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Abstract: The hybrid model is the Landau—Ginzburg-type theory that is expected, via the Landau-Ginzburg/
Calabi-Yau correspondence, to match the Gromov-Witten theory of a complete intersection in weighted
projective space. We prove a wall-crossing formula exhibiting the dependence of the genus-zero hybrid
model on its stability parameter, generalizing the work of [21] for quantum singularity theory and paralleling
the work of Ciocan-Fontanine-Kim [7] for quasimaps. This completes the proof of the genus-zero Landau-
Ginzburg/Calabi-Yau correspondence for complete intersections of hypersurfaces of the same degree, as well
as the proof of the all-genus hybrid wall-crossing [11].
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1 Introduction

The gauged linear sigma model (GLSM) has been the subject of intense study by both mathematicians and
physicists since its introduction by Witten [22] in the 1990s; see [15; 11; 18; 19]. Special cases of the GLSM
include the Gromov-Witten theory—or, more generally, the quasimap theory—of nonsingular complete inter-
sections in GIT quotients, as well as the Fan-Jarvis—Ruan-Witten (FJRW) theory of nondegenerate singulari-
ties. In particular, the GLSM provides an ideal context in which to understand the Landau—Ginzburg/Calabi—
Yau (LG/CY) correspondence relating the Gromov-Witten theory of a nonsingular hypersurface in weighted
projective space to the FJRW theory of its defining polynomial; the relationship between these two theories,
from the GLSM perspective, is encoded in a variation of GIT on the target geometry.

More precisely, the GLSM depends on the choice of a GIT quotient Xg = [V [y G] equipped with a polyno-
mial function W : X9 — C, and a stability parameter € € Q*. Suppose we take the GIT quotient to be

Xy 1= Opgwy,..wp (=d) = (CY x C) Jp C*,

.....

where C* acts with weights (w1, ..., wy, —d) and 6 € Homz(C*, C*) = Z is any positive character, and let
W(x1,...,xm, p) = pF(x1, ..., Xm)

for anondegenerate quasihomogeneous polynomial F € C[xy, ..., xy] of weights wy, ..., wjr and degree d.
Then the GLSM recovers the Gromov-Witten theory of the hypersurface {F = 0} ¢ P(wy,...,wy) when
€ > 0, while for smaller € it coincides with the quasimap theory developed by Ciocan-Fontanine—-Kim-
Maulik [9; 6; 7; 8]. The passage from € > 0 to the asymptotic stability condition € = 0+ can be viewed as
a manifestation of mirror symmetry; in particular, a generating function of genus-zero invariants for € = 0+
is precisely Givental’s I-function. Ciocan-Fontanine and Kim [7] gave a new proof of the genus-zero mirror the-
orem by demonstrating a strikingly simple wall-crossing formula that encodes how the genus-zero quasimap
invariants change with €.

On the other hand, taking a negative character of C* in the above quotient yields X_ := [CM/Z,], where
Z4 acts diagonally with weights (w1, ..., wy). The resulting GLSM is the FJRW theory of the polynomial
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F when € > 0, and for smaller € it recovers the quantum singularity theory studied by Ruan and the sec-
ond author in [21]. The analogous analysis to the above was carried out in this chamber in [21], yielding
genus-zero wall-crossing formulas for the dependence of the theory on € and a new proof of the genus-zero
Landau-Ginzburg mirror theorem. From here, the genus-zero LG/CY correspondence follows by relating the
I-functions of Gromov-Witten and FJRW theory, a rather delicate process involving analytic continuation that
was proven by Chiodo-Iritani-Ruan [5; 4].

Two natural questions arise from this perspective on the LG/CY correspondence. First, can it be adapted
to gauged linear sigma models associated to other GIT quotients? And second, can it be generalized to higher
genus?

In particular, replacing the hypersurface {F = 0} ¢ P(wy, ..., wy) with a nonsingular complete inter-
section Y = {F; = --- = Fy = 0} of degrees d4, . . ., dy corresponds to considering a GIT quotient

(€ xch) fpC*,

in which C* acts with weights (w4, ..., wy, —-d1, ..., —dy). The GLSM associated to this quotient with a pos-
itive character coincides with the Gromov-Witten (or quasimap) theory of Y. In order to ensure the properness
of the GLSM moduli space in the negative chamber, however, one must assume that d, = --- = dy, as this im-
plies that the theory admits a “good lift”; see [15]. Under this assumption, the GLSM for a negative character
is known in the physics literature as the “hybrid model” and was studied mathematically in [10]. It is a curve-
counting theory over a moduli space Zg’n’ 5 parameterizing genus-g marked orbifold curves (C; q1, ..., qn)
together with a degree-f line bundle L and a section

De F((L®*d ® wlog)@N)

with vanishing order at most 1/¢.

The genus-zero wall-crossing for the quasimap theory of Y was carried out by Ciocan-Fontanine—Kim in
[7], while the analytic continuation relating € = 0+ quasimap theory to € = 0+ hybrid theory was done—under
a Calabi-Yau hypothesis—in our previous work [13]. The first theorem of the current paper, which states the
genus-zero wall-crossing for hybrid theory, is the natural conclusion of that story:

Theorem 1.1. Let Y ¢ P(wy,...,wy) be a nonsingular complete intersection defined by the vanishing of a
collection of polynomials of degree d, where w; | d for all i. The J-functions of e-stable and co-stable hybrid
theory are related by

Jé(q, 2) = J*(q, 21 + [J¢14(q, ~2), 2),
where [J€], is the part of J¢ with non-negative powers of z.

See Section 2.7 below for the precise definitions of the J-functions, which are generating functions of
e-stable hybrid invariants. In particular, the conjunction of [7], [13] and Theorem 1.1 verifies the genus-zero
Landau-Ginzburg/Calabi-Yau correspondence for all nonsingular Calabi-Yau complete intersections Y ¢
P(wq, ..., wy)such that w; | d for all i.

We also extend the methods of [21] to prove a stronger wall-crossing statement, on the level not only of
invariants but of virtual fundamental classes. The statement involves comparison maps

C:Z50p Z(e),n,ﬁ and bg =bg,....p0 Zg,n+k,ﬁo - Zé,n,ﬁ0+ziﬁ,-
whose definitions appear in Section 2.4. The theorem, with this notation established, is the following:
Theorem 1.2. Let Y < P(wy, ..., wy) be as in Theorem 1.1. Then
Br e vir qﬁo £ Bi o * € 00 vir
Y, = Y Tobpci (108 e 0af (ni) 0 (280000 ) W
ﬂ ﬁo,ﬁl ..... ﬁk . i=1

where the sums are over all degrees for which the above moduli spaces are nonempty and yz(z) denotes the
coefficient ofqﬁ in-z1+ [J¢1.(q, 2).
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The form of Theorem 1.2 is identical to the higher-genus wall-crossing statement for the hybrid model
proven by Janda, Ruan and the first author in [11]. However, the proof of the higher-genus statement is an
induction in which the genus-zero base case must be proven independently. Thus, the proof in [11] in fact
relies on Theorem 1.2, so this work also completes the verification of higher-genus wall-crossing in the hybrid
model.

It should be noted that the higher-genus LG/CY correspondence for the hybrid model still remains con-
jectural. Indeed, although wall-crossing statements have now been established in both the hybrid phase and
the quasimap phase (the latter by Ciocan-Fontanine-Kim in [8], or by the alternative proof of [12]), the ana-
lytic continuation relating the € = 0+ theories on the two sides is a subtle issue that has so far been tackled
only in genus one, by Guo and the second author [17].

