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Abstract: The hybrid model is the Landau–Ginzburg-type theory that is expected, via the Landau–Ginzburg/

Calabi–Yau correspondence, to match the Gromov–Witten theory of a complete intersection in weighted

projective space. We prove a wall-crossing formula exhibiting the dependence of the genus-zero hybrid

model on its stability parameter, generalizing the work of [21] for quantum singularity theory and paralleling

the work of Ciocan-Fontanine–Kim [7] for quasimaps. This completes the proof of the genus-zero Landau–

Ginzburg/Calabi–Yau correspondence for complete intersections of hypersurfaces of the same degree, aswell

as the proof of the all-genus hybrid wall-crossing [11].
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1 Introduction
The gauged linear sigma model (GLSM) has been the subject of intense study by both mathematicians and

physicists since its introduction by Witten [22] in the 1990s; see [15; 11; 18; 19]. Special cases of the GLSM

include the Gromov–Witten theory—or, more generally, the quasimap theory—of nonsingular complete inter-

sections in GIT quotients, as well as the Fan–Jarvis–Ruan–Witten (FJRW) theory of nondegenerate singulari-

ties. In particular, the GLSM provides an ideal context in which to understand the Landau–Ginzburg/Calabi–

Yau (LG/CY) correspondence relating the Gromov–Witten theory of a nonsingular hypersurface in weighted

projective space to the FJRW theory of its defining polynomial; the relationship between these two theories,

from the GLSM perspective, is encoded in a variation of GIT on the target geometry.

More precisely, the GLSM depends on the choice of a GIT quotient Xθ = [V //θ G] equipped with a polyno-
mial functionW : Xθ → ℂ, and a stability parameter ϵ ∈ ℚ+. Suppose we take the GIT quotient to be

X+ := Oℙ(w
1
,...,wM)(−d) = (ℂM × ℂ) //θ ℂ∗,

where ℂ∗ acts with weights (w
1
, . . . , wM , −d) and θ ∈ Homℤ(ℂ∗,ℂ∗) ≅ ℤ is any positive character, and let

W(x
1
, . . . , xM , p) = pF(x1, . . . , xM)

for a nondegenerate quasihomogeneous polynomial F ∈ ℂ[x
1
, . . . , xM] of weightsw1

, . . . , wM and degree d.
Then the GLSM recovers the Gromov–Witten theory of the hypersurface {F = 0} ⊆ ℙ(w

1
, . . . , wM) when

ϵ ≫ 0, while for smaller ϵ it coincides with the quasimap theory developed by Ciocan-Fontanine–Kim–

Maulik [9; 6; 7; 8]. The passage from ϵ ≫ 0 to the asymptotic stability condition ϵ = 0+ can be viewed as

a manifestation of mirror symmetry; in particular, a generating function of genus-zero invariants for ϵ = 0+
is precisely Givental’s I-function. Ciocan-Fontanine andKim [7] gave a newproof of the genus-zeromirror the-

orem by demonstrating a strikingly simple wall-crossing formula that encodes how the genus-zero quasimap

invariants change with ϵ.
On the other hand, taking a negative character ofℂ∗ in the above quotient yields X− := [ℂM/ℤd], where

ℤd acts diagonally with weights (w
1
, . . . , wM). The resulting GLSM is the FJRW theory of the polynomial
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F when ϵ ≫ 0, and for smaller ϵ it recovers the quantum singularity theory studied by Ruan and the sec-

ond author in [21]. The analogous analysis to the above was carried out in this chamber in [21], yielding

genus-zero wall-crossing formulas for the dependence of the theory on ϵ and a new proof of the genus-zero

Landau–Ginzburg mirror theorem. From here, the genus-zero LG/CY correspondence follows by relating the

I-functions of Gromov–Witten and FJRW theory, a rather delicate process involving analytic continuation that

was proven by Chiodo–Iritani–Ruan [5; 4].

Two natural questions arise from this perspective on the LG/CY correspondence. First, can it be adapted

to gauged linear sigmamodels associated to other GIT quotients? And second, can it be generalized to higher

genus?

In particular, replacing the hypersurface {F = 0} ⊆ ℙ(w
1
, . . . , wM) with a nonsingular complete inter-

section Y = {F
1
= ⋅ ⋅ ⋅ = FN = 0} of degrees d1, . . . , dN corresponds to considering a GIT quotient

(ℂM × ℂN) //θ ℂ
∗
,

in whichℂ∗ acts withweights (w
1
, . . . , wM , −d1, . . . , −dN). The GLSM associated to this quotient with a pos-

itive character coincideswith theGromov–Witten (or quasimap) theory of Y. In order to ensure the properness
of the GLSMmoduli space in the negative chamber, however, one must assume that d

1
= ⋅ ⋅ ⋅ = dN , as this im-

plies that the theory admits a “good lift”; see [15]. Under this assumption, the GLSM for a negative character

is known in the physics literature as the “hybridmodel” andwas studiedmathematically in [10]. It is a curve-

counting theory over a moduli space Zϵg,n,β parameterizing genus-g marked orbifold curves (C; q
1
, . . . , qn)

together with a degree-β line bundle L and a section

p⃗ ∈ Γ((L⊗−d ⊗ ω
log
)⊕N)

with vanishing order at most 1/ϵ.
The genus-zero wall-crossing for the quasimap theory of Y was carried out by Ciocan-Fontanine–Kim in

[7], while the analytic continuation relating ϵ = 0+ quasimap theory to ϵ = 0+hybrid theorywas done—under
a Calabi–Yau hypothesis—in our previous work [13]. The first theorem of the current paper, which states the

genus-zero wall-crossing for hybrid theory, is the natural conclusion of that story:

Theorem 1.1. Let Y ⊆ ℙ(w
1
, . . . , wM) be a nonsingular complete intersection defined by the vanishing of a

collection of polynomials of degree d, where wi | d for all i. The J-functions of ϵ-stable and∞-stable hybrid
theory are related by

Jϵ(q, z) = J∞(q, z1 + [Jϵ]+(q, −z), z),

where [Jϵ]+ is the part of Jϵ with non-negative powers of z.

See Section 2.7 below for the precise definitions of the J-functions, which are generating functions of

ϵ-stable hybrid invariants. In particular, the conjunction of [7], [13] and Theorem 1.1 verifies the genus-zero

Landau–Ginzburg/Calabi–Yau correspondence for all nonsingular Calabi–Yau complete intersections Y ⊆
ℙ(w

1
, . . . , wM) such that wi | d for all i.
We also extend the methods of [21] to prove a stronger wall-crossing statement, on the level not only of

invariants but of virtual fundamental classes. The statement involves comparison maps

c : Z∞
0,n,β → Zϵ

0,n,β and bβ⃗ = b(β1 ,...,βk) : Z
ϵ
0,n+k,β

0

→ Zϵ
0,n,β

0
+∑i βi

whose definitions appear in Section 2.4. The theorem, with this notation established, is the following:

Theorem 1.2. Let Y ⊆ ℙ(w
1
, . . . , wM) be as in Theorem 1.1. Then

∑
β
qβ[Zϵ

0,n,β]
vir = ∑

β
0
,β

1
,...,βk

qβ0
k!
bβ⃗∗c∗(

k
∏
i=1
qβiev∗n+i(μ

ϵ
βi (−ψn+i)) ∩ [Z

∞
0,n+k,β

0

]vir) , (1)

where the sums are over all degrees for which the above moduli spaces are nonempty and μϵβ(z) denotes the
coefficient of qβ in −z1 + [Jϵ]+(q, z).
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The form of Theorem 1.2 is identical to the higher-genus wall-crossing statement for the hybrid model

proven by Janda, Ruan and the first author in [11]. However, the proof of the higher-genus statement is an

induction in which the genus-zero base case must be proven independently. Thus, the proof in [11] in fact

relies on Theorem 1.2, so this work also completes the verification of higher-genus wall-crossing in the hybrid

model.

It should be noted that the higher-genus LG/CY correspondence for the hybrid model still remains con-

jectural. Indeed, although wall-crossing statements have now been established in both the hybrid phase and

the quasimap phase (the latter by Ciocan-Fontanine–Kim in [8], or by the alternative proof of [12]), the ana-

lytic continuation relating the ϵ = 0+ theories on the two sides is a subtle issue that has so far been tackled
only in genus one, by Guo and the second author [17].

Plan of the paper. In Section 2 we review the definition of the hybrid model, including the state space, the

moduli space, the genus-zero virtual cycle and correlators, and the J-function. In Section 3 we introduce an

actionof the torusT = (ℂ∗)N on themoduli spaceby scaling the section p⃗,which yields aT-equivariant virtual
cycle, and we carefully analyze the contributions to the virtual cycle from each T-fixed locus. In particular,

the fixed loci are indexed by decorated graphs whose vertices correspond to moduli spaces of weighted spin

curves. Mimicking and generalizing the techniques of [21], we prove in Section 4 the local analogues of Theo-

rems 1.1 and 1.2 at each vertex. Finally, in Section 5, we prove Theorem 1.1 via the vertexwall-crossing together

with a localization recursion, and we deduce Theorem 1.2 by localization on both sides.

2 Definitions and set-up
We review the definition of the hybrid model, which is a special case of the more general gauged linear sigma

model (GLSM) constructed by Fan, Jarvis and Ruan [15]. Let F
1
(x

1
, . . . , xM), . . . , FN(x1, . . . , xM) be quasi-

homogeneous polynomials of the same weights w
1
, . . . , wM and the same degree d, defining a nonsingular

complete intersection

Y := {F
1
= ⋅ ⋅ ⋅ = FN = 0} ⊆ ℙ(w1

, . . . , wM).

