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Abstract
The capacities of our infrastructure systems to respond to volatile, uncertain, and increasingly
complex environments are increasingly recognized as vital for resilience. Pervasive across
infrastructure literature and discourse are the concepts of centralized, decentralized, and
distributed systems, and there appears to be growing interest in how these configurations support
or hinder adaptive and transformative capacities towards resilience. There does not appear to be a
concerted effort to align how these concepts are used, and what different configurations mean for
infrastructure systems. This is problematic because how infrastructure are structured and governed
directly affects their capabilities to respond to increasing complexity. We review framings of
centralization, decentralization, and distributed (referred to collectively as de/centralization) across
infrastructure sectors, revealing incommensurate usage leading to polysemous framings.
De/centralized networks are often characterized by proximity to resources, capacity of distribution,
volume of product, and number of connections. De/centralization of governance within
infrastructure sectors is characterized by the number of actors who hold decision-making power.
Notably, governance structures are often overlooked in infrastructure de/centralization literature.
Next, we describe how de/centralization concepts are applied to emerging resilient infrastructure
theory, identifying conditions under which they support resilience principles. While centralized
systems are dominant in practice and decentralized systems are promoted in resilience literature, all
three configurations—centralized, decentralized, and distributed—were found to align with
resilience capacities in various contexts of stability and instability. Going forward, we recommend a
multi-dimensional framing of de/centralization through a network-governance perspective where
capabilities to shift between stability and instability are paramount and information is a critical
mediator.

1. Introduction

The environments in which infrastructure need to function, adapt, and thrive appear to be faced with increas-
ing complexity as a result of accelerating volatility, uncertainty, and system dynamics (Chester and Allenby
2018, Desha et al 2009, Sharma 2019, Steffen et al 2015). Cybertechnologies are being integrated into legacy
infrastructure at rapid rates, creating remarkable new opportunities but also vulnerabilities (Chester and
Allenby 2020, Rinaldi et al 2001). Climate change is creating deep uncertainty for weather extremes and is
threatening to exceed design envelopes of critical systems (Ayyub 2018, Bondank et al 2018, Burillo et al
2017, Chester et al 2020b, Helmrich and Chester 2020, Nasr et al 2019, Underwood et al 2017). In the United
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Figure 1. De/centralization configurations from a network perspective. Black lines represent distribution pathways.
(A) Centralized system: single producer (black circle) linked to many consumers (white circles). (B) Decentralized system:
multiple producers, connected together, that service specific consumers. (C) Distributed system: producers and cooperative
consumers (grey circles) coupled together, who collectively work towards a common objective (adapted from (Baran 1964)).

Figure 2. De/centralization configurations from a governance perspective. Darker shaded circles indicate individuals with more
power. Shaded shapes depict either horizontal or vertical decentralization dependent upon grey arrow direction. (A) Centralized
system: power rests with select individuals. Hierarchical structures, such as the one depicted, are classified by vertical
decentralization and horizontal centralization. (B) Decentralized system: power is held by numerous individuals in the
organization. Matrix structures, such as the one shown, are characterized by both vertical and horizontal decentralization.

States, ageing infrastructure are increasingly confronted with these new challenges and must adapt with scant
resources to meet demand and deliver services. Infrastructure are caught between goals, administrative struc-
tures, and technologies rooted in the past, and a future defined by complexity, uncertainty, and accelerating
change.

The domains of infrastructure—physical networks and governing institutions—are of major importance
when examining the capacities of our critical systems to adapt and transform. Concepts of centralized, decen-
tralized, and distributed systems are pervasive across academic literature and discourse. Centralization is often
associated with networks distinguished by a small number of producers serving a large number of consumers
(figure 1(A)) and a top-down governance model (Alanne and Saari 2006, Albalate et al 2012, Bardhan 2002,
Chandler 1977, Chester et al 2020a; Derrible 2017, Makropoulos and Butler 2010, Pagani and Aiello 2011,
Quezada et al 2016, Rodrigue 2020, Tomlinson et al 2015, Wilder and Romero Lankao 2006). Generally, central-
ity measures the importance of a single node in a larger network, where increased emphasis on a node produces
vulnerability (by, e.g. consumers relying on the operation of a single producer for a service). A decentralized
system (figure 1(B)), where the ratio of producers to consumers increases, places less reliance on a few nodes,
thereby, decreasing vulnerability (Baran 1964, Freeman 1978). There does not appear to be a clear definition
of distributed in the infrastructure literature, but at times the concept is used synonymously with decentral-
ization (Ackermann et al 2001, Alanne and Saari 2006, Makropoulos and Butler 2010). Following framings in
computer science, a distributed system is one where nodes in a network work towards a common goal (Ge et al
2017, Srinivasa and Muppalla 2015). A distributed network, considered here to be a subset of decentralization,
is where consumers are provided with a larger variety of service options (producers) and are connected with
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other consumers to achieve an objective (figure 1(C)). For example, in the power sector, installed residential
solar panels may produce excess energy, which can supply the grid or be stored in electric vehicles (or other
batteries) and used or released back to the grid a later time (especially during emergencies). Under this con-
figuration, the consumer becomes a coordinating node to help manage supply and demand across the system
(Calma 2021, Ghasempour 2019).

In governance literature, broadly, centralization (figure 2(A)) is isolation of power to select individuals
while decentralization (figure 2(B)) is the dispersion of power to many individuals of an organization (Faguet
2014, Mintzberg 1979). Decentralization can be further classified as either vertical or horizontal. Vertical
decentralization is the movement of power down a chain of command, commonly found in bureaucracies,
whereas horizontal decentralization is the reallocation of power across divisions (Dubois and Fattore 2009,
Mintzberg 1979). Degrees of vertical and horizontal decentralization can be found in most institutions. To
achieve a truly decentralized system, power would be distributed vertically and horizontally so each individ-
ual holds equivalent power. The configuration of infrastructure networks and governance has taken on a new
importance under the emerging field of resilience, a field which studies a system’s ability to persist, adapt,
and transform to disturbances within and beyond the design envelope. Yet, there does not appear to be a
concerted effort to align how centralization, decentralization, and distributed framings are used, and what
different configurations mean, when adapting and transforming systems to be able to respond to increasing
complexity.

Given a growing interest in configuring infrastructure to better respond to increasingly complex environ-
ments (Baldwin and Clark 2006, Chester and Allenby 2018, Gilrein et al 2019, Rinaldi et al 2001, Tomlin-
son et al 2015), a coherent framing of centralization, decentralization, and distributed (hereby referred to as
de/centralization) is needed. A polysemic framing (i.e. carrying multiple meanings) is particularly problematic
given the importance of de/centralization within network and governance domains, how systems are physically
configured and how authority is structured towards adaptive capacities (Hines et al 2015, Mintzberg 1979). In
this work, infrastructure is defined as human design spaces that produce built environment systems, including
their technologies and institutions of governance. Power, water, and transportation systems are the primary
infrastructure sectors of focus. The upcoming section starts by reviewing key de/centralization framings across
infrastructure domains. Following, de/centralization is contextualized within emerging resilient infrastructure
theory. Last, a multi-dimensional framing of de/centralization through a coupled network-governance per-
spective with information as a mediator is proposed, emphasizing the capabilities that infrastructure will need
in the Anthropocene.