Plan of the paper. In Section 2 we review the definition of the hybrid model, including the state space, the
moduli space, the genus-zero virtual cycle and correlators, and the J-function. In Section 3 we introduce an
action of the torus T = (C*)" on the moduli space by scaling the section p, which yields a T-equivariant virtual
cycle, and we carefully analyze the contributions to the virtual cycle from each T-fixed locus. In particular,
the fixed loci are indexed by decorated graphs whose vertices correspond to moduli spaces of weighted spin
curves. Mimicking and generalizing the techniques of [21], we prove in Section 4 the local analogues of Theo-
rems 1.1and 1.2 at each vertex. Finally, in Section 5, we prove Theorem 1.1 via the vertex wall-crossing together
with a localization recursion, and we deduce Theorem 1.2 by localization on both sides.

2 Definitions and set-up

We review the definition of the hybrid model, which is a special case of the more general gauged linear sigma
model (GLSM) constructed by Fan, Jarvis and Ruan [15]. Let F1(x1,...,Xum), ..., Fn(X1, ..., Xp) be quasi-
homogeneous polynomials of the same weights w1, ..., wy and the same degree d, defining a nonsingular
complete intersection

Y:={F=---=Fy=0} cP(wq,...,wy).

Assume, furthermore, that w; | d for each i.

The general GLSM depends on the choice of a GIT quotient X = [V [, G], a polynomial function W : X — C
known as the superpotential, and an action of C* on V known as the R-charge. In our case, V = CM*N with
coordinates (x1, ..., Xy, P1, .-, PN), and

G:=1{g",....,g", g% ...,g|geC}t=C"

acts diagonally on V. For any negative character § € Homz(C*, C*) = Z, the resulting GIT quotient is

i=1

The superpotential on this space is defined by

N
W(X19 ooy XM> P15 e e ypN) = zp}F](le B XM)a
j=1
and the R-charge acts by diagonal multiplication on the p-coordinates. The critical locus of W, i.e. the points
where dW = 0, is the zero section Z := P(d,...,d) < X, as one readily checks from the fact that Y is
nonsingular.

2.1 State space. In what follows, insertions to hybrid model correlators are chosen from the space H :=
H{x(X). This is not precisely the state space of the GLSM, but it maps surjectively to the “compact-type” part
of the GLSM state space; see [11, Section 2.1] and Remark 2.4 below for further discussion.
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The space H decomposes into summands indexed by the components of the inertia stack 7X, which are
labeled by elements of g € G with nonempty fixed locus. More specifically, the elements (g"1, ..., g"", g 9,
.., g% e G with nonempty fixed locus are those for which g¢ = 1, and for such g, it is straightforward to
check that the fixed locus is
Xg := P Opy(-wi) € X,

ieFg
where Fg := {i | g = 1} c {1, ..., M}. Thus, we have
F =P H* Xy).
8€Za
2.2 Moduli space. The general definition of the moduli space in the GLSM was proposed by Fan-Jarvis—

Ruan [15], building on the notion of quasimaps introduced by Ciocan-Fontanine and Kim. Fix a genus g,
a degree 8 € Z, a nonnegative integer n, and a positive rational number €.

Definition 2.1. An e-stable Landau—Ginzburg quasimap to Z consists of an n-pointed prestable orbifold curve
(C;q1, ..., qn) of genus g with nontrivial isotropy only at marked points and nodes, an orbifold line bundle
L on C, and a section

P=®1,...,pn) € (L 8 wi))®Y),
where wiog := wc([q] + - + [qy]) for the coarse divisors [g;], satisfying the following conditions:
e Representability: For every g € C with isotropy group G4, the homomorphism G; — C* giving the action
of the isotropy group on the bundle L is injective.

» Nondegeneracy: The zero set of p is finite and disjoint from the marked points and nodes of C, and for
each zero g of p, the order of the zero (that is, the common order of vanishing of p1, ..., py) satisfies
ordy(P) < 1/e.

« Stability: The Q-line bundle (L* ¢ & Wiog)®¢ ® Wiog is ample.

The zeroes of p are referred to as basepoints of the quasimap, and the degree of the quasimap is defined as
B :=deg(L®“® Wiog)-

Note that  must be an integer, since if L?dg wlog had nontrivial orbifold structure then basepoints would
be forced to occur at special points.

Fan-Jarvis—Ruan proved in [15] that there is a proper, separated Deligne-Mumford stack Zg n,p Para-
meterizing genus-g, n-pointed, e-stable Landau-Ginzburg maps of degree f3 to Z, up to the natural notion of
isomorphism.

2.3 Multiplicities and evaluation maps. Recall that if g is a point on an orbifold curve C with isotropy group
Z, and L is an orbifold line bundle on C, then the multiplicity of L at q is defined as the number m € Q/Z
such that the canonical generator of Z, acts on the total space of L in local coordinates by

(X, V) — (leri/rX’ lerimV).
In our case, all multiplicities can be taken to lie in the set {0, %, . dT‘ll}. For a tuple m = (mq, ..., my) of
such multiplicities, we define
€ €
Zginp < Zenp

as the (open and closed) substack consisting of Landau—Ginzburg quasimaps for which the multiplicity of L
at g; is m;.

It is straightforward (see, for example, [11, Section 2.3]) to check that Zg 7. 18 nonempty only if

B

_ _ n
w — Z m; € Z. (2)
i=1
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In particular, since (2) is independent of the ith marked point if and only if m; = %, this is the only case in
which there is a forgetful map on Z; i forgetting g; and its orbifold structure.
To define evaluation maps

evy : Zg ng JZ cJX = |_I @ Opn-1(—wj)
’ 8€Zg i€Fg
to therigidified inertia stack of Z, letm : € — Z ; np be the universal curve, let £ be the universal bundle, and
let p be the universal section of the bundle (Lo dg wn,log)$N . If Ay < @ denotes the divisor corresponding to
the kth orbifold marked point, then
2 ®—d\®&N
piﬂk € F((L ) |Ak)’

using the fact that wy,10¢l, is trivial. Thus, evaluating p|,, at the fiber over a point (C; g1, . . ., gn; L; P) in the
moduli space yields an element of PN~!, and by definition, evy sends Z; in,p O the copy of PY~1 sitting inside

JX as the zero section in the sector indexed by g = e2™"™ ¢ 7.

2.4 Comparison maps. There are two types of comparison maps that relate the hybrid moduli spaces to one
another. Careful definitions appear in [11, Section 3.2], based on the ideas of [7, Section 3.2]. First, if B =
(B1, - - -, Bx) is a tuple of nonnegative integers and m = (my, ..., my) is defined by m; := (B’T”) for each i,
then the morphism

— Z€

_— €
bﬁ VA enp

g,"+ﬁ1,ﬁ—le(:1 ﬁi
replaces the last k marked points with basepoints of orders f1, ..., Bx and contracts unstable components
(replacing them by basepoints) as necessary. Similarly, the comparison map

— Z€

. 700
c:Z en,B

gn.p
contracts any rational tails that become unstable under the change of stability condition and replaces them
with basepoints.

