to a single value in C. This technicality is discussed below, but for now assume
ICl = ICI.

Consider the sorted placement of the values in C along the real line, and let x be
any point on the real line. Let U™ (resp. U ™) be the closest n3 values from C larger
(resp. smaller) than x. Suppose |U™T| = n? (note it may happen that |U < nd,ifx
is large enough). Then the probability it does not contain a value in R is

|UT| an' nd \o' —an’ —an 2
1 — —— =(1-— < exp ——— = exp <e
Bn® Bno n
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for any constant ¢, by choosing « sufficiently large. A similar statement holds for
|U ™|, and thus taking the union bound, a similar statement holds simultaneously for
both U~ and U™. R

Note there are only a polynomial number of possibilities for each value in R (specifi-
cally O (n°)). Thus by setting x to each one of these values, and taking the union bound,
it holds that between any two adjacent values in R (or in the unbounded end intervals),
with high probability there are at most O (n?) values of C, thus implying the claim.

As mentioned above, technically multiple pairs in C may map to a single value in C.
This can be remedied by treating C as a multiset. Then by defining an arbitrary order
over multivalues, the above analysis will still hold, except potentially at the endpoints
of the interval [cy, c2] (as we include all critical pairs with these values). Observe
however that (in the absolute worst case) there are at most O (n°) pairs which get
mapped to either value c; or ¢3 in C, and so the lemma holds. O

Note that there is a huge amount of slack in the above argument, and in more than
one way. Specifically, even though we have an exponentially high probability bound,
it can be further improved by taking a larger random sample. Also we could have
argued, with polynomially high probability, that the number of canonical critical pairs
in [c1, c2] is only O(n?logn) (taking more care in the argument at the endpoints).
However, ultimately this would not change the asymptotic running time, as the real
bottleneck for the algorithm is in searching with the O (n°) time deciderLine.

Theorem 5.4 Given polygonal curves w and o, each of length at most n, Algorithm 1
computes the Fréchet gap distance in O (n’ logn) time.

Proof The correctness of Algorithm 1 has essentially already been argued. Specifically,
the random sample R partitions the real line into intervals based on the values in k.
One of these intervals contains the optimal gap width, implying the interval [cy, ¢>]
found by searching using deciderLine(c) is well defined. Moreover, S contains a
canonical critical pair with optimal gap width as sweep (cy, ¢2) returns all canonical
critical pairs in the region bounded by the lines t —s = c¢; and t — s = ¢, and by
Lemma 4.4 the set of canonical critical pairs contains a pair with optimal gap width.
As deciderPoint is called on all pairs in S, the algorithm will find this optimal gap
pair.

For the running time, calling sample (an*) takes O(n*) time. Sorting R takes
O (n* log n) time, and searching over R takes O (n” logn) time as deciderLine takes
0 >) time. By Lemma 5.2, sweep(cy, c2) takes o(n® + |S]) logn) time. Call-
ing deciderPoint on each pair in S takes O(|S|n?) time, as deciderPoint takes
O (n?) time. By Lemma 5.3, with high probability |S| = O (n?), so sweeping and all
deciderPoint calls combined take O (n°) time. Thus the overall time is O (n° logn),
i.e., dominated by the time to search with deciderLine. O

6 Approximation

In this section, we propose an efficient algorithm to approximate the Fréchet gap
distance, based on the following simple fact. Let d,, be the average of the starting and
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Fig.8 Two centered points and their projections

ending vertex pair distances of 7 and o, thatisd, = (dp+d,)/2 where d;, = || —oo||
and de = [|7wy — o |-

Observation 6.1 If a parametric point (s, t) is feasible then s < d, < t.

This implies we only need to consider parametric points such that s < d, < t,
which we call centered points. Define the radius of any such point (s, ¢) tobe rs ; =
max {t — d,, d, — s}, and define the projection to be proj (s, t) = (dp — V5.1, dp+s.1).
See Fig. 8.

Observe that in order to get a 2-approximation it suffices to restrict our attention
to projected points (as [s, t] € [d, — 5.1, dy + 1s,¢] for any centered point (s, t)), and
the advantage is that projected points are more nicely behaved. Specifically, projected
points define a linear ordering by the parameter r with the nice property that if (d, —
r, d, + r) is feasible then for any r’ > r it holds that (d, — t', d, + r’) is also feasible.
Moreover, below we show that the O(n°) critical intervals of Lemma 4.4, can be
reduced to O (n?) in this setting, intuitively since now there is only a single parameter
r, rather than independent s and 7 parameters.

