
Computational Geometry: Theory and Applications 98 (2021) 101787

Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Sparse convex hull coverage

Georgiy Klimenko 1, Benjamin Raichel ∗,1, Gregory Van Buskirk 1

Department of Computer Science, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 October 2020
Received in revised form 30 April 2021
Accepted 3 May 2021
Available online 14 May 2021

Keywords:
Convex hull
Approximation
Hardness

Given a set P of n data points and an integer k, a fundamental computational task is to find
a smaller subset Q ⊆ P of only k points which approximately preserves the geometry of
P . Here we consider the problem of finding the subset Q of k points which best captures
the convex hull of P , where our error measure is the sum of the distances of the points
in P to the convex hull of Q . We generalize the problem to allow the set R that we must
select Q from to differ from P , as well as to allow more general functions of the distances
of the uncovered points of P , such as other norms or weighted distance functions.
We prove that approximating the convex hull in this manner in the plane can be solved by
either a simple graph based or dynamic programming based algorithm in polynomial time.
Complementing this result we show that in three dimensions and higher the problem is
NP-hard. Moreover, we give an algorithm which in three dimensions selects O (k log(n/ε))

points to get a solution whose error is at most 1 + ε times the optimal k point error. This
generalizes to O (k�d/2� log(n/ε)) points for any constant dimension d.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Given a point set P ⊂ Rd , the convex hull of P , denoted by CH(P), is a fundamental geometric structure, intuitively
capturing the region covered by P . Here we consider the problem of covering P as best as possible by the convex hull of
a subset of only k points from P , in effect sparsely approximating CH(P). This natural problem relates to the problem of
approximating convex sets by polytopes, for which countless papers have been written (see the extensive survey [6]). Much
of this previous work has focused on the objective of minimizing the maximum distance of an uncovered point from the
hull of the selected points (i.e. Hausdorff distance), or approximating the volume in the case of smooth convex bodies. Here
we instead study approximating the convex hull of a discrete point set under the objective of minimizing the sum of the
distances of the uncovered points, an objective which when compared to the max objective is more robust to outliers as
the error is no longer determined solely by the single furthest point. Our framework also allows for much more general cost
functions of the distances, and in particular allows for any �p norm or weighted distance functions. We further generalize
the problem such that the selected k points defining our hull are required to come from a set R that can differ from P ,
thus capturing scenarios where the covering objects differ from the covered ones. This is natural from a feature selection
standpoint, where R represents a set of known possible features which we wish to represent a set of observed objects P .
For such problems the convex hull is a particularly relevant structure as it represents the set of all weighted averages of the
selected points. Moreover, the Carathéodory theorem states that any point in the convex hull of the chosen subset can be

* Corresponding author.
E-mail addresses: gik140030@utdallas.edu (G. Klimenko), benjamin.raichel@utdallas.edu (B. Raichel), greg.vanbuskirk@utdallas.edu (G. Van Buskirk).

1 This work was partially supported by NSF CAREER Award 1750780.

https://doi.org/10.1016/j.comgeo.2021.101787
0925-7721/© 2021 Elsevier B.V. All rights reserved.

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

represented as a convex combination of d + 1 of the chosen points, yielding a sparse representation in low dimensions. (In
higher dimensions one can use the approximate Carathéodory theorem [3].)

More generally, given a set P ⊂ Rd of n points, finding a smaller set of only k points which approximately captures
the geometry of P under some measure is a ubiquitous computational task. Two standard such problems of interest are k-
clustering and subspace fitting. In k-clustering the objective is to select a subset of k center points so as to minimize some
norm of the vector of distances from each point in P to its nearest center. For example, k-means seeks to minimize the �2
norm [2], where it is known that even planar k-means is NP-hard [14]. For subspace fitting the objective is to select the
k-dimensional subspace minimizing some norm of the distances to the linear subspace, e.g. the solution under the �2 norm
is known to be the top k singular vectors when viewing P as a matrix. If one restricts the selected k points to come from
P , then the clustering and subspace fitting problems become the standard discrete k-clustering and CUR-decomposition [5]
problems.

Our problem of approximating the convex hull can be viewed as naturally lying between clustering and subspace fitting,
when restricting the selected subset to come from a set R . Specifically, viewing the selected subset of k points Q ⊆ R as a
basis, the problems are defined by how we allow each point in P to be represented by Q . In subspace fitting, any linear
combination is allowed, in convex hull coverage only convex combinations are allowed (i.e. non-negative coefficients that
sum to 1), and in clustering not only are the combinations convex, but the coefficients are all zero except for a single
coefficient being 1 (i.e. the nearest center). That is, one can define an entire spectrum of problems based on how one
restricts reconstruction from the basis, and convex hull coverage is a natural setpoint on this spectrum. In this sense, other
standard problems such as non-negative matrix factorization (NMF), which is known to be NP-hard [19], can be seen as
another setpoint on this spectrum. (NMF typically restricts the basis to non-negative vectors, though restricting to input
points is also commonly studied [13].)

Another related topic is coresets, which are small subsets of the input which can be used as a proxy for the full set.
There are numerous coresets results (see chapter 48 in [16]). Relevant to the current paper, it is known that for any point
set P contained in the unit ball,2 there is a subset S ⊆ P of O (1/ε(d−1)/2) points such that all of P is with distance ε from
CH(S). Worst case point sets require such an exponential dependence on d, and thus Blum et al. [4] considered coresets
whose size is measured relative to the given instance, showing that if some set of k points achieves ε error, then a greedy
algorithm selecting O (k/ε2/3) points achieves O (ε1/3) error. This result was later extended by Van Buskirk et al. [17] to get
analogous results for approximating the conic hull, which consists of all non-negative combinations, and so relates to NMF.

Given two nested convex polygons, Aggarwal et al. [1] gave a near linear time algorithm to find the convex polygon nested
between them with the fewest number of vertices. In higher dimensions, Clarkson [8] gave approximations (on the number
of points) when the polytope must be fully covered by the hull of a subset of a discrete point set, or by a subset of points
with bounded Hausdorff distance. Among other things, these problems differ from ours in that they require full coverage
and attempt to minimize k. Our problem also loosely relates to curve simplification, for which there are many popular
heuristics such as Douglas-Peucker [12]. Curve simplification with provable guarantees was considered by van Kreveld et al.
[18], who showed hardness for Hausdorff distance and gave a polynomial time algorithm for Fréchet distance.