2.5 Virtual cycle. The general definition of the virtual cycle
€ vir €
(Zgnpl™ €Au(Zg, p)

proceeds by the cosection technique of Kiem-Li [20], following closely related work of Chang-Li [2] and
Chang-Li-Li [3]. In genus zero, however, the situation is substantially simpler: the condition that w; | d
implies that
M n
Rln*(@<L®Wf 20(- Y Ak))>
i=1 k=1
is a vector bundle (see [10, Section 4.2.9], or the analogous argument in Lemma 2.3 below), and we have

M
125 01" = e( DR (£ 0 0 - 3y ) 12,1
i=1 k=1

In fact, twisting down by the orbifold marked point is equivalent, on coarse underlying curves and hence
on cohomology, to not twisting down at all if the multiplicity of L®"i is nonzero, or to twisting down by the
coarse divisor [q,] if the multiplicity is zero. Thus,

M
[ngn,p]vﬁ _ e(@Rln*(L®Wi)®o(— Z Ak)> N [Z(e)’m’ﬁ],
i=1 klwimyeZ

where Ay is the marked point divisor pulled back from the coarse underlying curve.

Equipped with this virtual cycle, we can define correlators in the hybrid model. Recall that the psi classes
are defined by

Vi = c1(Lk) € A*(Z;n,,;)

foreach k € {1, ..., n}, where Ly is the line bundle whose fiber over a moduli point is the cotangent line to
the coarse curve at the kth marked point.
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Definition 2.2. Given ¢1, ..., ¢, € H and nonnegative integers ay, . .., a,, the associated genus-0, degree-
B, e-stable GLSM correlator is

G = [ eVi@OYT v @l

[Zg,n,ﬁ]‘m

2.6 Unit and pairing. Given the discussion following equation (2), the role of the unit in the GLSM theory is
played by 1 := 1(1/4), the fundamental class in the twisted sector H* (Xe2ni/a) < H.

Using this, we define a pairing on the state space K by (1, P2) := (P1 P2 1)8,3,0. More explicitly, for
each m € Q/Z and each class ¢ € H*(PN1), let ¢(m) denote the class given by ¢ in the twisted sector
H* (Xpomim) = H*(PN-1), Let H € H*(IPN1) be the hyperplane class, and let Fy, := Fponim = {i | mw; € Z}. On
the moduli space Zg,( one calculates that

n (Lo ®O(—§[qk1)) - {

m,-m,1/d),0?
1 ifieFp
0 otherwise.

Thus, the pairing is given by

(my) =0 unlessm+m' =0e€ Q/Zandj+j' =N-1-|Fpul,

j
(H(m), H

and

(H{m)’ Hé\i—r;)—lle—i) _ J HN-1-IFul e(@ Oma)(—wi)) - % l‘[ (_%>

- ieF, ieF,

foranym e Q/Zandany 0 <j < N -1 — |Fpl. _
This pairing is degenerate, since whenever j > N—1—|Fy|, the class Hém) pairs to zero with every element

of H. However, it becomes nondegenerate when restricted to the subspace Ht < H generated by H{m) with
Hzm)e(@iE F,, Opv-1(=wy)) # 0. This is sufficient for our purposes, because invariants with insertions in the
complementary subspace to 7 all vanish, as the next lemma shows.

Lemma 2.3. Let V = Tgx5, be the relative tangent bundle, whose restriction to Xexin is Pjer,, Opr-1(-wj).
Let ¢ € H be such that ¢ - e(V) = 0. Then

evi(¢) n [zg’n,ﬁ]vir =0
forallk=1,...,n.

Proof. Without loss of generality, let k = 1. The lemma will follow if we can prove that
M n
126,051 = evitev) - e( DRI (£ 00(- 3 40))) 0 125, )
i=1 k=2
since this will imply that
M n
eV (@) 125, 5" = evi(g- e(V) - e( PR (£ 0 0(= Y 4))) 0 (25,4]
i=1 k=2

and the first factor on the right-hand side is zero by assumption.
In order to ensure that (3) makes sense, we must first verify that

n
Ron*<L®w,-®o(_ ZAk)) =0 (4)
k=2
for each i, so that the expression inside the Euler class is indeed a bundle. To check (4), we calculate the

degree of [L*" ® O(- Y z_,[q«])|. If we denote

gl e 1 multy, (L®") =0
k 0 multg, (L&) 0,
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then
deg|L®" & O(- i[qﬂ)' = deg|L®" & O - i a}[gy))| = deg(L") - i multg, (L") - i a
k=2 k=2 k=1 k=2

n

= deg(L®"1) — Z(multq (L®™) + a} ) - multy, (L®*).

The fact that w; | d implies that the smallest possible nonzero value for multg, (L®") is %, and hence the
above is less than or equal to deg(L®"i) - % (n - 1) = %(n -2 - B) — % (n - 1) < 0. On an irreducible curve,
this is enough to conclude that L** @ O(- Y'}_,[g«]) has no nonzero global sections. For reducible curves,
one applies an induction on components starting from a tail not containing g, to deduce, component-by-
component, that any global section again must vanish. This establishes (4).

Now, to prove (3), we use the exact sequence

n

0— Lw"(-:zlﬂl«) - L®Wf(-§24\k) - LW"(— Y Ak)

k=2

— 0.

Ay

The associated long exact sequence, together with (4), yields

n n
0 Rm.(e#7],) = o (e( 3 4) = wim (e (- 3 1)) 0
k=1 -
The first term is zero when mult,, (L®") = 0, or in other words, when i ¢ Fp,,, since any section of an orbifold
bundle vanishes at a point with nonzero multiplicity. When i € Fy,,, this term equals ev] (Ox(-w;)). Thus,
summing over i and taking Euler classes produces exactly (3). O

Remark 2.4. Lemma 2.3 verifies Conjecture 2.12 of [11] in genus zero. In keeping with the language of that
paper, the notation “ct” is chosen to reflect the fact that 7! is isomorphic to the compact-type state space
described in [11, Section 2.1].

2.7 SmallJ-function and the wall-crossing formula. The J-function for e-stable quasimap theory was defined
by Ciocan-Fontanine and Kim in [7], and was generalized to the spin setting by the second author and Ruan
in [21]. To define it, we let 920 L8 be the “graph space” parameterizing the same data as 28,1, 5 together with
a parameterization of one component Co € C on which the ampleness condition of Definition (2.1) is not
required. By (2), the multiplicity of L at the single marked point g; must be m; = ( )

Thereis an action of C* on 920, 1,8 by scaling the parameterized component. More specifically, let [xg, x1]
be the homogeneous coordinates on Co and let C* act by t - [xo, X1] := [tXxo, x1]. Let Fg - 928,14; be the fixed
locus on which g, = = [0 : 1] € Cp and all of the degree lies over O = [1 : 0]. When 8 > 1/¢, we have
Fg =7 0.1,p° while when ,8 < 1/€, the moduli space Z0 1,8 is empty and instead, we have Fg = 7, corresponding
to quasimaps whose degree is entirely concentrated in a single basepoint at 0 € Cy. In either case, there is an
evaluation map

ev. : Fj N4

defined by evaluation at the single marked point co € Cy.

Definition 2.5. Let z denote the equivariant parameter for the action of C* on GZ¢ The small e-stable

J-function is

0,1,8°

evy —
I(q.2) =22 Y qﬂ< +¢)>¢V e T [[q, z, 2711,
i N e Wrgszg, )

where ¢ runs over any basis of 7' and (-)V denotes the dual under the pairing introduced in Section 2.6.

