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We lay the foundation for a version of r-spin theory in genus zero for Riemann surfaces

with boundary. In particular, we define the notion of r-spin disks, their moduli space,

and the Witten bundle; we show that the moduli space is a compact smooth orientable

orbifold with corners, and we prove that the Witten bundle is canonically relatively

oriented relative to the moduli space. In the sequel to this paper, we use these con-

structions to define open r-spin intersection theory and relate it to the Gelfand–Dickey

hierarchy, thus providing an analog of Witten’s r-spin conjecture in the open setting.

1 Introduction

On a smooth marked curve (C; z1, . . . , zn), an r-spin structure is a line bundle S together

with an isomorphism

S⊗r ∼= ωC

(
−

n∑
i=1

ai[zi]

)
,
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2 A. Buryak et al.

where ai ∈ {0, 1, . . . , r − 1}. There is a natural compactification M1/r
g,{a1,...,an} of the

moduli space of r-spin structures on smooth curves, and this space admits a virtual

fundamental class cW known as Witten’s class. In genus zero, Witten’s class is

defined by

cW := e((R1π∗S)∨), (1.1)

where π : C → M1/r
0,{a1,...,an} is the universal curve and S is the universal r-spin

structure. In higher genus, on the other hand, R1π∗S may not be a vector bundle, and

there are several (all much more intricate) versions of the definition of Witten’s class

[6, 7, 13, 21, 25].

Given any of these definitions, one defines the closed r-spin intersection

numbers by

〈
τ
a1
d1

· · · τandn

〉 1
r ,c
g := r1−g

∫
M1/r

g,{a1,...,an}
cW ∩ ψ

d1
1 · · ·ψdn

n , (1.2)

where ψ1, . . . ,ψn ∈ H2(M1/r
g,{a1,...,an}) are the 1st Chern classes of the cotangent line

bundles at the n marked points. This theory has received a great deal of attention

in recent years; for example, it led to a proof of a conjecturally complete set of

tautological relations on Mg,n [23], and it is a special case of Fan–Jarvis–Ruan–Witten

theory [13] as well as the gauged linear sigma model [14]. For our purposes, perhaps

the most interesting feature of r-spin theory was proven by Faber–Shadrin–Zvonkine

[12]: after a simple change of variables, the generating function of the closed r-spin

intersection numbers becomes a tau function of the rth Gelfand–Dickey hierarchy. This

statement generalizes Witten’s celebrated conjecture (proven by Kontsevich) regarding

the generating function of ψ-integrals on Mg,n.

A different direction in which the intersection theory ofMg,n can be generalized

is the consideration of Riemann surfaces with boundary. This work was undertaken by

Pandharipande, Solomon, and the 3rd author in [24], in which a moduli space M0,k,l

was constructed that parameterizes tuples (�; x1, . . . , xk; z1, . . . , zl) where � is a stable

disk, xi ∈ ∂� are boundary marked points, and zj ∈ � \ ∂� are internal marked points.

The authors also constructed intersection numbers on M0,k,l that can be viewed as

integrals of ψ-classes at the internal marked points. This construction was extended

in [28] to all genera, yielding a generating function Fo of open intersection numbers.

In order to define the extension, Solomon and the 3rd author introduced graded
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Open r-Spin Theory I: Foundations 3

2-spin structures and proved that the moduli space of 2-spin surfaces with boundary is

canonically oriented. The open analog of Witten’s conjecture was proved by the 1st and

3rd authors in [2, 5, 29], relating exp(Fo) to the wave function of the KdV hierarchy.

Combining r-spin theory with open theory, one might hope to define open r-spin

theory and generalize Witten’s conjecture to this setting. In order to do so even in genus

zero, though, one first must define an appropriate open r-spin moduli spaceM1/r
0,k,{a1,...,al}

and an open analog of Witten’s bundle (R1π∗S)∨. We carry out the construction of such

a moduli space in this paper, referring to its objects as graded r-spin disks.

1.1 Moduli space of graded r-spin disks

Graded r-spin disks are defined, roughly, as follows. Let C be an orbifold curve equipped

with an involution φ : C → C that realizes the coarse underlying curve |C| as a union of

two Riemann surfaces � and � (where � is obtained from � by reversing the complex

structure) glued along their common boundary:

|C| = � ∪∂� �.

Let z1, . . . , zl ∈ � \ ∂� be a collection of internal marked points, let zi := φ(zi) ∈ � be

their conjugates, and let x1, . . . , xk ∈ ∂� be a collection of boundary marked points. On

such a curve, a graded r-spin structure with twists a1, . . . ,al is an orbifold line bundle

S on C together with an isomorphism

|S|⊗r ∼= ω|C| ⊗ O

⎛⎝−
l∑

i=1

ai[zi] −
l∑

i=1

ai[zi] −
k∑

j=1

(r − 2)[xj]

⎞⎠

on the coarse underlying curve |C|, an anti-holomorphic involution φ̃ : S → S lifting φ,

and a certain orientation of
(
S|∂�\{xj}

)φ̃ , which we refer to as a grading. In what follows,

we prove that there exists a moduli spaceM1/r
0,k,{a1,...,al} of graded r-spin disks with twists

a1, . . . ,al, and that this moduli space is a compact, orientable, effective, smooth orbifold

with corners.

On M1/r
0,k,{a1,...,al}, there is an open Witten bundle, which is a real vector bundle,

defined roughly as

W := (R0π∗(S∨ ⊗ ωπ))+ = (R1π∗S)∨−,
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4 A. Buryak et al.

where “+” denotes the space of φ̃-invariant sections and “−” the space of φ̃-anti-

invariant sections. There are also cotangent line bundles L1 . . . ,Ll at the internal marked

points. We define these bundles carefully below and explore their behavior under

forgetful morphisms and restriction to boundary strata.

It is straightforward to show that the cotangent line bundles have canonical

complex orientations. The openWitten bundle, on the other hand, is a real vector bundle

and hence it is not clear that it is orientable at all. One of the main results of this paper

is that not only isW orientable, but it carries a canonical relative orientation relative to

the moduli space; the grading plays a central role in the construction of this canonical

orientation. We also analyze the behavior of the canonical orientation under restriction

to boundary strata.

1.2 Companion works

This paper lays the foundations for the sequel [4], in which we use the construction of

M1/r
0,k,{a1,...,al} and its associated bundles to define genus-zero open r-spin intersection

numbers and prove an open r-spin version of Witten’s conjecture. In particular, in [4],

we calculate all the genus-zero open r-spin intersection numbers and prove an explicit

relationship between their generating function and the genus-zero part of the Gelfand–

Dickey wave function. In addition to verifying the generalization of Witten’s conjecture

in genus zero, this leads to a conjecture for higher-genus open intersection numbers.

