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1. Introduction

Given a point set P C RY, the convex hull of P, denoted by CH(P), is a fundamental geometric structure, intuitively
capturing the region covered by P. Here we consider the problem of covering P as best as possible by the convex hull of
a subset of only k points from P, in effect sparsely approximating CH(P). This natural problem relates to the problem of
approximating convex sets by polytopes, for which countless papers have been written (see the extensive survey [6]). Much
of this previous work has focused on the objective of minimizing the maximum distance of an uncovered point from the
hull of the selected points (i.e. Hausdorff distance), or approximating the volume in the case of smooth convex bodies. Here
we instead study approximating the convex hull of a discrete point set under the objective of minimizing the sum of the
distances of the uncovered points, an objective which when compared to the max objective is more robust to outliers as
the error is no longer determined solely by the single furthest point. Our framework also allows for much more general cost
functions of the distances, and in particular allows for any £, norm or weighted distance functions. We further generalize
the problem such that the selected k points defining our hull are required to come from a set R that can differ from P,
thus capturing scenarios where the covering objects differ from the covered ones. This is natural from a feature selection
standpoint, where R represents a set of known possible features which we wish to represent a set of observed objects P.
For such problems the convex hull is a particularly relevant structure as it represents the set of all weighted averages of the
selected points. Moreover, the Carathéodory theorem states that any point in the convex hull of the chosen subset can be
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represented as a convex combination of d + 1 of the chosen points, yielding a sparse representation in low dimensions. (In
higher dimensions one can use the approximate Carathéodory theorem [3].)

More generally, given a set P c RY of n points, finding a smaller set of only k points which approximately captures
the geometry of P under some measure is a ubiquitous computational task. Two standard such problems of interest are k-
clustering and subspace fitting. In k-clustering the objective is to select a subset of k center points so as to minimize some
norm of the vector of distances from each point in P to its nearest center. For example, k-means seeks to minimize the ¢,
norm [2], where it is known that even planar k-means is NP-hard [14]. For subspace fitting the objective is to select the
k-dimensional subspace minimizing some norm of the distances to the linear subspace, e.g. the solution under the ¢, norm
is known to be the top k singular vectors when viewing P as a matrix. If one restricts the selected k points to come from
P, then the clustering and subspace fitting problems become the standard discrete k-clustering and CUR-decomposition [5]
problems.

Our problem of approximating the convex hull can be viewed as naturally lying between clustering and subspace fitting,
when restricting the selected subset to come from a set R. Specifically, viewing the selected subset of k points Q CR as a
basis, the problems are defined by how we allow each point in P to be represented by Q. In subspace fitting, any linear
combination is allowed, in convex hull coverage only convex combinations are allowed (i.e. non-negative coefficients that
sum to 1), and in clustering not only are the combinations convex, but the coefficients are all zero except for a single
coefficient being 1 (i.e. the nearest center). That is, one can define an entire spectrum of problems based on how one
restricts reconstruction from the basis, and convex hull coverage is a natural setpoint on this spectrum. In this sense, other
standard problems such as non-negative matrix factorization (NMF), which is known to be NP-hard [19], can be seen as
another setpoint on this spectrum. (NMF typically restricts the basis to non-negative vectors, though restricting to input
points is also commonly studied [13].)

Another related topic is coresets, which are small subsets of the input which can be used as a proxy for the full set.
There are numerous coresets results (see chapter 48 in [16]). Relevant to the current paper, it is known that for any point
set P contained in the unit ball,? there is a subset S € P of 0(1/¢@~1/2) points such that all of P is with distance & from
CH(S). Worst case point sets require such an exponential dependence on d, and thus Blum et al. [4] considered coresets
whose size is measured relative to the given instance, showing that if some set of k points achieves ¢ error, then a greedy
algorithm selecting O (k/&2/3) points achieves 0 (¢!/3) error. This result was later extended by Van Buskirk et al. [17] to get
analogous results for approximating the conic hull, which consists of all non-negative combinations, and so relates to NMF.

Given two nested convex polygons, Aggarwal etal. [1] gave a near linear time algorithm to find the convex polygon nested
between them with the fewest number of vertices. In higher dimensions, Clarkson [8] gave approximations (on the number
of points) when the polytope must be fully covered by the hull of a subset of a discrete point set, or by a subset of points
with bounded Hausdorff distance. Among other things, these problems differ from ours in that they require full coverage
and attempt to minimize k. Our problem also loosely relates to curve simplification, for which there are many popular
heuristics such as Douglas-Peucker [12]. Curve simplification with provable guarantees was considered by van Kreveld et al.
[18], who showed hardness for Hausdorff distance and gave a polynomial time algorithm for Fréchet distance.

1.1. Our contribution

For point sets R, P c RY of m and n points, respectively, we initiate the rigorous study of the convex hull coverage
problem, where the goal is to find a subset Q C R of k points minimizing the sum of distances from the points in P to their
projection onto the convex hull of Q, that is Zpep [Ip — CH(Q)]|, where ||p —CH(Q)|| denotes the distance from p to the
convex hull of Q. Furthermore, we generalize the problem to allow any cost function of the form Zpep gp(llp —=CHQ)ID.,
where each g, can be any monotonically increasing real valued function such that g, () =0 if and only if @ = 0. Thus we
can model for example weighted sums or other £, norms of the distances of the points in P to the hull (by taking the pth
power of the norm).