Assume, furthermore, that wi | d for each i.
The general GLSMdepends on the choice of a GIT quotient X = [V //θG], a polynomial functionW : X → ℂ

known as the superpotential, and an action of ℂ∗ on V known as the R-charge. In our case, V = ℂM+N with

coordinates (x
1
, . . . , xM , p1, . . . , pN), and

G := {(gw1

, . . . , gwM , g−d , . . . , g−d) | g ∈ ℂ∗} ≅ ℂ∗

acts diagonally on V. For any negative character θ ∈ Homℤ(ℂ∗,ℂ∗) ≅ ℤ, the resulting GIT quotient is

X =
M
⨁
i=1

Oℙ(d,...,d)(−wi).

The superpotential on this space is defined by

W(x
1
, . . . , xM , p1, . . . , pN) :=

N
∑
j=1
pjFj(x1, . . . , xM),

and the R-charge acts by diagonal multiplication on the p-coordinates. The critical locus ofW, i.e. the points

where dW = 0, is the zero section Z := ℙ(d, . . . , d) ⊆ X, as one readily checks from the fact that Y is

nonsingular.

2.1 State space. In what follows, insertions to hybrid model correlators are chosen from the space H̃ :=
H∗
CR

(X). This is not precisely the state space of the GLSM, but it maps surjectively to the “compact-type” part

of the GLSM state space; see [11, Section 2.1] and Remark 2.4 below for further discussion.
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The space H̃ decomposes into summands indexed by the components of the inertia stack IX, which are
labeled by elements of g ∈ G with nonempty fixed locus. More specifically, the elements (gw1

, . . . , gwM , g−d ,
. . . , g−d) ∈ G with nonempty fixed locus are those for which gd = 1, and for such g, it is straightforward to
check that the fixed locus is

Xg :=⨁
i∈Fg

Oℙ(d⃗)(−wi) ⊆ X,

where Fg := {i | gwi = 1} ⊆ {1, . . . ,M}. Thus, we have

H̃ =⨁
g∈ℤd

H∗(Xg).

2.2 Moduli space. The general definition of the moduli space in the GLSM was proposed by Fan–Jarvis–

Ruan [15], building on the notion of quasimaps introduced by Ciocan-Fontanine and Kim. Fix a genus g,
a degree β ∈ ℤ, a nonnegative integer n, and a positive rational number ϵ.

Definition 2.1. An ϵ-stable Landau–Ginzburg quasimap to Z consists of an n-pointed prestable orbifold curve
(C; q

1
, . . . , qn) of genus g with nontrivial isotropy only at marked points and nodes, an orbifold line bundle

L on C, and a section
p⃗ = (p

1
, . . . , pN) ∈ Γ((L⊗−d ⊗ ωlog

)⊕N),

where ω
log

:= ωC([q1] + ⋅ ⋅ ⋅ + [qN]) for the coarse divisors [qi], satisfying the following conditions:

∙ Representability: For every q ∈ C with isotropy group Gq, the homomorphism Gq → ℂ∗ giving the action
of the isotropy group on the bundle L is injective.
∙ Nondegeneracy: The zero set of p⃗ is finite and disjoint from the marked points and nodes of C, and for

each zero q of p⃗, the order of the zero (that is, the common order of vanishing of p
1
, . . . , pN) satisfies

ordq(p⃗) ≤ 1/ϵ.
∙ Stability: Theℚ-line bundle (L⊗−d ⊗ ω

log
)⊗ϵ ⊗ ω

log
is ample.

The zeroes of p⃗ are referred to as basepoints of the quasimap, and the degree of the quasimap is defined as

β := deg(L⊗−d ⊗ ω
log
).

Note that β must be an integer, since if L⊗−d ⊗ ω
log

had nontrivial orbifold structure then basepoints would

be forced to occur at special points.

Fan–Jarvis–Ruan proved in [15] that there is a proper, separated Deligne–Mumford stack Zϵg,n,β para-
meterizing genus-g, n-pointed, ϵ-stable Landau–Ginzburg maps of degree β to Z, up to the natural notion of
isomorphism.

2.3 Multiplicities and evaluation maps. Recall that if q is a point on an orbifold curve C with isotropy group
ℤr and L is an orbifold line bundle on C, then the multiplicity of L at q is defined as the number m ∈ ℚ/ℤ
such that the canonical generator ofℤr acts on the total space of L in local coordinates by

(x, v) 󳨃→ (e2πi/rx, e2πimv).

In our case, all multiplicities can be taken to lie in the set {0, 1d , . . . ,
d−1
d }. For a tuple m⃗ = (m1

, . . . ,mn) of
such multiplicities, we define

Zϵg,m⃗,β ⊆ Z
ϵ
g,n,β

as the (open and closed) substack consisting of Landau–Ginzburg quasimaps for which the multiplicity of L
at qi is mi.

It is straightforward (see, for example, [11, Section 2.3]) to check that Zϵg,m⃗,β is nonempty only if

−β + 2g − 2 + n
d

−
n
∑
i=1
mi ∈ ℤ. (2)
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In particular, since (2) is independent of the ith marked point if and only if mi = 1

d , this is the only case in

which there is a forgetful map on Zϵg,m⃗,β forgetting qi and its orbifold structure.
To define evaluation maps

evk : Zϵg,n,β → IZ ⊆ IX = ⨆
g∈ℤd
⨁
i∈Fg

OℙN−1 (−wi)

to the rigidified inertia stack of Z, let π : C→ Zϵg,n,β be the universal curve, letL be the universal bundle, and

let ρ⃗ be the universal section of the bundle (L⊗−d ⊗ ωπ,log)⊕N . If ∆k ⊆ C denotes the divisor corresponding to

the kth orbifold marked point, then

ρ⃗󵄨󵄨󵄨󵄨∆k ∈ Γ((L
⊗−d)⊕N
󵄨󵄨󵄨󵄨󵄨󵄨∆k
),

using the fact that ωπ,log|∆k is trivial. Thus, evaluating ρ⃗|∆k at the fiber over a point (C; q1, . . . , qn; L; p⃗) in the
moduli space yields an element ofℙN−1, and by definition, evk sends Zϵg,m⃗,β to the copy ofℙ

N−1
sitting inside

IX as the zero section in the sector indexed by g = e2πimk ∈ ℤd.

2.4 Comparison maps. There are two types of comparison maps that relate the hybrid moduli spaces to one

another. Careful definitions appear in [11, Section 3.2], based on the ideas of [7, Section 3.2]. First, if β⃗ =
(β

1
, . . . , βk) is a tuple of nonnegative integers and m⃗ = (m1

, . . . ,mk) is defined by mi := ⟨
βi+1
d ⟩ for each i,

then the morphism

bβ⃗ : Z
ϵ
g,n+m⃗,β−∑ki=1 βi

→ Zϵg,n,β
replaces the last k marked points with basepoints of orders β

1
, . . . , βk and contracts unstable components

(replacing them by basepoints) as necessary. Similarly, the comparison map

c : Z∞g,n,β → Zϵg,n,β

contracts any rational tails that become unstable under the change of stability condition and replaces them

with basepoints.

2.5 Virtual cycle. The general definition of the virtual cycle

[Zϵg,n,β]
vir ∈ A∗(Zϵg,n,β)

proceeds by the cosection technique of Kiem–Li [20], following closely related work of Chang–Li [2] and

Chang–Li–Li [3]. In genus zero, however, the situation is substantially simpler: the condition that wi | d
implies that

R1π∗(
M
⨁
i=1
(L⊗wi ⊗ O(−

n
∑
k=1

∆k)))

is a vector bundle (see [10, Section 4.2.9], or the analogous argument in Lemma 2.3 below), and we have

[Zϵ
0,n,β]

vir = e(
M
⨁
i=1

R1π∗(L⊗wi ⊗ O(−
n
∑
k=1

∆k))) ∩ [Zϵ
0,n,β].

In fact, twisting down by the orbifold marked point is equivalent, on coarse underlying curves and hence

on cohomology, to not twisting down at all if the multiplicity of L⊗wi is nonzero, or to twisting down by the

coarse divisor [qk] if the multiplicity is zero. Thus,

[Zϵ
0,m⃗,β]

vir = e(
M
⨁
i=1

R1π∗(L⊗wi ) ⊗ O(− ∑
k|wimk∈ℤ

∆k)) ∩ [Zϵ
0,m⃗,β],

where ∆k is the marked point divisor pulled back from the coarse underlying curve.

Equippedwith this virtual cycle, we can define correlators in the hybridmodel. Recall that the psi classes

are defined by

ψk = c1(𝕃k) ∈ A∗(Zϵg,n,β)

for each k ∈ {1, . . . , n}, where 𝕃k is the line bundle whose fiber over a moduli point is the cotangent line to

the coarse curve at the kth marked point.
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Definition 2.2. Given ϕ
1
, . . . , ϕn ∈ H̃ and nonnegative integers a

1
, . . . , an, the associated genus-0, degree-

β, ϵ-stable GLSM correlator is

⟨ϕ
1
ψa1 ⋅ ⋅ ⋅ϕnψan⟩ϵ

0,n,β = ∫

[Zϵ
0,n,β]

vir

ev

∗
1

(ϕ
1
)ψa1

1

⋅ ⋅ ⋅ ev∗n(ϕn)ψ
an
n .

2.6 Unit and pairing. Given the discussion following equation (2), the role of the unit in the GLSM theory is

played by 1 := 1(1/d), the fundamental class in the twisted sector H∗(Xe2πi/d ) ⊆ H̃.