1.1. Our contribution

For point sets R, P ⊂ Rd of m and n points, respectively, we initiate the rigorous study of the convex hull coverage
problem, where the goal is to find a subset Q ⊆ R of k points minimizing the sum of distances from the points in P to their
projection onto the convex hull of Q , that is

�
p∈P ||p − CH(Q)||, where ||p −CH(Q)|| denotes the distance from p to the

convex hull of Q . Furthermore, we generalize the problem to allow any cost function of the form
�

p∈P gp(||p − CH(Q)||),
where each gp can be any monotonically increasing real valued function such that gp(α) = 0 if and only if α = 0. Thus we
can model for example weighted sums or other �p norms of the distances of the points in P to the hull (by taking the pth
power of the norm).

We prove that convex hull coverage can be solved exactly in the plane in O (m3k +m2n +mn log(n)) time via dynamic
programming. Interestingly, for the special case when P = R , we can show that by carefully assigning weights, the problem
nicely reduces to the problem of finding a minimum cost k length cycle in a directed graph. This yields a simpler graph
based algorithm with O (n3 logk) running time. To complement our results in the plane, we argue that the convex hull
coverage problem is NP-hard for d ≥ 3, even when restricting our objective to the sum of distances (i.e. the gp are all the
identity function). Furthermore, we argue that even if one restricts to instances where P = R , the problem remains NP-hard
for d ≥ 4. Finally, we argue that a geometric set cover based algorithm yields an approximation in constant dimensions
for the sum of distances. Namely, for d = 3 greedily selecting O (k log(n/ε)) points in an appropriate way gives a solution
whose error is at most 1 + ε times the optimal k point error. This generalizes to O (k�d/2� log(n/ε)) points for any constant
dimension d.

One of the main challenges of convex hull coverage for d ≥ 3 is that it lacks certain independence properties of related
problems. For example, in k-clustering, the cluster centers partition the points based on their nearest center, whereas the

2 Any point set can be scaled to lie in the unit ball, effectively meaning ε is measured relative to the diameter before scaling, which is in some sense
necessary. Via an affine transformation, one can ague such coresets exist for directional width where error is relative to the diameter in each direction, see
[11].

2

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

projection of a point onto the convex hull is determined by several hull vertices. For subspace approximation under the
Frobenius norm there is independence among the dimensions, in the sense that the k-th singular vector is determined by
finding the optimum vector in the orthogonal subspace of the first k − 1 singular vectors. Note also that previous coreset
results focused on the max measure, where a given error ε represents a precise constraint that all points must satisfy. On
the other hand, for our sum measure, an error ε represents a budget that the algorithm must now decide how to allocate
amongst the various points.

1.2. Preliminaries

Given a point set X in Rd , let CH(X) denote its convex hull. For two points x, y ∈ Rd , let xy denote their line segment,
that is xy = CH({x, y}). Throughout, given points x, y ∈ Rd , ||x − y|| denotes their Euclidean distance. Given two compact
sets X, Y ⊂ Rd , ||X − Y || = minx∈X,y∈Y ||x − y|| denotes their distance. For a single point x we write ||x − Y || = ||{x} − Y ||.

Definition 1.1. Let P ⊂ Rd be a set of n points, where for each point x ∈ P , there is an associated monotonically in-
creasing real valued function gx such that gx(α) = 0 if and only if α = 0. Then we call any function of the form
f (Q , P) = �

x∈P 	 gx(||x − CH(Q)||), where Q ⊂ Rd and P 	 ⊆ P , a hull coverage function. We let FP denote the set of
all such functions.

In the above definition we assume the gx functions can be evaluated in constant time. The following is the main problem
studied in this paper.

Problem 1.2. Given a set P ⊂ Rd of n points, a set R ⊂ Rd of m points, and a function f ∈ FP , select a subset Q ⊆ R of at
most k points which minimizes f (Q , P). That is, Q = argminQ ⊆R,|Q |≤k f (Q , P).

2. Exact computation in the plane

In this section we give polynomial time algorithms for Problem 1.2 when d = 2. First, we give a simple graph based
algorithm for the special case when P = R , followed by a slightly more involved dynamic programming algorithm for the
general case.

2.1. A graph algorithm for a simpler case

In this section we argue that by assuming P = R , one can solve Problem 1.2 in the plane by converting it into a corre-
sponding graph problem. Specifically, construct a weighted and fully connected directed graph GP = (V , E) where V = P .
Given an order pair of points p, q, let P p,q denote the subset of P in the closed halfspace whose boundary is the line
through p and q and lies to the left of the ray from p to q. Then we define the weight of the directed edge (p, q) to be
w(p, q) = f ({p, q}, P p,q). For a cycle of vertices C = {p1, . . . , pk}, let w(C) denote the sum of the weights of the directed
edges around the cycle. Throughout, we only consider non-trivial cycles, that is cycles must have at least two vertices.

For a set of points Q , let CHL(Q) denote the clockwise list of vertices on the boundary of CH(Q). Observe that any
subset Q ⊆ P corresponds to the cycle CHL(Q) in GP . Moreover, any cycle C corresponds to the convex hull CH(C).

Lemma 2.1. Consider an instance P , R, f , k of Problem 1.2 in the plane where P = R. Let C be any cycle in GP , and let Q be an optimal
solution. Then,
1) w(C) ≥ f (C, P), 2) w(CHL(Q)) = f (Q , P).

Proof. First, observe that w(C) and f (C, P) can be decomposed into the contribution of each point.

f (C, P) =
�

p∈P

gp(||p − CH(C)||) and w(C) =
�

(a,b)∈C
f ({a,b}, Pa,b) =

�

p∈P

�

(a,b)∈C
s.t. p∈Pa,b

gp(||p − ab||).

To prove the first part of the lemma, we thus argue that for any p ∈ P , its contribution to w(C) is at least as large as its
contribution to f (C, P). Assume p /∈ CH(C), since otherwise it does not contribute to f (C, P). It suffices to argue there
exists an edge (a, b) ∈ C , such that p ∈ Pa,b , since ||p − ab|| ≥ ||p − CH(C)|| and gp is a monotonically increasing function.
So assume otherwise that there is some point p ∈ P such that p lies strictly to the right of all edges in C . Create a line �
that passes through p and any interior point of any edge (a, b) ∈ C , but does not pass through any point in P . The line �
splits the plane into two halfspaces. As p is to the right of any edge and is outside the convex hull of the points, all edges
intersecting � have to begin at the same halfspace and end at the other halfspace. This implies C is not a cycle, which is a
contradiction.