We prove that convex hull coverage can be solved exactly in the plane in O (m3k 4+ m?n 4+ mnlog(n)) time via dynamic
programming. Interestingly, for the special case when P = R, we can show that by carefully assigning weights, the problem
nicely reduces to the problem of finding a minimum cost k length cycle in a directed graph. This yields a simpler graph
based algorithm with O (n?logk) running time. To complement our results in the plane, we argue that the convex hull
coverage problem is NP-hard for d > 3, even when restricting our objective to the sum of distances (i.e. the g, are all the
identity function). Furthermore, we argue that even if one restricts to instances where P = R, the problem remains NP-hard
for d > 4. Finally, we argue that a geometric set cover based algorithm yields an approximation in constant dimensions
for the sum of distances. Namely, for d = 3 greedily selecting O (klog(n/¢)) points in an appropriate way gives a solution
whose error is at most 1+ & times the optimal k point error. This generalizes to O (k!9/2! log(n/e)) points for any constant
dimension d.

One of the main challenges of convex hull coverage for d > 3 is that it lacks certain independence properties of related
problems. For example, in k-clustering, the cluster centers partition the points based on their nearest center, whereas the

2 Any point set can be scaled to lie in the unit ball, effectively meaning & is measured relative to the diameter before scaling, which is in some sense
necessary. Via an affine transformation, one can ague such coresets exist for directional width where error is relative to the diameter in each direction, see

[11].
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projection of a point onto the convex hull is determined by several hull vertices. For subspace approximation under the
Frobenius norm there is independence among the dimensions, in the sense that the k-th singular vector is determined by
finding the optimum vector in the orthogonal subspace of the first k — 1 singular vectors. Note also that previous coreset
results focused on the max measure, where a given error & represents a precise constraint that all points must satisfy. On
the other hand, for our sum measure, an error & represents a budget that the algorithm must now decide how to allocate
amongst the various points.

1.2. Preliminaries

Given a point set X in RY, let CH(X) denote its convex hull. For two points x, y € RY, let xy denote their line segment,
that is xy = CH({x, y}). Throughout, given points x, y € R?, ||x — y|| denotes their Euclidean distance. Given two compact
sets X,Y cRY, [|X — Y| = minyex,yey ||Xx — y|| denotes their distance. For a single point x we write ||x — Y[| = [|{x} — Y]|.

Definition 1.1. Let P c R? be a set of n points, where for each point x € P, there is an associated monotonically in-
creasing real valued function gy such that gy(w) =0 if and only if @ = 0. Then we call any function of the form
fQ,P) =3 cp 8x(Ix — CH(Q)I), where Q C R? and P’ C P, a hull coverage function. We let Fp denote the set of
all such functions.

In the above definition we assume the gy functions can be evaluated in constant time. The following is the main problem
studied in this paper.

Problem 1.2. Given a set P c R? of n points, a set R c R? of m points, and a function f € Fp, select a subset Q C R of at
most k points which minimizes f(Q, P). That is, Q =argmingcr,jo|<k f(Q, P).

2. Exact computation in the plane

In this section we give polynomial time algorithms for Problem 1.2 when d = 2. First, we give a simple graph based
algorithm for the special case when P = R, followed by a slightly more involved dynamic programming algorithm for the
general case.

2.1. A graph algorithm for a simpler case

In this section we argue that by assuming P = R, one can solve Problem 1.2 in the plane by converting it into a corre-
sponding graph problem. Specifically, construct a weighted and fully connected directed graph Gp = (V, E) where V = P.
Given an order pair of points p,q, let P, 4 denote the subset of P in the closed halfspace whose boundary is the line
through p and ¢ and lies to the left of the ray from p to q. Then we define the weight of the directed edge (p,q) to be
w(p,q) = f({p.q}, Pp,q). For a cycle of vertices C = {p1, ..., px}, let w(C) denote the sum of the weights of the directed
edges around the cycle. Throughout, we only consider non-trivial cycles, that is cycles must have at least two vertices.

For a set of points Q, let CH;(Q) denote the clockwise list of vertices on the boundary of CH(Q). Observe that any
subset Q C P corresponds to the cycle CH;(Q) in Gp. Moreover, any cycle C corresponds to the convex hull CH(C).

Lemma 2.1. Consider an instance P, R, f, k of Problem 1.2 in the plane where P = R. Let C be any cyclein Gp, and let Q be an optimal
solution. Then,
Nw(C) > f(C, P), 2)w(CHL(Q)) = f(Q,P).

Proof. First, observe that w(C) and f(C, P) can be decomposed into the contribution of each point.

FC.PY=Y"gy(lp — CH(O)I) and  w(O)= Y f(a,b},Pep)=)_ Y  glp—abl).

peP (a,b)eC peP (a,b)eC

s.t. pePqp
To prove the first part of the lemma, we thus argue that for any p € P, its contribution to w(C) is at least as large as its
contribution to f(C, P). Assume p ¢ CH(C), since otherwise it does not contribute to f(C, P). It suffices to argue there
exists an edge (a,b) € C, such that p € Py, since ||p —ab|| > ||p — CH(C)|| and g, is a monotonically increasing function.
So assume otherwise that there is some point p € P such that p lies strictly to the right of all edges in C. Create a line ¢
that passes through p and any interior point of any edge (a, b) € C, but does not pass through any point in P. The line ¢
splits the plane into two halfspaces. As p is to the right of any edge and is outside the convex hull of the points, all edges
intersecting ¢ have to begin at the same halfspace and end at the other halfspace. This implies C is not a cycle, which is a

contradiction.