Using this, we define a pairing on the state space H̃ by (ϕ
1
, ϕ

2
) := ⟨ϕ

1
ϕ
2
1⟩ϵ

0,3,0

. More explicitly, for

each m ∈ ℚ/ℤ and each class ϕ ∈ H∗(ℙN−1), let ϕ(m) denote the class given by ϕ in the twisted sector

H∗(Xe2πim ) ≅ H∗(ℙN−1). Let H ∈ H∗(ℙN−1) be the hyperplane class, and let Fm := Fe2πim = {i | mwi ∈ ℤ}. On
the moduli space Zϵ

0,(m,−m,1/d),0, one calculates that

h1(L⊗wi ⊗ O(−
n
∑
k=1
[qk])) =

{
{
{

1 if i ∈ Fm
0 otherwise.

Thus, the pairing is given by

(H j(m), H
j󸀠
(m󸀠)) = 0 unless m + m󸀠 = 0 ∈ ℚ/ℤ and j + j󸀠 = N − 1 − |Fm|,

and

(H j(m), H
N−1−|Fm |−j
(−m) ) = ∫

ℙ(d⃗)

HN−1−|Fm | e(⨁
i∈Fm

Oℙ(d⃗)(−wi)) =
1

d ∏i∈Fm
(−
wi
d )

for any m ∈ ℚ/ℤ and any 0 ≤ j ≤ N − 1 − |Fm|.
This pairing is degenerate, since whenever j > N−1− |Fm|, the class H

j
(m) pairs to zero with every element

of H̃. However, it becomes nondegenerate when restricted to the subspace H̃ct ⊆ H̃ generated by H j(m) with
H j(m)e(⨁i∈Fm OℙN−1 (−wi)) ̸= 0. This is sufficient for our purposes, because invariants with insertions in the

complementary subspace to H̃ct

all vanish, as the next lemma shows.

Lemma 2.3. Let V = TIX/IZ be the relative tangent bundle, whose restriction to Xe2πim is⨁i∈Fm OℙN−1 (−wi).
Let ϕ ∈ H̃ be such that ϕ ⋅ e(V) = 0. Then

ev

∗
k (ϕ) ∩ [Z

ϵ
0,n,β]

vir = 0

for all k = 1, . . . , n.

Proof. Without loss of generality, let k = 1. The lemma will follow if we can prove that

[Zϵ
0,n,β]

vir = ev∗
1

(e(V)) ⋅ e(
M
⨁
i=1

R1π∗(L⊗wi ⊗ O(−
n
∑
k=2

∆k))) ∩ [Zϵ
0,n,β], (3)

since this will imply that

ev

∗
1

(ϕ) ∩ [Zϵ
0,n,β]

vir = ev∗
1

(ϕ ⋅ e(V)) ⋅ e(
M
⨁
i=1

R1π∗(L⊗wi ⊗ O(−
n
∑
k=2

∆k))) ∩ [Zϵ
0,n,β]

and the first factor on the right-hand side is zero by assumption.

In order to ensure that (3) makes sense, we must first verify that

R0π∗(L⊗wi ⊗ O(−
n
∑
k=2

∆k)) = 0 (4)

for each i, so that the expression inside the Euler class is indeed a bundle. To check (4), we calculate the

degree of |L⊗wi ⊗ O(−∑nk=2[qk])|. If we denote

aik :=
{
{
{

1 multqk (L⊗wi ) = 0
0 multqk (L⊗wi ) ̸= 0,
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then

deg

󵄨󵄨󵄨󵄨󵄨󵄨L
⊗wi ⊗ O(−

n
∑
k=2
[qk])
󵄨󵄨󵄨󵄨󵄨󵄨 = deg
󵄨󵄨󵄨󵄨󵄨󵄨L
⊗wi ⊗ O(−

n
∑
k=2

aik[qk])
󵄨󵄨󵄨󵄨󵄨󵄨 = deg(L

⊗wi ) −
n
∑
k=1

multqk (L⊗wi ) −
n
∑
k=2

aik

= deg(L⊗wi ) −
n
∑
k=2
(multqk (L⊗wi ) + aik) −multq

1

(L⊗wi ).

The fact that wi | d implies that the smallest possible nonzero value for multqk (L⊗wi ) is
wi
d , and hence the

above is less than or equal to deg(L⊗wi ) − wid (n − 1) =
wi
d (n − 2 − β) −

wi
d (n − 1) < 0. On an irreducible curve,

this is enough to conclude that L⊗wi ⊗ O(−∑nk=2[qk]) has no nonzero global sections. For reducible curves,
one applies an induction on components starting from a tail not containing q

1
to deduce, component-by-

component, that any global section again must vanish. This establishes (4).

Now, to prove (3), we use the exact sequence

0→ L⊗wi(−
n
∑
k=1

∆k)→ L⊗wi(−
n
∑
k=2

∆k)→ L⊗wi(−
n
∑
k=2

∆k)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∆

1

→ 0.

The associated long exact sequence, together with (4), yields

0→ R0π∗(L⊗wi 󵄨󵄨󵄨󵄨∆
1

)→ R1π∗(L⊗wi(−
n
∑
k=1

∆k))→ R1π∗(L⊗wi(−
n
∑
k=2

∆k))→ 0.

The first term is zero whenmultq
1

(L⊗wi ) = 0, or in other words, when i ∉ Fm
1

, since any section of an orbifold

bundle vanishes at a point with nonzero multiplicity. When i ∈ Fm
1

, this term equals ev

∗
1

(OX(−wi)). Thus,
summing over i and taking Euler classes produces exactly (3). ✷

Remark 2.4. Lemma 2.3 verifies Conjecture 2.12 of [11] in genus zero. In keeping with the language of that

paper, the notation “ct” is chosen to reflect the fact that H̃ct

is isomorphic to the compact-type state space

described in [11, Section 2.1].

2.7 Small J-functionand thewall-crossing formula. The J-function for ϵ-stable quasimap theorywasdefined

by Ciocan-Fontanine and Kim in [7], and was generalized to the spin setting by the second author and Ruan

in [21]. To define it, we let GZϵ
0,1,β be the “graph space” parameterizing the same data as Zϵ

0,1,β together with

a parameterization of one component C
0
⊆ C on which the ampleness condition of Definition (2.1) is not

required. By (2), the multiplicity of L at the single marked point q
1
must be m

1
= ⟨−β−1d ⟩.

There is an action ofℂ∗ onGZϵ
0,1,β by scaling the parameterized component.More specifically, let [x

0
, x

1
]

be the homogeneous coordinates on C
0
and letℂ∗ act by t ⋅ [x

0
, x

1
] := [tx

0
, x

1
]. Let Fϵβ ⊆ GZ

ϵ
0,1,β be the fixed

locus on which q
1
= ∞ = [0 : 1] ∈ C

0
and all of the degree lies over 0 = [1 : 0]. When β > 1/ϵ, we have

Fϵβ ≅ Z
ϵ
0,1,β, whilewhen β ≤ 1/ϵ, themoduli space Zϵ

0,1,β is empty and instead,wehave Fϵβ ≅ Z, corresponding
to quasimaps whose degree is entirely concentrated in a single basepoint at 0 ∈ C

0
. In either case, there is an

evaluation map

ev∙ : Fϵβ → IZ

defined by evaluation at the single marked point∞ ∈ C
0
.

Definition 2.5. Let z denote the equivariant parameter for the action of ℂ∗ on GZϵ
0,1,β. The small ϵ-stable

J-function is

Jϵ(q, z) := −z2∑
β≥0
ϕ

qβ( ∫
[Fϵβ]vir

ev

∗
∙ (ϕ)

eℂ∗ (Nvir

Fϵβ/GZ
ϵ
0,1,β
)
)ϕ∨ ∈ H̃ct

ℂ∗ [[q, z, z
−1]],

where ϕ runs over any basis of H̃ct

and (−)∨ denotes the dual under the pairing introduced in Section 2.6.

More explicitly, since for β > 1/ϵ we have [Fϵβ]
vir = [Zϵ

0,1,β]
vir

and

eℂ∗ (Nvir

Fϵβ/GZ
ϵ
0,1,β
) = −z2(z − ψ

1
),
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the contribution of such β to the J-function is

− z2∑
ϕ
( ∫

[Fϵβ]vir

ev

∗
∙ (ϕ)

eℂ∗ (Nvir

Fϵβ/GZ
ϵ
0,1,β
)
)ϕ∨ =

N−1−|F(β+1)/d |

∑
l=0
⟨
H l
(− β+1d )
z − ψ

1

⟩
ϵ

0,1,β
(H l(− β+1d )

)
∨
. (5)

The denominator of (5) should be understood as a geometric series in ψ
1
. For β ≤ 1/ϵ, the contribution to the

J-function can be calculated explicitly (see, for example, [21, Section 2.1] or [7, Section 4.2] for the details):

− z2∑
ϕ
( ∫

[Fϵβ]vir

ev

∗
∙ (ϕ)

eℂ∗ (Nvir

Fϵβ/GZ
ϵ
0,1,β
)
)ϕ∨ = z

∏Mi=1∏ 0<b< wid (β+1)
⟨b⟩=⟨ wid (β+1)⟩

(−bz − wid H( β+1d ))

∏Nj=1∏0<b≤β
⟨b⟩=0
(bz + H( β+1d ))

∈ H̃ct[[z, z−1]]. (6)

Again, the denominator of (6) should be understood as a geometric series in H( β+1d ) and the series should be

truncated to lie in H̃ct ⊂ H̃. Terms of Jϵ with β ≤ 1/ϵ are referred to as unstable terms. Denote by

[Jϵ]+(q, z) ∈ H̃ct[[q, z]]

the part of the J-function with non-negative powers of z, which has contributions only from the unstable

terms. The coefficients in the change of variables in Theorem 1.2, denoted by μϵβ(z), are defined by

∑
β≥0

qβμϵβ(z) = [J
ϵ]+(q, z) − 1z,

and they are determined explicitly by (6).