The content of [4] also illuminates an intriguing connection between open r-spin

theory and an extension of closed r-spin theory, in which one allows a single marked

point with twist −1. We define this “closed extended r-spin theory” carefully in the

companion paper [3] to this work, and in [4], we make the correspondence between the

two theories precise.

1.3 Plan of the paper and the main ideas

The structure of the current paper is as follows. In Section 2, we define r-spin disks

and introduce the notion of a grading, and in Section 3, we describe the moduli space

of graded r-disks, its orbifold structure, and its orientation. Section 4 contains the

definition of the cotangent line bundles Li and the open Witten bundle W, as well as

an investigation of the behavior of these bundles under certain important morphisms.

In Section 5, we establish the canonical relative orientation ofW and analyze its

behavior under the relevant morphisms. This section is the main technical contribution

of this paper, and in particular, it is where the importance of the grading is manifested;
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Open r-Spin Theory I: Foundations 5

without the grading, as we discuss in Remark 2.8, the Witten bundle may not be

canonically oriented relative to the moduli space. However, equipped with the grading,

for any collection of internal twists and a specific number of boundary twists, we are

able to produce in Construction 5.6 an explicit basis for the fiber of the Witten bundle.

The canonical relative orientation of theWitten bundle for any collection of twists arises

from there by analyzing the behavior of this basis under degenerations of the underlying

surface.

2 Graded r-Spin Disks

We denote by [n] the set {1, 2, . . . ,n} and by N the set of natural numbers Z≥1. Throughout

what follows, a marking of a set A is a function

m : A → 2N

such that, for all distinct a,a′ ∈ A, we have m(a) ∩ m(a′) = ∅. A marking is strict if ∅ is

not in its image.

Given a marking, we identify elements of A\m−1(∅) with their images in 2N, and

if the image is a singleton, we identify it with an element of N. Such functions are used

in what follows to label the marked points on a curve; the possibility of marking some

points by ∅ or with a set is desired to handle marked points that arise via normalization

of a nodal curve.

2.1 Smooth r-spin surfaces

Recall that an orbifold Riemann surface is a smooth, proper, possibly disconnected,

one-dimensional Deligne–Mumford stack over C. We sometimes refer to such a surface

as closed, to distinguish it from the Riemann surfaces considered below that may have

boundary.

A (smooth) marked orbifold Riemann surface with boundary is a tuple

(C,φ,�, {zi}i∈I , {xj}j∈B,mI ,mB),

in which

(i) C is a (closed) orbifold Riemann surface;

(ii) φ : C → C is an anti-holomorphic involution (conjugation) that realizes

the coarse underlying Riemann surface |C| topologically as two Riemann
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6 A. Buryak et al.

surfaces � and �̄ (where �̄ is obtained from � by reversing the complex

structure) glued along their common boundary ∂� = ∂�̄ = Fix(|φ|):

|C| = � ∪∂� �;

(iii) zi ∈ C is a collection of distinct points (the internal marked points) labeled

by the set I, whose images in |C| lie in � \ ∂�, with conjugate marked points

z̄i := φ(zi);

(iv) xj ∈ Fix(φ) is a collection of distinct points (the boundary marked points)

labeled by the set B, whose images in |C| lie in ∂�;

(v) the only nontrivial isotropy of C occurs at the (internal, conjugate, and

boundary) marked points;

(vi) mI : I → 2N and mB : B → 2N are maps such that, for any connected

component C′ of C with marked points labeled by I ′ ⊆ I and B′ ⊆ B, the

restrictions mI |I ′ and mB|B′ are markings, and whenever C′ ∩ φ(C′) �= ∅, the
marking mI |I ′ is strict.

A marked orbifold Riemann surface C is stable if each genus-zero connected component

has at least three marked points (including conjugate marked points) and each genus-

one connected component has at least one marked point.

We observe that the choice of a preferred half � ⊆ |C|, which is a part of the data

of an orbifold Riemann surface with boundary, endows ∂� with a canonical orientation.

In what follows, we typically suppress φ from the notation and write x for φ(x) when x

lies in �.

An isomorphism of marked orbifold Riemann surfaces with boundary

(
C1,φ1,�1, {z1,i}i∈I , {x1,j}j∈B,mI1

1 ,m
B1
1

) ∼= (
C2,φ2,�2, {z2,i}i∈I2 , {x2,j}j∈B2 ,mI2

2 ,m
B2
2

)

consists of an isomorphism s : C1 → C2 and bijections f I : I1 → I2, f B : B1 → B2 such

that

(i) s ◦ φ1 = φ2 ◦ s,

(ii) s(�1) = �2,

(iii) s(z1,j) = z2,f B(j) for all j ∈ B1 and s(x1,i) = x2,f I (i) for all i ∈ I1,

(iv) mI1
1 = mI2

2 ◦ f I and mB1
1 = mB2

2 ◦ f B.
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Open r-Spin Theory I: Foundations 7

Let C be a marked orbifold Riemann surface with boundary in which every

marked point has isotropy group Z/rZ. We denote

ωC,log := ρ∗ω|C|,log = ωC

⎛⎝∑
i∈I

[zi] +
∑
i∈I

[zi] +
∑
j∈B

[xj]

⎞⎠ , (2.1)

where ρ : C → |C| is the morphism to the coarse underlying Riemann surface and [zi],

[zi], and [xj] denote the degree-1/r orbifold divisors of the marked points. An r-spin

structure on C is an orbifold line bundle L together with an isomorphism

τ : L⊗r ∼= ωC,log (2.2)

and an anti-holomorphic involution φ̃ : L → L lifting φ such that φ̃⊗r agrees under τ with

the involution on ωC,log induced by φ. We denote by multp(L) the multiplicity of L at a

point p, which is defined as the integer m ∈ {0, 1, . . . , r − 1} such that the local structure

of the total space of L near p is [C2/(Z/rZ)] with the action

ζ · (x, v) = (ζx, ζmv)

by the canonical generator ζ of the isotropy group.