To prove the second part of the lemma for an optimal solution Q, we argue that for any p € P, its contribution to
f(Q, P) is equal to its contribution to w(CH(Q)). If p € CH(Q) then it lies to the right of all edges in CH(Q), and so
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Fig.21. b,c e CH({a,d, p}) when p € Py, and p € Pq.

its contributions to both w(CH(Q)) and f(Q, P) are zero. So consider a point p ¢ CH(Q). Let ab be the closest edge of
CH(Q) (where b follows a in clockwise order). Note that ||p —CH(Q)|| = ||p —ab|| and p € Pgp, and thus the contributions
of pto f(Q,P) and w(CH(Q)) are equal if and only if p lies to right of all other edges in CH(Q), as otherwise p has
a positive contribution to another edge since by definition gp(a) > 0 for o > 0. So suppose otherwise, that p lies to the
left of some other edge cd (note it may be that b =c). Thus p is in the intersection of the halfspace to the left of the
line from a through b and to the left of the line from c through d, see Fig. 2.1. This implies that b,c € CH({a, d, p}). So let

"=Q U{p}\{b,c}, then CH(Q) c CH(Q'). This implies f(Q’, P) < f(Q, P) as Q' contains p but Q does not, which is a
contradiction with Q being an optimal solution as |Q’| <|Q|. (Note that assuming P = R was used to ensure that Q' was
a possible solution.) O

Theorem 2.2. Given an instance P, R, f,k of Problem 1.2 in the plane where P = R, it can be solved in O (n>logk) time, where
n=|P[=|R|.

Proof. Let C be a minimum cost cycle in Gp subject to having at most k vertices. The claim is that the set of vertices in C
is an optimal solution to Problem 1.2, that is, f(C, P) = minxcp x|<k f (X, P). By part 1) of Lemma 2.1, w(C) > f(C, P), and
thus if C is not optimal, then the optimal solution must have cost strictly less than w(C). However, by part 2) of Lemma 2.1,
the optimal solution corresponds to a cycle in Gp with the same cost, which contradicts C being minimum cost.

Now we analyze the running time. Computing Gp takes O (n®) time as there are O (n?) edges, and computing the weight
of each edge takes O(n) time, as it is a sum of at most n constant time computable functions. To compute the minimum
cost cycle with <k edges, it suffices to compute the all pairs shortest path distances for paths with <k — 1 edges, since
afterwards in O(n?) time we can add the final edge of each cycle. It is known that for a graph with n vertices the all
pairs shortest path distances for paths with <k — 1 edges can be computed in 0 (n?logk) time, see for example the matrix
multiplication algorithm in [9]. Thus the overall running time is 0 (n®logk). O

2.2. Dynamic programming for the general case

We now argue that when P is allowed to differ from R we can still compute the optimal solution in the plane in
polynomial time by using a slightly more involved and slightly slower dynamic program.

Let V ={v1,..., vk} € R be the vertices of some convex hull of points from R, labeled in clockwise order, where v is the
vertex of V with smallest y-coordinate. Consider our cost function f(V,P)=73", p gx(/|x—CH(V)|]). Any point x € CH(V)
contributes zero to f, as we required gx(0) = 0. So consider any point x € P lying outside of CH (V). The projection of x
onto CH(V) is either a vertex v; or a point on the interior of an edge v;_1v;, for some i. Thus the edges and vertices of
the hull define a partition of points in P which lie outside the hull, which we now formally describe.

Consider the ray with base point v;_; and directed from v;_; towards v;. Define ri(v;_1, v;) to be the rotation of
this ray by m/2 to the left, that is the ray with base point v;_; and direction (vi_1.y — vi.y,Vv;.X — vi_1.x). Define
r-(vi_1, vi) to be the ray with the same direction, but with base point v;. Then slab(v;_1, v;) is defined as the region
of the plane interior to and bounded by the edge v;_1v; and (between) the rays r;(vi_1, vj) and rr(vi_1, v;). See Fig. 2.2.
Define cone(vi_1, vi, vi+1) as the closed region bounded r-(v;_1,v;) and ri(vi, vi+1), again see Fig. 2.2. In other words,
slab(vi_1, vi) and cone(v;_1, vi, viy1) are the subsets of points in the plane outside of CH (V) whose projection onto CH (V)
lies on the interior of v;_1v; or on the vertex v;, respectively. In particular, for a point set P, define

SUMsiah (Vi-1, Vi) = f({vi-1, vi}, P Nslab(vi—q, vi)) = > gp(llp = CH{viz1, vibID
pePnslab(vi_1,v;)

SUMcone (Vi—1, Vi, Vig1) = f({vi}, P Ncone(vi_y, vi, viy1)) = > 2p(llp — vil))
pePncone(vi—1,Vi,Vit1)

Observe that sumgg(vi—1, vi) only depends on v;_1 and v; and Sumcone(Vi—1, Vi, Vit+1) only depends on v;_1, v;, and v;i1.

4
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Fig. 2.2. Three consecutive vertices on the hull, and the corresponding defined slabs and cone.

In particular, these quantities are respectively defined for any pair or triple of points in R, and for now assume they have
all been precomputed.

By the discussion above, for ordered vertices V of a convex hull we can rewrite our cost function as

k
FOV.PY= " gx(llx—CHV)I) =D (suMcone (Vi-1. Vi, Vig1) + SuMgiap (Vi, Vit1)), (21)

xeP i=1

where indices are mod k, i.e. vo = v} and vi1 = vy. This equation suggests a natural recursive strategy to minimize f(V, P)
(over choices of V') by guessing the vertices of V in clockwise order.