We also require a generalization of the small J-function in which descendent insertions are allowed. This
is the big ϵ-stable J-function, defined for t = t(z) ∈ H̃ct[[z]] by

Jϵ(q, t, z) := −z2 ∑
β≥0, n≥0

ϕ

qβ

n! ( ∫
[Fϵβ]vir

n
∏
k=1

ev

∗
k (t(ψk)) ∩

ev

∗
∙ (ϕ)

eℂ∗ (Nvir

Fϵn,β/GZ
ϵ
0,n+1,β
)
)ϕ∨, (7)

where ϕ again runs over a basis for H̃ct

and we define ev

∗
k on H̃ct[[ψk]] by linearity in ψk. Here, GZϵ

0,n+1,β is

the (n + 1)-pointed analogue of the above-defined graph space, and inside this graph space, Fϵn,β is the fixed
locus where all but the last marked point and all of the degree are concentrated over 0 ∈ C

0
while the last

marked point lies at∞ ∈ C
0
. The small J-function is recovered from the big J-function by setting t = 0.

3 Localization framework
There is an action of the torus T = (ℂ∗)N on Z by diagonal multiplication on the p-coordinates. This induces
an action on Zϵ

0,n,β by post-composition, or in other words, by scaling the sections p⃗. The action naturally

lifts to the bundle R1π∗(L⊗wi ⊗ O(−∑nk=1 ∆k)) for each i, and we let

[Zϵ
0,n,β]

vir

T = eT(
M
⨁
i=1

R1π∗(L⊗wi ⊗ O(−
n
∑
k=1

∆k))) ∩ [Zϵ
0,n,β]

be the T-equivariant virtual cycle.
Let α

1
, . . . , αN denote the equivariant parameters for the T-action. Then, by the localization isomor-

phism, we have

H̃T := H∗
CR,T(X) ⊗ ℂ(α1, . . . , αN) =

N
⨁
j=1

H∗
CR,T(Pj) ⊗ ℂ(α1, . . . , αN) =:

N
⨁
j=1

H̃j , (8)
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where Pj is the unique T-fixed point of X with pj ̸= 0; that is, Pj = [0 : ⋅ ⋅ ⋅ : 1 : ⋅ ⋅ ⋅ : 0] ∈ ℙ(d, . . . , d) ⊆ X, with
a 1 in the jth position. For each m ∈ {0, 1d , . . . ,

d−1
d }, we denote by 1

j
(m) the fundamental class on the twisted

sector of H̃j indexed by m. The classes {1
j
(m)} form a basis of H̃T as a ℂ(α1, . . . , αN)-module, which we call

the fixed-point basis.
The pairing on H̃ lifts to a pairing on H̃T, defined by

(H j1(m
1
), H

j
2

(m
2
)) = δm1

+m
2
∈ℤ ∫

ℙ(d⃗)

H j1+j2eT(⨁
i∈Fm

1

Oℙ(d⃗)(−wi)),

and this equivariant pairing is non-degenerate because the equivariant Euler class is invertible. In the fixed-

point basis, the equivariant pairing on H̃T is

(1j1(m
1
), 1

j
2

(m
2
)) = δm1

+m
2
=0modd
∏i |⟨wim1

⟩=0(−
wi
d αj)

d∏j󸀠≠j(αj − αj󸀠 )
=: ηj1(m

1
). (9)

3.1 Fixed loci. The fixed loci of the T-action on Zϵ
0,n,β are indexed by decorated trees. For a tree Γ, let V(Γ),

E(Γ), and F(Γ) denote the sets of vertices, edges, and flags, respectively. Localization trees are decorated as

follows:

∙ Each vertex v is decorated by an index jv ∈ {1, . . . , N} and a degree βv ∈ ℕ.
∙ Each edge e is decorated by a degree βe ∈ ℕ>0.
∙ Each flag (v, e) is decorated by a multiplicity m(v,e) ∈ {0, 1d , . . . ,

d−1
d }.

In addition, Γ is equipped with a map s : {1, . . . , n} → V(Γ) assigning marked points to the vertices. Let Ev
be the set of edges incident to a vertex v, and define the valence of v as

val(v) := |Ev| + |s−1(v)|.

Givena tree Γwith the abovedecorations, thefixed locus FΓ ⊆ Zϵ
0,n,β indexedby Γ parameterizes Landau–

Ginzburg quasimaps as follows:

∙ Each vertex v ∈ V(Γ) corresponds to a connected component Cv ⊆ C over which pj = 0 for j ̸= jv, and βv
is the degree of the restriction of L⊗−d ⊗ ω

log
to Cv. If Zϵ

0,val(v),βv ̸= 0, then Cv is a sub-curve and we say
that v is stable. If Zϵ

0,val(v),βv = 0, then we say that v is unstable, and Cv is the single point qv; if βv > 0,
this point is a basepoint on Ce of order βv.
∙ Each edge e ∈ E(Γ) with adjacent vertices v and v󸀠 corresponds to an orbifold projective line Ce over
which pj = 0 for j ̸= jv , jv󸀠 . The section pjv vanishes only at a single point qv󸀠 , while the section pjv󸀠
vanishes only at a single point qv, and βe is the part of deg(L⊗−d ⊗ ωlog

|Ce ) not coming from basepoints.

In other words,

βe =
{{{
{{{
{

deg(L⊗−d ⊗ ω
log
|Ce ) v, v󸀠 stable

deg(L⊗−d ⊗ ω
log
|Ce ) − βv v unstable

deg(L⊗−d ⊗ ω
log
|Ce ) − βv󸀠 v󸀠 unstable.

∙ The set s−1(v) ⊆ {1, . . . , n} indexes the marked points supported on Cv.
∙ For flags (v, e) ∈ F(Γ) we have:

(i) If v is stable, then theflag (v, e) corresponds to anode attaching Cv to Ce andm(v,e) is themultiplicity

of L on the vertex branch of the node.
(ii) If v is unstable of valence two, then either (1) |Ev| = 2 and |s−1(v)| = 0, in which case the flag (v, e)

corresponds a node attaching Ce to the component Ce󸀠 associated to the other edge e󸀠 incident to v,
and m(v,e) is the multiplicity of L at qv ∈ Ce󸀠 ; or (2) |Ev| = 1 and |s−1(v)| = 1, in which case the flag
(v, e) corresponds to a marked point point at qv ∈ Ce and −m(v,e) is the multiplicity of L at qv.

(iii) If v is unstable of valence one, then the flag (v, e) corresponds to the unmarked point qv ∈ Ce and
m(v,e) = − βv+1d mod ℤ.
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The localization formula expresses [Zϵ
0,n,β]

vir

T in terms of contributions from each localization tree Γ.

To make this more explicit, define a moduli spaceM
1/d,ϵ
0,n,β that parameterizes tuples (C; q

1
, . . . , qn; L;D;φ),

where (C; q
1
, . . . , qn; L) are as usual, D is a divisor on C of degree β, and φ is an isomorphism

φ : L⊗−d ⊗ ω
log

∼
󳨀→ O(D).

We assume the usual representability and stability conditions, as well as the nondegeneracy condition that

if D = ∑k bk[yk] for distinct points yk ∈ C, then the points yk are disjoint from the marked points and nodes

and bk ≤ 1/ϵ for each k. (This is a special case of themoduli spaces of “weighted spin curves” studied in [21].)

For each element of the fixed locus associated to a localization tree Γ and each stable vertex v, one obtains
an element ofM

1/d,ϵ
0,val(v),βv by taking D to be the zero locus of pjv . Thus, if we let

FΓ = ∏
v stable

M
1/d,ϵ
0,val(v),βv ,

then there is a canonical family ofT-fixed elements of Zϵ
0,n,β over FΓ ,which yields amorphism ιΓ : FΓ → Zϵ

0,n,β
that is étale onto the fixed locus corresponding to Γ. The localization formula then yields

[Zϵ
0,n,β]

vir

T =∑
Γ

1

|Aut(FΓ)|
ιΓ∗(
[FΓ]virT
eT(Nvir

Γ )
), (10)

whereAut(FΓ) is the group of automorphisms of a generic element of the fixed locus indexed by Γ. In the next
subsection, we calculate |Aut(FΓ)| and e−1T (N

vir

Γ ) explicitly.

3.2 Localization contributions. For each localization tree Γ, the localization contribution can be divided into
vertex, edge, and flag contributions, following the standard argument that has appeared in [16] and in many

other contexts. To summarize, one applies the normalization exact sequence to a general source curve in a

fixed locus FΓ to obtain an exact sequence on the universal curve over FΓ , then tensors this sequence with

the direct sum of the line bundles L⊗wi ⊗ O(−∑ ∆k) and pushes forward to FΓ . The result is a decomposition

of the relative obstruction theory over FΓ in terms of contributions on vertex components, edge components,

and nodes, which accounts for all of the obstruction theory except for the automorphisms and deformations

of (C, q
1
, . . . , qn , L). The latter are comprised of deformations of the vertex components and their bundle

L (included in the vertex contributions below), automorphisms/deformations of the edge components and

their L (included in the edge contributions), and deformations smoothing the nodes (included in the flag

contributions).