More explicitly, since for > 1/¢ we have [FE]Vir =1Z§ ;. ﬁ]"ir and

ecx (NFIEr/SZS ) = _ZZ(Z - ll)l),
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the contribution of such S to the J-function is

b evy (¢) v_N_l_lF(ﬁ“)/dl (’M) 1 v
h %(J—Nm o 3R, ¥

i (NFs/szg i 0,1,8

The denominator of (5) should be understood as a geometric series in ;. For 8 < 1/€, the contribution to the
J-function can be calculated explicitly (see, for example, [21, Section 2.1] or [7, Section 4.2] for the details):

H?L I1 0<b< g (B+1) (—bz - %H(ﬁ%l))
2 Z( %)W =z B eH Mz 2L (6
¢

J ec (N}‘f/gze 1Y, To<b<p( bz + Hyper
(F}) j <b>=—0( ()

Again, the denominator of (6) should be understood as a geometric series in H (81) and the series should be
d

truncated to lie in 7t ¢ . Terms of J¢ with B < 1/e are referred to as unstable terms. Denote by

J1+(g, 2) € (g, z1]

the part of the J-function with non-negative powers of z, which has contributions only from the unstable
terms. The coefficients in the change of variables in Theorem 1.2, denoted by yg (2), are defined by

Y Pus2) = Ulig,2) - 12

p=0

and they are determined explicitly by (6).
We also require a generalization of the small J-function in which descendent insertions are allowed. This
is the big e-stable J-function, defined for t = t(z) € Het[2]] by

ﬁ n *
Fat)=—2 Y "—,( [ TTeviewmnn — (@ >¢>V, %
p=0,nz0 (i k=1 eC*(NFeﬁ/S Omﬁ)
¢ B

where ¢ again runs over a basis for Het and we define ev, on J{Ct[[l,bk] ] by linearity in . Here, SZO _— B
the (n + 1)-pointed analogue of the above-defined graph space, and inside this graph space, F' fl B is the fixed
locus where all but the last marked point and all of the degree are concentrated over O € Cy while the last
marked point lies at co € Co. The small J-function is recovered from the big J-function by settingt = 0

3 Localization framework

There is an action of the torus T = (C*)" on Z by diagonal multiplication on the p-coordinates. This induces
an action on Zg,n’ 5 by post-composition, or in other words, by scaling the sections p. The action naturally
lifts to the bundle R'7, (L®%i @ O(- Yk, Ax)) for each i, and we let

n
(26, T = eT(@ Rim (£ 00(- Y a)))n1Zg . )
k=1
be the T-equivariant virtual cycle.
Let ay, ..., ay denote the equivariant parameters for the T-action. Then, by the localization isomor-
phism, we have

N N
Hr := Hig 1 (X) @ Cas, ... ., ay) = P Hig p(Pj) @ Clats, . . ., ay) =: P T, (8
j=1 j=1
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where P; is the unique T-fixed point of X with p; # 0; thatis, Pj=[0:---:1:---: 0] e P(d, ..., d) < X, with
a 1in the jth position. For each m € {0, %, e %1}, we denote by lim) the fundamental class on the twisted
sector of ﬁj indexed by m. The classes {1{m)} form a basis of Ht as a C(ay, . . . , ay)-module, which we call
the fixed-point basis.

The pairing on H lifts to a pairing on Hr, defined by

L .
(Hinyy» Honyy) = myemoez J HhmeT(,@ OlP(r'i)(_W"))’
]P(Zi) i€Fm,

and this equivariant pairing is non-degenerate because the equivariant Euler class is invertible. In the fixed-
point basis, the equivariant pairing on Hr is

Wi .
12 ITi jwimyy=0(="¢ @) g

1 S =l . 9
( (mz)) my+my=0modd d Hj’#(ai _ 0(]") (m1) ( )

(my)?

3.1 Fixed loci. The fixed loci of the T-action on Zg’n p are indexed by decorated trees. For a tree I, let V(I'),

E(I'), and F(I') denote the sets of vertices, edges, and flags, respectively. Localization trees are decorated as
follows:

« Each vertex v is decorated by an index j, € {1, ..., N} and a degree 3, € N.

« Each edge e is decorated by a degree 8, € Nso.

« Each flag (v, e) is decorated by a multiplicity m,e) € {0, %, ..., ‘%1}.
In addition, I is equipped withamap s : {1, ..., n} — V(I') assigning marked points to the vertices. Let E,

be the set of edges incident to a vertex v, and define the valence of v as
val(v) := |Ey| + s (V)]

Given a tree I' with the above decorations, the fixed locus Fr € Zg’ B indexed by I" parameterizes Landau—
Ginzburg quasimaps as follows:

 Each vertex v € V(I') corresponds to a connected component C, < C over which p; = 0 for j # j,, and 8,
is the degree of the restriction of L4 & Wiog to Cy. If Zg,val(v), 5 * 0, then C, is a sub-curve and we say

that v is stable. If ZS’Val(V)’ 5 = 0, then we say that v is unstable, and C, is the single point g,; if 8, > 0,
this point is a basepoint on C, of order S, .

« Each edge e € E(I') with adjacent vertices v and v’ corresponds to an orbifold projective line C, over
which p; = 0 forj # jy,j». The section p;, vanishes only at a single point g,/, while the section p;,
vanishes only at a single point gq,, and f3, is the part of deg(L® 4 Wioglc,) not coming from basepoints.
In other words,

deg(L® 4 ® wioglc,) v, v' stable
Be = 1deg(L® 4 ® wioglc,) — v v unstable

deg(L® 4 ® wioglc,) - B V' unstable.

 Thesets '(v) ¢ {1,..., n} indexes the marked points supported on C,.

« For flags (v, e) € F(I') we have:
(i) Ifvisstable,thentheflag (v, e) corresponds toanode attaching C, to C, and my,) is the multiplicity
of L on the vertex branch of the node.

(ii) If v is unstable of valence two, then either (1) |E,| = 2 and |s~(v)| = 0, in which case the flag (v, e)
corresponds a node attaching C, to the component C,r associated to the other edge e’ incident to v,
and myy,¢) is the multiplicity of L at q, € Cer; or (2) |[Ey| = 1 and |s~1(v)| = 1, in which case the flag
(v, e) corresponds to a marked point point at g, € C, and —m(¢) is the multiplicity of L at g,.

(iii) If v is unstable of valence one, then the flag (v, e) corresponds to the unmarked point g, € C, and

41
Mu,e) = —221 mod Z.
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€
o,n,f

. . . . —1/d, .
To make this more explicit, define a moduli space M(l)’/n’; that parameterizes tuples (C; g1, - - -, qn; L; D; @),
where (C; q1, ..., qn; L) are as usual, D is a divisor on C of degree f3, and ¢ is an isomorphism

The localization formula expresses [Z ]‘T’ir in terms of contributions from each localization tree I

@ : L* 9@ wpg — O(D).

We assume the usual representability and stability conditions, as well as the nondegeneracy condition that
if D = ) brlyx] for distinct points yy € C, then the points yj are disjoint from the marked points and nodes
and by < 1/¢ for each k. (This is a special case of the moduli spaces of “weighted spin curves” studied in [21].)

For each element of the fixed locus associated to a localization tree I and each stable vertex v, one obtains
an element of ﬁ(l,,/féf(v), p, by taking D to be the zero locus of pj, . Thus, if we let

—1/d,e
Fr = l_[ Mo,val(v),ﬁv’
v stable

then there is a canonical family of T-fixed elements of Zgy n,p OVer Fr,whichyieldsamorphismy : Fr — Zg,n’ s
that is étale onto the fixed locus corresponding to I'. The localization formula then yields

[Fr]y" )

. 1
Ze vir — l *( i 10
(25,1607 ;IAut(Fr)l "eravyi) "

where Aut(Fr) is the group of automorphisms of a generic element of the fixed locus indexed by I'. In the next
subsection, we calculate | Aut(Fr)| and e}l (N}ir) explicitly.