6.1 Simplification of Critical Events

In Sect. 4.1.2 we described a set of four different types of constraints over the (s, 7)
parametric space (relating to initialization, connectivity, and standard and floating
monotonicity events), and saw that the Fréchet gap distance is realized by minimizing
t — s over some (unknown) subset of these constraints. Recall from that section that
each such constraint partitions the parametric space into two sets, those satisfying and
those violating that constraint. Label these O (n?) constraints in an arbitrary fashion
from 1 to cn, and for the rth constraint let 7, denote the set of satisfying points in the
parametric space (which is a single connected region). We will assume that the P, are
clipped to the subset of centered points such that s < d, < ¢, as we know any optimal
gap pair must lie in this region.

Note that any given constraint in Sect. 4.1.2 is satisfied by lying to the left and
above a straight line or nicely behaving monotonically increasing function, hence we
have the following.
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Observation 6.2 If (s, t) € P, then (s',t") € P, forany s’ < s, t' > t. This implies:

1. proj(P,) € P,, where proj(P,) = {proj(s, t) : (s,t) € P,}.
2. If (d, — r,r—d,) € proj(P,) then (d, — r',r —d,) € proj(P,) foranyr >r.

For each P, let D, be the minimum radius of a point in proj(P,), and let D denote the
set of all D,. Note that each P, is a constant complexity region, and so computing D,
is a constant time operation.

Lemma 6.3 There is a value D € D such that [d, — D, dy + D] is a 2-approximation
to an optimal Fréchet gap, that is [d, — D, dy + D] is feasible and D < dg(m, o).

Proof Let (s*, t*) be a point realizing the Fréchet gap distance. Then (s*, t*) is deter-
mined by some k constraints from Sect. 4.1.2, and let I = {11, 12, ...1x} be the set
of indices of these constraints. Specifically, in that section we argued any point in
(,e; P is feasible and (s*, r*) is the point in the intersection with minimum gap.

Let D = max,¢; D,. Since for all ¢, (d, — D,,d, + D,) € proj(P,), the second
part of Observation 6.2 implies (d, — D,d, + D) € (),¢; proj(P,). The first part
of Observation 6.2 implies any point in (7, ; proj(P,) is also in (),; P;, and hence
(d, — D, d, — D) is feasible.

Let proj(s*,t*) = (d, — r*,d, + r*), which is in [),; proj(P,) as (s*,1*) €
ﬂle ; P.. For some index 1, D = D,, and since each D, is defined as the min-
imum radius of a point in proj(P,), (d, — D,d, + D) must therefore be the
minimum radius point in (*),.; proj(P,), and so clearly r* > D. By definition,
r* =max{d, — s*,t* —d,}andso D < max{d, —s*,t* —d,} <t—s =dg(m,0).

O

6.2 Approximate Decider

Here we show how to efficiently convert any constant factor approximation into a
(1 4 e)-approximation, which is relevant as the previous section proved one of the
O (n?) values in D is a 2-approximation. Specifically, we seek an efficient version of
the following decider.

Definition 6.4 appDeciderLine (c, €): Given positive numbers c, &, returns “true” if
dg(m, 0) < c, and returns “false” if dg (;r, o) > (14 ¢)c. Either “true” or “false” can
be returned if dg(, o) € (¢, (1 + €)c].

Lemma 6.5 There exists an O(n®/¢) time algorithm for appDeciderLine (c, €).

Proof By Observation 6.1, d, € [s, t] for any feasible interval [s, ¢t]. Thus any fea-
sible interval [s, #] with + — s < ¢ is contained in the interval [d, — ¢, d, + c],
and hence we restrict our attention to this interval. We cover this interval with
successive overlapping subintervals of width (1 + &)c, and each shifted by ce
from the previous one. Specifically, let S, be the set of subintervals of the form
[dy—c+ice,d,—c+ice+(1+¢)c],fori =0,..., [1/e] (note, to make calculations
easier below we stop atd, —c+[1/elce+(1+¢€)c > d,+ (1+¢)crather than d, +¢).
Our algorithm for appDeciderLine (c, €) simply checks each one of these intervals for
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feasibility using deciderPoint, and if any interval returns “true” then it returns “true”
and otherwise it returns “false”. deciderPoint correctly checks feasibility in O (n?)
time by Theorem 3.3 and we are testing O (1/¢) intervals, so the running time bound
is immediate. We now prove this procedure satisfies the properties of Definition 6.4.