In the end, we write

ev

∗
1

(ϕ
1
)ψa1

1

⋅ ⋅ ⋅ ev∗n(ϕn)ψ
an
n ∩ [Zϵ

0,n,β]
vir

T = (11)

∑
Γ

1

|Aut(Γ)|
ιΓ∗( ∏

v∈V(Γ)
ContrΓ(v) ∏

(v,e)∈F(Γ)
ContrΓ(v, e)) ∏

e∈E(Γ)
ContrΓ(e),

where ContrΓ(v), ContrΓ(e), and ContrΓ(v, e) are described below.

3.2.1 Stable vertex contributions. First, let v be a stable vertex of Γ. The deformations of the marked curve

Cv and the line bundle L|Cv are T-fixed, so they contribute to the virtual fundamental cycle

e−1T (Rπ∗(
M
⨁
i=1
(L⊗wi ⊗ O(− ∑

k∈s−1(v)
∆k)) ⊗ ℂ− wi αjvd )), (12)

where ℂα is the topologically trivial line bundle with equivariant first Chern class α. There is an asymmetry

in (12) in that the universal bundles are only twisted down by the marked points, and not at the pre-images

of nodes. To correct the asymmetry, we note that (12) is equal to

∏
i | ⟨wim(v,e)⟩=0

(−
wiαjv
d )
−1
e−1T (Rπ∗(

M
⨁
i=1
(L⊗wi ⊗ O(− ∑

k∈s−1(v)∪Ev

∆k)) ⊗ ℂ− wi αjvd )), (13)
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where Ev is the set of edges incident to v. This equality can be readily checked by using the long exact se-

quence in cohomology associated to the short exact sequence 0 → L(−qe) → L → L|qe → 0, where qe is the
pre-image of the node connecting Cv to the edge component indexed by e ∈ Ev.

The deformations of the section pj are moving for j ̸= jv, and their contribution to the inverse Euler class
of the virtual normal bundle is

e−1T (⨁
j≠jv

Rπ∗(L⊗−d ⊗ ωlog
) ⊗ ℂαjv−αj).

In addition, for each edge e adjacent to v, there is a contribution from deformations smoothing the node

at which Ce meets Cv, and a gluing factor of d, which yields

∏
e∈Ev

d
αjv−αj󸀠v
βe − ψ(v,e)

,

where each edge e ∈ Ev joins v to another vertex v󸀠, and ψ(v,e) is the cotangent line class to the coarse curve
at the vertex branch of the node where Cv and Ce meet. The factor of d will be absorbed into the flag term.

Motivated by these computations, for each stable vertex, we define

ContrΓ(v) = ∏
k∈s−1(v)

ev

∗
k (ϕk|Pjv )ψ

ak
k ∏
e∈Ev

ev

∗
e (1

jv
(m(v,e))
)

αjv−αjv󸀠
βe − ψ(v,e)

∩ [M
1/d,ϵ
0,val(v),βv ]

vir,jv
T , (14)

where eve is the evaluation map at the half-node corresponding to the edge e and

[M
1/d,ϵ
0,val(v),βv ]

vir,jv
T := (15)

[M
1/d,ϵ
0,val(v),βv ] ∩ e

−1
T (Rπ∗(

M
⨁
i=1
(L⊗wi(− ∑

k∈s−1(v)∪Ev

∆k)) ⊗ ℂ− wi αjvd ⊕⨁j≠jv
(L⊗−d ⊗ ω

log
) ⊗ ℂαjv−αj)).

3.2.2 Edge contributions. Let e be an edge with adjacent stable vertices v and v󸀠. The marked curve Ce and
its line bundle L|Ce have no fixed deformations. We calculate, together, the contribution from the moving

deformations of p⃗ to the inverse Euler class of the virtual normal bundle and the edge contribution to the

virtual fundamental cycle. This combined contribution is

eT(⨁M
i=1 H1(Ce , L⊗wi ))

eT(⨁N
j=1 H0(Ce , L⊗−d)mov)

,

where the superscript “mov” denotes themoving part with respect to the T-action. (Here, we use the fact that
ωCe ,log ≅ OCe .) The above can be calculated explicitly as:

∏Mi=1∏
0<b< βewid
⟨b⟩=⟨wim(v,e)⟩

( bβe (αjv − αjv󸀠 ) −
wi
d αjv )

∏Nj=1∏
󸀠
0≤b≤βe
⟨b⟩=0
( bβe (αjv󸀠 − αjv ) + αjv − αj)

, (16)

where∏󸀠 in the denominator denotes the product over all nonzero factors.

Notice that L|Ce is not quite what one would expect on an edge, because it is not twisted down at pre-

images of nodes, which we think of as marked points on Ce. Twisting down at nodes results in changing the
strict inequalities in the numerator of (16) to non-strict inequalities. Combining this with the automorphisms

of the edge, we define

ContrΓ(e) =
1

dβe
⋅

∏Mi=1∏
0≤b≤ βewid
⟨b⟩=⟨wim(v,e)⟩

( bβe (αjv − αjv󸀠 ) −
wi
d αjv)

∏Nj=1∏
󸀠
0≤b≤βe
⟨b⟩=0
( bβe (αj󸀠v − αjv ) + αjv − αj)

(17)

as the total (stable) edge contribution.
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3.2.3 Flag contributions. For each flag (v, e) at v, there is a contribution to the normalization exact sequence

from the corresponding node. This equals

eT(N
m(v,e)
jv ) = ∏

i |⟨wim(v,e)⟩=0

(−
wi
d
αjv)∏

j≠jv
(αjv − αj), (18)

where Nm(v,e)
jv is the normal bundle of theT-fixed point Pjv in Xe2πim(v,e) .Wemultiply this contribution by d (from

the gluing term at nodes), and wemultiply it by∏i |⟨wim(v,e)⟩=0(−
wi
d αjv )
−2

to compensate for the factors arising

from twisting down at both pre-images of the nodes. Altogether, we define

Contr(v,e) := (η
jv
(m(v,e))
)−1,

where η is the coefficient of the pairing (9).

3.2.4 Unstable vertex contributions. We now describe the conventions for the unstable vertices, which are

defined to ensure that (11) holds with edge and flag contributions defined as above. For v such that |Ev| = 2
and |s−1(v)| = 0, by smoothing the node and compensating for the two flag terms, we define

ContrΓ(v) =
ηjv(m(v,e))

αjv−αjv
1

βe
1

+
αjv−αjv

2

βe
2

.

For v such that |Ev| = 1 and |s−1(v)| = 1, restricting the insertion to qv and compensating for the flag term,

we define

ContrΓ(v) = ϕkv |Pjv (
αjv󸀠 − αjv
βe
)
akv ηjv(m(v,e))

, (19)

where we write s−1(v) = {kv}. Finally, let e be an edge with adjacent vertices v and v󸀠 such that v󸀠 is stable but
v is unstable with Ev = {e} and s−1(v) = 0. Then a tedious but direct computation shows that

eT(⨁M
i=1 H1(Ce , L⊗wi ))

eT(⨁N
j=1 H0(Ce , L⊗−d)mov)

=

∏Mi=1∏ − (βv+1)wi
d <b< βewid

⟨b⟩=⟨wim(v,e)⟩

( bβe (αjv − αjv󸀠 ) −
wi
d αjv )

∏Nj=1∏
󸀠
−βv≤b≤βe
⟨b⟩=0
( bβe (αj󸀠v − αjv ) + αjv − αj)

.

Removing the stable edge contribution, compensating for the flag term, and accounting for the infinitesimal

automorphism at qv, this motivates defining the unstable vertex contribution as follows:

ContrΓ(v) = η
jv
(m(v,e))

αjv − αjv󸀠
βe
⋅

∏Mi=1∏ 0<b< wid (βv+1)
⟨b⟩=⟨−wim(v,e)⟩

( bβe (αjv󸀠 − αjv ) −
wi
d αjv )

∏Nj=1∏
󸀠
0<b≤βv
⟨b⟩=0
( bβe (αjv − αjv󸀠 ) + αjv − αj)

. (20)

It can readily be checked that this convention also make sense for edges with two unstable vertices.

4 Wall-crossing at vertices
Having established the localization set-up, the first step toward the proof of Theorems 1.1 and 1.2 is to prove

an analogous statement at each vertex of each localization graph. Exactly as in Section 2.7, one can define a

graph space GM
1/d,ϵ
0,1,β parameterizing the same data asM

1/d,ϵ
0,1,β together with a parameterization of one com-

ponent C
0
⊆ C on which the ampleness condition of Definition 2.1 is not required. There is an action ofℂ∗ on

GM
1/d,ϵ
0,1,β scaling the parameterized component, and we denote by Vϵβ ⊆ GM

1/d,ϵ
0,1,β the fixed locus on which the

single marked point lies at∞ ∈ C
0
and all of the other marked points and the basepoints lie over 0 ∈ C

0
.