To prove the second part of the lemma for an optimal solution Q , we argue that for any p ∈ P , its contribution to
f (Q , P) is equal to its contribution to w(CHL(Q)). If p ∈ CH(Q) then it lies to the right of all edges in CHL(Q), and so

3

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

Fig. 2.1. b, c ∈ CH({a,d, p}) when p ∈ Pab and p ∈ Pcd .

its contributions to both w(CHL(Q)) and f (Q , P) are zero. So consider a point p /∈ CH(Q). Let ab be the closest edge of
CH(Q) (where b follows a in clockwise order). Note that ||p −CH(Q)|| = ||p −ab|| and p ∈ Pab , and thus the contributions
of p to f (Q , P) and w(CHL(Q)) are equal if and only if p lies to right of all other edges in CHL(Q), as otherwise p has
a positive contribution to another edge since by definition gp(α) > 0 for α > 0. So suppose otherwise, that p lies to the
left of some other edge cd (note it may be that b = c). Thus p is in the intersection of the halfspace to the left of the
line from a through b and to the left of the line from c through d, see Fig. 2.1. This implies that b, c ∈ CH({a, d, p}). So let
Q 	 = Q ∪ {p} \ {b, c}, then CH(Q) ⊂ CH(Q). This implies f (Q 	, P) < f (Q , P) as Q 	 contains p but Q does not, which is a
contradiction with Q being an optimal solution as |Q 	| ≤ |Q |. (Note that assuming P = R was used to ensure that Q 	 was
a possible solution.) �

Theorem 2.2. Given an instance P , R, f , k of Problem 1.2 in the plane where P = R, it can be solved in O (n3 logk) time, where
n = |P | = |R|.

Proof. Let C be a minimum cost cycle in GP subject to having at most k vertices. The claim is that the set of vertices in C
is an optimal solution to Problem 1.2, that is, f (C, P) = minX⊆P ,|X |≤k f (X, P). By part 1) of Lemma 2.1, w(C) ≥ f (C, P), and
thus if C is not optimal, then the optimal solution must have cost strictly less than w(C). However, by part 2) of Lemma 2.1,
the optimal solution corresponds to a cycle in GP with the same cost, which contradicts C being minimum cost.

Now we analyze the running time. Computing GP takes O (n3) time as there are O (n2) edges, and computing the weight
of each edge takes O (n) time, as it is a sum of at most n constant time computable functions. To compute the minimum
cost cycle with ≤ k edges, it suffices to compute the all pairs shortest path distances for paths with ≤ k − 1 edges, since
afterwards in O (n2) time we can add the final edge of each cycle. It is known that for a graph with n vertices the all
pairs shortest path distances for paths with ≤ k − 1 edges can be computed in O (n3 logk) time, see for example the matrix
multiplication algorithm in [9]. Thus the overall running time is O (n3 logk). �

2.2. Dynamic programming for the general case

We now argue that when P is allowed to differ from R we can still compute the optimal solution in the plane in
polynomial time by using a slightly more involved and slightly slower dynamic program.

Let V = {v1, . . . , vk} ⊆ R be the vertices of some convex hull of points from R , labeled in clockwise order, where v1 is the
vertex of V with smallest y-coordinate. Consider our cost function f (V , P) = �

x∈P gx(||x −CH(V)||). Any point x ∈ CH(V)

contributes zero to f , as we required gx(0) = 0. So consider any point x ∈ P lying outside of CH(V). The projection of x
onto CH(V) is either a vertex vi or a point on the interior of an edge vi−1vi , for some i. Thus the edges and vertices of
the hull define a partition of points in P which lie outside the hull, which we now formally describe.

Consider the ray with base point vi−1 and directed from vi−1 towards vi . Define rl(vi−1, vi) to be the rotation of
this ray by π/2 to the left, that is the ray with base point vi−1 and direction (vi−1.y − vi .y, vi .x − vi−1.x). Define
rr(vi−1, vi) to be the ray with the same direction, but with base point vi . Then slab(vi−1, vi) is defined as the region
of the plane interior to and bounded by the edge vi−1vi and (between) the rays rl(vi−1, vi) and rr(vi−1, vi). See Fig. 2.2.
Define cone(vi−1, vi, vi+1) as the closed region bounded rr(vi−1, vi) and rl(vi, vi+1), again see Fig. 2.2. In other words,
slab(vi−1, vi) and cone(vi−1, vi, vi+1) are the subsets of points in the plane outside of CH(V) whose projection onto CH(V)

lies on the interior of vi−1vi or on the vertex vi , respectively. In particular, for a point set P , define

sumslab(vi−1, vi) = f ({vi−1, vi}, P ∩ slab(vi−1, vi)) =
�

p∈P∩slab(vi−1,vi)

gp(||p − CH({vi−1, vi})||)

sumcone(vi−1, vi, vi+1) = f ({vi}, P ∩ cone(vi−1, vi, vi+1)) =
�

p∈P∩cone(vi−1,vi ,vi+1)

gp(||p − vi||)

Observe that sumslab(vi−1, vi) only depends on vi−1 and vi and sumcone(vi−1, vi, vi+1) only depends on vi−1, vi , and vi+1.

4

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

Fig. 2.2. Three consecutive vertices on the hull, and the corresponding defined slabs and cone.

In particular, these quantities are respectively defined for any pair or triple of points in R , and for now assume they have
all been precomputed.

By the discussion above, for ordered vertices V of a convex hull we can rewrite our cost function as

f (V , P) =
�

x∈P

gx(||x− CH(V)||) =
k�

i=1

(sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1)), (2.1)

where indices are mod k, i.e. v0 = vk and vk+1 = v1. This equation suggests a natural recursive strategy to minimize f (V , P)

(over choices of V) by guessing the vertices of V in clockwise order.
First, at the cost of an additional linear factor in the running time, we guess the point with the smallest y-coordinate

from the optimal hull.3 We call this the starting point and denote it by s (i.e. v1 = s). Let Rs be the subset of points in R
whose y-coordinate is greater than that of s. As we assumed s is the lowest point in the optimal solution, we can disregard
points in R \ Rs . Next, we sort all other points in Rs clockwise radially around s (i.e. from the negative x axis clockwise
about s to the positive x axis) and process points in this order.