3.2 Localization contributions. Foreach localization tree I', the localization contribution can be divided into
vertex, edge, and flag contributions, following the standard argument that has appeared in [16] and in many
other contexts. To summarize, one applies the normalization exact sequence to a general source curve in a
fixed locus Fr to obtain an exact sequence on the universal curve over Fr, then tensors this sequence with
the direct sum of the line bundles £®"i ® O(- Y Ax) and pushes forward to Fr. The result is a decomposition
of the relative obstruction theory over Fr in terms of contributions on vertex components, edge components,
and nodes, which accounts for all of the obstruction theory except for the automorphisms and deformations
of (C,q1,...,qn,L). The latter are comprised of deformations of the vertex components and their bundle
L (included in the vertex contributions below), automorphisms/deformations of the edge components and
their L (included in the edge contributions), and deformations smoothing the nodes (included in the flag
contributions).
In the end, we write

eV (PP - eV (bR 1125, 5 IF" = (1)
1
;—IAut(F)“F*( H Contrr(v) H Contrr(v, e)) H Contrr(e),
veV(I) (v,e)eF(I') ecE(I)

where Contrp(v), Contrr(e), and Contry(v, e) are described below.

3.2.1 Stable vertex contributions. First, let v be a stable vertex of I'. The deformations of the marked curve
Cy and the line bundle L|¢, are T-fixed, so they contribute to the virtual fundamental cycle

e.}l(Rn*(ég(Lw“@O(— Y m))mc_w)), (12)

i=1 kes~1(v)

where C, is the topologically trivial line bundle with equivariant first Chern class a. There is an asymmetry
in (12) in that the universal bundles are only twisted down by the marked points, and not at the pre-images
of nodes. To correct the asymmetry, we note that (12) is equal to

(M) e (o (Blemo0(- T a)ee)). @

i | (wim,e))=0 i=1 kes~1(v)UE,
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where E, is the set of edges incident to v. This equality can be readily checked by using the long exact se-
quence in cohomology associated to the short exact sequence 0 — L(-g.) — L — L|4, — 0, where g is the
pre-image of the node connecting C, to the edge component indexed by e € E,.

The deformations of the section p; are moving for j # j,, and their contribution to the inverse Euler class
of the virtual normal bundle is

(@ RT[ ® wlog) ® (Calv_a])
J#iv

In addition, for each edge e adjacent to v, there is a contribution from deformations smoothing the node
at which C, meets C,, and a gluing factor of d, which yields

d
l_llxlvﬂ

ecE, ll)(v,

where each edge e ¢ E, joins v to another vertex v/, and 1 y,¢) is the cotangent line class to the coarse curve
at the vertex branch of the node where C, and C, meet. The factor of d will be absorbed into the flag term.
Motivated by these computations, for each stable vertex, we define

% (q)v
evg( )
(Me)) —1/d,e Jv
Contrr(v) = H er(¢k|P,v) P H a}v_a/r—() [MO val(v), 5V]¥lr] ’ (14)
kes~1(v) ecE, - ',b(v,e)

where ev, is the evaluation map at the half-node corresponding to the edge e and

—1/d,e vir,j,

[MO val(v), BV]T = (15)

DVovai.p.] 0 € (Rn*(ég(ﬁwf(— Y 4))eC i o DL @ wiog) @ Cay g ) ).

i=1 kes~1(V)UE, J#iv

3.2.2 Edge contributions. Let e be an edge with adjacent stable vertices v and v'. The marked curve C, and
its line bundle L|¢, have no fixed deformations. We calculate, together, the contribution from the moving
deformations of p to the inverse Euler class of the virtual normal bundle and the edge contribution to the
virtual fundamental cycle. This combined contribution is

er(@¥, H'(Ce, L))
eT(@jI\il HO(C,, L@—d)mov) ,

where the superscript “mov” denotes the moving part with respect to the T-action. (Here, we use the fact that
we,,log = Oc,.) The above can be calculated explicitly as:

M b Wi .
Hi=1 l_[ 0<b<% (ﬁ_e(ajv - ajv’) - Fajv)
<b>:(wim(v,e)>

N b
| Y H(’)gbsﬁe(p_e(aivf - aj,) + aj, - ;)
(b)=0

(16)

where []’ in the denominator denotes the product over all nonzero factors.

Notice that L|c, is not quite what one would expect on an edge, because it is not twisted down at pre-
images of nodes, which we think of as marked points on C.. Twisting down at nodes results in changing the
strict inequalities in the numerator of (16) to non-strict inequalities. Combining this with the automorphisms
of the edge, we define

M
[Tie: 11 0<b<bedi (;; (aj, —aj,) - “Jv)

(b)=(wim(y,e))
Contrr(e) = — -
e ¥, Hésbspe(,%(aj; - @) + aj, — ai)
(b)=0

17)

as the total (stable) edge contribution.
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3.2.3 Flag contributions. For each flag (v, e) at v, there is a contribution to the normalization exact sequence
from the corresponding node. This equals

v,e W.
W)= T (-g)[I@, -, (18)
i [{(wimg,e))=0 J#iv

where N )m ® is the normal bundle of the T-fixed point Pj, in X 2rin,., . We multiply this contribution by d (from

the gluing term at nodes), and we multiply it by [T; (w,m, .,)=0(~ g @}, )~? to compensate for the factors arising
from twisting down at both pre-images of the nodes. Altogether, we define

. i
Contr(v’e) = (rl](m(v.e))) ’
where 1 is the coefficient of the pairing (9).

3.2.4 Unstable vertex contributions. We now describe the conventions for the unstable vertices, which are
defined to ensure that (11) holds with edge and flag contributions defined as above. For v such that |E,| = 2
and |s~1(v)| = 0, by smoothing the node and compensating for the two flag terms, we define

Jv
rl(m(v,e))
v = Qjyy + Ay —Qjy, :

Bey Be,

Contrp(v) =

For v such that |[E,| = 1 and |s"}(v)| = 1, restricting the insertion to q, and compensating for the flag term,
we define a % a
_ jV’ - jv kv jv
Contrr(v) = ¢, Ip, (—ﬁe ) Mg’ (19)
where we write s71(v) = {k,}. Finally, let e be an edge with adjacent vertices v and v’ such that v’ is stable but
v is unstable with E, = {e} and s~1(v) = @. Then a tedious but direct computation shows that

M b .
[Ti21 H_MW@ (/g_e(aiv -aj,) - %ajv)

er(@, H'(Ce, L")
er(Pjly HO(Ce, Le-dymov) [T, H’—ﬁvsbSﬁe(l%(a"'v - %)+ %, )
(by=0

Removing the stable edge contribution, compensating for the flag term, and accounting for the infinitesimal
automorphism at g, this motivates defining the unstable vertex contribution as follows:

M b ;
[T 1 0<b< L (B,+1) (ﬁ_e(ajv' -aj,) - W?“iv)
; ai — Aj — =W
v Jv vl (by=( Wlm(v,e)>
Contrr(v) = Nime.er) . T— p (20)
Be [Tt H0<bsﬁv(/3_e(ajv - aj,) +aj, - aj)
(b)=0

It can readily be checked that this convention also make sense for edges with two unstable vertices.

4 Wall-crossing at vertices

Having established the localization set-up, the first step toward the proof of Theorems 1.1 and 1.2 is to prove
an analogous statement at each vertex of each localization graph. Exactly as in Section 2.7, one can define a
~rl/d.e - ~—1/d,e . R
graph space $M, ; p parameterizing the same data as M, ;  together with a parameterization of one com-
ponent Cy < C on which the ampleness condition of Definition 2.1 is not required. There is an action of C* on

—1/d, . . —1/d, .
9M0{1’ ; scaling the parameterized component, and we denote by VE c SMO’/L ; the fixed locus on which the
single marked point lies at co € Cy and all of the other marked points and the basepoints lie over 0 € Co.