2. Background

2.1. Physical infrastructure as networks
Framings of built infrastructure de/centralization often focus on network configuration characteristics that
primarily assess whether production of a good or service to a consumer occurs on a large and isolated (i.e. cen-
tralized) or small and integrated (i.e. decentralized) scale (Alanne and Saari 2006, Derrible 2017, Makropoulos
and Butler 2010, Pagani and Aiello 2011, Rodrigue 2020, Tomlinson et al 2015). Drawing from a select body
of literature that covers a diversity of framings, the use of de/centralization across infrastructure sectors is
explored, and whether these framings are consistent.

Modern infrastructure systems (in the U.S. and many other developed nations) emerged to meet the rapidly
increasing demand for services brought on by industrialization, and subsequent urbanization (Ansell and
Lindvall 2021, Matos and Wagner 1998). Power systems initially emerged as small-scale centralized systems
(a single generator servicing a portion of a city) but soon became regionally centralized as operators realized
the reliability benefits of interconnected transmission; it was not until more recently that distributed generation
became feasible with emerging technologies (Alanne and Saari 2006, Hines et al 2017, Hughes 1983, Lehtonen
and Nye 2009, Pagani and Aiello 2011). A centralized or decentralized network in the power sector is deter-
mined by capacity of distribution and the proximity of generation to consumption. Power systems have been
described as decentralized if their generation sources are relatively small and/or when the generation capacity
is (nearly) co-located with the demand nodes. Conversely, a system leans more towards centralized when its
generators are located relatively far from the loads and/or the generating capacity is relatively large (Ackermann
et al 2001, El-Khattam and Salama 2004, Luo and Batarseh 2005). Furthermore, the power sector is discussed
as becoming increasingly connected (e.g. integration of small-scale renewable technologies) (Alanne and Saari
2006, Pagani and Aiello 2011). This produces a distributed system, where greater connectivity allows more
actors to work towards a goal.

Large-scale water systems (water supply, wastewater, and stormwater) emerged in urban areas because
the configuration was cost-effective towards providing conveyance and treatment for growing populations.
Through economies of scale, water infrastructure was able to achieve high quality service in urban areas to
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quickly satisfy demand and address public health concerns (National Research Council 2002, Nelson 2005).
However, in low-density areas where it is expensive to expand infrastructure, site-level technologies (e.g. wells,
septic tanks) can dominate (National Research Council 2002, Nelson 2005). Examining the water sector, the
presence of site-level technologies that manage lower volumes of water are characterized as decentralized while
municipal-scale technologies managing large volumes of water (e.g. reservoirs, combined sewer systems) are
considered centralized (Gilrein et al 2019, Larsen et al 2015, Makropoulos and Butler 2010, Quezada et al 2016).
Emerging water reuse initiatives and green infrastructure projects have provided some recent momentum
towards decentralized systems (Makropoulos and Butler 2010, Nelson 2005, Quezada et al 2016).

Finally, the transportation sector is remarkably diverse in form and function, and as such so are its
de/centralization framings of supply-demand relationships and networks. Transport supply is ‘the capacity of
specific transportation infrastructures and modes over a time period’, and transport demand is ‘mobility needs
for the same time period, even if they are only partially satisfied’ (Rodrigue 2020). Assessing network (infras-
tructure) configurations, centralized networks are described as emphasizing central nodes that minimize the
number of routes to reach destinations (e.g. hub-and-spoke networks for airlines, linear transit corridors).
Decentralized networks tend to be associated with point-to-point configurations where origins and destina-
tions are directly connected, even if the route itself may not be direct (Baum and Kurte 2001, Rodrigue 2020).
Network configurations are only one aspect of supply, and modes of service within the system must also be
considered. Collective transportation (e.g. bus, rail, aviation) with fixed stops may be broadly classified as cen-
tralized and individual transportation (e.g. private auto, walking, biking, freight trucking) as decentralized.
Collective transportation is effective at moving a large number of people (or goods in the case of freight rail,
air, or marine) from one node to another within a constrained route, destination set, and/or schedule (Das
and Tyagi 1997, Rodrigue 2020, Stover 1997, Toh and Higgins 1985). Meanwhile, individual transportation
provides a flexibility to consumers, who are able to access destinations through a variety of routes (Rodrigue
2020). The coordination of demand enabled by emerging technologies such as navigation services informed
by network-wide users can be considered distributed (Zantalis et al 2019).

Maybe unsurprisingly given the diverse nature of infrastructure services, framings of de/centralization in
the literature differ. However, there appears to be a commonality in that framings generally consider rela-
tionships between producers (supply) and consumers (demand). Where there are few producers and many
consumers the system is characterized as centralized, and many producers to consumers decentralized. Dis-
tributed appears to refer to the coordination of consumers (increasingly mediated by technology) in their
consumption or production of supply. Infrastructure managers must consider tradeoffs, particularly capital
costs and reliability, when designing a network (Hines et al 2015). Yet, there is another critical framing that
must be unpacked, that of infrastructure governance configurations.

2.2. Governance as networks of power
The governance of infrastructure and its associated organizational and bureaucratic structures has significant
impact on system ability to manage changing conditions (Chester et al 2021, Chester et al 2020a, Mintzberg
1979, Uhl-Bien and Arena, 2018). Decentralization of governance can be classified as either vertical through the
dispersion of power through a formal chain of command (i.e. strategic leadership to middle managers to front
line workers), or horizontal where decision-making power is dispersed across many employees, including those
outside of the chain of command, such as analysts and operators (Mintzberg 1979). Centralization exists when
the decision-making power rests with a select few, for example, strategic leadership (Mintzberg 1979). Gover-
nance—a process involving collective action for resource allocation and use across multiple civic and private
actors (Kooiman 1993)—is the balance between the authority, responsibility, and power of management and
individuals within an organization through rules, values, and norms (Chester et al 2020a, Dubois and Fattore
2009, Faguet 2014, Mintzberg 1979). While this definition emphasizes decentralization as a process, the term is
also used to reference organizational structure (Abimbola et al 2019, Dubois and Fattore 2009, Siggelkow and
Levinthal 2003). Infrastructure governance is critical for resilience because human and organizational power
structures, if structured appropriately, create knowledge, allocate resources, and form bureaucracies capable
of handling both stability and instability.

In the power, water, and transportation sectors, the characterization of governance de/centralization
depends on the jurisdiction and scale of the organizations which manage services between the producer and
consumer. Power networks (e.g. the grid), water (e.g. distribution pipelines, wastewater treatment), and trans-
portation (e.g. roadways and railways) system governance, are often characterized as centralized governance
models (Albalate et al 2012, Chandler 1977, Quezada et al 2016, Rodrigue 2020) where divisional bureau-
cracies emphasize a concentration of power at strategic leadership (Chester et al 2020a, Mintzberg 1980). In
these centralized structures, the leadership team can assess where to allocate and reallocate resources across
their jurisdiction to meet demand through authoritative power. Conversely, water privatization, power gener-
ation, and transportation services are characterized by numerous, independent decision makers, and therefore
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Figure 3. Examples of de/centralization classifications across network and governance domains, where water and transportation
sectors are explored. De/centralization classification is highly context specific and will vary depending on scale (as depicted by the
third axis on the right, where the spiral indicates that scale may shift the spectrum towards a particular configuration. At large
scales, a system may tend towards centralization while at small scales decentralization.

decentralized (i.e. multiple actors, for example airlines, set their own policy) (Bardhan 2002, Larsen et al
2015, Quezada et al 2016, Rodrigue 2020, Wilder and Romero Lankao 2006). In decentralized structures,
the decision-makers will be more directly connected with their producer and consumer needs; however, their
access to resources may vary, which could elevate inequality of supply across marginalized jurisdictions with
less power. Each governance structure allows infrastructure managers to address supply and demand within
their jurisdiction.