One issue we must deal with first is that in Equation (2.1), sumcone(vk, s, v2) depends both on the choice of vk and v2.
To break this cyclic behavior we cut the cone for s in two. So cast a ray in the negative y-direction from s and call it rs , and
observe that as s is the lowest vertex, rs must lie in the cone for s. We cut the cone for s along rs and assign each piece
to its adjacent slab. Specifically, suppose we set v2 = u for some u ∈ Rs . Then define sumstart(s, u) as the summed cost for
the points in the union of slab(s, u) with the cone lying between the rays rs and rl(s, u) (including rs). Similarly, if we set
vk = w , then define sumend(w, s) as the summed cost for the points in the union of slab(w, s) with the cone lying between
the rays rr(w, s) and rs (excluding rs). Then we have,

f (V , P) =sumstart(s, v2) +
k−1�

i=2

(sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1))

+ (sumcone(vk−1, vk, s) + sumend(vk, s)).

(2.2)

We now argue that the recursive algorithm shown in Algorithm 1, minimizes Equation (2.2) over all V ⊆ R , such that
V = {v1 = s, v2, . . . , vk} are the ordered vertices of a convex hull with lowest point s. This algorithm makes use of the
function right(u, v, w) which returns true if the ordered triple (u, v, w) represents a right turn and returns false otherwise.
The following simple helper lemma ensures we do not need to check for a right turn at s (i.e. where we split the problem),
as long as we check everywhere else.

Lemma 2.3. Let V = {v1, v2, . . . , vk} be a sequence of points such that v1 is the lowest point, and v2, . . . , vk are in clockwise sorted
order around v1 . If for all 1 < i ≤ k, (vi−1, vi, vi+1) is a right turn, where vk+1 = v1 , then V are the ordered vertices of a convex hull.

Proof. By definition, V are the ordered vertices of a convex hull if V represents a simple closed convex chain. First, because
the vertices in V = {v1, . . . , vk} are given in clockwise sorted order around v1, the closed chain V must be simple (i.e. when
rotating a ray from v1, the edges of the chain always cross it in the same direction). In order for the chain to be a closed
convex chain, it must make a right turn at every vertex. We are already explicitly given that a right turn is made at every
vertex except for v1. To see why (vk, v1, v2) is a right turn, observe that v1 is lower than both vk and v2, and moreover
vk comes after v2 in clockwise order about v1. These two facts combined imply the angle
 vkv1v2 is < π (i.e. the angle
subtended by rotating v1v2 clockwise about v1 to v1vk), that is a right turn. �

3 We can assume all points have distinct y-coordinates, by applying a small random rotation, which does not affect f .

5

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

Algorithm 1 Recursive Algorithm.
1: function RecAlg(s, k	, u, v)
2: best = ∞
3: if right(u, v, s) then
4: best = sumcone(u, v, s) + sumend(v, s)
5: if k	 = 1 then
6: return best
7: for w ∈ Rs after v in clockwise order do
8: if right(u, v, w) then
9: best = min{best, sumcone(u, v, w) + sumslab(v, w) + RecAlg(s, k	 − 1, v, w)}
10: return best

11: function Wrapper(R, P , k)
12: best = ∞
13: for s ∈ R do
14: for v ∈ Rs in clockwise order do
15: best = min{best, sumstart (s, v) + RecAlg(s, k − 1, s, v)}
16: return best

Given the above discussion about breaking the cost function into cones and slabs according to Equation (2.2), the proof
of correctness of Algorithm 1 is now straightforward.

Lemma 2.4. Given an instance P , R, f , k of Problem 1.2 in the plane, Algorithm 1 computes the optimal solution cost, namely
minQ ⊆R,|Q |≤k f (Q , P).

Proof. For any s ∈ R , we now argue costs = minv∈Rs (sumstart(s, v) + RecAlg(s, k − 1, s, v)) is the cost of the minimum cost
k length convex hull with lowest point s. This will imply Wrapper computes the optimum solution as it takes the minimum
of this quantity over all s ∈ R .

Suppose that costs is not infinite. By the structure of the recursive algorithm, this can only happen if in each recursive
call determining costs , best is not infinite. The places where best can be set to a non-infinite value are lines 4 and 9, and
if the return value of best is set by line 4 then this represents a terminal call. Moreover, observe that executing line 4 or 9
requires satisfying a right turn check on the preceding line. Thus, there must have been a sequence of recursive calls made
with a corresponding sequence of vertices V = {v1 = s, v2, . . . , vκ } such that for all 1 < i ≤ κ , right(vi−1, vi, vi+1) = true
(where vκ+1 = v1), which by Lemma 2.3, implies V are the ordered vertices of a convex hull. (Note that s being the
lowest is enforced by considering only Rs , and the clockwise ordering of V is enforced by the ordering of the for loops.)
Moreover, we have costs = sumstart(s, v2) + RecAlg(s, k − 1, s, v2), and from line 9 for all 1 < i < κ we have RecAlg(s, k −
i +1, vi−1, vi) = sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1) + RecAlg(s, k − i, vi, vi+1), and from line 4 we have RecAlg(s, k −
κ + 1, vκ−1, vκ) = sumcone(vκ−1, vκ , s) + sumend(vκ , s). Thus putting all these equations together we have

costs =sumstart(s, v2) +
κ−1�

i=2

(sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1))

+ (sumcone(vκ−1, vκ , s) + sumend(vκ , s)) = f (V , P)

where the last equality follows from Equation (2.2). Thus if costs is not infinite then we know it represents the true cost of
some valid set of convex hull vertices V . Conversely, by a similar logic it is easy to see that costs is never infinite since for
the ordered sequence of vertices of any convex hull all the right turn checks will be satisfied and in the algorithm when
looking for the next vertex we try all possible vertices that remain in the sorted order. (Note that ∞ may be returned
if there is no non-trivial convex hull, i.e. if s is the highest vertex in R , a case which can be treated separately.) Thus
what remains is to argue that the output cost and vertices selected correspond to a minimal cost solution, however, this
is immediate from the above. Specifically, let Vi be the set of all clockwise ordered convex hull vertices such that all have
the same prefix {v1, . . . , vi}. Then minV∈Vi f (V , P) is determined by selecting {vi+1, . . . vk} so as to minimize the cone and
slab sums they determine, which as argued above is precisely what lines 9 and 4 do. In particular, because the cones and
slabs define an ordered partition of P , minimizing their cost over the remaining vertices, does not affect the cone and slab
cost determined by the previously selected vertices, and thus the recursive algorithm correctly returns the minimal cost
overall. �

As the correctness of our approach is established by the above lemma, the proof of the following theorem mainly focuses
on the running time. The proof saves roughly an O (m) factor over the naive time bound by using sweeping both to batch
dynamic programming table entries together and to implicitly precompute the sumcone values.