Associated to an r-spin structure L on C, there is a unique twisted r-spin

structure S on C, defined as the complex line bundle

S := L ⊗ O

⎛⎜⎝−
∑

i | multzi (L)=0

r[zi] −
∑

i | multzi (L)=0

r[zi] −
∑

j | multxj (L)=0

r[xj]

⎞⎟⎠ . (2.3)

This bundle satisfies

S⊗r ∼= ρ∗

⎛⎜⎝ω|C|,log ⊗ O

⎛⎜⎝−
∑

i | multzi (L)=0

r[zi] −
∑

i | multzi (L)=0

r[zi] −
∑

j | multxj (L)=0

r[xj]

⎞⎟⎠
⎞⎟⎠ , (2.4)

in which, on the right-hand side, [zi], [zi], and [xj] now denote the corresponding divisors

on |C|. It follows that the coarse underlying bundle |S| := ρ∗S satisfies

|S|⊗r ∼= ω|C| ⊗ O

⎛⎝−
∑
i∈I

ai[zi] −
∑
i∈I

ai[zi] −
∑
j∈B

bj[xj]

⎞⎠ (2.5)
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8 A. Buryak et al.

with ai, bj ∈ {0, 1, . . . , r − 1} defined by the requirement that

ai ≡ multzi(L) − 1 mod r, bj ≡ multxj(L) − 1 mod r.

We refer to the numbers ai and bj as internal and boundary twists. In fact, pushforward

under ρ defines an equivalence of categories between bundles S satisfying (2.4) and

bundles |S| satisfying (2.5) for some choice of ai and bj; hence, in particular, the data of

|S| and its twists are equivalent to the data of an r-spin structure on C. See the appendix

of [10] for a more detailed discussion of this equivalence.

Let

J := S∨ ⊗ ωC, (2.6)

which inherits an involution that we also denote by φ̃. Using the fact that

ωC = ρ∗ω|C| ⊗ O

⎛⎝∑
i∈I

(r − 1)[zi] +
∑
i∈I

(r − 1)[zi] +
∑
j∈B

(r − 1)[xj]

⎞⎠ ,

which follows directly from (2.1), one shows easily that

J = ρ∗
(

|S|∨ ⊗ ω|C|
)

⊗ O

⎛⎝∑
i∈I

multzi(J)[zi] +
∑
i∈I

multzi(J)[zi] +
∑
j∈B

multxj(J)[xj]

⎞⎠ ,

and hence

|J| = |S|∨ ⊗ ω|C|. (2.7)

In particular, since |J| is a bundle on a non-orbifold curve and hence has integral degree,

the following observation is immediate.

Observations 2.1. The twists ai, bj for a twisted r-spin structure on a smooth marked

orbifold Riemann surface with boundary satisfy the following congruence condition:

e := 2
∑

ai +∑
bj + (g − 1)(r − 2)

r
∈ Z, (2.8)

where g is the genus of C. (In case C is disconnected, we define g = ∑
i g(Ci)− l+1, where

C1, . . . ,Cl are the connected components of C.)
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Open r-Spin Theory I: Foundations 9

All of the above also works in the more familiar setting of closed marked orbifold

Riemann surfaces (C, {zi}i∈I ,mI). However, in this case, it is important in what follows to

allow the possibility of limited −1 twists; see Observation 4.1. Thus, we define a closed

twisted r-spin structure as a closed marked orbifold Riemann surface equipped with an

orbifold line bundle S satisfying

S⊗r ∼= ρ∗
⎛⎝ω|C|,log ⊗ O

⎛⎝−
∑
i∈I0

r[zi]

⎞⎠⎞⎠ ,

where I0 ⊆ I is a subset of the marked points such that multzi(S) = 0 for all i ∈ I0 and

each connected component of C contains at most one marked such point zi with i /∈ I0.

In this case, one has

|S|⊗r ∼= ω|C| ⊗ O
(

−
∑
i∈I

ai[zi]

)

with ai ∈ {−1, 0, . . . , r−1} and ai = −1 for at most one marked point zi in each connected

component of C. Analogously to Observation 2.1, we have the following.

Observations 2.2. The twists ai for a closed twisted r-spin structure satisfy

∑
ai + (g − 1)(r − 2)

r
∈ Z. (2.9)

An isomorphism of r-spin structures consists of an isomorphism of marked orb-

ifold Riemann surfaces with boundary, as defined above, together with an isomorphism

s̃ : s∗L2 ∼= L1 of the spin bundles such that

(i) s̃ commutes with the involutions, that is, s̃ ◦ φ̃1 = φ̃2 ◦ s̃;

(ii) the diagram

commutes, where the right-hand vertical arrow is induced by s.
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10 A. Buryak et al.

Similarly, an isomorphism of twisted r-spin structures is an isomorphism s̃ : s∗S2 ∼= S1,

satisfying the analogs of (i) and (ii).

2.2 Gradings on smooth r-spin disks

From here forward, we restrict to Riemann surfaces with boundary in which each

connected component has genus zero, which we refer to as disks. The definitions extend

to higher genus, as well, but they are not needed for the current work. We denote by

(C,φ,�, {zi}i∈I , {xj}j∈B,mI ,mB) a smooth marked orbifold disk. Note that we allow the

case ∂� = ∅, and that if a smooth marked orbifold disk is connected (meaning that C is

connected), then ∂� �= ∅.
Let A ⊆ ∂� \ {xj}j∈B be an open subset (where we identify the boundary marked

points with their images in |C|), and let s ∈ �(A,ω|C|)φ be a section fixed under the

fiberwise involution on ω|C||A induced by φ. We call s positive if, for any p ∈ A and any

tangent vector v ∈ Tp(∂�) in the direction of orientation, we have 〈s(p),v〉 > 0. A similar

notion of positivity applies to φ-fixed sections of any tensor power of ω|C| over A.

Definition 2.3. Given a twisted r-spin structure S, a lifting of S over A is a continuous,

φ̃-invariant section

v ∈ �
(
A, |S|φ̃

)
such that the image of v⊗r under the map on sections induced by the injection

|S|⊗r → ω|C| (2.10)

is positive. A lifting of J over A is a φ̃-invariant section

w ∈ �
(
A, |J|φ̃

)
for which there exists a lifting v of S over A with 〈w, v〉 ∈ �(A,ω|C|) positive on A, where

〈−,−〉 is induced by the natural pairing between |S|∨ and |S|. We consider two liftings v

and v′ (of either S or J) equivalent if v = cv′ for a continuous function c : A → R+. We

write [v] for the equivalence class of v.

Observe that a twisted r-spin structure admits a lifting of S over A precisely if it

admits a lifting of J over A. Moreover, there is a bijection between equivalence classes of
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Open r-Spin Theory I: Foundations 11

liftings of S and of J, in which [v] corresponds to [w] if 〈w, v〉 is everywhere positive for

all representatives v and w of [v] and [w]. If a twisted r-spin structure admits a lifting

(of either S or J) over all of ∂� \ {xj}j∈B, we call it compatible.

We now define the notion of a lifting “alternating” at a boundary marked point.