If dg(m, o) < c, then there is a feasible interval [s, t] with f —s < ¢, which implies
[s,2] C [s, s+c] C [dy—c+jce, dy—c+jce+(1+e)c]where j = [(s—d,+c)/(ce)].
One caneasily verify that0 < j < [1/¢],and so thisintervalisin S,. Hence atleast one
interval in S, is feasible (as containing a feasible subinterval implies feasibility), and
so appDeciderLine (c, ¢) returns “true”. On the other hand, if dg(7, 0) > (1 4 ¢)c,
then no interval in S, is feasible as each interval in S, has width (1 + ¢)c, and so
appDeciderLine (c, ¢) returns “false”. Finally, if ¢ < dg(m,0) < c(1 + ¢), then
appDeciderLine (c, €) returns “false” or “true”, and we don’t care which one. O

Using binary search the above appDeciderLine (c, ¢) can be used to convert a constant
factor approximation (i.e., constant spread interval) into a (1 4 ¢)-approximation.

Lemma 6.6 Given a value ¢ > 0, one can decide if dg(w,0) > ¢, or dg(m,0) < c,
or obtain (1 + ¢)-approximation to dg(w, o), in O(nz/s) time.

Proof 1f ¢ = 0, just test whether [d,, d,] is feasible, and if not return dg (7, o) > c.
Otherwise, call appDeciderLine(c, ') and appDeciderLine(c/(1 + 2¢’), &"), for
a value ¢’ to be determined shortly. Taking the contrapositive of the statements in
Definition 6.4, if appDeciderLine (c, &) returns “true” then dg (7w, 0) < ¢(1+¢), and
if appDeciderLine (c, ¢) returns “false” then dg (7, o) > c.

So if appDeciderLine(c, ¢’) returns “false” then dg(w,o0) > ¢, and if
appDeciderLine(c/(1 + 2¢),¢') returns “true”, then dg(w,0) < c(1+¢')/
(1 4+2¢") < c. Otherwise

c / c / /
dg(]T,O')e<m,c(l+8)i|:m(l,(l+8)(1+25)]
c— 145 =—S (1, 1+¢)
142 1425
where ¢’ = ¢/5 < 1. O

Lemma 6.7 Given an interval [a, B, with o > O, one can either report “dg(w, o) ¢
o, B]7 in O(nz/s) time, or obtain (14 ¢)-approximation to dg(w, o) in 0((n2/£) log
(B/(e))) time, which simplifies to O ((n*/g) log(1/¢€)) time when B = O().

Proof By using Lemma 6.6, one can decide whether dg (, o) < @, dg(m, o) > B, or
obtain (1 4 &)-approximation to dg(w, o) in O (n?/e) time.

If dg(m, 0) € [a, B], divide the interval [c, 8] into subintervals with equal step
distance oe and perform a binary search over these subintervals. When we try the
subinterval [y, ¥ + a€], by using Lemma 6.6, one can decide whether dg (7, 0) < y,
dg(m,0) > y+ae.lfdg(m, 0) < y,continue binary search on the median subinterval
between« and y. Elseif dg (w, 0) > y 4ae, then continue binary search on the median
subinterval between y +-ae and B, otherwise dg (m, o) € [y, y +ae] C [y, y (1+¢€)].
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We searched over O(B/(ae)) values, requiring O(log(B/(ag)) calls to
appDeciderLine (c, ¢/5), hence our procedure takes O0((n?/e) log(B/(ae)) time
overall as claimed. m}

Corollary 6.8 One can (1+¢)-approximate dg(r, o) inO (n34n? logn-(1/¢)log(1/e))
time.