Theorem 2.5. Given an instance P , R, f , k of Problem 1.2 in the plane, it can be solved in O (m3k + m2n + mn log(n)) time, where
n = |P | and m = |R|.

6

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

Fig. 2.3. Si+1 with 4 points shown shaded blue on the right. The two points determining x = sumcone(ui+1, v, ·) − sumcone(ui , v, ·) shown in shaded yellow
on the left.

Proof. First, observe that the recursive Algorithm 1 can easily be turned into a dynamic program, as the k	 parameter strictly
decreases in each recursive call. Moreover, it is easy to modify the code such that it returns the actual vertices instead of
just the cost of the hull.

The correctness of this algorithm follows from Lemma 2.4. For the running time, first observe that for every vertex s ∈ R
we can compute Rs and the clockwise sorted order of all points in R around s, in O (m2 logm) time. So assume this is done
initially, and moreover assume for now that all the cone and slab sums have been precomputed. The dynamic program will
compute the value of RecAlg(s, k	, u, v) for each quadruple (s, k	, u, v). Naively this takes O (m) time per quadruple since
the for loop on line 7 requires a table lookup for each point in R . Thus overall the dynamic program takes O (m4k) time as
the table size is O (m3k). However, we can save an O (m) factor in the running time by instead computing for each triple
(s, k	, ·, v), the entire column of u values in O (m) time as follows.

Fix s, k	 , and v . Define cost(u, v, w) = sumcone(u, v, w) + sumslab(v, w) + RecAlg(s, k	 − 1, v, w). For any u ∈ Rs coming
before v in the clockwise order about s, the recursive algorithm computes RecAlg(s, k	, u, v) = minw∈Y (u) cost(u, v, w),
where Y (u) is the set of points w ∈ Rs such that right(u, v, w) = true and moreover w is after v in the clockwise order
about s. Specifically, this is all points in the region determined by sweeping the ray from v to s counterclockwise until it hits
the line passing through u and v . See Fig. 2.3. So let u1, . . . , uz be the vertices in Rs coming before v in the clockwise order
about s, but labeled by their counterclockwise order about v . Then Y (ui) ⊆ Y (ui+1), and in particular Si+1 = Y (ui+1) \ Y (ui)

are the set of points in the wedge lying between the line through ui and v and the line through ui+1 and v (again see
Fig. 2.3). Observe that the Si are disjoint sets, and moreover,

RecAlg(s,k	,ui+1, v) = min
w∈Y (ui+1)

cost(ui+1, v, w) = min{ min
w∈Si+1

cost(ui+1, v, w), min
w∈Y (ui)

cost(ui+1, v, w)}

Observe that minw∈Y (ui) cost(ui+1, v, w) = minw∈Y (ui) cost(ui, v, w) + x for a fixed value x that does not depend on w .
Namely, x = sumcone(ui+1, v, ·) − sumcone(ui, v, ·) (see Fig. 2.3), as the cone sum is the only term in cost(u, v, w) depending
on u. Then given we already computed RecAlg(s,k	,ui, v) = minw∈Y (ui) cost(ui, v, w), by the above equation the time to
compute RecAlg(s, k	, ui+1, v) is proportional to just |Si |. Thus as the Si are disjoint, this takes O (m) time over all the ui ,
resulting in O (m3k) time for the entire dynamic program.

Now we must consider the time to precompute the cone and slab sums. For any pair u, v ∈ R , sumslab(u, v) can be
computed in O (n) time by scanning the points in P to see which fall in the slab, and thus for all pairs in R the sum slab cost
can be computed in O (m2n) time. As sumcone(u, v, w) is determined by three vertices in R , similarly computing these values
would take O (m3n) time. However, we now argue that they can be implicitly computed more efficiently as follows. First, fix
any vertex v ∈ R . Recall the boundary of cone(u, v, w) is determined by the rays rr(u, v) and rl(v, w) (defined above). So
let U and W be the sets of all vertices that come before and after v in the clockwise sorted order about s, respectively, and
let Rr = ∪u∈U rr(u, v) and Rl = ∪w∈W rl(v, w). Now sort all the vectors in Rr ∪ Rl ∪ P in clockwise order around v , starting
from the first vertex occurring after the negative y-axis direction. Now walk through the vertices in order maintaining
a rolling sum, which initially is zero. If the next vertex w is in P then we add gv(||v − w||) to the sum, otherwise if
w ∈ Rr then we assign the current sum as valuer(w) and if w ∈ Rl we assign the current sum as valuel(w). Observe that
given vertices u, w ∈ R where u comes before v and w comes after v in clockwise order about s, that sumcone(u, v, w) =
valuel(w) − valuer(u). Thus while we do not explicitly compute sumcone(u, v, w) for all triples, by computing all of the
valuel and valuer values, then by taking a difference of two such values in constant time we have access to sumcone(u, v, w).
This takes O ((n +m) log(n +m)) time per vertex in R and thus for all vertices in R takes O (m(n +m) log(n +m)) time. Thus
precomputing all the slab sums and implicitly precomputing all the cone sums overall takes O (m2n +m2 log(m) +mn log(n))

time. Thus the total running time of the entire algorithm is O (m3k +m2n +mn log(n)). �

7

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

Fig. 3.1. The edge (ap ,aq) with added points in the added dimension.

3. Hardness in higher dimensions

A convex polytope T = (V , E) in R3, will be defined as a graph where the vertices V are a set of points in convex
position in R3, and the edges E are the edges of CH(V). Das and Goodrich [10] proved the following variant of vertex
cover is NP-hard.

Problem 3.1 (Polytope vertex cover). Given a convex polytope T = (V , E) in R3 and an integer k, is there a subset U ⊆ V of
k vertices such that each edge in E is incident to a vertex in U?

The following is the decision version of our main problem, Problem 1.2.