De/centralization of governance within infrastructure sectors is characterized by the number of actors who
hold decision-making power. Centralization is often framed as dominant in infrastructure systems, a remnant
of system design emphasizing efficiency for times of stability, but infrastructure systems may take on vari-
ous network-governance configurations—a system may tend towards centralized–centralized network and
governance, decentralized–decentralized, centralized–decentralized, or decentralized–centralized. Each con-
figuration can be found across infrastructure sectors, and select examples are presented in figure 3. There does
not appear to be clear boundaries between centralized and decentralized configurations, but instead that a
gradient is applicable where the degree of de/centralization is inherently relative to the geographic and oper-
ational scale (or level of complexity, (Snowden and Boone 2007)) of the infrastructure systems. Reframing
de/centralization across networks and governance to support resilience is a necessary and timely endeavour.

3. De/centralization for resilience

A rigorous investigation into the conditions by which de/centralization lead to improved capacities to respond
to disturbances remains underexplored and is critical for understanding how to adapt and transform infras-
tructure for future complexity. To respond to increasing complexity, infrastructure systems will need to be
resilient while maintaining services; infrastructure resilience is defined broadly as the ability of infrastructure
to respond and change to known and unknown disturbances (Park et al 2013, Woods 2015). Infrastructure
managers can prepare for complexity by 1) recognizing the unpredictability of a future that cannot be based
on past events (i.e. non-stationarity) across social, ecological, and technological contexts and 2) understand-
ing that traditional infrastructure design approaches, and thereby much of centralized infrastructure, relied
upon assumptions of stationarity (Chester and Allenby 2018, Helmrich and Chester 2020; Klein Tank et al
2009, Milly et al 2008). By relying on stationarity, it is more likely an infrastructure design envelope will be
exceeded, leading to either temporary or catastrophic failure. Given the long design lives of built infrastruc-
ture, it is important to highlight governance, which may be more responsive, in periods of instability. Within
infrastructure resilience literature, decentralization has been promoted as a tool to increase system resilience
(Cascio 2009, Kwasinski et al 2019, Meerow and Stults 2016, Tomlinson et al 2015). This section reviews uses of
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Figure 4. Examples of how increasing centralization (orange), increasing decentralization (blue), or dynamic combinations of
both de/centralization in infrastructure networks and governance can influence resilience principles.

de/centralization in resilience literature and examines how de/centralization can be used to promote resilience
principles.

Large-scale, centralized infrastructure systems across the United States were created to provide basic ser-
vices to citizens while taking advantage of economies of scale to reduce costs, contrary to decentralized systems
which leverage economies of scope to enable multifunctionality and flexibility (Faguet 2014, Gilrein et al 2019,
Goldthau 2014, O’Flaherty 2005). While centralized governance can coordinate disturbance responses through
top-down authority, it can be restricted to perspectives of leadership, who may be removed from local con-
texts; therefore, centralized governance is best equipped to manage known, rather than unknown, disturbances
(Mintzberg 1979, Rinaldi et al 2001, Uhl-Bien et al 2007). Centralized networks, which are designed for a low
probability of failure, may have increasingly severe failure consequences when they do fail (Gilrein et al 2019).
Furthermore, centralized networks and governance are less adaptable, limited by their scale or jurisdiction
(e.g. the water sector is divided into wastewater, stormwater, drinking water, etc.) (Chester and Allenby 2018,
Leigh and Lee 2019, Markolf et al 2018, Mintzberg 1979). Centralized systems have been deemed more vul-
nerable to failure than their decentralized counterparts, due to their fail-safe approach and lack of redundancy
and/or modularity (Ahern 2011, Baran 1964, Gilrein et al 2019, Leigh and Lee 2019). Decentralized infrastruc-
ture are frequently depicted as systems that service local consumers through redundancy within the network
(e.g. multiple producers or pathways), and the network redundancy is seen as a principle of resilience (Ahern
2011, Zodrow et al 2017). Decentralization also provides an opportunity for modularity, or the capability to
readily adapt or scale a system by reorganizing individual technical or institutional components without sig-
nificantly disrupting the overall system (e.g. smart grids increase information flows to identify and respond
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Figure 5. Multidimensional framing of de/centralization through a coupled network-governance perspective with information as
a mediator. Above the horizontal line, there is an exploded view of network dynamics between producers (black), consumers
(white), and cooperative consumers (grey). The green lines represent distribution and information pathways; these will be either
unidirectional or bidirectional depending on the system. The grey cubes represent the governance boundaries of the system—or
the rules, regulations, and norms in which the infrastructure operates. Below the horizontal line, a projection of the network is
provided.

to network component failures (Li et al 2010)). Decentralized infrastructure systems may limit cascading fail-
ures amongst infrastructure sectors by quickly recognizing and isolating the failure (Gleick 2003, Goldthau
2014, Zodrow et al 2017). However, across these studies of de/centralization and resilient infrastructure, there
is recognition that, while decentralized networks are frequently promoted for increased resilience, there are
situations in which centralization can also be beneficial (e.g. balancing budget, reliability, and network size)
(Gilrein et al 2019, Hines et al 2015, Leigh and Lee 2019, Zodrow et al 2017). There is less exploration of
de/centralization in governance; however, complexity leadership and organizational science literature assert
that the ability to transition between de/centralization, vertically and horizontally, is crucial for long-term via-
bility because this flexibility allows organizations to traverse between modes of exploitation, i.e. business as
usual, and exploration, i.e. innovation (Mintzberg 1979, Siggelkow and Levinthal 2003, Uhl-Bien and Arena
2018).

3.1. Infrastructure resilience as a de/centralization spectrum
Leveraging de/centralization as a spectrum across domains increases pathways for infrastructure managers
to address growing complexity and develop resilient infrastructure. Biggs et al (2012) describe seven key
principles of resilience: maintain diversity and redundancy, manage connectivity, manage slow variables and
feedbacks, foster complex adaptive systems thinking, encourage learning, broaden participation, and promote
polycentric governance. Using these principles, and the specific characteristics attributable to each, concep-
tual linkages between the de/centralization spectrum and resilience are proposed (figure 4). These conceptual
linkages highlight the importance of recognizing both the network and governance domains of infrastruc-
ture systems, as well as the need to consider these domains in the de/centralization spectrum. As illustrated
in figure 4, both centralization and decentralization can contribute to resilience efforts. Although decentral-
ization appears to be more closely aligned with the resilience principles, there are instances where increased
centralization may be warranted. Particularly, increased centralization appears beneficial when circumstance
require greater levels of coordination and/or an understanding of the entire system (rather than sub-systems
or individual components). Implementing and achieving all seven of the resilience principles, or even simply
a subset, requires focus on both the network and governance domains of infrastructure systems. Specifically,
it is important to recognize that there may be instances where resilience efforts necessitate more centralized
governance in conjunction with a more decentralized network infrastructure. This dichotomy is likely to have
limits, i.e. at some point, a network can become decentralized to the point of being unmanageable by a more
centralized governance structure. Therefore, infrastructure managers must reimagine how de/centralization is
used and promoted in network and governance domains.