Proof By Lemma 6.3 there is some D € D such that dg(w, o) € [D,2D]. Thus if
for each D € D we call the procedure of Lemma 6.7 to search the interval [D, 2D],
then we are guaranteed to find a (1 + ¢)-approximation. Note that we may query the
value D = 0, which does not satisfy the conditions of Lemma 6.7, though we can
easily check if dg(mw,0) = 0, as then s = d, = t. Each interval we query takes
0((n2 /&)log(1/¢)) time. Thus by using standard linear time median selection over
the O (n?) values in D, the running time follows. ]

6.3 Improving the Running Time

Here we show how to use sampling to improve the running time of Corollary 6.8 by
nearly a linear factor. Specifically, our goal is to find the value D € D for which by
Lemma 6.3, [d, — D, d, + D] is a 2-approximation to an optimum gap interval.

The approach is similar to that in Sect. 5 (and even closer to the algorithm in [21]).
The main difference is that the description of the functions used in the sweeping
procedure is more involved, and so we describe this subroutine first before describing
the full algorithm.

6.3.1 Sweeping

Given values @ < B, we seek a procedure sweep («, ) which returns a superset of all
values D, € D such that D, € [«, B]. The P, regions differ based on which constraint
type from Sect. 4.1.2 they correspond to. In particular, D = Dcopp U Dmono, Where
Dimono is the set of D, € D corresponding to regions which represent monotonicity
events (either standard or floating), and D.py is the set corresponding to all connec-
tivity events (plus the initialization events). The set D¢onp has size O (n?), and thus all
values from this set in [, 8] can be found by brute force in quadratic time, so from
now on we only consider the set Dmono-

Consider all D, € Dpopo corresponding to a fixed row, i.e., a fixed edge 7;7; 1, of
the free space. As discussed in Sect. 4.1.1, for any column indices j < k, a standard
monotonicity event occurs at a value of ¢ such that height(If ) = height(Z}}) or a

value of s such that height(H‘/‘.) = height(HZ), and a floating monotonicity event
occurs at pairs s, t such that height(Ilb ) = height(H,lz) or height(H‘;) = height(Z}}).
From that section we also know the functions for s and ¢ in terms of these heights.
Specifically, height(Z}') is determined by the distance from oy, and so the function

for ¢ in terms of the height & = height(Z}) is given by t = /x> + (y — h)?, where
X, v are the coordinates of vertex oy (in the 7;, m;41, ox plane). Note this is also the
function for ¢ in terms of h = height(Z,é7 ) (i.e., the function is symmetric with one
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Fig.9 Possible d, — s functions (in red) and ¢ — d,, functions (in blue). The horizontal axis is the height &
and the vertical axis is the radius D, i.e., distance from d,

side representing 7} and the other 7, }j ). height(H?) on the other hand is determined
by the distance from the edge o011, and so the function for s in terms of the height
h = height(H?) has three cases, based on whether it is a distance to one of two edge
endpoints or an interior point. For the endpoint cases again we have functions of the
forms = v/a? 4 (8 — h)?, for some constants ¢, 8, and just as before these functions
also describe the endpoint cases for height(Hl]’. ). For the interior case the function is

of the form s = ¢ - h + d for both height(H?) and height(H;’.), although the constants

in the linear functions for height(H?) and height(H];) can differ. (Slopes may have
opposite sign when dist(; ;41,00 j41) is realized at the interior of both edges, a
case not shown in Fig. 5.)

Fix arow of the free space, and for all pairs of column indices j < k plot the above
described function for ¢ and all the functions for s (endpoints and interior functions).
Specifically, in the plot of these functions the horizontal axis is # and the vertical
axis is both s and ¢. Consider a standard monotonicity event. This happens at a value
of t (resp. s) such that h = height(I? ) = height(Z}) (resp. h = height(H?) =
height(H,lZ)), i.e., at an intersection point of two of the plotted ¢ (resp. s) functions.
Floating monotonicity events as always are a bit trickier (actually the easier standard
monotonicity case was already described in [21], though in a different way). Specifi-
cally, while any floating event still occurs at a single / value, such events in general do
not occur at intersections of the s and 7 functions since s and ¢ may differ in value. The
key observation however is that now we are only concerned with projected points, i.e.,
points such that d, —s = t —d,. So instead plot all functions of the form d, —s,t —d,
where s and ¢ are any of the functions described above. In this new plot the horizontal
coordinate is again 4 but the vertical coordinate is now the radius D (i.e., distance
from d,), and projected points now occur at the intersections of these transformed s
and ¢ functions, see Fig. 9. (Note the standard events still occur at intersections.)