Problem 3.2. Given a set P ⊂ Rd of n points, a set R ⊂ Rd of m points, a function f ∈ FP , and a parameter ε, is there a
subset Q ⊆ R of at most k points such that f (Q , P) ≤ ε?

We now show Problem 3.2 is NP-hard for d ≥ 3, where f (Q , P) = �
x∈P gx(||x − CH(Q)||) is a natural and simple

function. Namely, we set gx(||x −CH(Q)||) = ||x −CH(Q)|| for all x. We denote this sum of distances function as sd(Q , P) =�
x∈P ||x − CH(Q)||.

Theorem 3.3. Problem 3.2 is NP-hard for d ≥ 3 and f = sd.

Proof. We give a polynomial time reduction from Problem 3.1. Let T = (V , E) and k be an instance of Problem 3.1. We first
define several quantities based on T . For any edge e ∈ E , define a vector ue = (n1 +n2)/2, where n1 and n2 are the normals
of the planes of the two faces adjacent to e. For any edge e = (v1, v2), consider the plane ze containing e and with normal
ue . Let he be the distance from ze to the convex hull of V after removing the endpoints of e, i.e. he = ||ze−CH(V \{v1, v2})||,
and let h = mine∈E he . (Note that h is non-zero as V is in convex position.) Finally, let le be the length of the edge e, and
let l = maxe∈E le .

We construct our instance of Problem 3.2 as follows. We use the same value of k and set R = V . P will contain one
point for each edge e ∈ E , denoted pe . We place pe outside CH(V) at a distance x in the direction of ue from the midpoint
of e, where x is a value to be determined shortly. Finally, we set ε = n

�
x2 + (l/2)2, and recall f (Q , P) = sd(Q , P) =�

p∈P ||p − CH(Q)||.
Observe that for any edge e ∈ E , if at least one of its endpoints is selected, then the distance from pe to the hull

of the selected vertices is at most
�
x2 + (le/2)2 ≤

�
x2 + (l/2)2. Thus if U ⊆ V is a vertex cover of V , then sd(U , P) ≤

n
�
x2 + (l/2)2 = ε. On the other hand if U is not a vertex cover, then there is an edge e for which neither endpoint is

selected, in which case the distance from pe to the hull of the selected vertices is at least x + h. Thus the total distance of
all points to the hull is at least (n − 1)x + (x + h) = nx + h, as by construction for any e	 ∈ E we have ||pe	 − CH(R)|| = x.
Thus if we select x such that nx + h > ε, then U is vertex cover if and only if sd(U , P) ≤ ε. To ensure this inequality holds,
set x = l2n

8h . Then we have

ε = n ·
�

x2 + l2

4
= n ·

��
l2n

8h

�2

+ l2

4
< n ·

��
l2n

8h
+ h

n

�2

= n · l
2n

8h
+ h = nx+ h. �

By lifting to R4 we can argue that the problem remains NP-hard for the restricted variant where P = R , i.e. the case
considered in Section 2.1. The proof is more technically challenging, though at a high level uses a similar approach.

Theorem 3.4. Problem 3.2 is NP-hard for d ≥ 4, f = sd, and P = R.

Proof. We give a polynomial time reduction from Problem 3.1. Let T = (V , E) and k be an instance of Problem 3.1. For
any edge e ∈ E , let �e denote its length and me its midpoint. Define the quantity h = min{�, h1, h2}, where � = mine∈E �e ,

8

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

h1 = minp∈V ||p − CH(V \ {p})||, and h2 = min(e1,e2)∈E ||m(e1,e2) − CH(V \ {e1, e2})||. Then for each point p = (px, py, pz) ∈
V , define the points ap = (px, py, pz, 0) and bp = (px, py, pz, h), and for each edge (p, q) ∈ E define the point cp,q =
(
px+qx

2 , py+qy
2 , pz+qz

2 , h2). See Fig. 3.1. Define the sets A = {ap | p ∈ V }, B = {bp | p ∈ V }, and C = {cp,q | (p, q) ∈ E}. Intuitively,
we wish to give unit weight to all points in B , and give n2 weight to all points in A and C . To accomplish this, let A	 and
C 	 be the multi-sets consisting of n2 copies of all points in A and C , respectively. Our instance of Problem 3.2 in R4 is
defined by P = R = A	 ∪ B ∪ C 	 , k0 = k +n, and ε = nh. Note that any solution to Problem 3.2 containing a point from A	 (or
C), does not change in cost if we add one of its duplicates or exchange it for a duplicate. Thus we can assume the optimal
solution does not select duplicates, and so below we write A ⊂ P and refer to selecting points from A.

Let W ⊆ V be a vertex cover of size k for the given instance of Problem 3.1, and let B(W) = {b = (p, h) ∈ B | p ∈ W }. The
claim is that B(W) ∪ A is a solution to our instance of Problem 3.2 with cost ≤ ε. First, observe that |B(W) ∪ A| = k +n = k0
as required. Next, observe that naturally this gives zero error to all points in A	 and B(W). The same is true for any point
cp,q ∈ C 	 . To see this, observe that since W is a vertex cover, it must contain at least one of p or q. Without loss of generality,
suppose it contains q, in which case bq ∈ B(W). Thus B(W) ∪ A contains both bq and ap , and since cp,q is defined as the
midpoint on the segment between bq and ap , it is in their convex hull, i.e. it is covered with zero error. Thus the error can
only come from points in B \ B(W), however, the error for these points is easily upper bounded by ε = nh, as |B \ B(W)| ≤ n
and since for any point bp ∈ B we have ||bp − ap || = h and ap is in our solution.