First, at the cost of an additional linear factor in the running time, we guess the point with the smallest y-coordinate
from the optimal hull.®> We call this the starting point and denote it by s (i.e. v{ =s). Let Rs be the subset of points in R
whose y-coordinate is greater than that of s. As we assumed s is the lowest point in the optimal solution, we can disregard
points in R \ R;. Next, we sort all other points in Rs clockwise radially around s (i.e. from the negative x axis clockwise
about s to the positive x axis) and process points in this order.

One issue we must deal with first is that in Equation (2.1), sumcene (Vk, S, v2) depends both on the choice of v; and v;.
To break this cyclic behavior we cut the cone for s in two. So cast a ray in the negative y-direction from s and call it s, and
observe that as s is the lowest vertex, r¢ must lie in the cone for s. We cut the cone for s along rs and assign each piece
to its adjacent slab. Specifically, suppose we set v, = u for some u € Rs. Then define sumgqq¢ (s, u) as the summed cost for
the points in the union of slab(s, u) with the cone lying between the rays rs and r;(s, u) (including rs). Similarly, if we set
v = w, then define sumepq(w, s) as the summed cost for the points in the union of slab(w, s) with the cone lying between
the rays ry(w, s) and rs (excluding rg). Then we have,

k-1
F(V, P) =sumgqre (s, v2) + Z(Sumcone(vi—la Vi, Vit1) + SUMgqgp (Vi, Vit1))
i=2
+ (SUMcone (Vk—1, Vi, S) + SUMeng (Vk, S))-

(2.2)

We now argue that the recursive algorithm shown in Algorithm 1, minimizes Equation (2.2) over all V C R, such that
V ={vy =s,va,..., v} are the ordered vertices of a convex hull with lowest point s. This algorithm makes use of the
function right(u, v, w) which returns true if the ordered triple (u, v, w) represents a right turn and returns false otherwise.
The following simple helper lemma ensures we do not need to check for a right turn at s (i.e. where we split the problem),
as long as we check everywhere else.

Lemma 2.3. Let V = {v1, va,..., vk} be a sequence of points such that vq is the lowest point, and v, ..., vy are in clockwise sorted
order around vq. Ifforall 1 <i <k, (vi_1, Vi, Vit+1) is a right turn, where vy, = v1, then V are the ordered vertices of a convex hull.

Proof. By definition, V are the ordered vertices of a convex hull if V represents a simple closed convex chain. First, because
the vertices in V = {v1,..., vi} are given in clockwise sorted order around v1, the closed chain V must be simple (i.e. when
rotating a ray from v, the edges of the chain always cross it in the same direction). In order for the chain to be a closed
convex chain, it must make a right turn at every vertex. We are already explicitly given that a right turn is made at every
vertex except for vi. To see why (vy, v1, v2) is a right turn, observe that v is lower than both v, and v;, and moreover
v, comes after v, in clockwise order about vq. These two facts combined imply the angle Zvyvqivy is < (i.e. the angle
subtended by rotating vqv; clockwise about v to vivy), that is a right turn. O

3 We can assume all points have distinct y-coordinates, by applying a small random rotation, which does not affect f.
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Algorithm 1 Recursive Algorithm.

1: function RECALG(s, k', u, v)
2: best = oo

3: if right(u, v, s) then

4 best = sumeepe (U, v, S) + Sumepg (v, s)
5: if ¥ =1 then

6: return best
7
8
9

for w € R; after v in clockwise order do
if right(u, v, w) then
best = min{best, sumcone (U, V, W) + Sumgqp (v, W) + RECALG(S, k' — 1, v, w)}
10: return best

11: function WRAPPER(R, P, k)

12: best = oo

13: for se R do

14: for v € R; in clockwise order do

15: best = min{best, sumgqr¢ (s, v) + RECALG(S, k — 1,5, v)}
16: return best

Given the above discussion about breaking the cost function into cones and slabs according to Equation (2.2), the proof
of correctness of Algorithm 1 is now straightforward.

Lemma 2.4. Given an instance P, R, f,k of Problem 1.2 in the plane, Algorithm 1 computes the optimal solution cost, namely
mingcr,jq|<k f(Q. P).

Proof. For any s € R, we now argue costs = minyecg, (SUMstare (S, V) + RECALG(s, k — 1,5, v)) is the cost of the minimum cost
k length convex hull with lowest point s. This will imply WRAPPER computes the optimum solution as it takes the minimum
of this quantity over all s € R.

Suppose that cost; is not infinite. By the structure of the recursive algorithm, this can only happen if in each recursive
call determining cost;s, best is not infinite. The places where best can be set to a non-infinite value are lines 4 and 9, and
if the return value of best is set by line 4 then this represents a terminal call. Moreover, observe that executing line 4 or 9
requires satisfying a right turn check on the preceding line. Thus, there must have been a sequence of recursive calls made
with a corresponding sequence of vertices V = {vi =s, va,..., v} such that for all 1 <i <«, right(vi_1, vi, Viy1) = true
(where v,41 = vq1), which by Lemma 2.3, implies V are the ordered vertices of a convex hull. (Note that s being the
lowest is enforced by considering only Rs, and the clockwise ordering of V is enforced by the ordering of the for loops.)
Moreover, we have costs = sumsqr(S, v2) + RECALG(S,k — 1,5, v2), and from line 9 for all 1 <i < x we have RecAlg(s,k —
i+1,vi_1, Vi) =SuMcone(Vi—1, Vi, Vit1) +Sumggp (v, vit1) + RecAlg(s,k —i, vi, vi+1), and from line 4 we have RecAlg(s, k —
K+1,Ve 1, Vi) =SUMcone(Vie—1, Vi, S) + SUMeng (v, ). Thus putting all these equations together we have