Definition 2.4. Let w be a lifting of J over ∂� \ {xi}i∈B. A boundary marked point xj is

said to be illegal if there exists a lifting w′ ∈ [w] that can be continuously extended to

xj without vanishing. If xj is not illegal, we say that it is legal and that w alternates

at xj. (One can define legality in the exact same manner for liftings of S, and it is

straightforward to see that xj is legal for the class [w] of liftings of J precisely if it

is legal for the corresponding class [v] of liftings of S.)

It is immediate that legality is well defined under equivalence of v. Furthermore,

legality and compatibility are closely related to the twists.

Proposition 2.5.

(1) When r is odd, any twisted r-spin structure is compatible, and there is a

unique equivalence class of liftings.

(2) When r is even, the boundary twists bj in a compatible twisted r-spin

structure must be even. Whenever the boundary twists are even, either the

r-spin structure is compatible or it becomes compatible after replacing φ̃ by

ξ ◦φ̃◦ξ−1 for ξ an rth root of −1, which yields an isomorphic r-spin structure.

(3) Suppose r is odd and v is a lifting over a punctured neighborhood of a

boundary marked point xj. Then xj is legal if and only if its twist is odd.

(4) Suppose r is even. If a lifting over ∂� \{xj}j∈B alternates precisely at a subset

D ⊆ {xj}j∈B, then

2
∑

ai +∑
bj + 2

r
≡ |D| mod 2. (2.11)

If (2.11) holds, then there exist exactly two liftings (up to equivalence) that

alternate precisely at D ⊆ {xj}j∈B, one of which is the negative of the other.

Proof. We begin by choosing trivializations

ω
φ
|C|

∣∣∣∣
∂�

∼= ∂� × R (2.12)
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12 A. Buryak et al.

and

ω|C|

⎛⎝−
∑
i∈I

ai[zi] −
∑
i∈I

ai[zi] −
∑
j∈B

bj[xj]

⎞⎠φ ∣∣∣∣
∂�\{xj}j∈B

∼= (∂� \ {xj}j∈B) × R

such that a section of either of these bundles is positive precisely if its image lies in

the positive ray R+ ⊆ R in each fiber. Let Ij be the connected component of ∂� \ {xj}j∈B
defined by the property that xj is the left endpoint of the closure of Ij with respect to

the orientation of ∂�. Since the rth tensor power of a φ̃-invariant section of |S| is φ-

invariant, one can see that on each Ij, either there is a section vj ∈ �(Ij, |S|φ̃) with v⊗r
j

mapping to 1 under the composition of (2.10) and (2.12), or there is a section vj with v⊗r
j

mapping to −1.

Now, for the 1st item, suppose r is odd. Then, by replacing vj with −vj if

necessary, we find for each Ij a section vj ∈ �(Ij, |S|φ̃) such that v⊗r
j maps to 1 under

the composition of (2.10) and (2.12). Thus, there is always a lifting.

If r is even, then if there is a section vj ∈ �(Ij, |S|φ̃) with v⊗r
j mapping to the

constant section εj = ±1, then (−vj)
⊗r maps to (−1)rεj = εj, and there is no real section

that maps to −εj. We see that when r is even, the structure is compatible precisely if

εj = 1 for all j.

Suppose the elements of B are enumerated cyclically so that xj follows xj−1 in the

cyclic order of j ∈ {1, . . . , |B|} around the boundary. Choose a local coordinate x on ∂�

centered around a boundary marked point xj. Then the map on local sections induced

by (2.10) is multiplication by the local section xbj of O(bj[xj]). The section

x−bj ∈ �

⎛⎜⎝U \ {xj}, ω|C|

⎛⎝−
∑
i∈I

ai[zi] −
∑
i∈I

ai[zi] −
∑
j∈B

bj[xj]

⎞⎠φ
⎞⎟⎠ ,

defined in a small punctured neighborhood U \{xj} without any other markings, extends

to all of U as a nowhere-vanishing local section that we denote by s. In addition, there

exists a section v ∈ �(|S|φ̃ |U∩Ij) with v⊗r mapping to εjs. Since s does not vanish, v can

be extended to all of U without vanishing in such a way that v⊗r maps to s. Given that

x−bj changes sign at xj precisely when bj is odd, we see that

εj = (−1)bjεj−1.
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Open r-Spin Theory I: Foundations 13

Thus, if each εj equals 1, then all bj must be even. In case all bj are even, it could still be

the case that εj = −1 for each j, but then replacing φ̃ by ξ ◦ φ̃ ◦ ξ−1 reverses the notion of

positivity and hence ensures that the spin structure is compatible. The 2nd item follows.

For the 3rd item, by the considerations of the previous two items, for r odd there

is a unique rth root

v(x) = x−bj/r.

Its rth power v⊗r does not change sign after crossing xj (and hence gives rise to a lifting)

precisely if bj is even.

The last item is a consequence of the real zero count for a section of |J|. Using
(2.7), we have

deg(|J|) = 2
∑

ai +∑
bi + 2 − 2r

r
≡ 2

∑
ai +∑

bi + 2

r
mod 2.

Viewing the degree as the number of zeroes minus the number of poles of a meromorphic

section, one sees also that

deg(|J|) ≡ deg
(|J|∣∣

∂�

)
mod 2,

since we may choose a φ̃-invariant meromorphic section, and for such sections non-real

zeroes and poles come in conjugate pairs.

The number of zeroes minus the number of poles of a φ̃-invariant meromorphic

section of |J|∣∣
∂�

is even precisely if the real subbundle |J|φ̃ on ∂� is orientable. The

orientability of |J|φ̃ → ∂�, on the other hand, can be deduced from the number of

legal marked points on ∂�: a section w, as in Definition 2.4, gives a trivialization of

|J|φ̃ |∂� away from boundary marked points, and the transition functions between these

trivializations are sign-reversing exactly at the legal marked points. Equation (2.11)

follows. The same considerations also allow us, assuming (2.11) holds, to construct

a lifting that alternates precisely at the points of D. The equivalence class of such a

lifting is determined by choosing a lifting at any unmarked boundary points, and there

are exactly two such choices. �

The last paragraph of the above proof also yields the following statement.

Corollary 2.6. The bundle |J|φ̃ on ∂� is orientable if and only if the number of legal

marked points on ∂� is even.
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14 A. Buryak et al.

If S is a compatible twisted spin structure on a smooth marked orbifold disk,

then we define a grading of S as a lifting w for J over ∂� \ {xi}i∈B that alternates at

every boundary marked point. We apply the same notion of equivalence as above to the

grading w.

Given this, we can now define our main objects of study, in the case where C is

smooth.