Now let Q be a solution to Problem 3.2 with k0 points and error ≤ ε. We first argue that A ⊆ Q . Suppose otherwise
that some point a0 ∈ A is not in Q . We now lower bound ||a0 − CH(Q)||. Specifically, we will assume Q = P \ {a0}, as this
minimizes ||a0 − CH(Q)|| over all possible Q . Observe, that cp,q ∈ CH(Q) for any point cp,q ∈ C , since bp, bq ∈ Q , and at
least one of ap or aq is in Q . Thus every point in CH(Q) either lies in CH(A \ {a0}), in CH(B), or on a segment between
a point of CH(A \ {a0}) and CH(B). Let α, β be the closest points to a0 in CH(A \ {a0}) and CH(B), respectively. Then by
the definition of h, ||a0 − α|| ≥ h, and ||a0 − CH(B)|| = h. Moreover, it is not hard to see that among all segments between
a point of CH(A \ {a0}) and CH(B), the closest segment to a0 is the segment between α and β . Thus the distance from
a0 to CH(Q) is at least (

√
h2 + h2)/2 = h/

√
2. Since A	 contains n2 copies of a0, the error of Q for Problem 3.2 is at least

n2 h√
2

> ε (for n ≥ 2). Thus all points in A must have been selected.
Observe that for any point cp,q ∈ C , that cp,q ∈ CH(ap, aq, bp) and cp,q ∈ CH(ap, aq, bq), see Fig. 3.1. That is, since A ⊆ Q ,

if a point cp,q is in Q , exchanging it for either bp or bq can only enlarge CH(Q). Thus without loss of generality we assume
Q contains no points from C . Moreover, for any cp,q ∈ C , at least one of bp or bq is in Q , since otherwise cp,q /∈ CH(Q),
in which case by the same argument as above for a0, we have ||cp,q − CH(Q)|| ≥ (

�
(h/2)2 + (h/2)2)/2 = h/

√
8. Since C 	

contains n2 copies of cp,q , the total error is then at least n2 h√
8

> ε (for n ≥ 3), a contradiction. Thus for every point cp,q at
least one of bp or bq is in Q , or equivalently W = {p | bp ∈ Q } is a vertex cover of E . Moreover, it must be that |W | = k, as
k0 = n + k and all n points of A were selected. Thus all that remains is to argue that the error due to B \ W is less than ε
(as all other points are in CH(Q)). However, since all points in A are in Q , this error is as most (n − k)h < nh = ε. �

4. Approximation in higher constant dimensions

Given the hardness of our problem when d ≥ 3, it is natural to consider approximations. For the Set Cover problem, it is
well known that if k sets cover the ground set, then the greedy algorithm covers the ground set with O (k logn) sets. Our
hull problem is also a coverage problem, though it is more challenging as the points in P are not covered by the individual
points we select but rather convex combinations of them. Despite this, we argue a similar greedy approach works, though
it depends on the number of facets of the convex hull of the optimal k point solution. In R3 the number of facets is
O (k), yielding a (1 + ε) approximation to the error with only O (k log(n/ε)) points, similar to Set Cover. In higher constant
dimensions, however, the worst case facet complexity is O (k�d/2�). On real world inputs the complexity may be significantly
lower (see [15] for the facet complexity of randomly sampled points), thus our analysis suggests that greedily selecting
roughly a logarithmic factor more points may be a reasonable heuristic in practice for small constant dimensions.

In this section we assume P and R are contained in the unit ball, which as remarked in the introduction is equivalent
to measuring the error relative to the diameter, as is standard.

Previously we considered the sum of distances function sd(Q , P) = �
x∈P ||x − CH(Q)||. Similarly, we can define the

maximum distance function md(Q , P) = maxx∈P ||x −CH(Q)||. We have the following corresponding optimization problem,
considered by Blum et al. [4].

Problem 4.1. Given a set P ⊂ Rd of n points and a set R ⊂ Rd of m points, select a subset Q ⊆ R of at most k points which
minimizes md(Q , P). That is, Q = argminQ ⊆R,|Q |≤k md(Q , P).

For an instance P , R ⊂ Rd and k of Problem 4.1, define

optmd := optmd(P , R,k) = arg min
Q ⊆R, |Q |≤k

md(Q , P), and optmd := md(optmd, P).

Similarly define

9

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

optsd := optsd(P , R,k) = arg min
Q ⊆R, |Q |≤k

sd(Q , P), and optsd := sd(optsd, P).

Lemma 4.2 ([4]). Let P , R ⊂ Rd and k be an instance of Problem 4.1, where d is a constant. Then in polynomial time one can compute
a set Q 0 of O (k logk) points such that md(Q 0, P) ≤ optmd(P , R, k).

Let Q 0 be the set described in the above lemma. Observe that

sd(Q 0, P)

n
≤ md(Q 0, P) ≤ optmd = max

p∈P
||p − CH(optmd)||

≤ max
p∈P

||p − CH(optsd)|| ≤
�

p∈P

||p − CH(optsd)|| = optsd,

that is Q 0 achieves an n-approximation to the optimal sum cost optsd .
For any subsets Q ⊆ R and P 	 ⊆ P , let Z(Q , P) = sd(Q , P) − sd(optsd, P) = sd(Q , P) − optsd . For convenience Z(Q)

will denote Z(Q , P) when P is the full point set.

Lemma 4.3. Given an instance P , R ⊂ Rd and k of Problem 1.2, where f = sd and d is a constant, for any subset Q ⊆ R such that
Z(Q) ≥ 0, there exists a d-simplex � such that Z(Q ∪ �) ≤

�
1− 1

c·k�d/2�

	
Z(Q), where c is a constant.

Proof. Let {�1, �2, . . . , ��} be the d-simplices of the d-dimensional triangulation of CH(optsd) with the minimum number
of d-simplices. It is known that � ≤ c · k�d/2� , where c is a constant (using for example the bottom vertex triangulation of
[7]). Let {P1, P2, . . . , P�} be the partition of P where p ∈ Pi if and only if ||p − �i || = ||p − CH(optsd)||. (If the projection is
on a common point of more than one simplex, assign one arbitrarily.) Now, rewrite Z(Q) as

Z(Q) =
��

i=1

�

x∈Pi

(||x− CH(Q)|| − ||x− CH(optsd)||) .

Let Avg := Z(Q)
�

denote the average of Z(Q) over the partitions Pi . Hence, there exists a simplex � j with corresponding
partition P j such that

Z(Q , P j) =
�

x∈P j

(||x− CH(Q)|| − ||x− CH(optsd)||) ≥ Avg ≥ Z(Q)

c · k�d/2� ,

where the last inequality is where we used Z(Q) ≥ 0. Finally, we have Z(Q ∪ � j, P j) = sd(Q ∪ � j, P j) − sd(optsd, P j) =
sd(Q ∪ � j, P j) − sd(� j, P j) ≤ 0. Thus,

Z(Q ∪ � j) =
⎛
⎝ �

i∈[�],i
= j

Z(Q ∪ � j, Pi)

⎞
⎠ + Z(Q ∪ � j, P j) ≤

�

i∈[�],i
= j

Z(Q , Pi)

=
⎛
⎝�

i∈[�]
Z(Q , Pi)

⎞
⎠ − Z(Q , P j) ≤

�
1− 1

c · k�d/2�

�
Z(Q) �

We remark that the running time of Lemma 4.2 from [4] depends exponentially on d, and thus the same is true for the
following theorem which makes use of it.