4. Reframing centralization and decentralization

Towards supporting infrastructure resilience, we propose a dynamic, multi-dimensional framing of
de/centralization through a coupled network-governance perspective with information as a mediator
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(figure 5). We hope that the perspective gained from this framing motivates managers to identify and con-
sider trade-offs of different configurations along both the network and governance spectrums in their design
process. There are two important considerations when applying the framework. First, the classification of
de/centralized networks and governance relies heavily on context, specifically scale, as explored in figure 2.
Second, context is further complicated by information flow—coupling legacy infrastructure with emerging
information communication technologies (e.g. Internet of things, artificial intelligence) accelerates the capac-
ity for distributed networks by increasing node connections and providing near real-time information and
producing adaptive capacity that was not previously achievable. For instance, traffic maps have evolved to
integrate wireless and GPS data to warn users in real-time of traffic jams and provide alternative routes (Zan-
talis et al 2019). Similarly, smart grids are growing capacity to monitor and manage electricity consumption
through smart charging, taking advantage of non-peak hours and renewable energy sources, to improve ser-
vice (Calma 2021 and Ghasempour 2019). Information flows must be recognized as increasingly powerful
forces that are able to forge new connections between producers and consumers (as well as other emerging
stakeholders, such as activists or lobbyists), while mediating existing relationships between governing bodies,
infrastructure networks, and consumers. By empowering more producers and/or consumers with information
(and, therefore, sense-making), as well as decision-making power to act, a system can more readily respond to
instances of instability or failure.

By managing the contributions of networks, governance, and information towards de/centralization,
infrastructure managers increase their opportunities to address instability. While de/centralization configu-
rations have often been applied to infrastructure networks, exploration of de/centralization within the gover-
nance domain of infrastructure has largely been ignored. Decentralized governance has generally been shown
to increase organizational performance in periods of instability since it brings the decision-making power
closer to those experiencing instability or those with expertise on the topic of conflict, while centralized gov-
ernance typically performs well in stability (Andersen 2004, Mintzberg 1979, Uhl-Bien and Arena 2018). As
identified in complexity leadership theory (Uhl-Bien and Arena 2018), instability creates a need for organi-
zations to: (a) transition between operational (centralized) and entrepreneurial (decentralized) leadership,
a skill labelled as enabling leadership and (b) recognize a regime shift to initiate this leadership shift. First,
enabling leadership must take advantage of vertical and horizontal de/centralization. While vertical decen-
tralization brings the decision-making power closer to the situation, horizontal decentralization diversifies
who has the ability to make decisions. Divisional bureaucracies seen in infrastructure systems offer limited
horizontal and vertical decentralization by concentrating decision-making and sense-making towards the top
of divisional hierarchies (Chester et al 2020a, Mintzberg 1979). Second, leadership must identify and have
the capacity to respond—individually and as an institution—to shifts in the environment. If an organization
continues to operate during instability with governance processes designed for efficiency under stability, they
will experience failure (Snowden and Boone 2007). By recognizing the multidimensional network-governance
spectrum of de/centralization, infrastructure managers are provided a more nuanced view of de/centralization
that creates more solution pathways to respond to instability.

Increased flexibility of network and governance domains would increase resilience, compared to the systems
that are currently rigid and locked into place—whether centralized, decentralized, or distributed. Centralized
systems are dominant in infrastructure networks and governances as this configuration has served well, par-
ticularly in times of stability. Acknowledging the de/centralization spectrum and the contribution of all three
configurations towards resilience, there is an opportunity to integrate more attributes of decentralized and
distributed systems. Infrastructure managers must design, create, and maintain infrastructure systems that
augment adaptation and respond to disturbances outside their design envelope to continue operating effec-
tively in a world characterized by instability. In terms of infrastructure networks, an immediate action would be
to consider ‘maintaining diversity and redundancy.’ For instance, during COVID-19, passenger airlines began
transporting medical supplies as well as people, showing response diversity. This change of function, addi-
tionally, required swift institutional action, allowing passenger airlines—not only to transport cargo—but
to operate with larger quantities of dry ice than previously allowed in order to maintain extremely low tem-
peratures for vaccine shipments (Kulisch 2020). This example additionally highlights how the network and
governance domains do not operate in isolation—despite being analyzed separately in much literature on
de/centralization.

A spectrum of de/centralization across network and governance domains, and with consideration of infor-
mation flows, provides an abundance of pathways for infrastructure managers to address complexity. Sce-
narios describing how change might occur can illustrate these pathways. First, there is a scenario of slow,
chronic change—much like that seen in climatic conditions across the world. Here, infrastructure systems
need to ‘manage slow variables and feedbacks’ while ‘encouraging learning’. This likely requires a decentral-
ized network to allow for experimentation but, at least some degree of, centralized governance to collect and
communicate information, such as successful network adaptations or emerging climate science. However, in a
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second scenario, where there is a sudden, destabilizing event such as an extreme weather event or a cyberattack,
the physical network cannot likely be changed in a timely manner. In this situation, decision-making power
should have ‘broadened participation’ to allow local infrastructure managers to respond immediately while
‘managing connectivity’ to maximize support and provisions to the impacted region. This type of response is
likely best achieved through a horizontally decentralized governance structure—a feature found in ‘polycentric
governance.’

Furthermore, looking across infrastructure sectors, there are likely to be different priorities and definitions
of operations and failures. In the power and water sectors, there is a focus on the physical network systems
and their ability to maintain constant and consistent services, including within times of failure; while in the
transportation sector service is maintained to meet demand and, therefore, may change over time. (Relatedly,
information flow also depends on demand—e.g. demand for information increases during times of instability
when decision-makers need to respond quicky.) Viewing de/centralization as a spectrum allows infrastructure
managers to consider the strengths and weaknesses of each for their particular sector and create a symbi-
otic relationship between configurations to respond to instability rather than to place one configuration in
opposition to the other, encouraging infrastructure managers to ‘foster complex adaptive systems thinking.’

5. Conclusion

As infrastructure managers pursue adaptation strategies to respond to increasing complexity in infrastructure
systems and environments, they will need to confront existing configurations of networks and governance and
critically examine the benefits and trade-offs of de/centralization. While existing framings of de/centralization
may be polysemic, reconciling these framings expands infrastructure managers’ design space to include both
network and governance domains, increasing the opportunities for adaptation and transformation for infras-
tructure systems. It is critical that governance is observed as a domain of de/centralization. Emerging tech-
nologies that allow for rapid information sharing provide an opportunity to empower producers, as well as
consumers, with decision-making capabilities to respond with speed and flexibility in instances of failure. This
integration of information changes infrastructure systems from centralized or decentralized, to distributed.
This increases the number of decision-makers in a system, which adds complexity along with flexibility, and
confronts fundamental assumptions of who holds power. Centralization is dominant in today’s infrastructure
systems, but all three configurations—centralized, decentralized, and distributed—are at times appropriate for
supporting resilience capacities because (1) infrastructure sectors have different priorities and, therefore, dif-
ferent solutions will be needed to meet each context, and (2) each configuration has varying abilities to respond
to stability and instability. This reframing of de/centralization challenges infrastructure managers to develop
new mental models—an evolving understanding of a system that is operational but not necessarily technically
correct as it is influenced, oftentimes unconsciously, by an individual’s beliefs—and, likewise, institutions to
create new collective cognition (Jones et al 2011, Stevens and Gentner 1983). Reimagining de/centralization
as a spectrum may help infrastructure managers navigate infrastructure systems through periods of instabil-
ity by assessing, and reassessing, de/centralization configurations to increase actionable pathways forward for
infrastructure resilience.