Definition 2.7. A graded r-spin structure on a smooth marked orbifold disk is a

compatible twisted spin structure S in which all boundary twists are r − 2, together

with an equivalence class [w] of gradings.

Remark 2.8. The key reason for introducing the grading is that it induces a notion

of positivity—that is, a choice of a preferred real ray in J φ̃
q at any unmarked boundary

point q. Without this choice, for even r, the Witten bundle may not be orientable relative

to the moduli space. Indeed, the grading cancels the automorphism of the spin bundle

obtained by scaling it fibers by −1. This automorphism lifts to the Witten bundle as

scaling by −1 again. Thus, if the rank of the Witten bundle is odd, this automorphism

is orientation reversing, and in particular the Witten bundle is neither orientable nor

relatively orientable. However, as we will show in Theorem 5.1, the Witten bundle on the

moduli space of graded r-spin structures indeed admits a canonical relative orientation.

The positivity induced by the grading will also play a crucial role in the sequel,

[4], in the definition of boundary conditions for the open r−spin intersection numbers.

For that definition we also need to restrict to boundary twists of r − 2. In the

closed r-spin cohomological field theory, twists of r−2 correspond to point constraints,

which are those that couple nontrivially with the unit. In the open setting the role

of boundary twist r − 2 appears in the construction of the intersection numbers,

specifically in [4, Proposition 3.20]. In that work, we use the combinatorics of Witten

bundle ranks that arise from these specific twists in our construction of canonical

boundary conditions for the bundles
⊕

L
⊕di
i ⊕ W. These boundary conditions are

necessary in order to ensure that the Euler class of such a bundle has a well-defined

integral over a moduli space with boundary.

Remark 2.9. Graded 2-spin structures were first introduced and explored by Solomon

and the 3rd author in [27], in which an equivalent definition of graded structures is also

described, purely in terms of the preferred half-surface � considered as an orbifold

Riemann surface with corners; a similar definition can be given for the graded r-spin
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Open r-Spin Theory I: Foundations 15

case as well. The moduli space of graded 2-spin surfaces is described in [28], where

the authors prove that the higher-genus open intersection theory of [24] is defined. A

combinatorial description of graded 2-spin structures in terms of Kasteleyn orientations

of triangulations appears in [29], and it is used to prove a combinatorial formula for

open intersection numbers.

A smooth marked orbifold disk together with a twisted spin structure and a

grading is called a smooth graded r-spin disk. An isomorphism of graded r-spin disks

consists of an isomorphism of twisted spin structures, as defined above, such that the

image of the equivalence class of gradings [w1] on C1 under the map on sections induced

by s and s̃ is the equivalence class [w2].

If Fix(φ) = ∅, the above notion of grading is vacuous, but we require an

additional datum.

Definition 2.10. A smooth graded r-spin sphere is a smooth r-spin sphere together

with a choice of a distinguished marking zi, referred to as the anchor, such that

(1) mI(zi) = ∅ and zi is the only marked point marked ∅;
(2) if there is a marked point with twist −1, then it must be the anchor;

(3) if the twist ai of the anchor is r−1, we have a map τ ′ :
(|S| ⊗ O

(
[zi]
))⊗r ∣∣

zi
→ C

defined as the composition

(|S| ⊗ O
(
[zi]
))⊗r ∣∣

zi
→ ω|C|([zi])

∣∣
zi

∼= C,

where the 2nd identification is the residue map. In this case, we also fix

an involution φ̃ on the fiber
(|S| ⊗ O

(
[zi]
))

zi
and require it to satisfy two

properties: first,

τ ′(φ̃(v)⊗r) = −τ ′(v⊗r)

for all v ∈ (|S| ⊗ O
(
[zi]
))

zi
, where w �→ w is the standard conjugation; and

second,

{
τ ′(v⊗r) | v ∈ (|S| ⊗ O

(
[zi]
))φ̃

zi

}
⊇ iR+,
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16 A. Buryak et al.

where i is the root of −1 in the upper half plane. Finally, we pick a

positive direction on
(|S| ⊗ O

(
[zi]
))φ̃

zi
, meaning a connected component V of(|S| ⊗ O

(
[zi]
))φ̃

zi
\ {0} such that τ ′(v⊗r) ∈ iR+ for any v ∈ V.

Since

|J|zi ⊗ (|S| ⊗ O
(
[zi]
))

zi
∼= ω|C|([zi])

∣∣
zi
,

the involution φ̃ induces a conjugation on the fiber |J|zi , also denoted by φ̃,

by the requirement that

〈φ̃(w), φ̃(v)〉 = −〈w, v〉

under the identification of ω|C|([zi])zi with C. Similarly, a positive direction

is defined on |J|φ̃zi by the requirement that w ∈ |J|φ̃zi is positive if, for any

positive v ∈ (|S| ⊗ O
(
[zi]
))φ̃

zi
, one has

〈w, v〉 ∈ iR+.

An isomorphism of graded r-spin spheres is an isomorphism of r-spin spheres that

preserves the anchor and, in the case where the anchor has twist r − 1, also preserves

the involution φ̃ and the positive direction.

Remark 2.11. The anchor is an auxiliary tool that is useful when sphere components

arise from normalization. The anchor of a sphere component should be thought of as

the half node at which the component met a disk component, or met a simple path of

sphere components connecting it to a disk component, or met a contracted boundary

node. This situation is relevant in what follows when the anchor has twist −1 or r − 1.

An anchor of twist −1 appears when there is an internal Ramond node. In this

case, as we shall see below, the Witten bundle does not decompose as a direct sum.

Still, by choosing a preferred half edge (the anchor) we can obtain a slightly weaker

decomposition, Proposition 4.7, which will be crucial for the inductive construction of

the intersection theory in the sequel. An anchor of twist r−1, on the other hand, appears

when a graded r-spin disk without boundary markings degenerates to a sphere, with the

boundary contracting to a point. In this case, the global parity constraint induced by

the grading determines the twist of the contracted boundary node to be r − 1, and the

residue map described above is the limiting notion of grading under this degeneration.
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Open r-Spin Theory I: Foundations 17

We observe the following parity constraint, which follows from Observation 2.1

when r is odd and from item 4 of Proposition 2.5 when r is even.

Observations 2.12. For any graded spin disk, we have

e ≡ |B| − 1 mod 2, (2.13)

where e is defined by equation (2.8) with g = 0 and bj = r − 2 for all j.

In both the closed (sphere) theory and the open (disk) theory, one has an

existence and a uniqueness result.