R d’ .
Foreachj € {1,..., N}, there is a T-equivariant relative obstruction theory on SMé{L ; given by
M v
E - —Rm(@(ﬁ‘x’wf(—Al)) o (P wn,log)) ,

i=1 i’
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where the T-weights are as in (15). This is a vector bundle, so the Poincaré dual of its top Chern class defines a
. . . . 1/d,
twisted, T-equivariant virtual cycle on the graph space. Restricting to the fixed locus V5, we have V Mo/1 ;

when ﬁé{i’; + 0, and [VZ]?”' agrees in this case with (15). When 8 < 1/¢, on the other hand, the fixed locus
VE is a single (orbifold) point.

Using the evaluation map ev. : VE — JBZq at the marked point, we define the twisted, T-equivariant
vertex J-function by

. ev: (1) L
J(q, 2) = 2 ; q% j a;ﬁmﬂﬂjjyﬁmWe%mmmnx (21)
me0, 1 d1y (Ve VeISMons

where ﬁj is defined in (8) and the dual is with respect to the pairing in (9).
We define the big version J¢J(q, t, z) for t € T(j[z] similarly. In particular, for § < 1/e the gf-coefficient in
(21 is
M i
[TiZ: 1 0<b< L (B+1) (—bZ - W?al')
(by=(% (B+1))
IT-1 Mocpep(bz + @ -ap) (7
(b)=0

while for B > 1/e, the gP-coefficient in (21) is

T
<Z l/)1>o1ﬂ m)

Let Vg ¢ () be the gP-coefficient in [J¢7],(q, z) - 1 (1/d)’ where the rational functions are expanded as Lau-
rent serles in z. With this notation established, we state the vertex wall-crossing theorem.

me{0, 1 .....

Theorem 4.1. Foranyn > 1andanyj € {1,..., N}, one has

~—=1/d,00 _vir,j
1 (1—[ €,j [MO n+k, O]T )

L L) A TTevnaivg pnaid) n 22— ).
z-Yn BrtotBie ﬁk ﬁ n+i Z—n

When n = 1 and B < 1/€, we use the convention that

~—1/d,€ vir,j
[Mo,1,5 )7 . _
—777—;MW“@me%m, (22)
and when n = k = 1 on the right-hand side, we use the convention that
[ —1/d, OO]Vir,i
evi(t(-1h2)) N % = t(z) € 7j[z]. 23)

Here, for a power series F(q), the notation [qP1F(q) refers to the coefficient of gP.

Remark 4.2. If we further make the convention that ev] (1{m)) : ﬁj — Hy(pt) is the map ¢ — (I{m), ¢), then
conventions (22) and (23) imply that all of the vertex contributions in the localization formula, including the

unstable ones, can be written uniformly as (14).

Proof. Expanding both sides as Laurent series at z = 0, the only contribution to the regular part comes from
the unstable contributions (22) and (23). Since the regular parts of the theorem are already in agreement by
the definition of v;’] , it remains to prove that the two sides of the theorem agree in their principal parts. We
proceed by lexicographic induction on (8, n). For the base case § = 0, both sides are equal by observation.
Now suppose that § > 0, and let us first focus on the left-hand side of the theorem. Consider the graph

—1/d, . ~—1/d, —1/d, - s
space SMé{n, ; along with the map p : 93\/[3’/", ; - J\/[(l){n’ ; that forgets the parametrization and stabilizes. In
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the case that n = 1 and § < 1/€, we make the convention that ﬁé/fg = BZq4 and p is ev. followed by the map
that takes any class to its dual under the twisted pairing.

There is a T-equivariant substack 6 ¢ Sﬁé{i’; parametrizing elements of Sﬁé/,‘j; where the last marked
point lies over co € Cp and at least one of the basepoints lies over 0 € Co. Since the virtual class restricted to
0 is an equivariant class, it follows that p,[6]7" is regular at z = 0. Inverting z and computing p. [8]y"” by
localization, there are three types of fixed loci:

(1) O, where co € Cy is a smooth marked point of C, meaning that all of the basepoints and the first n—1
marked points lie over 0,

(2) On,,pyin,,8,> Where the basepoints and marked points split up over 0 and co in a stable way such that
neither 0 nor co in Cy are smooth points of C, and

(3) ©p,, where 0 € Cy is a smooth basepoint of order 1 < 1/e.

The three types of fixed loci contribute to give

p.l0)" =
—1/d,€ vir,j —1/d,e —1/d,e ir, €,j ~—1/d,e vir,j
[ 0’”’5]?” [Mo,n1+o,/§1 X Mo’nﬁ*,ﬁz];lr] evy, (v 1 @)n [MO,n+1,ﬁ—ﬁ1]T
— ) +z Y (b)) ,
zZ = l,bn ny+ny=n (Z - lp')(_z - l/)*) ﬁ1<1/€ -z - l/)n+1
B1+B2=B -

where the product in the second term is a divisor in ﬁé/s;, and its virtual class is determined by the virtual
classes on each component and the pairing via the usual splitting property. The fact that the total contribution
is regular at z = 0 shows that the principal part of the first term is determined by the principal parts of the
other terms, which are determined recursively in (B, n).

We now turn our attention to the right-hand side of the theorem. Consider the sum of graph space classes

1 k N —1/d, ir,j
Y b ([Tevit a0 ST ).
Bi+-+Bi=B " i=1

(24)

Similar to the previous case, let Q be the substack where the nth marked point lies over co and at least one of
the last k marked points lies over O (note that k > 1 because 8 > 0). The class (24) restricted to this substack is
again regular at z = 0, and so is its pushforward. As in the previous case, the pushforward can be computed
by localization and there are three types of fixed loci:

(1) Q, where co € Cy is a smooth marked point,

(2) Qn,,p.1n,,p,» where the marked points split up in a stable way, and

(3) Qp,, where 0 € Cy is a smooth marked point.

The localization contribution of Q, is equal to

1

1 k % €,j —1/d,co _vir,j
Z-Yn ) Pbﬁ* (1__[ evn+i(vﬁi](_l/)n+i)) n [MO,n+k,0]"I]‘ ])’
Br++Bi=B i=1

and, by the induction hypothesis, the contributions of Qy, g, |, 5, and Qg, are the same as the contributions
of On, g, in,,8, and Op, . Thus, the principal parts of the contributions of Q, and @, are the same, finishing
the induction step. O

As a result of the previous theorem, we obtain the following statement on the level of generating series.
Corollary 4.3. Foranyj € {1,..., N}, the twisted vertex J-functions satisfy the wall-crossing formula
(g, 1(2), 2) = ] (t(2) + 21 + U] (g, -2), 2).

Proof. Integrate both sides of Theorem 4.1. O



DE GRUYTER Clader and Ross, Wall-crossing in genus-zero hybrid theory = 15

5 Proofs of the main theorems

In this section, we use the localization calculations of Section 3 and the vertex wall-crossing results of Sec-
tion 4 to prove the two main theorems.