Acknowledgments

This work was in part supported by several Grants including from the United States National Science
Foundation (SRN-1444755, GCR-1934933, DEB-1832016, CRISP-1832678, and CSSI-1931324).

Data availability statement

No new data were created or analyzed in this study.

ORCID iDs

Alysha Helmrich https://orcid.org/0000-0002-3753-8811
Samuel Markolf https://orcid.org/0000-0003-4744-0006
Rui Li https://orcid.org/0000-0001-8385-763X
Thomaz Carvalhaes https://orcid.org/0000-0003-3352-3302
Yeowon Kim https://orcid.org/0000-0003-1335-3326
Emily Bondank https://orcid.org/0000-0002-9577-8637

9

https://orcid.org/0000-0002-3753-8811
https://orcid.org/0000-0002-3753-8811
https://orcid.org/0000-0003-4744-0006
https://orcid.org/0000-0003-4744-0006
https://orcid.org/0000-0001-8385-763X
https://orcid.org/0000-0001-8385-763X
https://orcid.org/0000-0003-3352-3302
https://orcid.org/0000-0003-3352-3302
https://orcid.org/0000-0003-1335-3326
https://orcid.org/0000-0003-1335-3326
https://orcid.org/0000-0002-9577-8637
https://orcid.org/0000-0002-9577-8637


Environ. Res.: Infrastruct. Sustain. 1 (2021) 021001

Mukunth Natarajan https://orcid.org/0000-0001-7050-8588
Nasir Ahmad https://orcid.org/0000-0001-5067-7368
Mikhail Chester https://orcid.org/0000-0002-9354-2102

References

Abimbola S, Baatiema L and Bigdeli M 2019 The impacts of decentralization on health system equity, efficiency and resilience: a realist
synthesis of the evidence Health Pol. Plann. 34 605–617

Ackermann T, Andersson G and Söder L 2001 Distributed generation: a definition Electr. Power Syst. Res. 57 195–204
Ahern J 2011 From fail-safe to safe-to-fail: sustainability and resilience in the new urban world Landsc. Urban Plann. 100 341–3
Alanne K and Saari A 2006 Distributed energy generation and sustainable development Renew. Sustain. Energy Rev. 10 539–58
Albalate D, Bel G and Fageda X 2012 Beyond the efficiency-equity dilemma: centralization as a determinant of government investment in

infrastructure Pap. Reg. Sci. 91 599–615
Andersen T J 2004 Integrating decentralized strategy making and strategic planning processes in dynamic environments J. Manag. Stud.

41 1271–99
Ansell B and Lindvall J 2021 Inward Conquest: The Political Origins of Modern Public Services (Cambridge: Cambridge University Press)

https://cambridge.org/core/product/identifier/9781108178440/type/book
Ayyub B M 2018 Climate-Resilient Infrastructure: Adaptive Design and Risk Management (Reston: American Society of Civil Engineers)
Baldwin C Y and Clark K B 2006 Modularity in the design of complex engineering systems Complex Engineered Systems (Understanding

Complex Systems) ed D Braha, A Minai and Y Bar-Yam vol 2006 (Berlin: Springer) pp 175–205
Baran P 1964 On distributed communications: 1. Introduction to distributed communications networks https://rand.org/content/dam/

rand/pubs/research_memoranda/2006/RM3420.pdf
Bardhan P 2002 Decentralization of governance and development J. Econ. Perspect. 16 185–205
Baum H and Kurte J 2001 Transport and economic development round table 119 www.oecd.org/cem
Biggs R et al 2012 Toward principles for enhancing the resilience of ecosystem services Annu. Rev. Environ. Resour. 37 421–48
Bondank E N, Chester M V and Ruddell B L 2018 Water distribution system failure risks with increasing temperatures Environ. Sci. Technol.

52 9605–14
Burillo D, Chester M V, Ruddell B and Johnson N 2017 Electricity demand planning forecasts should consider climate non-stationarity

to maintain reserve margins during heat waves Appl. Energy 206 267–77
Calma J 2021 The grid needs to smarten up to reach clean energy goals. The Verge https://theverge.com/22419206/smart-grid-renewable-

energy-power-sector
Cascio J 2009 Resilience foreign policy https://search-proquest-com.ezproxy1.lib.asu.edu/docview/224032941/fulltextPDF/BFCAE081

F4A34C0BPQ/1?accountid=4485
Chandler A 1977 The Visible Hand: The Managerial Revolution in American Business (Cambridge, MA: Harvard University Press) https://

books.google.com/books?hl=enlr=id=lAI3AwAAQBAJoi=fndpg=PR9ots=YWApkToGvQsig=fB0xzTg4BxWW6iRUHCzxMJz-
H8M#v=onepageqf=false

Chester M V and Allenby B R 2020 Perspective: the cyber frontier and infrastructure IEEE Access 8 28301–10
Chester M V and Allenby B 2018 Toward adaptive infrastructure: flexibility and agility in a non-stationarity age Sustainable and Resilient

Infrastructure 4 173–91
Chester M V, Miller T and Muñoz-Erickson T A 2020a Infrastructure bureaucracy and the Anthropocene Elementa 8 1
Chester M V, Underwood B S and Samaras C 2020b Keeping infrastructure reliable under climate uncertainty Nat. Clim. Change 10

488–90
Chester M, Underwood B S, Allenby B, Garcia M, Samaras C, Markolf S, Sanders K, Preston B and Miller T R 2021 Infrastructure resilience

to navigate increasingly uncertain and complex conditions in the Anthropocene npj Urban Sustain 1 4
Das C and Tyagi R 1997 Role of inventory and transportation costs in determining the optimal degree of centralization Transport. Res. E

Logist. Transport. Rev. 33 171–9
Derrible S 2017 Urban infrastructure is not a tree: integrating and decentralizing urban infrastructure systems Environ. Plan. B Urban

Anal. City Sci. 44 553–69
Desha C J, Hargroves K and Smith M H 2009 Addressing the time lag dilemma in curriculum renewal towards engineering education for

sustainable development Int. J. Sustain. High Educ. 10 184–99
Dubois H F W and Fattore G 2009 Definitions and typologies in public administration research: the case of decentralization Int. J. Publ.

Adm. 32 704–27
El-Khattam W and Salama M M A 2004 Distributed generation technologies, definitions and benefits Electr. Power Syst. Res. 71 119–28
Faguet J-P 2014 Decentralization and governance World Dev. 53 2–13
Freeman L C 1978 Centrality in social networks conceptual clarification Soc. Network. 1 215–39
Ge X, Yang F and Han Q-L 2017 Distributed networked control systems: a brief overview Inf. Sci. 380 117–31
Gentner D and Stevens A L 1983 Mental Models (Hillsdale, NJ: L. Erlbaum Associates)
Ghasempour A 2019 Internet of things in smart grid: architecture, applications, services, key technologies, and challenges Inventions 4 22
Gilrein E J, Carvalhaes T M, Markolf S A, Chester M V, Allenby B R and Garcia M 2019 Concepts and practices for transforming

infrastructure from rigid to adaptable Sustainable and Resilient Infrastructure 1–22
Gleick P H 2003 Global freshwater resources: soft-path solutions for the 21st century Science 302 1524–8
Goldthau A 2014 Rethinking the governance of energy infrastructure: scale, decentralization and polycentrism Energy Res. Soc. Sci. 1

134–40
Helmrich A M and Chester M V 2020 Reconciling complexity and deep uncertainty in infrastructure design for climate adaptation

Sustainable and Resilient Infrastructure 1–17
Hines P D H, Blumsack S and Schläpfer M 2015 Centralized versus decentralized infrastructure networks (arXiv: 1510.08792)
Hines P D H, Blumsack S and Schläpfer M 2017 When are decentralized infrastructure networks preferable to centralized ones?