For each j ∈ {1, . . . , N}, there is a T-equivariant relative obstruction theory on GM
1/d,ϵ
0,1,β given by

𝔼∙j = −Rπ∗(
M
⨁
i=1
(L⊗wi (−∆

1
)) ⊕⨁

j󸀠≠j
(L⊗−d ⊗ ωπ,log))

∨
,
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where the T-weights are as in (15). This is a vector bundle, so the Poincaré dual of its top Chern class defines a
twisted,T-equivariant virtual cycle on the graph space. Restricting to the fixed locus Vϵβ, we have V

ϵ
β ≅M

1/d,ϵ
0,1,β

whenM
1/d,ϵ
0,1,β ̸= 0, and [Vϵβ]

vir,j
T agrees in this case with (15). When β ≤ 1/ϵ, on the other hand, the fixed locus

Vϵβ is a single (orbifold) point.
Using the evaluation map ev∙ : Vϵβ → IBℤd at the marked point, we define the twisted, T-equivariant

vertex J-function by

Jϵ,j(q, z) := −z2 ∑
β≥0

m∈{0, 1d ,...,
d−1
d }

qβ( ∫

[Vϵβ]
vir,j
T

ev

∗
∙ (1

j
(m))

eℂ∗ (Nvir

Vϵβ/GM
1/d,ϵ
0,1,β

)
)(1j(m))

∨ ∈ H̃j[[q]]((z)), (21)

where H̃j is defined in (8) and the dual is with respect to the pairing in (9).

We define the big version Jϵ,j(q, t, z) for t ∈ H̃j[z] similarly. In particular, for β ≤ 1/ϵ the qβ-coefficient in

(21) is

z

∏Mi=1∏ 0<b< wid (β+1)
⟨b⟩=⟨ wid (β+1)⟩

(−bz − wid αj)

∏Nj󸀠=1∏
󸀠
0<b≤β
⟨b⟩=0
(bz + αj − αj󸀠 )

1j
( β+1d )

,

while for β > 1/ϵ, the qβ-coefficient in (21) is

∑
m∈{0, 1d ,...,

d−1
d }

⟨
1j(m)
z − ψ

1

⟩
ϵ,j

0,1,β
(1j(m))

∨
.

Let νϵ,jβ (z) be the q
β
-coefficient in [Jϵ,j]+(q, z) − 1

j
(1/d), where the rational functions are expanded as Lau-

rent series in z. With this notation established, we state the vertex wall-crossing theorem.

Theorem 4.1. For any n ≥ 1 and any j ∈ {1, . . . , N}, one has

[M
1/d,ϵ
0,n,β ]

vir,j
T

z − ψn
= ∑
β
1
+⋅⋅⋅+βk=β

1

k!
bβ⃗∗(

k
∏
i=1

ev

∗
n+i(ν

ϵ,j
βi (−ψn+i)) ∩

[M
1/d,∞
0,n+k,0]

vir,j
T

z − ψn
).

When n = 1 and β ≤ 1/ϵ, we use the convention that

[M
1/d,ϵ
0,1,β ]

vir,j
T

z − ψ
1

:= [qβ]Jϵ,j(q, z) ∈ H̃j[z], (22)

and when n = k = 1 on the right-hand side, we use the convention that

ev

∗
2

(t(−ψ
2
)) ∩
[M

1/d,∞
0,2,0
]vir,jT

z − ψ
1

:= t(z) ∈ H̃j[z]. (23)

Here, for a power series F(q), the notation [qβ]F(q) refers to the coefficient of qβ.

Remark 4.2. If we further make the convention that ev

∗
1

(1j(m)) : H̃j → H∗T(pt) is the map ϕ 󳨃→ (1j(m), ϕ), then
conventions (22) and (23) imply that all of the vertex contributions in the localization formula, including the

unstable ones, can be written uniformly as (14).

Proof. Expanding both sides as Laurent series at z = 0, the only contribution to the regular part comes from

the unstable contributions (22) and (23). Since the regular parts of the theorem are already in agreement by

the definition of νϵ,jβ , it remains to prove that the two sides of the theorem agree in their principal parts. We

proceed by lexicographic induction on (β, n). For the base case β = 0, both sides are equal by observation.
Now suppose that β > 0, and let us first focus on the left-hand side of the theorem. Consider the graph

space GM
1/d,ϵ
0,n,β along with the map ρ : GM

1/d,ϵ
0,n,β → M

1/d,ϵ
0,n,β that forgets the parametrization and stabilizes. In
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the case that n = 1 and β ≤ 1/ϵ, we make the convention thatM
1/d,ϵ
0,1,β = Bℤd and ρ is ev∙ followed by the map

that takes any class to its dual under the twisted pairing.

There is a T-equivariant substack Θ ⊆ GM1/d,ϵ
0,n,β parametrizing elements of GM

1/d,ϵ
0,n,β where the last marked

point lies over∞ ∈ C
0
and at least one of the basepoints lies over 0 ∈ C

0
. Since the virtual class restricted to

Θ is an equivariant class, it follows that ρ∗[Θ]
vir,j
T is regular at z = 0. Inverting z and computing ρ∗[Θ]

vir,j
T by

localization, there are three types of fixed loci:

(1) Θ∞, where∞ ∈ C0 is a smoothmarked point of C, meaning that all of the basepoints and the first n−1
marked points lie over 0,

(2) Θn
1
,β

1
|n

2
,β

2

, where the basepoints and marked points split up over 0 and∞ in a stable way such that

neither 0 nor∞ in C
0
are smooth points of C, and

(3) Θβ
1

, where 0 ∈ C
0
is a smooth basepoint of order β

1
≤ 1/ϵ.

The three types of fixed loci contribute to give

ρ∗[Θ]
vir,j
T =

[M
1/d,ϵ
0,n,β ]

vir,j
T

z − ψn
+ ∑

n
1
+n

2
=n

β
1
+β

2
=β

[M
1/d,ϵ
0,n

1
+∙,β

1

×M
1/d,ϵ
0,n

2
+⋆,β

2

]vir,jT
(z − ψ∙)(−z − ψ⋆)

+ z ∑
β
1
≤1/ϵ
(bβ

1

)∗
ev

∗
n+1(ν

ϵ,j
β
1

(z)) ∩ [M1/d,ϵ
0,n+1,β−β

1

]vir,jT

−z − ψn+1
,

where the product in the second term is a divisor inM
1/d,ϵ
0,n,β , and its virtual class is determined by the virtual

classes on each component and the pairing via theusual splitting property. The fact that the total contribution

is regular at z = 0 shows that the principal part of the first term is determined by the principal parts of the

other terms, which are determined recursively in (β, n).
We now turn our attention to the right-hand side of the theorem. Consider the sum of graph space classes

∑
β
1
+⋅⋅⋅+βk=β

1

k!
bβ⃗∗(

k
∏
i=1

ev

∗
n+i(ν

ϵ,v
βi (−ψn+i)) ∩ [GM

1/d,∞
0,n+k,0]

vir,j
T ). (24)

Similar to the previous case, let Ω be the substack where the nth marked point lies over∞ and at least one of

the last kmarked points lies over 0 (note that k ≥ 1 because β > 0). The class (24) restricted to this substack is
again regular at z = 0, and so is its pushforward. As in the previous case, the pushforward can be computed

by localization and there are three types of fixed loci:

(1) Ω∞, where∞ ∈ C0 is a smooth marked point,

(2) Ωn
1
,β

1
|n

2
,β

2

, where the marked points split up in a stable way, and

(3) Ωβ
1

, where 0 ∈ C
0
is a smooth marked point.

The localization contribution of Ω∞ is equal to

1

z − ψn
∑

β
1
+⋅⋅⋅+βk=β

1

k!
bβ⃗∗(

k
∏
i=1

ev

∗
n+i(ν

ϵ,j
βi (−ψn+i)) ∩ [M

1/d,∞
0,n+k,0]

vir,j
T ),

and, by the induction hypothesis, the contributions of Ωn
1
,β

1
|n

2
,β

2

and Ωβ
1

are the same as the contributions

of Θn
1
,β

1
|n

2
,β

2

and Θβ
1

. Thus, the principal parts of the contributions of Ω∞ and Θ∞ are the same, finishing

the induction step. ✷

As a result of the previous theorem, we obtain the following statement on the level of generating series.

Corollary 4.3. For any j ∈ {1, . . . , N}, the twisted vertex J-functions satisfy the wall-crossing formula

Jϵ,j(q, t(z), z) = J∞,j(t(z) + z1 + [Jϵ,j]+(q, −z), z).

Proof. Integrate both sides of Theorem 4.1. ✷
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5 Proofs of the main theorems
In this section, we use the localization calculations of Section 3 and the vertex wall-crossing results of Sec-

tion 4 to prove the two main theorems.

5.1 Proof of Theorem 1.1. The contents of this subsection are closely modeled on the work of Brown [1] and

Coates–Corti–Iritani–Tseng [14], and they follow previous applications of these ideas to the hybrid model in

[13] and [21]. More specifically, in order to prove

Jϵ(q, z) = J∞(q, z1 + [Jϵ]+(q, −z), z),

we characterize the right-hand side as an element of H̃((z−1))[[q]], and then we show that the left-hand side

satisfies this characterization.

For both the equivariant and non-equivariant settings, define VT := H̃T((z−1))[[q]], and consider the

subset¹

LT := {ι∗J∞(q, t, −z) | t(z) ∈ H̃T[z][[q]]} ⊆ VT, (25)

where t(z) satisfies t(z)|q=0 = 0, which ensures that the elements converge as power series in q, and ι∗ :

H̃ct

T → H̃T is the injection

H j(m) 󳨃→ H j(m)
1

d ∏i∈Fm
(−
wi
d
H(m)).