k—1
coSts =SUMgtart (5, V2) + Y _ (SUMcone (Vi—1. Vi Vis1) + SUMgay (Vi Vig1))
i=2
+ (SuMcone (Vie—1, Vi, $) + SuMeng(Vi, ) = f(V, P)

where the last equality follows from Equation (2.2). Thus if costs is not infinite then we know it represents the true cost of
some valid set of convex hull vertices V. Conversely, by a similar logic it is easy to see that costs is never infinite since for
the ordered sequence of vertices of any convex hull all the right turn checks will be satisfied and in the algorithm when
looking for the next vertex we try all possible vertices that remain in the sorted order. (Note that co may be returned
if there is no non-trivial convex hull, i.e. if s is the highest vertex in R, a case which can be treated separately.) Thus
what remains is to argue that the output cost and vertices selected correspond to a minimal cost solution, however, this
is immediate from the above. Specifically, let V; be the set of all clockwise ordered convex hull vertices such that all have
the same prefix {v1,..., v;}. Then miny¢y, f(V, P) is determined by selecting {v;;1, ...V} so as to minimize the cone and
slab sums they determine, which as argued above is precisely what lines 9 and 4 do. In particular, because the cones and
slabs define an ordered partition of P, minimizing their cost over the remaining vertices, does not affect the cone and slab
cost determined by the previously selected vertices, and thus the recursive algorithm correctly returns the minimal cost
overal. O

As the correctness of our approach is established by the above lemma, the proof of the following theorem mainly focuses
on the running time. The proof saves roughly an O (m) factor over the naive time bound by using sweeping both to batch
dynamic programming table entries together and to implicitly precompute the sumcqpe values.

Theorem 2.5. Given an instance P, R, f,k of Problem 1.2 in the plane, it can be solved in O (m3k + m®n + mnlog(n)) time, where
n=|P|and m = |R|.
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Fig. 2.3. S;;1 with 4 points shown shaded blue on the right. The two points determining x = sumcone (Ui41, V, -) — SUMcone (Uj, v, -) shown in shaded yellow
on the left.

Proof. First, observe that the recursive Algorithm 1 can easily be turned into a dynamic program, as the k' parameter strictly
decreases in each recursive call. Moreover, it is easy to modify the code such that it returns the actual vertices instead of
just the cost of the hull.

The correctness of this algorithm follows from Lemma 2.4. For the running time, first observe that for every vertex s € R
we can compute R; and the clockwise sorted order of all points in R around s, in O (m?logm) time. So assume this is done
initially, and moreover assume for now that all the cone and slab sums have been precomputed. The dynamic program will
compute the value of RECALG(s, k', u, v) for each quadruple (s, k’,u, v). Naively this takes O(m) time per quadruple since
the for loop on line 7 requires a table lookup for each point in R. Thus overall the dynamic program takes O (m*k) time as
the table size is O (m3k). However, we can save an O(m) factor in the running time by instead computing for each triple
(s, k', -, v), the entire column of u values in O (m) time as follows.

Fix s, k', and v. Define cost(u, v, w) = suMcone (U, vV, W) + sumgqp (v, w) + RECALG(s, k' — 1, v, w). For any u € Ry coming
before v in the clockwise order about s, the recursive algorithm computes RECALG(S, k', u, v) = minyey ) cost(u, v, w),
where Y (u) is the set of points w € R such that right(u, v, w) = true and moreover w is after v in the clockwise order
about s. Specifically, this is all points in the region determined by sweeping the ray from v to s counterclockwise until it hits
the line passing through u and v. See Fig. 2.3. So let uq, ..., u; be the vertices in Ry coming before v in the clockwise order
about s, but labeled by their counterclockwise order about v. Then Y (u;) € Y (ui+1), and in particular S;+q =Y (ui+1) \ Y (u;)
are the set of points in the wedge lying between the line through u; and v and the line through u;;1q and v (again see
Fig. 2.3). Observe that the S; are disjoint sets, and moreover,

RECALG(S, k', uj11,v) = min cost(ujr1, v, w) =min{ min cost(ujry,v,w), min cost(uijri, v, w)}
weY (Uit1) WESit weY (uj)

Observe that minyey ;) €oSt(Ujy1, vV, W) = MiNyey ;) cost(u;j, v, w) + x for a fixed value x that does not depend on w.
Namely, x = sumcope (Uit+1, V, -) — SUMcope (U, v, -) (See Fig. 2.3), as the cone sum is the only term in cost(u, v, w) depending
on u. Then given we already computed RECALG(S, k', u;, v) = minwey ;) cost(u;, v, w), by the above equation the time to
compute RECALG(S, Kk, ujy1, v) is proportional to just |S;|. Thus as the S; are disjoint, this takes O(m) time over all the u;,
resulting in O (m3k) time for the entire dynamic program.