1510.08792v1
Hughes T P 1983 Networks of Power (Electrification in Western Society) (Baltimore, MD: Johns Hopkins University Press) pp 1880–930

https://fulcrum-org.ezproxy1.lib.asu.edu/epubs/3j333441h?locale=en#page=23
Jones N A, Ross H, Lynam T, Perez P and Leitch A 2011 Mental models: an interdisciplinary synthesis of theory and methods Ecol. Soc.

16 46

10

https://orcid.org/0000-0001-7050-8588
https://orcid.org/0000-0001-7050-8588
https://orcid.org/0000-0001-5067-7368
https://orcid.org/0000-0001-5067-7368
https://orcid.org/0000-0002-9354-2102
https://orcid.org/0000-0002-9354-2102
https://doi.org/10.1093/heapol/czz055
https://doi.org/10.1093/heapol/czz055
https://doi.org/10.1093/heapol/czz055
https://doi.org/10.1093/heapol/czz055
https://doi.org/10.1016/s0378-7796(01)00101-8
https://doi.org/10.1016/s0378-7796(01)00101-8
https://doi.org/10.1016/s0378-7796(01)00101-8
https://doi.org/10.1016/s0378-7796(01)00101-8
https://doi.org/10.1016/j.landurbplan.2011.02.021
https://doi.org/10.1016/j.landurbplan.2011.02.021
https://doi.org/10.1016/j.landurbplan.2011.02.021
https://doi.org/10.1016/j.landurbplan.2011.02.021
https://doi.org/10.1016/j.rser.2004.11.004
https://doi.org/10.1016/j.rser.2004.11.004
https://doi.org/10.1016/j.rser.2004.11.004
https://doi.org/10.1016/j.rser.2004.11.004
https://doi.org/10.1111/j.1435-5957.2011.00414.x
https://doi.org/10.1111/j.1435-5957.2011.00414.x
https://doi.org/10.1111/j.1435-5957.2011.00414.x
https://doi.org/10.1111/j.1435-5957.2011.00414.x
https://doi.org/10.1111/j.1467-6486.2004.00475.x
https://doi.org/10.1111/j.1467-6486.2004.00475.x
https://doi.org/10.1111/j.1467-6486.2004.00475.x
https://doi.org/10.1111/j.1467-6486.2004.00475.x
https://cambridge.org/core/product/identifier/9781108178440/type/book
https://rand.org/content/dam/rand/pubs/research_memoranda/2006/RM3420.pdf
https://rand.org/content/dam/rand/pubs/research_memoranda/2006/RM3420.pdf
https://doi.org/10.1257/089533002320951037
https://doi.org/10.1257/089533002320951037
https://doi.org/10.1257/089533002320951037
https://doi.org/10.1257/089533002320951037
http://www.oecd.org/cem
https://doi.org/10.1146/annurev-environ-051211-123836
https://doi.org/10.1146/annurev-environ-051211-123836
https://doi.org/10.1146/annurev-environ-051211-123836
https://doi.org/10.1146/annurev-environ-051211-123836
https://doi.org/10.1021/acs.est.7b01591
https://doi.org/10.1021/acs.est.7b01591
https://doi.org/10.1021/acs.est.7b01591
https://doi.org/10.1021/acs.est.7b01591
https://doi.org/10.1016/j.apenergy.2017.08.141
https://doi.org/10.1016/j.apenergy.2017.08.141
https://doi.org/10.1016/j.apenergy.2017.08.141
https://doi.org/10.1016/j.apenergy.2017.08.141
https://theverge.com/22419206/smart-grid-renewable-energy-power-sector
https://theverge.com/22419206/smart-grid-renewable-energy-power-sector
https://search-proquest-com.ezproxy1.lib.asu.edu/docview/224032941/fulltextPDF/BFCAE081F4A34C0BPQ/1?accountid=4485
https://search-proquest-com.ezproxy1.lib.asu.edu/docview/224032941/fulltextPDF/BFCAE081F4A34C0BPQ/1?accountid=4485
https://books.google.com/books?hl=enlr=id=lAI3AwAAQBAJoi=fndpg=PR9ots=YWApkToGvQsig=fB0xzTg4BxWW6iRUHCzxMJz-H8M#v=onepageqf=false
https://books.google.com/books?hl=enlr=id=lAI3AwAAQBAJoi=fndpg=PR9ots=YWApkToGvQsig=fB0xzTg4BxWW6iRUHCzxMJz-H8M#v=onepageqf=false
https://books.google.com/books?hl=enlr=id=lAI3AwAAQBAJoi=fndpg=PR9ots=YWApkToGvQsig=fB0xzTg4BxWW6iRUHCzxMJz-H8M#v=onepageqf=false
https://doi.org/10.1109/access.2020.2971960
https://doi.org/10.1109/access.2020.2971960
https://doi.org/10.1109/access.2020.2971960
https://doi.org/10.1109/access.2020.2971960
https://doi.org/10.1080/23789689.2017.1416846
https://doi.org/10.1080/23789689.2017.1416846
https://doi.org/10.1080/23789689.2017.1416846
https://doi.org/10.1080/23789689.2017.1416846
https://doi.org/10.1525/elementa.2020.078
https://doi.org/10.1525/elementa.2020.078
https://doi.org/10.1038/s41558-020-0741-0
https://doi.org/10.1038/s41558-020-0741-0
https://doi.org/10.1038/s41558-020-0741-0
https://doi.org/10.1038/s41558-020-0741-0
https://doi.org/10.1038/s42949-021-00016-y
https://doi.org/10.1038/s42949-021-00016-y
https://doi.org/10.1016/s1366-5545(97)00019-7
https://doi.org/10.1016/s1366-5545(97)00019-7
https://doi.org/10.1016/s1366-5545(97)00019-7
https://doi.org/10.1016/s1366-5545(97)00019-7
https://doi.org/10.1177/0265813516647063
https://doi.org/10.1177/0265813516647063
https://doi.org/10.1177/0265813516647063
https://doi.org/10.1177/0265813516647063
https://doi.org/10.1108/14676370910949356
https://doi.org/10.1108/14676370910949356
https://doi.org/10.1108/14676370910949356
https://doi.org/10.1108/14676370910949356
https://doi.org/10.1080/01900690902908760
https://doi.org/10.1080/01900690902908760
https://doi.org/10.1080/01900690902908760
https://doi.org/10.1080/01900690902908760
https://doi.org/10.1016/j.epsr.2004.01.006
https://doi.org/10.1016/j.epsr.2004.01.006
https://doi.org/10.1016/j.epsr.2004.01.006
https://doi.org/10.1016/j.epsr.2004.01.006
https://doi.org/10.1016/j.worlddev.2013.01.002
https://doi.org/10.1016/j.worlddev.2013.01.002
https://doi.org/10.1016/j.worlddev.2013.01.002
https://doi.org/10.1016/j.worlddev.2013.01.002
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/j.ins.2015.07.047
https://doi.org/10.1016/j.ins.2015.07.047
https://doi.org/10.1016/j.ins.2015.07.047
https://doi.org/10.1016/j.ins.2015.07.047
https://doi.org/10.3390/inventions4010022
https://doi.org/10.3390/inventions4010022
https://doi.org/10.1080/23789689.2019.1599608
https://doi.org/10.1080/23789689.2019.1599608
https://doi.org/10.1080/23789689.2019.1599608
https://doi.org/10.1126/science.1089967
https://doi.org/10.1126/science.1089967
https://doi.org/10.1126/science.1089967
https://doi.org/10.1126/science.1089967
https://doi.org/10.1016/j.erss.2014.02.009
https://doi.org/10.1016/j.erss.2014.02.009
https://doi.org/10.1016/j.erss.2014.02.009
https://doi.org/10.1016/j.erss.2014.02.009
https://doi.org/10.1080/23789689.2019.1708179
https://doi.org/10.1080/23789689.2019.1708179
https://doi.org/10.1080/23789689.2019.1708179
https://arxiv.org/abs/1510.08792
https://fulcrum-org.ezproxy1.lib.asu.edu/epubs/3j333441h?locale=en#page=23
https://doi.org/10.5751/es-03802-160146
https://doi.org/10.5751/es-03802-160146