The reason for the map ι∗ is that it allows one to write

ι∗Jϵ(q, −z) = (26)

−
z
d ∑β≤1/ϵ

qβ(

∏Mi=1∏ 0≤b< wid (β+1)
⟨b⟩=⟨ wid (β+1)⟩

(bz − wid H( β+1d ))

∏Nj=1∏0<b≤β
⟨b⟩=0
(−bz + H( β+1d ))

) + ∑
β>1/ϵ

qβ
N−1
∑
l=0
⟨
H l
(− β+1d )
−z − ψ

1

⟩
ϵ

0,1,β
HN−l
( β+1d )
∈ H̃((z−1))[[q]],

and one can safely include the terms l > N − 1 − 󵄨󵄨󵄨󵄨F( β+1d )
󵄨󵄨󵄨󵄨 in the second sum because the corresponding

invariants vanish by Lemma 2.3. The first summation in (26) encodes the “unstable terms” and the second

summation the “stable terms.”

Analogously, for each T-fixed point Pj ∈ Z, let Vj := H̃j((z))[[q]], and let

Lj := {ι∗J∞,j(q, t, −z) | t(z) ∈ H̃j[z][[q]]} ⊆ Vj , (27)

where t(z) satisfies t(z)|q=0 = 0 and, restricting to the fixed point, ι∗ : H̃j → H̃j becomes

1j(m) 󳨃→ 1j(m)
1

d ∏i∈Fm
(−
wiαj
d )

.

Remark 5.1. It is essential and worth pointing out thatL consists of Laurent series in z−1 whileLj consists of
Laurent series in z.

In order to prove Theorem 1.1, it suffices to prove that ι∗Jϵ(q, −z) ∈ LT for some equivariant lift of

ι∗Jϵ(q, −z). Indeed, by (25), thiswill prove that there exists some t ∈ H̃T[z][[q]] forwhich Jϵ(q, z) = J∞(q, t, z).
The specific choice of t is determined by the fact that J∞(q, t, z) = z1 + t(−z) + O(z−1), so taking the part of
the equation Jϵ(q, z) = J∞(q, t, z) with non-negative powers of z yields t(z) = z1 + [Jϵ]+(q, −z). Taking the
non-equivariant limit proves Theorem 1.1.

1 In Givental’s formalism, one gives V the structure of a symplectic vector space and proves that L is an overruled Lagrangian

cone. These properties can be proven in the current setting, using the fact that the genus-zero∞-stable hybrid model correlators

satisfy the string and dilaton equations and topological recursion relations. However, these properties are not necessary for our

purposes.
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The strategy for proving that ι∗Jϵ(q, −z) ∈ LT is to prove a characterization of elements of LT. We make

use of the following notation. If f ∈ VT, then for each j ∈ {1, . . . , N} we denote by fj the image of f under
the restriction map H̃T → H̃j. For m ∈ {0, 1d , . . . ,

d−1
d }, we denote by fj,m the coefficient of ι∗(1

j
(−m))
∨ =

∏k≠j(αj − αk)1
j
(m) in f.

For any m,m󸀠 ∈ {0, 1d , . . . ,
d−1
d } we set E

m,m󸀠
:= {β ∈ ℤ>0 | βd − m − m

󸀠 ∈ ℤ}, so that Em,m󸀠
is the set of

possible degrees βe in a localization graph for which e is an edge adjacent to vertices v and v󸀠 with me,v = m
and me,v󸀠 = m󸀠. For each β ∈ Em,m

󸀠
, we define the recursive term

RC

m,m󸀠

j,j󸀠 (β) :=
1

β
⋅

∏Mi=1∏
0≤b< βwid
⟨b⟩=⟨wim⟩

( bβ (αj − αj󸀠 ) −
wi
d αj)

∏Nk=1∏
󸀠
0≤b<β
⟨b⟩=0
( bβ (αj󸀠 − αj) + αj − αk)

.

With this notation established, the elements of LT are characterized as follows.

Proposition 5.2. An element f ∈ V lies in LT if and only if the following are satisfied:

(1) For each j andm, the restriction fj,m lies inℂ(z, α
1
, . . . , αN)[[q]] and, as a rational function of z, each qβ-

coefficient of fj,m is regular except for possible poles at z = 0, z =∞, and z = (αj󸀠 − αj)/β with β ∈ Em,m
󸀠

for some j󸀠,m󸀠.
(2) For each j ̸= j󸀠, each m,m󸀠, and each β ∈ Em,m󸀠 , we have

Res
z=

αj−αj󸀠
β

fj,m = −qβ ⋅ RCm,m
󸀠

j,j󸀠 (β) ⋅ fj󸀠 ,−m󸀠
󵄨󵄨󵄨󵄨z=

αj−αj󸀠
β

.

(3) The Laurent expansion of each fj at z = 0 lies in Lj.

Proof. The proof is similar to that in [13], which differs from the current setting only in the twist of the uni-

versal bundle at broad marked points. For completeness, we sketch the main ideas, which will be expanded

upon further in the proof of Theorem 1.1, where both the stable and unstable cases are treated.

Let f ∈ LT. Then f = ι∗J∞(q, t, −z) for some t(z) and it follows from the localization formula that

fj = ι∗(z1
j
(1/d) + tj(z) + ∑

j󸀠 ̸=j

m,m󸀠∈{0, 1d ,..., d−1d }
β∈Em,m󸀠

Tm,m
󸀠

j,j󸀠

−z + αj−αj󸀠β

+ ∑
n≥2

k∈{0, 1d ,...,
d−1
d }

1

n!⟨(
tj(ψ) + ∑

j󸀠 ,m,m󸀠
,β

Tm,m
󸀠

j,j󸀠

−ψ + αj−αj󸀠β

)
n 1j(k)
−z − ψn+1

⟩
∞,j

0,n+1
(1j(k))
∨). (28)

Indeed, the term

Tm,m
󸀠

j,j󸀠

−z+
αj−αj󸀠
β

∈ H̃j(z)[[q]] is the sum of all localization contributions from graphs where the last

marked point is on an unstable vertex of valence two with adjacent edge e having opposite vertex v󸀠 with
jv󸀠 = j󸀠, m(e,v󸀠) = m󸀠, and m(e,v) = m. The second line of (28) collects all localization contributions where the
last marked point is on a stable vertex. Properties (1) and (3) are observed from (28). The recursion in property

(2) reflects the removal of the edge e from
Tm,m

󸀠

j󸀠

−z+
αj−αj󸀠
β

.

Conversely, suppose that f satisfies properties (1) and (3). Then, by a partial fractions decomposition,

f can be written in the form (28) where the terms tj(z) and Tm,m
󸀠

j,j󸀠 are undetermined power series in q. Since

property (2) recursively (in q) determines Tm,m
󸀠

j,j󸀠 , we see that properties (1), (2), and (3) determine f up to t(z). It
follows that f = ι∗J∞(q, t, −z), because ι∗J∞(q, t, −z) also satisfies properties (1), (2), and (3), and the regular
parts when expanded as Laurent series in z−1 of the two sides are both equal to t(z). Thus f ∈ LT. ✷

Equipped with Proposition 5.2, all that remains in order to prove Theorem 1.1 is to verify that ι∗Jϵ(q, −z)
satisfies Conditions (1), (2), and (3).
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Proof of Theorem 1.1. Throughout, we write f = ι∗Jϵ(q, −z) as in (26). We first prove that f satisfies Condi-
tion (1) of Proposition 5.2. The contribution of the unstable terms to fj,m is

−
z
d ∑β≤1/ϵ
⟨ β+1d ⟩=m

qβ(

∏Mi=1∏0≤b< wid (β+1)
⟨b⟩=⟨wim⟩

(bz − wi
αj
d )

∏Nk=1∏
󸀠
0≤b≤β
⟨b⟩=0
(−bz + αj − αk)

) , (29)

which is manifestly a rational function of z with the prescribed poles. The contribution of the stable terms to

fj,m can be calculated by localization, with all contributing graphs having themarked point on a vertex vwith
jv = j. As in (28), there are two types of graphs, depending on whether v is unstable or stable. If v is unstable
with adjacent edge e, then the graph contribution is rational in zwith pole at z = αj−αj󸀠βe . If v is stable, then the
graph contribution is polynomial in z−1 (because ψ is nilpotent on stable vertices). This verifies Condition (1).

Wenext prove that f satisfies Condition (2).Webeginwithunstable terms (29), forwhichone can calculate

directly that the residue at z = αj−αj󸀠βe of fj,m equals

αj − αj󸀠
dβ2e

∑
βe≤β≤1/ϵ
⟨ β+1d ⟩=m

qβ(

∏Mi=1∏0≤b< wid (β+1)
⟨b⟩=⟨wim⟩

(b αj−αj󸀠βe − wi
αj
d )

∏Nk=1∏
󸀠
0≤b≤β
⟨b⟩=0
(b αj󸀠−αjβe + αj − αk)

) . (30)

The evaluation of the unstable terms in fj󸀠 ,−m󸀠 at z = αj−αj󸀠βe equals

αj󸀠 − αj
dβe

∑
βv󸀠≤1/ϵ
⟨ βv󸀠 +1d ⟩=−m󸀠

qβv󸀠(

∏Mi=1∏0≤b< wid (βv󸀠+1)
⟨b⟩=⟨−wim󸀠⟩

(b αj−αj󸀠βe − wi
αj󸀠
d )

∏Nk=1∏
󸀠
0≤b≤βv󸀠
⟨b⟩=0
(b αj󸀠−αjβe + αj󸀠 − αk)

) . (31)

By shifting the index βv󸀠 in (31) to β = βe + βv󸀠 , one checks directly that

(30) = −qβeRCm,m
󸀠

j,j󸀠 (βe) ⋅ (31) mod {qβ | β > 1/ϵ}.