Definition 6.9 For a fixed row i of the free space, consider the arrangement of all
functions of the form d, — s and t — d,, in the 2-dimensional D, h space, where s and ¢
are given by the above described functions of /4 for any pair of columns j < k. Define
Z! to be the set of radius D values of all intersection points in this arrangement for
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row i, and similarly define Zl.c for column i. The set of all intersection radii over all
rows and columns is denoted as Z.

It would appear from the above discussion that Z is a superset of Dyono, though there
is one subtlety. Consider the line in the s, ¢ parametric space defined by the equation
d, —s =t —d,,1i.e., the line defining all projected points. For a standard monotonic-
ity event the boundary of P, is a single horizontal (or vertical) line, which intersects
d, —s =t — d, and thus the minimum projected point in the region lies on this line
boundary*. On the other hand, if 7, is from a floating monotonicity event then the
boundary is more complicated, as shown in Fig. 6. In this figure, only the blue curve
relates to an intersection point from the D, h space, and thus we also must consider
when the minimum projected point is not on this curve, i.e., whend, —s =t — d,
intersects a different part of the boundary. There are three cases. The first two cases
are when the minimum projected point lies on either the horizontal line at ¢ or the
vertical line at s, however, as mentioned in Sect. 4.1.1 these boundaries correspond to
connectivity events and hence are already covered by in the set D¢onp. The third case is
when the minimum point lies on the vertical line at s* = s (i.e., the left part of Fig. 6).
Recall s = dist(0 041, ;i 1), that is even though there are O (nz) functions f; ; x
in the ith free space row, there are only O (n) distinct s1 values, indexed by edges of
o. Thus we find all intersections of the line d, — s = t — d, with the lines s = s
for all possible s1. Let B be the corresponding radii of all such intersections over all
rows, and note that |B| = O (n?). Thus from the above discussion, Deonn U Z U B is
a superset of D and so we have the following.

Lemma6.10 For any values oo < f, there is an algorithm sweep(«, ) which
in O((n> + |W|)logn) time outputs a set W 2 D N [a, B, such that |W| =
O (max {nz, | Z N [«, BlI}), where Z is as defined in Definition 6.9.

Proof Above it was argued that D € Deopy U 2 U B. Thus for W = Deopn U (2 N
[, B1) UB, it holds that W © DN [a, B]. As mentioned above, | Deomn|, |1B] = O (1n?),
thus |W| = O (max {n?, |Z N [«, B1|}). Moreover, Deonn and B are easily computable
in O (n?) time.

What remains is how to compute Z N [«, 8], which is done by using standard
sweeping. So for some row i consider the set Z. As discussed above this is the set
of D values of the intersection points of a set of n constant complexity monotone
functions in the D, h space. Thus Z N [«, B] is determined by the set of all such
intersections in a given horizontal strip [¢, 8], which, just as in Lemma 5.2, can be
found using a standard horizontal sweep line [8], which given a set of » monotone
constant-complexity curves, finds all intersections in the interval [o, 8] in O((n +
[Z N [e, B1]) log n) time. Thus doing this sweeping for every row and column finds
the set Z N [a, B]in O((n*> + | Z N [a, B]]) logn) time. O

6.3.2 The Algorithm

The full algorithm is shown as Algorithm 2, which the reader may observe has the
same high level structure as Algorithm 1.

4 Technically, here we ignore irrelevant, but possible, constraints where the horizontal line lies below d,,.
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The only yet unspecified step of this algorithm is the first line where we call the
subroutine sampler, which samples values from the set Z of Definition 6.9. Any value
in Z is determined by an intersection point of a d, — s and a t — d,, function, which
in turn are specified by: (i) a triple of indices 7, j, k, (ii) whether it is a row or column
of the free space, and (iii) which of the O (1) types of intersection points it is (i.e.,
whether it is standard or floating, if standard whether it is a ¢ or s function intersection,
also which type of the three possible s functions). Note alternatively, at the cost of
increasing the sample size by a constant factor, after sampling 7, j, k, one can include
all O(1) intersections this triple defines. Thus a value in Z can be sampled in constant
time by sampling these pieces of information and thus sampler (yn?) runs in O (n?%)
time.