Proposition 2.13. If (C, {z1, . . . , zl}) is a marked sphere and a1, . . . ,al ∈ {−1, 0, . . . , r− 1}
are twists satisfying (2.9) such that at most one ai equals −1, then there exists a unique

twisted r-spin structure on C with twists a1, . . . ,al. The only automorphisms are given

by scaling S fiberwise by an rth root of unity. For any choice of zi, there exists a unique

graded r-spin structure on (C, S) with anchor zi, and it has no automorphisms if the

anchor has twist r − 1.

Suppose (C,φ,�, {z1, . . . , zl}, {x1, . . . , xk}) is a connected marked disk and

a1, . . . ,al ∈ {0, 1, . . . , r − 1}, b1, . . . , bk ∈ {0, 1, . . . , r − 2} are such that (2.8) holds. If

r is even, let D ⊆ [k] be an arbitrary set for which (2.11) holds, and if r is odd, let

D := {i ∈ [k] | 2 � bk}. Then C admits a unique r-spin structure with a lifting such that

the internal twists are given by the integers ai, the boundary twists are given by the

integers bj, and D is the set of legal boundary marked points. The r-spin structure has

no automorphisms that preserve the lifting.

In particular, when all bj are equal to r − 2 and (2.8) and (2.13) hold, there exists

a unique graded r-spin structure on this disk with internal twists given by the integers

ai, and this graded structure has no automorphisms.

Proof. The 1st part is well known; see, for example, the appendix of [10]. The statement

regarding the grading in the closed setting is clear, except for the automorphism claim

in case the anchor has twist r−1. In this case, when r is odd, scaling by a root of unity is

not compatible with the involution φ̃ in the fiber of the anchor. When r is even, scaling

by −1 is compatible with the involution but not with the choice of positive direction.

Now, fix a connected marked disk and twists a1, . . . ,al such that (2.8) and (2.11)

hold. Note that the integrality requirement for the closed case (Observation 2.2) is
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18 A. Buryak et al.

satisfied on the closed marked Riemann surface

(C; {z1, . . . , zl, z1, . . . , zl, x1, . . . , xk}),

so there exists a twisted r-spin structure S on C.

To define a twisted r-spin structure in the sense of surfaces with boundary, we

must produce an involution

φ̃ : |S| → |S|

lifting the involution |φ| on |C|. In order to do so, choose a boundary point p ∈ ∂� \
{x1, . . . , xk}, and choose a vector v ∈ |S|p such that the image of v⊗r in ω|C||p, under the

injection (2.10), is positive. For any other point q ∈ � that is not a marked point, and

any u ∈ |S|q, we define φ̃(q,u) = (φ(q), φ̃(u)) as follows. Let γ̃ be a path in the total

space of

|S|∣∣
�\{zi}i∈[l],{xj}j∈[k]

with γ̃ (0) = (p,v) and γ̃ (1) = (q,u), and let γ be the image of γ̃ ⊗r image in the total

space of the bundle ω|C||�\{zi}i∈[l],{xj}j∈[k] . There is a unique path in the total space of

|S|∣∣
φ(�)\{z̄i}i∈[l],{xj}j∈[k] , denoted by φ̃(γ̃ ) and starting at (p,v), whose rth power maps to φ(γ ).

Define φ̃(q,u) to be its endpoint.

It is easy to see that the above definition is independent of choices, and

the conjugation extends uniquely, up to isomorphism, to the marked points. So

far, we have defined a twisted r-spin structure on the marked disk, and what

remains is to define the grading. For this, one can take as the lifting any smooth

section v of |S|φ̃ |∂�\{xj}j∈[k] that alternates at each boundary marking; such a section

exists because the parity constraint (2.11) is satisfied. The lifting determines a

grading w.

The absence of automorphisms, when r is odd, is due to the involution: fiberwise

multiplication by an rth root of unity does not commute with φ̃, so it is not an

automorphism. When r is even, multiplication by −1 does commute with the involution,

but it does not preserve the gradingw, so it is again not an automorphism of the graded

structure. �
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Open r-Spin Theory I: Foundations 19

2.3 Stable graded r-spin disks

Thus far, we have considered only graded r-spin structures on smooth curves. In order

to compactify the moduli space of such objects, however, we also need to allow the

curves C to be nodal.

A nodal marked orbifold Riemann surface with boundary is a tuple

(C,φ,�, {zi}i∈I , {xj}j∈B,mI ,mB),

defined exactly as in Section 2.1 except that C is a nodal, possibly disconnected, orbifold

Riemann surface (curve) as in [1], and Fix(|φ|) is locally homeomorphic near every point

either to an open subset of R, to the union of the coordinate axes

{xy = 0} ⊆ R2,

or to a single point. We recall from [1] that C is only allowed to have a nontrivial isotropy

at marked points and nodes, each of which has isotropy group Z/rZ, and all nodes are

required to be balanced in the sense that, in the local picture {xy = 0} ⊆ C2 at the node,

the action of the distinguished generator ζ of the isotropy group is given by

(x, y) �→ (ζx, ζ−1y).

The nodes in a Riemann surface with boundary can be divided into three types:

(1) Internal nodes, which are nodes in the interior � (together with a conjugate

node in �);

(2) Boundary nodes, which are nodes in ∂�, around which ∂� is locally

homeomorphic to the union of the coordinate axes

{xy = 0} ⊆ R2;

(3) Contracted boundary nodes, which are nodes arising in the limiting case

where one component of Fix(|φ|) is a single point.

The three types of nodes are illustrated in Figure 1.

A nodal Riemann surface is stable if every connected component of its normal-

ization is stable.
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20 A. Buryak et al.

Fig. 1. The closed curve |C|, with the open disk � shaded.

An r-spin structure on a nodal marked orbifold Riemann surface with boundary

is defined, exactly as in the smooth case, as a complex line bundle L on C with an

isomorphism τ as in (2.2), together with an involution φ̃ : L → L lifting φ that is

compatible with τ . There is an associated twisted r-spin structure S, defined by

S := L ⊗ O

⎛⎜⎝−
∑
i∈I0

r[zi] −
∑
i∈I0

r[zi] −
∑

j | multxj (L)=0

r[xj]

⎞⎟⎠ , (2.14)

where I0 ⊆ I is a subset of the marked points such that multzi(L) = 0 for all i ∈ I0, and

such that the connected components of C not meeting the φ-fixed locus contain at most

one multiplicity-zero marked point zi with i /∈ I0, whereas the connected components

meeting the φ-fixed locus do not contain any multiplicity-zero zi with i /∈ I0. The bundle

S satisfies

S⊗r ∼= ρ∗

⎛⎜⎝ω|C|,log ⊗ O

⎛⎜⎝−
∑
i∈I0

r[zi] −
∑
i∈I0

r[zi] −
∑

j | multxj (L)=0

r[xj]

⎞⎟⎠
⎞⎟⎠ , (2.15)

and we again define J = S∨ ⊗ ωC, as in (2.6).