Now we must consider the time to precompute the cone and slab sums. For any pair u,v € R, sumgyq,(u, v) can be
computed in O (n) time by scanning the points in P to see which fall in the slab, and thus for all pairs in R the sum slab cost
can be computed in 0 (m?n) time. As sumcone(u, v, W) is determined by three vertices in R, similarly computing these values
would take O (m3n) time. However, we now argue that they can be implicitly computed more efficiently as follows. First, fix
any vertex v € R. Recall the boundary of cone(u, v, w) is determined by the rays r-(u, v) and r;(v, w) (defined above). So
let U and W be the sets of all vertices that come before and after v in the clockwise sorted order about s, respectively, and
let Ry = Uyey 17(u, v) and R; = Uyew (v, w). Now sort all the vectors in R, U R;U P in clockwise order around v, starting
from the first vertex occurring after the negative y-axis direction. Now walk through the vertices in order maintaining
a rolling sum, which initially is zero. If the next vertex w is in P then we add g,(]|[v — w||) to the sum, otherwise if
w € R, then we assign the current sum as value,(w) and if w € R; we assign the current sum as value;(w). Observe that
given vertices u, w € R where u comes before v and w comes after v in clockwise order about s, that sumcope(u, v, w) =
value;(w) — value,(u). Thus while we do not explicitly compute sumcone(u, v, w) for all triples, by computing all of the
value; and value, values, then by taking a difference of two such values in constant time we have access to Sumcone (U, v, W).
This takes O ((n+m)log(n+m)) time per vertex in R and thus for all vertices in R takes O (m(n+m)log(n+m)) time. Thus
precomputing all the slab sums and implicitly precomputing all the cone sums overall takes O (m?n+m? log(m) 4+mn log(n))
time. Thus the total running time of the entire algorithm is 0 (m3k +m?n +mnlog(n)). O
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by = (pe.py. =1 ) by = (¢2,ay9:,1)

Cpg

Ap = (P2, 1y. p=,0) Qg = (4. 4y, 42, 0)

Fig. 3.1. The edge (ap.aq) with added points in the added dimension.

3. Hardness in higher dimensions

A convex polytope T = (V, E) in R3, will be defined as a graph where the vertices V are a set of points in convex
position in R3, and the edges E are the edges of C#(V). Das and Goodrich [10] proved the following variant of vertex
cover is NP-hard.

Problem 3.1 (Polytope vertex cover). Given a convex polytope T = (V, E) in R? and an integer k, is there a subset U C V of
k vertices such that each edge in E is incident to a vertex in U?

The following is the decision version of our main problem, Problem 1.2.

Problem 3.2. Given a set P C RY of n points, a set R c R? of m points, a function f € Fp, and a parameter ¢, is there a
subset Q C R of at most k points such that f(Q,P) <g&?

We now show Problem 3.2 is NP-hard for d > 3, where f(Q,P) =3, pgx(llx — CH(Q)||) is a natural and simple
function. Namely, we set gx(|[x—CH(Q)I||) = [|[x—CH(Q)|| for all x. We denote this sum of distances function as sd(Q, P) =
2 xep X = CH(Q)II.

Theorem 3.3. Problem 3.2 is NP-hard for d > 3 and f = sd.

Proof. We give a polynomial time reduction from Problem 3.1. Let T = (V, E) and k be an instance of Problem 3.1. We first
define several quantities based on T. For any edge e € E, define a vector u, = (n1 +n3)/2, where ny and n, are the normals
of the planes of the two faces adjacent to e. For any edge e = (v, v3), consider the plane z, containing e and with normal
Ue. Let he be the distance from z, to the convex hull of V after removing the endpoints of e, i.e. he = ||ze —CH(V \{v1, vaDIl,
and let h = minecf he. (Note that h is non-zero as V is in convex position.) Finally, let [, be the length of the edge e, and
let | = maxeckg le.

We construct our instance of Problem 3.2 as follows. We use the same value of k and set R = V. P will contain one
point for each edge e € E, denoted p.. We place p, outside CH(V) at a distance x in the direction of u, from the midpoint
of e, where x is a value to be determined shortly. Finally, we set & = n/x2 + (1/2)2, and recall f(Q,P)=sd(Q,P) =
> pep lIp = CH(Q)II.

Observe that for any edge e € E, if at least one of its endpoints is selected, then the distance from p. to the hull
of the selected vertices is at most v/x2 + (I./2)2 < \/x2 + (I/2)2. Thus if U C V is a vertex cover of V, then sd(U, P) <
ny/x2 4+ (1/2)2 = ¢. On the other hand if U is not a vertex cover, then there is an edge e for which neither endpoint is
selected, in which case the distance from p, to the hull of the selected vertices is at least x + h. Thus the total distance of
all points to the hull is at least (n — 1)x + (x + h) = nx + h, as by construction for any e’ € E we have ||pe: — CH(R)|| = x.

Thus if we select x such that nx + h > &, then U is vertex cover if and only if sd(U, P) < €. To ensure this inequality holds,
—In
=38

, P Pn\?* 12 Bn  h\*> _ Pn
E=n- X+Z:n' m +Z<n' g‘i‘ﬁ =n-§+h:nx+h. m|

By lifting to R* we can argue that the problem remains NP-hard for the restricted variant where P =R, i.e. the case
considered in Section 2.1. The proof is more technically challenging, though at a high level uses a similar approach.

set x Then we have

Theorem 3.4. Problem 3.2 is NP-hard ford > 4, f =sd, and P = R.

Proof. We give a polynomial time reduction from Problem 3.1. Let T = (V, E) and k be an instance of Problem 3.1. For
any edge e € E, let £, denote its length and m, its midpoint. Define the quantity h = min{¢, hq, h2}, where ¢ = minecg £e,

8
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h1 = minpey [[p — CH(V \ {pD)Il, and hy = mine, e,)ck [IM(e;.e0) — CH(V \ {e1, e2})||. Then for each point p = (px, py, pz) €
V, define the points ap = (px, py, Pz,0) and b, = (px, py, pz,h), and for each edge (p,q) € E define the point ¢y 4 =
(Bt PyXy Delle 1y see Fig, 3.1. Define the sets A={ap | p €V}, B=1{b, |p eV}, and C={cpq|(p,q) € E}. Intuitively,
we wish to give unit weight to all points in B, and give n®> weight to all points in A and C. To accomplish this, let A’ and
C’ be the multi-sets consisting of n? copies of all points in A and C, respectively. Our instance of Problem 3.2 in R is
defined by P=R=A"UBUC(’, kg =k +n, and & =nh. Note that any solution to Problem 3.2 containing a point from A’ (or
("), does not change in cost if we add one of its duplicates or exchange it for a duplicate. Thus we can assume the optimal
solution does not select duplicates, and so below we write A C P and refer to selecting points from A.