5.1 Proof of Theorem 1.1. The contents of this subsection are closely modeled on the work of Brown [1] and
Coates—Corti-Iritani-Tseng [14], and they follow previous applications of these ideas to the hybrid model in
[13] and [21]. More specifically, in order to prove

]e(CI» Z) = JOO(Q7 z1+ U€]+(q9 _Z)y Z)’

we characterize the right-hand side as an element of H((z"1))[[¢]], and then we show that the left-hand side
satisfies this characterization.
For both the equivariant and non-equivariant settings, define Vr := Hr((z"1))[[¢]], and consider the
subset!
Lr = {1.J®(q, t, -2) | t(z) € Hr[z][[q]]} < V1, (25)

where t(z) satisfies t(z)|4-0 = 0, which ensures that the elements converge as power series in ¢, and ¢, :
FS' — Fr is the injection

Hipy = Hipy = T (—%H(m)).

ieF,

The reason for the map t. is that it allows one to write

l*]e(q’ _Z) = (26)
M i
z e H<(;£>b?“?<(zlj+1l>)>(bz . %H(ﬁ%)) SYRENN
=(%i B+ 4 ¥
P 3L, e
p<i/e [Tz H0<biﬁ(_bz " H(’%l)) podie s RS0t E
(b)=0

and one can safely include the terms [ > N - 1 - |F (ﬁj)| in the second sum because the corresponding
d

invariants vanish by Lemma 2.3. The first summation in (26) encodes the “unstable terms” and the second
summation the “stable terms.”
Analogously, for each T-fixed point P; € Z, let Vi = ﬁj((z))[[q]], and let

O = {1,J% (g, t, —2) | t(z2) € F;lzl[[q]]} < V', @7)

where t(z) satisfies t(z)|4—0 = 0 and, restricting to the fixed point, ¢, : ﬁ,- — % becomes
j j iqj
Tom = Yomy 5 1;[ (‘T)
i€F

Remark 5.1. Itis essential and worth pointing out that £ consists of Laurent series in z~* while £/ consists of
Laurent series in z.

In order to prove Theorem 1.1, it suffices to prove that 1.J¢(q, -z) € Lt for some equivariant lift of
1.J¢(q, —z). Indeed, by (25), this will prove that there exists some t € Hr (z][[q]] forwhich J¢(q, z) = J*°(q, t, z).
The specific choice of t is determined by the fact that J®°(q, t, z) = z1 + t(-z) + O(z™1), so taking the part of
the equation J¢(g, z) = J*(q, t, z) with non-negative powers of z yields t(z) = z1 + [J¢];(g, —z). Taking the
non-equivariant limit proves Theorem 1.1.

1 In Givental’s formalism, one gives V the structure of a symplectic vector space and proves that £ is an overruled Lagrangian
cone. These properties can be proven in the current setting, using the fact that the genus-zero co-stable hybrid model correlators
satisfy the string and dilaton equations and topological recursion relations. However, these properties are not necessary for our
purposes.
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The strategy for proving that 1.J¢(q, -z) € Lt is to prove a characterization of elements of £1. We make

use of the following notation. If f € Vr, then for each j € {1, ..., N} we denote by f; the image of f under
the restriction map Hr — ;. Form € {0,%,..., %}, we denote by fj ,, the coefficient of z*(lj(fm))v =
Hk#((x}' - ak)lj(m) in f.

Forany m,m’ € {0, 3,..., %} we set E™™ = (B € Z | g —-m-m' € Z}, so that E™™ is the set of

possible degrees B, in a localization graph for which e is an edge adjacent to vertices v and v/ with m, , = m
and m,,,» = m'. For each f ¢ Emm we define the recursive term

M b Wi
[Tiza IT gopetm (5@ -ap) - %)

' 1 (by=(wim)
RC™ (B) := = - : :
15]
B, H65b<ﬁ(%(ai’ - ) + a5 - “k)
(b)=0

With this notation established, the elements of L1 are characterized as follows.

Proposition 5.2. Anelementf € V lies in Lt if and only if the following are satisfied:

(1) Foreachjand m, therestrictionf; , liesin C(z, a1, . . ., ay)[[q]] and, as a rational function of z, each qP-
coefficient of fj i, is regular except for possible poles at z = 0, z = oo, and z = (ajr — a;)/p with € Emm’
forsomej', m'.

(2) Foreachj #j',each m, m’, and each f ¢ E™™ e have

!
Res ooy fjm = —qﬁ “RC5" B - fj’rﬂl’l GG .
Z: T 1] z:T

(3) The Laurent expansion of each f; at z = 0 lies in £J.

Proof. The proof is similar to that in [13], which differs from the current setting only in the twist of the uni-
versal bundle at broad marked points. For completeness, we sketch the main ideas, which will be expanded
upon further in the proof of Theorem 1.1, where both the stable and unstable cases are treated.

Letf € L. Then f = (,]J(q, t, —z) for some t(z) and it follows from the localization formula that

Tm,m’
_ j . jf'
fj—l*<21(1/d)+t](Z)+ Z — a-a
j'#i —Z+ B
m m’e{o,% ,,,,, %
pegm.m’
m’m, n ] OO,j
1 Ty Ly i
+ Z; nl (t]'(l/)) + X ZI o+ G- |z n (1(k)) : (28)
= j'\m,m',B B 0o,n+1
kE{O,H ..... T}
T."’.',"" ~
Indeed, the term l'g,.,aj, € H;j(2)[lq]] is the sum of all localization contributions from graphs where the last
+

T
B

marked point is on an unstable vertex of valence two with adjacent edge e having opposite vertex v/ with

jv =Jj', me,y = m', and me,) = m. The second line of (28) collects all localization contributions where the

last marked point is on a stable vertex. Properties (1) and (3) are observed from (28). The recursion in property

m,m,

i
(2) reflects the removal of the edge e from ’Ta},
R

Conversely, suppose that f satisfies properties (1) and (3). Then, by a partial fractions decomposition,
f can be written in the form (28) where the terms t;(z) and T]T"].;m are undetermined power series in q. Since

property (2) recursively (in g) determines T;"j;ml, we see that properties (1), (2), and (3) determine f up to t(z). It

follows that f = 1,J*°(q, t, —z), because (.J*®(q, t, —z) also satisfies properties (1), (2), and (3), and the regular
parts when expanded as Laurent series in z~! of the two sides are both equal to t(z). Thus f € L. O

Equipped with Proposition 5.2, all that remains in order to prove Theorem 1.1 is to verify that (.J¢(q, —z)
satisfies Conditions (1), (2), and (3).
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Proof of Theorem 1.1. Throughout, we write f = 1,J¢(q, —z) as in (26). We first prove that f satisfies Condi-
tion (1) of Proposition 5.2. The contribution of the unstable terms to f; , is

M @
[Ti21 Tosh< gy (b2 - wig)

z =(w;
B (b)=(wim)
z g : (29)
d ﬁ;Ue Hf(vzl Hgsbsﬁ(_bz +Qj - Q)
() =0

which is manifestly a rational function of z with the prescribed poles. The contribution of the stable terms to
f; » can be calculated by localization, with all contributing graphs having the marked point on a vertex v with
jv = j. As in (28), there are two types of graphs, depending on whether v is unstable or stable. If v is unstable
with adjacent edge e, then the graph contribution is rational in z with pole at z = . If v is stable, then the
graph contribution is polynomial in z~! (because 1 is nilpotent on stable vertices). ThlS verifies Condition (1).