Environ. Res.: Infrastruct. Sustain. 1 (2021) 021001

Klein Tank A M, Zwiers F W, Zhang X and Canada E 2009 Guidelines on analysis of extremes in a changing climate in support of informed
decisions for adaptation http://clivar.org/organization/etccdi/etccdi.php

Kooiman J 1993 Modern Governance (New Government-Society Interactions) (Thousand Oaks, CA: SAGE) https://books.google.com/
books/about/Modern_Governance.html?id=CRXt1WgkaIMC

Kulisch E 2020 FAA issues dry ice alert to airlines carrying vaccines FreightWaves/American Shipper. https://freightwaves.com/news/faa-
issues-dry-ice-alert-to-airlines-carrying-vaccine

Kwasinski A, Andrade F, Castro-Sitiriche M J and O’Neill-Carrillo E 2019 Hurricane Maria effects on Puerto Rico electric power
infrastructure IEEE Power Energy Technol. Syst. J. 6 85–94

Larsen T A, Udert K M and Lienert J 2015 Source separation and decentralization for wastewater management Source Separation and
Decentralization for Wastewater Management (London: IWA Publishing)

Lehtonen M and Nye S 2009 History of electricity network control and distributed generation in the UK and western Denmark Energy
Pol. 37 2338–45

Leigh N G and Lee H 2019 Sustainable and resilient urban water systems: the role of decentralization and planning Sustainability 11 918
Li F, Qiao W, Sun H, Wan H, Wang J, Xia Y, Xu Z and Zhang P 2010 Smart transmission grid: vision and framework IEEE Trans. Smart

Grid 1 168–77
Luo S and Batarseh I 2005 A review of distributed power systems part I: DC distributed power system IEEE Aero. Electron. Syst. Mag. 20

5–16
Makropoulos C K and Butler D 2010 Distributed water infrastructure for sustainable communities Water Resour. Manag. 24 2795–816
Markolf S A, Chester M V, Eisenberg D A, Iwaniec D M, Davidson C I, Zimmerman R, Miller T R, Ruddell B L and Chang H 2018 Inter-

dependent infrastructure as linked social, ecological, and technological systems (SETSs) to address lock-in and enhance resilience
Earth’s Future 6 1638–59

Matos G and Wagner L 1998 Consumption of materials in the United States, 1900–1995 Annu. Rev. Energy. Environ. 23 107–22
Meerow S and Stults M 2016 Comparing conceptualizations of urban climate resilience in theory and practice Sustainability 8 701
Milly P C D, Betancourt J, Falkenmark M, Hirsch R M, Kundzewicz Z W, Lettenmaier D P and Stouffer R J 2008 Stationarity is dead:

whither water management? Science 319 573–4
Mintzberg H 1979 The Structuring of Organizations (A Synthesis of the Research) (Englewood Cliffs, NJ: Prentice-Hall) https://books.

google.com/books/about/The_Structuring_of_Organizations.html?id=NQ1HAAAAMAAJ
Mintzberg H 1980 Structure in 5’s: a synthesis of the research on organization design Manage. Sci. 26 322–41
Nasr A, Björnsson I, Honfi D, Larsson Ivanov O, Johansson J and Kjellström E 2019 A review of the potential impacts of climate change

on the safety and performance of bridges Sustainable and Resilient Infrastructure 1–21
National Research Council 2002 History of U.S. Water and wastewater systems Privatization of Water Services in the United States

(Washington D.C.: National Academies Press)
Nelson K 2005 Small and decentralized systems for wastewater treatment and reuse Water Conservation, Reuse, and Recycling: Proc. Iranian-

American Workshop (National Academies Press)
O’Flaherty B 2005 City Economics Cambridge, MAHarvard University Press https://hup.harvard.edu/catalog.php?isbn=9780674019188
Pagani G A and Aiello M 2011 Towards decentralization: a topological investigation of the medium and low voltage grids IEEE Trans.

Smart Grid 2 538–47
Park J, Seager T P, Rao P S C, Convertino M and Linkov I 2013 Integrating risk and resilience approaches to catastrophe management in

engineering systems Risk Anal. 33 356–67
Quezada G, Walton A and Sharma A 2016 Risks and tensions in water industry innovation: understanding adoption of decentralised water

systems from a socio-technical transitions perspective J. Clean. Prod. 113 263–73
Rinaldi S M, Peerenboom J P and Kelly T K 2001 Identifying, understanding, and analyzing critical infrastructure interdependencies IEEE

Control Syst. 21 11–25
Rodrigue J-P (ed) 2020 The Geography of Transport Systems 5th edn (New York: Routledge) https://transportgeography.org/?page_id=89
Sharma R 2019 The straits of success in a VUCA world ABS Int. J. Manag. 7 1–6
Siggelkow N and Levinthal D A 2003 Temporarily divide to conquer: centralized, decentralized, and reintegrated organizational approaches

to exploration and adaptation Organization Science 14 650–69
Snowden D J and Boone M E 2007 Havard Business Review https://hbr.org/2007/11/a-leaders-framework-for-decision-making
Srinivasa K G and Muppalla A K 2015 Guide to High Performance Distributed Computing (Berlin: Springer)
Steffen W, Broadgate W, Deutsch L, Gaffney O and Ludwig C 2015 The trajectory of the Anthropocene: the great acceleration Anthropocene

Rev. 2 81–98
Stover J F 1997 American Railroads (Chicago, IL: University of Chicago Press) https://ebookcentral-proquest-com.ezproxy1.lib.asu.edu/

lib/asulib-ebooks/reader.action?docID=408181
Toh R S and Higgins R G 1985 The impact of hub and spoke network centralization and route monopoly on domestic airline profitability

Transport. J. 24 16–27
Tomlinson B, Nardi B, Patterson D J, Raturi A, Richardson D, Stokols D and Saphores Henry J-D 2015 Toward alternative decentralized

infrastructures DEV ’15: Proc. 2015 Annual Symp. Computing for Development
Uhl-Bien M and Arena M 2018 Leadership for organizational adaptability: a theoretical synthesis and integrative framework Leader. Q.