Remark 2.14. Closed orbifold Riemann surfaces have additional “ghost” automor-

phisms in the presence of nodes, which play a role in our calculation of the automor-

phism groups of stable graded r-spin disks below. Specifically, in the local picture of a

node as {xy = 0} ⊆ C2, there is one ghost automorphism of the form

(x, y) �→ (ξx, y) (2.16)
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Open r-Spin Theory I: Foundations 21

for each rth root of unity ξ . These act trivially on the coarse underlying curve |C|, but
they act nontrivially on the orbifold C and induce a nontrivial action on orbifold line

bundles. Indeed, let q be a node of C with branches p and p′ (given locally by y = 0

and x = 0, respectively), and let m be the multiplicity of S at p (where multiplicity at a

branch of a node is defined analogously to multiplicity at a marked point). Then, if g is

a ghost automorphism given by (2.16), the lift g̃ : g∗S ∼= S multiplies the fiber over p by

ξm, or in other words, changes the gluing of the fibers of S over p and p′ by a factor of

ξm; see [8, Proposition 2.5.3].

From here on, we restrict again to the case where each connected component has

genus zero. Let n : Ĉ → C be the normalization morphism. Then n∗L → Ĉ is an r-spin

structure, but n∗S is not a twisted spin structure, in general, since it may not satisfy the

requisite conditions on the subset I0. Still, there is a canonical way to associate to S a

twisted spin structure on Ĉ, by setting

Ŝ := n∗S ⊗ O

⎛⎝−
∑
q∈R

r[q]

⎞⎠ . (2.17)

Here, [q] is the degree-1/r orbifold divisor of a point q, and R is the subset of the half-

nodes q ∈ Ĉ (thought of as marked points of Ĉ) with multq(n
∗S) = 0 that satisfy one of

the following:

(1) n(q) is a boundary node;

(2) n(q) is a contracted boundary node;

(3) n(q) is an internal node of C that belongs to a connected component not

containing any marked point of twist −1 and not meeting the φ-fixed locus;

(4) n(q) is an internal node of C that belongs to a connected component

containing a marked point of twist −1, and if one normalizes C only at n(q),

then the half node corresponding to q is in the same connected component

as the marked point of twist −1;

(5) n(q) is an internal node of C that belongs to a connected component meeting

the φ-fixed locus, and if one normalizes C only at n(q), then the half node

corresponding to q is in the connected component meeting the φ-fixed locus.

Thus, for each irreducible component Cl of Ĉ, if {zi}i∈Il , {zi}i∈Il , and {xj}j∈Bl are the marked

points lying in Cl and {pk}k∈Nl
are the branches of nodes in Cl, we have the equation

(
|̂S|∣∣|Cl|)⊗r ∼= ω|Cl| ⊗ O

⎛⎝−
∑
i∈Il

ai[zi] −
∑
i∈Il

ai[zi] −
∑
j∈Bl

bj[xj] −
∑
h∈Nl

ch[ph]

⎞⎠ (2.18)
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22 A. Buryak et al.

with

ai, ch ∈ {−1, 0, . . . , r − 1}, bj ∈ {0, . . . , r − 1}.

The numbers ai, bj, and ch are the twists of the corresponding internal marked points,

boundary marked points, and half nodes.

Note that if p and p′ are the two branches of a node, then we have

cp + cp′ ≡ r − 2 mod r.

If cp ≡ −1 mod r (and hence cp′ ≡ −1 mod r, as well), we say that the node is Ramond.

Otherwise, we have cp + cp′ = r − 2, and we say that the node is Neveu–Schwarz.

As long as C does not have a contracted boundary node, the notion of lifting can

be defined as before, as a continuous, φ̃-invariant section of |S| on (an open subset of)

the complement of the special points in ∂� whose rth power is positive, and we say that

a twisted r-spin structure is compatible if it admits a lifting over the entire complement

A of the special points in ∂�. Two liftings v and v′ are equivalent if there is a continuous

function c : A → R+ such that v = cv′. We similarly define liftings and equivalence for J,

and the same correspondence between equivalence classes of liftings for S and J holds.

If w is a lifting of J over A, then it induces a lifting of

Ĵ := ωĈ ⊗ Ŝ∨

over the complement of the special points in the boundary ∂�̂ of the normalization. We

say thatw alternates at a marked point or half-node q, and that q is legal, if the induced

lifting on Ĵ alternates at q. Otherwise, the lifting does not alternate, and the point is

said to be illegal. A lifting w of J over A that alternates at all boundary marked points

is a grading if, in addition, one of the two half nodes of every Neveu–Schwarz boundary

node is legal and the other is illegal.

Observations 2.15. In a compatible r-spin structure for even r, all boundary half nodes

have twists of even parity, by item 2 of Proposition 2.5. In particular, in this case, there

are no Ramond boundary nodes, since the twist of such a node is odd. When r is odd,

Ramond boundary nodes may exist, but both of their half nodes are necessary illegal.

Indeed, since the twist of a Ramond boundary halfnode is r − 1 (by the definition of Ŝ

and the twists in (2.17) and (2.18)), which is even, the illegality of Ramond boundary half

nodes follows from item 3 of Proposition 2.5.
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If C has a contracted boundary node, on the other hand, then in any connected

component with such a node, the complement of the special points in ∂� is empty,

so we must adapt the definition of a lifting. Given that each connected component of

C has genus zero, there can only be one contracted boundary node in each connected

component. Restrict to one such component, and let q be the contracted boundary

node. Assume, additionally, that q is Ramond. Recall that the fiber ω|C|
∣∣
q is canonically

identified with C via the residue, and the involution φ is sent, under this identification,

to the involution z �→ −z̄, whose fixed points are the purely imaginary numbers (The

residue of a conjugation-invariant form ζ can be calculated as 1
2π i

∮
L ζ , where L ⊆ � is

a small loop surrounding q whose orientation is such that q is to the left of L. Applying

conjugation and using the invariance of ζ shows that the residue is imaginary.). We

define a lifting as a φ̃-invariant element

v ∈ �({q}, |S|) = |S|∣∣q
such that the image of v⊗r under the map

|S|⊗r
∣∣
q → ω|C|

∣∣
q

is positive imaginary, meaning that it lies in iR+. In this case, we call the twisted r-

spin structure compatible if the contracted boundary node is Ramond and a lifting

exists. Two liftings are equivalent if, at the contracted boundary node, they differ by

multiplication by a positive number. There always exists a φ̃-invariant w ∈ |J|∣∣q such

that 〈v,w〉 is positive imaginary, and we refer to thisw as a grading; this is the limiting

case of the notion of grading for smooth curves.