We next prove that f satisfies Condition (2). We begin with unstable terms (29), for which one can calculate
directly that the residue at z = 413 I of f; m equals

Qa; le f
1_[1 1H0<b<w' (B+1) (b : ‘%)
W — an
j 21 z ¢ (by=(wim) . (30)
dBe Be<p<i/e Hk 1 H0<b<ﬂ(b - ag)
(o) =0
The evaluation of the unstable terms in fj_,y at z = - ﬁ T equals
Q; a/ a;r
Hz 1 [o<pe (ﬁV,+1)(b : - Wir)
aj — @ z B (b)= ( wim')
q’ — . €3))
dBe g e [T [o<b<p, (b% + @y~ ak)

(B )=t =0
By shifting the index 8, in (31) to B = B, + B, one checks directly that
(30) = ~g#RCT5™ (Be) - (31)  mod {g? | B> 1/e}.

The right-hand side of this equation has nontrivial coefficients of qﬁ with 1/e < B < 1/€ + Be. One checks
that these correspond to the stable contributions to the residue at z = % of fj ,, coming from graphs with
a single edge e connecting two unstable vertices v and v' with the marked point on v.

For the remaining stable terms, the verification of Condition (2) is again by localization, where contribut-
ing graphs have nonzero residue at z = (a; — aj')/f. only if the marked point lies on an unstable vertex v with
jv = j, such that the unique edge e adjacent to v has degree . and meets the rest of the graph at a vertex v’
with j,» = j’. The contribution of such a graph I' to the correlator

j
(G,
-z-YP1/0,1,8

1 m,m’
_—0(]*—0(]-1 . RC}’]/ (,Be) . Contl']",
Be
where I' is the graph obtained from I' by omitting the edge e and Contr is the contribution of I to the

correlator )
1}' €
(5 Do

Summing over all possible graphs I completes the verification of Condition (2).
Finally, we prove that f satisfies Condition (3). Let 7j(z) = Y | Contrr, where, as above, I is a graph where
the marked point lies on an unstable vertex v with j, = j and Contrr denotes the contribution to fj. The sum

can be expressed as

Contrr =
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of all contributions to f; from graphs where the marked point is on a stable vertex v with j, = j can then be
written as
1 €,j ;
_<T,(¢1) i) - — N T L@,

ﬁ>1/€ z l/)n+1 0,n+1,8

The unstable contributions to fj, on the other hand, are exactly the unstable contributions to ¢,/ &Wi(g, —z).
It follows that f = 1,J¢/(q, 7j(2), -z), which, by Corollary 4.3, equals 1]l (q, Tj(2) +z1 + Ue™ili(q, -z), -2)
and hence lies on £/, This completes the verification of Condition (3) and hence the proof of Theorem 1.1. O

5.2 Proof of Theorem 1.2. We now prove the wall-crossing theorem for virtual cycles:
. qﬁO k .
Y dPzg, =Y Fb,g*c*(ﬂ aPievy (UG (—thnii)) N [Zg?,ﬁk,,;o]“),
ﬁ o,ﬁl ..... ﬁk . i=1
which is an application of the localization formula on both sides.

Proof of Theorem 1.2. By localization on the space Z, n,p and the calculations of Section 3.2, the left-hand side
of (1) can be expressed as

ZContrLHS Z H qBV Contrp(v) H Contrr(v, e) 1_[ qﬂe Contrr(e), (32
I vev(I) (v,e)eF(IN ecE(I)

where the sum is over localization graphs for the moduli spaces Zg 5 for all B. Let v be a vertex of a localiza-
tion graph I', and for convenience set

ev*(ljv )

(M,e))

Contrf(v) := [ ] —a,v T Mose)
—YP,e)

eckE,

If v is a stable vertex, then equation (14) and Theorem 4.1 together imply that

]v1r v

Contrp(v) = Contrr(v) n [MO Val(v) g1t

1 —1/d, ,
= Contrﬁ(v) n Z kl (H eVval v)+1(vﬁ, ( l.bval(v)+z ) n [MO va;X\)/)+k O]VH] )

k
Bu+--+Bi=By

By Remark 4.2, this equation holds even when v is an unstable vertex. The condition n > 0 is important here,
as it implies that val(v) > 0 at every vertex v, which in turn allows us to apply Theorem 4.1 at every vertex.
Let i, : {Pj} — X be the inclusion of the jth T-fixed point. Then J¢/» has the same unstable terms as
i;]e i ¢ and hence
€,jv _ 1% €
Vg, (2) = 1jvyﬁi(z).

It follows that Contry(v) equals

1 1/d, v
ContrE(v) n Z @ b (H Vaatyi (1, Mg, (—Pvaly+)) N M, Vaﬁtm o]m] )
K
Bu+Bi=py

1, - —1/d, s
= Contf)n Y ibp.c (Hevval(vﬂ APV (a, U 148, ~2) + 21, ~Praisi)) 0 DG rainerolt )

k
Brt-+Bi=Pv

where the equality is an application of Theorem 1.1 and [¢fi] again denotes the coefficient of gfi in a power
series in q.
Now, we have
U°14(q, t(2), 2) = 21 + t(-2) + ) Contry I (g, t(2), 2)),
A
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where the sum is over localization graphs A for the moduli spaces Z0 w1, such that the last marked point
lies on an unstable vertex w with j, = j,; here Contr,(J*®(g, t(z), z) denotes the contribution of A to the
localization expression for a stable term of J*°(qg, t(z), z). Thus,

(1051 (a, U5 1+(g -2) + 21, ~Puaiy+i)
= i;:/llf;i(—l,bval(v)ﬁ) + Z[qﬁi] Contra(J*(q, U¢1+(g, -2) + 21, —Pvalw)+i)) =t Tll-ii, (33
A

where we can think of Tﬁ " as the gPi-coefficient of a ‘tail’ emanating from the vertex v. We then write

§ 1 i —1/d,c0 y
Contrr(v) = Contrr(V) n k! ﬁ*c*<] l evn+l<Tﬁ ) N Mo wval(v)+k, O]Vlr] )
k
Br+-+Bi=Py

By the localization formula,

T TTenT) oo = T kS conte [T evi 45 )
m i=1

Broipicps B thnshy

where the second sum on the right-hand side is over all localization graphs Q for the moduli spaces

Zgoval Wy ST B such that (at least) the first val(v) marked points lie on a distinguished vertex w with
i=1

jw = jv, and such that each of the k connected components T in Q \ {w} satisfies B(T) + Y ;.1 Bi < 1/€, so that
the entire fixed locus F, maps to .’Jv[o Val(v ,8, upon applying the map b~ o c. Furthermore,

U —1/d,
COI’Itl‘g(H evval(v)_,,i(}l/e;i(—lpval(v)+i))) € H. (MO vale(v +k, 0)
i=1

denotes the result of taking the localization contribution of Q to the class

m
[ TevSaiosi Mg, (“Wvaiors) 0 2% mpy s, gl

i=1

and integrating along all vertex moduli spaces except the distinguished vertex. Since integrating along all of
the vertex moduli except the distinguished one and then replacing the attaching node with a basepoint is the
same as applying the map bB* C., this implies that

Contrp(v) = Contrl’i(v) n Z oo ﬁ*c* Z ContrQ(H evVal W)+ (yﬂ (—vaiv) +,)))
Bt =

Applying this procedure at each vertex of I', it follows that

LHS _ RHS
Contr}! ; b B C z Contr})
l31+'"+/3mSZﬁv

where the second sum is over localization graphs Q for the moduli spaces Z:° such that Fo maps to Fr

0,n+m,fB
upon applying the map by - ¢, and ContrRS denotes the contribution to

m

l_[ Vn+i Hﬁ (“Pnsi)) N [ 0 n+m BO]Vir'

i=1

Summing over all localization graphs I' on the left-hand side is equivalent to summing over all localization
graphs Q on the right-hand side, completing the proof that the two sides of (1) are equal. m|
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