Theorem 4.4. Given an instance P , R ⊂ Rd and k of Problem 1.2, where f = sd and d is a constant, in polynomial time one can
compute a set Q ⊆ R of O (k�d/2� log(n/ε)) points such that sd(Q , P) ≤ (1 + ε) · optsd(P , R, k).

Proof. Use Lemma 4.2 to compute a set Q 0 ⊆ R of O (k logk) points such that sd(Q 0, P) ≤ n · optsd(P , R, k). We will
iteratively add subsets of d + 1 points to Q i for i = {0, 1, . . . , m − 1} where m is the total number of iterations. Let
Ai := argmin�⊆R,|�|=d+1 sd(Q i ∪�, P) that is, Ai is the d-simplex whose addition to the current hull minimizes the sum of
distances. In the i-th iteration we add Ai to Q i to obtain Q i+1 := Q i ∪ Ai .

Recall that Z(Qm) = sd(Qm, P) − optsd . Thus if Z(Qm) ≤ ε · optsd then sd(Qm, P) ≤ (1 + ε)optsd as desired. If at any
iteration Z(Q i) ≤ 0, then Z(Qm) ≤ 0 ≤ ε · optsd , since adding more points in later iterations can only further decrease the
error. So assume that Z(Q i) > 0, then by Lemma 4.3, there exists a simplex � such that Z(Q i ∪ �) ≤

�
1− 1

c·k�d/2�
	
Z(Q i).

10

G. Klimenko, B. Raichel and G. Van Buskirk Computational Geometry: Theory and Applications 98 (2021) 101787

Note that since Z(Q i ∪�) = sd(Q i ∪�, P) −optsd , we have Z(Q i+1) = Z(Q i ∪ Ai) ≤ Z(Q i ∪�) since we chose Ai to minimize
sd(Q i ∪ Ai, P) and optsd is fixed. Thus we have Z(Q i+1) ≤

�
1− 1

c·k�d/2�
	
Z(Q i), and inductively

Z(Qm) ≤
�
1 − 1

c · k�d/2�

�m

Z(Q 0) ≤
�
1− 1

c · k�d/2�

�m

n · optsd,

where the second inequality follows as sd(Q 0, P) ≤ n · optsd . Thus if we select m such that
�
1− 1

c·k�d/2�
	m ≤ (ε/n), then

Z(Qm) ≤ ε ·optsd as desired. Note that (1 − 1
ck�d/2�)

m ≤ exp(−m/ck�d/2�) and rearranging the equation exp(−m/ck�d/2�) = ε/n

gives m = ck�d/2� log(n/ε). As we are adding d + 1 points in each round, and d is a constant, we thus get O (k�d/2� log(n/ε))

points in total. �

Corollary 4.5. Given an instance P , R ⊂ R3 and k of Problem 1.2, where f = sd, in polynomial time one can compute a set Q ⊆ R of
O (k log(n/ε)) points such that sd(Q , P) ≤ (1 + ε) · optsd(P , R, k).

Conclusion

This paper initiated the rigorous study of the convex hull coverage problem. In the plane, we gave polynomial time exact
algorithms and then we complemented these results by giving hardness results for higher dimensions. Further, we gave a
bicriteria approximation algorithm for any fixed dimension d ≥ 3. Possible future work includes reducing the running time
of the planar algorithms, proving the special case when P = R is still NP-hard when d = 3, and improving the approximation
quality in higher dimensions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, C. Yap, Finding minimal convex nested polygons, Inf. Comput. 83 (1) (1989) 98–110.
[2] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007,

pp. 1027–1035.
[3] S. Barman, Approximating Nash equilibria and dense subgraphs via an approximate version of Carathéodory’s theorem, SIAM J. Comput. 47 (3) (2018)

960–981.
[4] A. Blum, S. Har-Peled, B. Raichel, Sparse approximation via generating point sets, ACM Trans. Algorithms 15 (3) (2019) 32.
[5] C. Boutsidis, D. Woodruff, Optimal CUR matrix decompositions, SIAM J. Comput. 46 (2) (2017) 543–589.
[6] E. Bronstein, Approximation of convex sets by polytopes, J. Math. Sci. 153 (6) (2008) 727–762.
[7] K. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput. 17 (4) (1988) 830–847.
[8] K. Clarkson, Algorithms for polytope covering and approximation, in: Workshop on Algorithms and Data Structures (WADS), in: Lecture Notes in

Computer Science, vol. 709, Springer, 1993, pp. 246–252.
[9] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, The MIT Press, 2009.

[10] G. Das, M. Goodrich, On the complexity of optimization problems for 3-dimensional convex polyhedra and decision trees, Comput. Geom. 8 (1997)
123–137.

[11] S. Har-peled, Geometric Approximation Algorithms, American Mathematical Society, 2011.
[12] J. Hershberger, J. Snoeyink, An O(n log n) implementation of the Douglas-Peucker algorithm for line simplification, in: Symposium on Computational

Geometry (SOCG), ACM, 1994, pp. 383–384.
[13] A. Kumar, V. Sindhwani, P. Kambadur, Fast conical hull algorithms for near-separable non-negative matrix factorization, in: Int. Conf. on Machine

Learning, vol. 28, 2013, pp. 231–239.
[14] M. Mahajan, P. Nimbhorkar, K. Varadarajan, The planar k-means problem is np-hard, Theor. Comput. Sci. 442 (2012) 13–21.
[15] M. Reitzner, The combinatorial structure of random polytopes, Adv. Math. 191 (1) (2005) 178–208.
[16] C. Tóth, J. O’Rourke, J. Goodman, Handbook of Discrete and Computational Geometry, Discrete Mathematics and Its Applications, CRC Press, 2017.
[17] G. Van Buskirk, B. Raichel, N. Ruozzi, Sparse approximate conic hulls, in: Advances in Neural Information Processing Systems (NIPS), 2017,

pp. 2534–2544.
[18] M. van Kreveld, M. Löffler, L. Wiratma, On optimal polyline simplification using the Hausdorff and Fréchet distance, J. Comput. Geom. 11 (1) (2020)

1–25.
[19] S. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optim. 20 (3) (2010) 1364–1377.

11