Let W C V be a vertex cover of size k for the given instance of Problem 3.1, and let B(W) ={b= (p,h) € B| p € W}. The
claim is that B(W)U A is a solution to our instance of Problem 3.2 with cost < ¢. First, observe that |[B(W)UA|=k+n=kg
as required. Next, observe that naturally this gives zero error to all points in A’ and B(W). The same is true for any point
Cp,q € C'. To see this, observe that since W is a vertex cover, it must contain at least one of p or q. Without loss of generality,
suppose it contains ¢, in which case by € B(W). Thus B(W) U A contains both bg and a,, and since cp 4 is defined as the
midpoint on the segment between bg and ap, it is in their convex hull, i.e. it is covered with zero error. Thus the error can
only come from points in B\ B(W), however, the error for these points is easily upper bounded by ¢ =nh, as |[B\ B(W)| <n
and since for any point b, € B we have ||b, —ap|| =h and ap is in our solution.

Now let Q be a solution to Problem 3.2 with ko points and error < ¢. We first argue that A € Q. Suppose otherwise
that some point ag € A is not in Q. We now lower bound ||ag — CH(Q)||. Specifically, we will assume Q = P \ {ag}, as this
minimizes |lag — CH(Q)|| over all possible Q. Observe, that ¢, 4 € CH(Q) for any point ¢, g € C, since by, bg € Q, and at
least one of ap or aq is in Q. Thus every point in CH(Q) either lies in CH(A \ {ap}), in CH(B), or on a segment between
a point of CH (A \ {ap}) and CH(B). Let «, B be the closest points to ag in CH(A \ {ap}) and CH(B), respectively. Then by
the definition of h, ||lag — || > h, and ||ag — CH.(B)|| = h. Moreover, it is not hard to see that among all segments between
a point of CH(A \ {ap}) and CH(B), the closest segment to ag is the segment between « and S. Thus the distance from
ag to CH(Q) is at least (vhZ +h2)/2 =h/+/2. Since A’ contains n? copies of ag, the error of Q for Problem 3.2 is at least

nz% > & (for n > 2). Thus all points in A must have been selected.

Observe that for any point ¢, g € C, that ¢y g € CH(ap, aq, bp) and cp g € CH(ap, aq, bg), see Fig. 3.1. That is, since AC Q,
if a point cp ¢ is in Q, exchanging it for either by or by can only enlarge CH(Q). Thus without loss of generality we assume
Q contains no points from C. Moreover, for any cp q € C, at least one of b, or bq is in Q, since otherwise cp 4 ¢ CH(Q),
in which case by the same argument as above for ag, we have ||cpq — CH(Q)|| > (v (h/2)? + (h/2)?)/2 = h/+/8. Since C’
contains n? copies of Cp,q. the total error is then at least nz% > ¢ (for n > 3), a contradiction. Thus for every point cp ¢ at
least one of by or bg is in Q, or equivalently W = {p | b, € Q} is a vertex cover of E. Moreover, it must be that |W|=k, as
ko =n+k and all n points of A were selected. Thus all that remains is to argue that the error due to B\ W is less than ¢
(as all other points are in CH(Q)). However, since all points in A are in Q, this error is as most (1 —k)h <nh=¢. O

4. Approximation in higher constant dimensions

Given the hardness of our problem when d > 3, it is natural to consider approximations. For the Set Cover problem, it is
well known that if k sets cover the ground set, then the greedy algorithm covers the ground set with O(klogn) sets. Our
hull problem is also a coverage problem, though it is more challenging as the points in P are not covered by the individual
points we select but rather convex combinations of them. Despite this, we argue a similar greedy approach works, though
it depends on the number of facets of the convex hull of the optimal k point solution. In R the number of facets is
0 (k), yielding a (1 + €) approximation to the error with only O (klog(n/¢)) points, similar to Set Cover. In higher constant
dimensions, however, the worst case facet complexity is 0 (k!%/2). On real world inputs the complexity may be significantly
lower (see [15] for the facet complexity of randomly sampled points), thus our analysis suggests that greedily selecting
roughly a logarithmic factor more points may be a reasonable heuristic in practice for small constant dimensions.

In this section we assume P and R are contained in the unit ball, which as remarked in the introduction is equivalent
to measuring the error relative to the diameter, as is standard.

Previously we considered the sum of distances function sd(Q, P) =", p IIx — CH(Q)I|. Similarly, we can define the
maximum distance function md(Q, P) = maxycp ||Xx — CH(Q)||. We have the following corresponding optimization problem,
considered by Blum et al. [4].

Problem 4.1. Given a set P c R? of n points and a set R ¢ RY of m points, select a subset Q € R of at most k points which
minimizes md(Q, P). That is, Q = argmingcg,jo|<kmd(Q, P).

For an instance P, R ¢ RY and k of Problem 4.1, define

Optmg := optmg(P, R, k) = argQ min  md(Q, P), and Optmg := md(optmg, P).

CR,1Q|=k

Similarly define
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optsq := optsq(P, R, k) = argQ min sd(Q, P), and optsq := sd(optsq, P).