1 R =sampler(yn®) // y a sufficiently large constant
2 SortZ ={[d, — D,d, + D] : D € R} by the values in R
3 Binary search over Z, using deciderPoint, for interval [ Dy, Dg] such that

deciderPoint (d, — Dy, d, + D) false and

deciderPoint(d, — Dg, d, + Dg) true

// Set initial values Dy =0, Dg =0

4 § = sweep(Dy, Dgp)
5 SortZ' = {[d, — D,d, + D] : D € S} by the values in S
6 Binary search over 7’ using deciderPoint and return the smallest value

D € S such that [d, — D, d, 4+ D] is feasible.

Algorithm 2: Sampling to compute a fast 2-approximation

Let [Dy, Dg] be as defined in Algorithm 2. The number of values from Z which
fall in this interval affects the running time of sweep (see Lemma 6.10). We now prove
that with high probability this set has quadratic size. The proof is nearly identical to
Lemma 5.3 (and a proof in [21]), and is included for the sake of completeness.

Lemma 6.11 Let[Dy, Dg] be as defined in Algorithm 2. Then with exponentially high
probability, sweep (Dy, Dg) returns a set of size 0 (n?).

Proof sampler (yn?) takes a yn? sized sample R from the set Z, which is a set of
values of size ¢n> for some constant . Consider the sorted placement of the values
in Z along the real line, and let x be any point on the real line. Let U™ (resp. U ™) be
the closest n? values from Z larger (resp. smaller) than x. Suppose |[U™T| = n? (note
it may happen that |[UT| < n?, if x is large enough). Then the probability it does not
contain a value in R is

2 2
U\ 7" 2 \¥n b _ R
1—| | = (1= < exp L = exp ynfe_”’
¢n’ ¢n’ ¢n’ ¢
for any constant ¢, by choosing y to be sufficiently large. A similar statement holds
for |[U™|, and taking the union bound, a similar statement holds simultaneously for
both U~ and U™,

Note there are only O (n3) possibilities for each value in R. Thus by setting x to
each one of these values, and taking the union bound, it holds that between any two
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adjacent values in (the sorted set) R, or in the unbounded end intervals, with high
probability there are at most O (n?) values of Z. Thus the lemma statement holds, as
sweep (Dy, Dg) returns such a set of Z values, together with all of D¢ony and B which
are each of size O (n?). ]

Theorem 6.12 Given polygonal curves w and o, each of length at most n, one can
(1 + &)-approximate the Fréchet gap distance in O (n*(logn + (1/¢)log(1/¢))) time.

Proof As discussed above, we only require Algorithm 2 to return a 2-approximation,
as such an approximation can then be transformed into (1 + ¢)-approximation in
additive O ((n?/¢)log(1/¢)) time, using Lemma 6.7. Now by Lemma 6.3, there is
some radius D’ € D whose corresponding projected point gives a 2-approximation.
Recall from Observation 6.2, that sorting projected points by increasing radius D,
induces a linear ordering of feasibility. Thus for the interval [ Dy, Dg] found by the
algorithm, it must be that D" > Dy, since Dy, is infeasible (or zero). Now if D’ < Dg
then D’ € [Dy, Dg], and since sweep finds a superset of all D in [ Dy, Dg], when we
search over the returned values we must find at least a 2-approximation. Otherwise
D’ > Dg, and hence the feasible Dg or something even better will be found and
returned from the sweeping, again getting at least a 2-approximation.

As for the running time, sampling O (n?) values and sorting takes O (n2 log ) time.
Binary searching with deciderPoint also takes O(n”logn) time as deciderPoint
takes O (n?) time. By Lemma 6.11, with exponentially high probability the number of
values from Z in the found interval is O (n?), and thus by Lemma 6.10 sweep takes
O (n? log n) time with exponentially high probability. Finally we do another round of
sorting and searching over the O (n?) values returned from sweep, which again takes
O (n?logn) time. Adding the time to convert the result to a (1 + &)-approximation
gives O (n>(logn + (1/¢)log(1/¢))) time overall. O
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