The right-hand side of this equation has nontrivial coefficients of qβ with 1/ϵ < β ≤ 1/ϵ + βe. One checks
that these correspond to the stable contributions to the residue at z = αj−αj󸀠βe of fj,m coming from graphs with

a single edge e connecting two unstable vertices v and v󸀠 with the marked point on v.
For the remaining stable terms, the verification of Condition (2) is again by localization, where contribut-

ing graphs have nonzero residue at z = (αj − αj󸀠 )/βe only if the marked point lies on an unstable vertex v with
jv = j, such that the unique edge e adjacent to v has degree βe and meets the rest of the graph at a vertex v󸀠

with jv󸀠 = j󸀠. The contribution of such a graph Γ to the correlator

⟨
1j(−m)
−z − ψ

1

⟩
ϵ

0,1,β

can be expressed as

ContrΓ =
1

−z + αj−αj󸀠βe

⋅ RCm,m
󸀠

j,j󸀠 (βe) ⋅ ContrΓ󸀠 ,

where Γ󸀠 is the graph obtained from Γ by omitting the edge e and ContrΓ󸀠 is the contribution of Γ󸀠 to the

correlator

⟨
1j

󸀠

(m󸀠)
αj−αj󸀠
βe − ψ1

⟩
ϵ

0,1,β−βe
.

Summing over all possible graphs Γ completes the verification of Condition (2).

Finally, we prove that f satisfies Condition (3). Let τj(z) = ∑Γ ContrΓ , where, as above, Γ is a graph where
the marked point lies on an unstable vertex v with jv = j and ContrΓ denotes the contribution to fj. The sum
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of all contributions to fj from graphs where the marked point is on a stable vertex v with jv = j can then be

written as

∑
β>1/ϵ
n,m

qβ

n! ⟨
τj(ψ1
) ⋅ ⋅ ⋅ τj(ψn) ⋅

1j(−m)
−z − ψn+1

⟩
ϵ,j

0,n+1,β
ι∗(1

j
(−m))
∨
.

The unstable contributions to fj, on the other hand, are exactly the unstable contributions to ι∗Jϵ,twj (q, −z).
It follows that f = ι∗Jϵ,j(q, τj(z), −z), which, by Corollary 4.3, equals ι∗J∞,j(q, τj(z) + z1 + [Jϵ,twj ]+(q, −z), −z)
and hence lies onL∞,j. This completes the verification of Condition (3) and hence the proof of Theorem 1.1. ✷

5.2 Proof of Theorem 1.2. We now prove the wall-crossing theorem for virtual cycles:

∑
β
qβ[Zϵ

0,n,β]
vir = ∑

β
0
,β

1
,...,βk

qβ0
k!
bβ⃗∗c∗(

k
∏
i=1
qβiev∗n+i(μ

ϵ
βi (−ψn+i)) ∩ [Z

∞
0,n+k,β

0

]vir),

which is an application of the localization formula on both sides.

Proof of Theorem 1.2. By localization on the space Zϵ
0,n,β and the calculations of Section 3.2, the left-hand side

of (1) can be expressed as

∑
Γ
Contr

LHS

Γ =∑
Γ
∏
v∈V(Γ)

qβv ContrΓ(v) ∏
(v,e)∈F(Γ)

ContrΓ(v, e) ∏
e∈E(Γ)

qβe ContrΓ(e), (32)

where the sum is over localization graphs for the moduli spaces Zϵ
0,n,β for all β. Let v be a vertex of a localiza-

tion graph Γ, and for convenience set

Contr

E
Γ (v) := ∏

e∈Ev

ev

∗
e (1

jv
(m(v,e))
)

αjv−αjv󸀠
βe − ψ(v,e)

.

If v is a stable vertex, then equation (14) and Theorem 4.1 together imply that

ContrΓ(v) = ContrEΓ (v) ∩ [M
1/d,ϵ
0,val(v),βv ]

vir,jv
T

= ContrEΓ (v) ∩ ∑
k

β
1
+⋅⋅⋅+βk=βv

1

k!
bβ⃗∗c∗(

k
∏
i=1

ev

∗
val(v)+i(ν

ϵ,jv
βi (−ψval(v)+i)) ∩ [M

1/d,∞
0,val(v)+k,0]

vir,jv
T ).

By Remark 4.2, this equation holds even when v is an unstable vertex. The condition n > 0 is important here,

as it implies that val(v) > 0 at every vertex v, which in turn allows us to apply Theorem 4.1 at every vertex.

Let ij : {Pj} 󳨅→ X be the inclusion of the jth T-fixed point. Then Jϵ,jv has the same unstable terms as

i∗jv J
ϵ = Jϵjv , and hence

νϵ,jvβi (z) = i
∗
jvμ

ϵ
βi (z).

It follows that ContrΓ(v) equals

Contr

E
Γ (v) ∩ ∑

k
β
1
+⋅⋅⋅+βk=βv

1

k!
bβ⃗∗c∗(

k
∏
i=1

ev

∗
val(v)+i(i

∗
jvμ

ϵ
βi (−ψval(v)+i)) ∩ [M

1/d,∞
0,val(v)+k,0]

vir,jv
T )

= ContrEΓ (v) ∩ ∑
k

β
1
+⋅⋅⋅+βk=βv

1

k!
bβ⃗∗c∗(

k
∏
i=1

ev

∗
val(v)+i([q

βi ][J∞jv ]+(q, [J
ϵ
jv ]+(q, −z) + z1, −ψval(v)+i)) ∩ [M

1/d,∞
0,val(v)+k,0]

vir,jv
T )

where the equality is an application of Theorem 1.1 and [qβi ] again denotes the coefficient of qβi in a power

series in q.
Now, we have

[J∞jv ]+(q, t(z), z) = z1 + t(−z) +∑
Λ
ContrΛ(J∞(q, t(z), z)),
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where the sum is over localization graphs Λ for the moduli spaces Z∞
0,n+1,β such that the last marked point

lies on an unstable vertex w with jw = jv; here ContrΛ(J∞(q, t(z), z) denotes the contribution of Λ to the

localization expression for a stable term of J∞(q, t(z), z). Thus,

[qβi ][J∞jv ]+(q, [J
ϵ
jv ]+(q, −z) + z1, −ψval(v)+i)

= i∗jvμ
ϵ
βi (−ψval(v)+i) +∑

Λ
[qβi ]ContrΛ(J∞(q, [Jϵ]+(q, −z) + z1, −ψval(v)+i)) =: T

βi
jv , (33)

where we can think of Tβijv as the q
βi
-coefficient of a ‘tail’ emanating from the vertex v. We then write

ContrΓ(v) = ContrEΓ (v) ∩ ∑
k

β
1
+⋅⋅⋅+βk=βv

1

k!
bβ⃗∗c∗(

k
∏
i=1

ev

∗
n+i(T

βi
jv ) ∩ [M

1/d,∞
0,val(v)+k,0]

vir,jv
T ).

By the localization formula,

∑
k

β
1
+⋅⋅⋅+βk=βv

1

k!

k
∏
i=1

ev

∗
n+i(T

βi
jv ) ∩ [M

1/d,∞
0,val(v)+k,0]

vir,jv
T = ∑

m
β
1
+⋅⋅⋅+βm≤βv

1

m!∑Ω
ContrΩ(

m
∏
i=1

ev

∗
val(v)+i(μ

ϵ
βi (−ψval(v)+i))),

where the second sum on the right-hand side is over all localization graphs Ω for the moduli spaces

Z∞
0,val(v)+m,βv−∑mi=1 βi

such that (at least) the first val(v) marked points lie on a distinguished vertex w with

jw = jv, and such that each of the k connected components T in Ω \ {w} satisfies β(T) +∑i∈T βi ≤ 1/ϵ, so that
the entire fixed locus FΩ maps toM

1/d,ϵ
0,val(v),βv upon applying the map bβ⃗ ∘ c. Furthermore,

ContrΩ(
m
∏
i=1

ev

∗
val(v)+i(μ

ϵ
βi (−ψval(v)+i))) ∈ H∗(M

1/d,ϵ
0,val(v)+k,0)

denotes the result of taking the localization contribution of Ω to the class

m
∏
i=1

ev

∗
val(v)+i(μ

ϵ
βi (−ψval(v)+i)) ∩ [Z∞

0,val(v)+m,βv−∑mi=1 βi
]vir

and integrating along all vertex moduli spaces except the distinguished vertex. Since integrating along all of

the vertexmoduli except the distinguished one and then replacing the attaching node with a basepoint is the

same as applying the map bβ⃗∗c∗, this implies that

ContrΓ(v) = ContrEΓ (v) ∩ ∑
m

β
1
+⋅⋅⋅+βm≤βv

1

m!
bβ⃗∗c∗∑

Ω
ContrΩ(

m
∏
i=1

ev

∗
val(v)+i(μ

ϵ
βi (−ψval(v)+i))).

Applying this procedure at each vertex of Γ, it follows that

Contr

LHS

Γ = ∑
m

β
1
+⋅⋅⋅+βm≤∑ βv

1

m!
bβ⃗∗c∗∑

Ω
Contr

RHS

Ω

where the second sum is over localization graphs Ω for the moduli spaces Z∞
0,n+m,β such that FΩ maps to FΓ

upon applying the map bβ⃗ ∘ c, and Contr
RHS

Ω denotes the contribution to

m
∏
i=1

ev

∗
n+i(μ

ϵ
βi (−ψn+i)) ∩ [Z

∞
0,n+m,β

0

]vir.

Summing over all localization graphs Γ on the left-hand side is equivalent to summing over all localization

graphs Ω on the right-hand side, completing the proof that the two sides of (1) are equal. ✷
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