CR,|QI=k

Lemma 4.2 ([4]). Let P, R C R? and k be an instance of Problem 4.1, where d is a constant. Then in polynomial time one can compute
aset Qg of O (klogk) points such that md(Qg, P) < optmg(P, R, k).

Let Qo be the set described in the above lemma. Observe that

sd , P -
200 P) _ 1md(Qo, P) = 0ptmg = max||p — CH(0ptmo)
n peP
< max||p — CH(optsa)|| < IIp — CH(0ptsa)|| = Oplsa,
peP peP

that is Qg achieves an n-approximation to the optimal sum cost optsg.
For any subsets Q C R and P’ C P, let Z(Q, P") =sd(Q, P") — sd(optsg, P") = sd(Q, P") — optsq. For convenience Z(Q)
will denote Z(Q, P) when P is the full point set.

Lemma 4.3. Given an instance P, R c RY and k of Problem 1.2, where f = sd and d is a constant, for any subset Q C R such that
Z(Q) > 0, there exists a d-simplex A such that Z(Q U A) < (1 — W) Z(Q), where c is a constant.

Proof. Let {A{, Ay,..., A¢} be the d-simplices of the d-dimensional triangulation of CH (optsq) with the minimum number
of d-simplices. It is known that ¢ < ¢ - kl9/2] where c is a constant (using for example the bottom vertex triangulation of
[7]). Let {P1, P2, ..., Py} be the partition of P where p € P; if and only if ||p — A;|| = ||p — CH(optsq)||. (If the projection is
on a common point of more than one simplex, assign one arbitrarily.) Now, rewrite Z(Q) as

4

Z(Q)=> Y (Ix=CH(Q)I| — [Ix — CH(optsa)l]) -

i=1 xeP;

Let Avg := @ denote the average of Z(Q) over the partitions P;. Hence, there exists a simplex A; with corresponding
partition P; such that

VA
2(Q.Pp = Y (It~ CH(Ql - llx ~ CHOopteg)|) = Avg = 2 2
X€P;

where the last inequality is where we used Z(Q) > 0. Finally, we have Z(Q U Aj, Pj) =sd(Q U Aj, Pj) — sd(optsq, Pj) =
sd(Q U Aj, Pj) — Sd(A], Pj) < 0. Thus,

zZQuap=| > ZQUA;LP)|+Z(QUAj,PH< Y  Z(Q,P)

ie[0],i] ie[e],i]

1
=|D_Z(Q.Py —Z(prs(l—mw)zw) O

ie[l]

We remark that the running time of Lemma 4.2 from [4] depends exponentially on d, and thus the same is true for the
following theorem which makes use of it.

Theorem 4.4. Given an instance P, R C R? and k of Problem 1.2, where f = sd and d is a constant, in polynomial time one can
compute aset Q C R of 0 (kl%/2) log(n/e)) points such that sd(Q , P) < (1 + ¢) - optsg(P, R, k).

Proof. Use Lemma 4.2 to compute a set Qg € R of O(klogk) points such that sd(Qg, P) < n - optsq(P, R, k). We will
iteratively add subsets of d + 1 points to Q; for i ={0,1,...,m — 1} where m is the total number of iterations. Let
Aj :=argminacp |a|=d+15d(Q; U A, P) that is, A; is the d-simplex whose addition to the current hull minimizes the sum of
distances. In the i-th iteration we add A; to Q; to obtain Q;+1:= Q; U A;.

Recall that Z(Qpm) = sd(Qm, P) — optsg. Thus if Z(Qm) < & - optsg then sd(Qm, P) < (1 + &)optsg as desired. If at any
iteration Z(Q;) <0, then Z(Q;;) <0 < ¢ - optsq, since adding more points in later iterations can only further decrease the

error. So assume that Z(Q;) > 0, then by Lemma 4.3, there exists a simplex A such that Z(Q; UA) < (1 — W) Z(Qj).

10
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Note that since Z(Q;UA) =sd(Q;UA, P)—optsg, we have Z(Q;+1) = Z(Q;UA;) < Z(Q;UA) since we chose A; to minimize
sd(Q; U A;, P) and optgq is fixed. Thus we have Z(Q;j+1) < (1 — cktﬁ> Z(Q;), and inductively

m

1 m 1 __
Z(Qm) < (1 - m) Z(Qo) < <1 - m) 1 - optsq,

R m
where the second inequality follows as sd(Qg, P) < n - optsq. Thus if we select m such that (1 — cklﬁ) < (&/n), then

Z(Qm) < & - optgg as desired. Note that (1 — ckltlf/ZJ )" < exp(—m/ckl4/2}y and rearranging the equation exp(—m/ckl4/2y =g/n

gives m = ckl9/2) log(n/e). As we are adding d + 1 points in each round, and d is a constant, we thus get 0 (k'9/2! log(n/e))
points in total. O

Corollary 4.5. Given an instance P, R  R3 and k of Problem 1.2, where f = sd, in polynomial time one can compute a set Q R of
O (klog(n/¢)) points such that sd(Q, P) < (1+¢€) - optsq(P, R, k).

Conclusion

This paper initiated the rigorous study of the convex hull coverage problem. In the plane, we gave polynomial time exact
algorithms and then we complemented these results by giving hardness results for higher dimensions. Further, we gave a
bicriteria approximation algorithm for any fixed dimension d > 3. Possible future work includes reducing the running time
of the planar algorithms, proving the special case when P = R is still NP-hard when d = 3, and improving the approximation
quality in higher dimensions.
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