29 89–104
Uhl-Bien M, Marion R and McKelvey B 2007 Complexity leadership theory: shifting leadership from the industrial age to the knowledge

era Leader. Q. 18 298–318
Underwood B S, Guido Z, Gudipudi P and Feinberg Y 2017 Increased costs to US pavement infrastructure from future temperature rise

Nat. Clim. Change 7 704–7
Wilder M and Romero Lankao P 2006 Paradoxes of decentralization: water reform and social implications in Mexico World Dev. 34

1977–95
Woods D D 2015 Four concepts for resilience and the implications for the future of resilience engineering Reliab. Eng. Syst. Saf. 141 5–9
Zantalis F, Koulouras G, Karabetsos S and Kandris D 2019 A review of machine learning and IoT in smart transportation future internet

11 94
Zodrow K R et al 2017 Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water

security Environ. Sci. Technol. 51 10274–81

11

http://clivar.org/organization/etccdi/etccdi.php
https://books.google.com/books/about/Modern_Governance.html?id=CRXt1WgkaIMC
https://books.google.com/books/about/Modern_Governance.html?id=CRXt1WgkaIMC
https://freightwaves.com/news/faa-issues-dry-ice-alert-to-airlines-carrying-vaccine
https://freightwaves.com/news/faa-issues-dry-ice-alert-to-airlines-carrying-vaccine
https://doi.org/10.1109/jpets.2019.2900293
https://doi.org/10.1109/jpets.2019.2900293
https://doi.org/10.1109/jpets.2019.2900293
https://doi.org/10.1109/jpets.2019.2900293
https://doi.org/10.1016/j.enpol.2009.01.026
https://doi.org/10.1016/j.enpol.2009.01.026
https://doi.org/10.1016/j.enpol.2009.01.026
https://doi.org/10.1016/j.enpol.2009.01.026
https://doi.org/10.3390/su11030918
https://doi.org/10.3390/su11030918
https://doi.org/10.1109/tsg.2010.2053726
https://doi.org/10.1109/tsg.2010.2053726
https://doi.org/10.1109/tsg.2010.2053726
https://doi.org/10.1109/tsg.2010.2053726
https://doi.org/10.1109/maes.2005.1499272
https://doi.org/10.1109/maes.2005.1499272
https://doi.org/10.1109/maes.2005.1499272
https://doi.org/10.1109/maes.2005.1499272
https://doi.org/10.1007/s11269-010-9580-5
https://doi.org/10.1007/s11269-010-9580-5
https://doi.org/10.1007/s11269-010-9580-5
https://doi.org/10.1007/s11269-010-9580-5
https://doi.org/10.1029/2018ef000926
https://doi.org/10.1029/2018ef000926
https://doi.org/10.1029/2018ef000926
https://doi.org/10.1029/2018ef000926
https://doi.org/10.1146/annurev.energy.23.1.107
https://doi.org/10.1146/annurev.energy.23.1.107
https://doi.org/10.1146/annurev.energy.23.1.107
https://doi.org/10.1146/annurev.energy.23.1.107
https://doi.org/10.3390/su8070701
https://doi.org/10.3390/su8070701
https://doi.org/10.1126/science.1151915
https://doi.org/10.1126/science.1151915
https://doi.org/10.1126/science.1151915
https://doi.org/10.1126/science.1151915
https://books.google.com/books/about/The_Structuring_of_Organizations.html?id=NQ1HAAAAMAAJ
https://books.google.com/books/about/The_Structuring_of_Organizations.html?id=NQ1HAAAAMAAJ
https://doi.org/10.1287/mnsc.26.3.322
https://doi.org/10.1287/mnsc.26.3.322
https://doi.org/10.1287/mnsc.26.3.322
https://doi.org/10.1287/mnsc.26.3.322
https://doi.org/10.1080/23789689.2019.1593003
https://doi.org/10.1080/23789689.2019.1593003
https://doi.org/10.1080/23789689.2019.1593003
https://hup.harvard.edu/catalog.php?isbn=9780674019188
https://doi.org/10.1109/tsg.2011.2147810
https://doi.org/10.1109/tsg.2011.2147810
https://doi.org/10.1109/tsg.2011.2147810
https://doi.org/10.1109/tsg.2011.2147810
https://doi.org/10.1111/j.1539-6924.2012.01885.x
https://doi.org/10.1111/j.1539-6924.2012.01885.x
https://doi.org/10.1111/j.1539-6924.2012.01885.x
https://doi.org/10.1111/j.1539-6924.2012.01885.x
https://doi.org/10.1016/j.jclepro.2015.11.018
https://doi.org/10.1016/j.jclepro.2015.11.018
https://doi.org/10.1016/j.jclepro.2015.11.018
https://doi.org/10.1016/j.jclepro.2015.11.018
https://doi.org/10.1109/37.969131
https://doi.org/10.1109/37.969131
https://doi.org/10.1109/37.969131
https://doi.org/10.1109/37.969131
https://transportgeography.org/?page_id=89
https://doi.org/10.1287/orsc.14.6.650.24840
https://doi.org/10.1287/orsc.14.6.650.24840
https://doi.org/10.1287/orsc.14.6.650.24840
https://doi.org/10.1287/orsc.14.6.650.24840
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://doi.org/10.1177/2053019614564785
https://doi.org/10.1177/2053019614564785
https://doi.org/10.1177/2053019614564785
https://doi.org/10.1177/2053019614564785
https://ebookcentral-proquest-com.ezproxy1.lib.asu.edu/lib/asulib-ebooks/reader.action?docID=408181
https://ebookcentral-proquest-com.ezproxy1.lib.asu.edu/lib/asulib-ebooks/reader.action?docID=408181
https://doi.org/10.1016/j.leaqua.2017.12.009
https://doi.org/10.1016/j.leaqua.2017.12.009
https://doi.org/10.1016/j.leaqua.2017.12.009
https://doi.org/10.1016/j.leaqua.2017.12.009
https://doi.org/10.1016/j.leaqua.2007.04.002
https://doi.org/10.1016/j.leaqua.2007.04.002
https://doi.org/10.1016/j.leaqua.2007.04.002
https://doi.org/10.1016/j.leaqua.2007.04.002
https://doi.org/10.1038/nclimate3390
https://doi.org/10.1038/nclimate3390
https://doi.org/10.1038/nclimate3390
https://doi.org/10.1038/nclimate3390
https://doi.org/10.1016/j.worlddev.2005.11.026
https://doi.org/10.1016/j.worlddev.2005.11.026
https://doi.org/10.1016/j.worlddev.2005.11.026
https://doi.org/10.1016/j.worlddev.2005.11.026
https://doi.org/10.1016/j.ress.2015.03.018
https://doi.org/10.1016/j.ress.2015.03.018
https://doi.org/10.1016/j.ress.2015.03.018
https://doi.org/10.1016/j.ress.2015.03.018
https://doi.org/10.3390/fi11040094
https://doi.org/10.3390/fi11040094
https://doi.org/10.1021/acs.est.7b01679
https://doi.org/10.1021/acs.est.7b01679
https://doi.org/10.1021/acs.est.7b01679
https://doi.org/10.1021/acs.est.7b01679

	Centralization and decentralization for resilient infrastructure and complexity
	1.  Introduction
	2.  Background
	2.1.  Physical infrastructure as networks
	2.2.  Governance as networks of power

	3.  De/centralization for resilience
	3.1.  Infrastructure resilience as a de/centralization spectrum

	4.  Reframing centralization and decentralization
	5.  Conclusion
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