With or without a contracted boundary node, we now have the following

definition:

Definition 2.16. A stable genus-zero graded r-spin surface is a nodal marked orbifold

Riemann surface with boundary whose coarse underlying surface (|C|, {zi}, {z̄i}, {xj})
is a stable Riemann surface in which each connected component has genus zero,

together with

(1) a compatible twisted r-spin structure S in which all boundary marked points

have twist r − 2 and all contracted boundary nodes are Ramond;

(2) an equivalence class of gradings;
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(3) a choice of one distinguished special point (called the anchor and marked

∅) in each connected component C′ of C that is either disjoint from the set

Fix(φ) or meets the set Fix(φ) in a single contracted boundary node. If either

a contracted boundary node or marked point of twist −1 exists, we require

the anchor to be this point; if not, the anchor is simply required to be a

marked point. We also require that the collection of anchors is φ-invariant,

so that it descends to �. Finally, if the twist of an anchor zi is r − 1, we fix

an involution φ̃ on the fiber
(|S| ⊗ O

(
[zi]
))

zi
and an orientation of the φ̃-fixed

subspace, as in Definition 2.10.

The internal and boundary marked points are required to satisfy the same properties

as in the smooth case, and in particular, an anchor, if it is a marked point, is the only

marked point in its connected component that is marked ∅.

We conclude this subsection with an existence and uniqueness result analogous

to Proposition 2.13. Here, we refer to irreducible components of C that do not meet

the preimage of Fix(|φ|), or that meet the preimage of Fix(|φ|) in a single contracted

boundary node, as sphere components, and we refer to the other irreducible components

as disk components.

Proposition 2.17. Suppose that (C,φ,�, {z1, . . . , zl}, {x1, . . . , xk}) is a connected stable

marked disk and a1, . . . ,al ∈ {0, 1, . . . , r−1} are such that (2.8) and (2.13) hold with |B| = k

and bj = r− 2 for all j. Then there exists a unique graded r-spin structure on this stable

disk with internal twists given by the integers ai.

The order of the automorphism group of the graded r-spin structure is rn where

2n is the number of internal nodes of C.

Proof. The proof of the existence and uniqueness of the graded structure closely

mirrors the proof of Proposition 2.13. In particular, there exists a unique twisted r-

spin structure on the closed genus-zero surface C with the given twists at all internal,

conjugate, and boundary marked points, so what remains is to produce the involution

φ̃ : S → S and the sections v and w.

First, suppose that there is no contracted boundary node. Then the involution

φ̃ can be defined component by component. Namely, starting from some boundary

point p, we first construct the involution on a single component using the argument

of Proposition 2.13. At each node, there is an identification of the fibers of S on the

two half nodes, so when we encounter a boundary half node, the involution on one side
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induces the involution on the other side, and we use the other half node as the basepoint

for the construction of the involution in its component. An analogous treatment works

for conjugate internal nodes. The resulting involution is unique up to an isomorphism.

The lifting v and the grading w can be defined componentwise, uniquely up to

isomorphism (as we prove below), using either the parity of the twist (in the case where

r is odd) or the parity constraint (2.11) (in the case where r is even) to determine whether

it alternates at each halfnode. Ramond boundary nodes appear only when r is odd, and

then there is no choice in the lifting. For Neveu–Schwarz boundary nodes, there are two

choices of lifting when r is even, but they are equivalent via the isomorphism scaling

the fibers of S by −1.

To prove that there is a unique choice of grading satisfying the requisite

condition at a Neveu–Schwarz boundary node q, let p and p′ be the two branches with

respective twists cp and cp′ . When r is odd, the fact that w alternates at exactly one

branch is immediate from item 3 of Proposition 2.5, since exactly one of cp and cp′ is

odd. When r is even, assume for simplicity that the nodal Riemann surface C consists of

two sphere components joined at the node q. Then, adding the parity constraints (2.11)

on the two components, one obtains

4 + 2
∑

ai +∑
bi + cp + cp′

r
≡ k + δaltp + δaltp′ mod 2,

where k is the number of boundary marked points, and δaltp is defined to be 1 if w

alternates at p and 0 otherwise. Combining this with the parity constraint (2.11) on the

entire curve, one finds

2 + cp + cp′

r
≡ δaltp + δaltp′ mod 2,

so we indeed see that if cp + cp′ = r − 2, then w alternates at exactly one branch.

This completes the proof of the existence of the graded r-spin structure in the

case where there is no contracted boundary node. When there is a contracted boundary

node, it must be Ramond. To see this, apply constraint (2.8) to see that the internal

twists satisfy

− 2 − 2
∑

ai ≡ 0 mod r. (2.19)
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On a single component of C, on the other hand, the degree of the restriction of S is

−2 −∑
ai − cp

r
,

so we must have

− 2 −
∑

ai − cp ≡ 0 mod r. (2.20)

Combining (2.19) and (2.20), we find that 2(cp + 1) ≡ 0 mod r. When r is odd, this is

sufficient to conclude that cp ≡ r − 1 mod r. When r is even, we apply (2.13) to find

2 + 2
∑

ai

r
≡ 0 mod 2.

Therefore, we have

1 +∑
ai

r
∈ Z,

so 1 +∑
ai ≡ 0 mod r. Combining this with (2.20) again shows that cp ≡ r − 1 mod r.

When there is a contracted boundary node q, the involution φ̃ can be defined

first in the fiber of q, by choosing a lifting of the conjugation on ωlog

∣∣
q. There are r

such choices; when r is odd, they are all equivalent, while when r is even, there are r/2

equivalent choices that make the structure compatible, but in either case, we choose

one. We then extend the conjugation to the other components of C, if there are any,

component by component, using the argument in the beginning of this proof. Since the

contracted boundary node is Ramond, we can now choose the grading as above. We

observe that, again, there is no choice when r is odd and there are two equivalent choices

when r is even.

Finally, we compute the order of the automorphism group. The closed case is

known (see, e.g., [18, Proposition 1.18] or [11, Section 2.3]): an r-spin structure on a

closed, genus-zero stable curve with N nodes has rN+1 automorphisms. Namely, each

node contributes r ghost automorphisms of the curve, which can each be lifted to the

spin bundle, as in Remark 2.14, and each of the resulting automorphisms of the spin

structure can be composed with a global fiberwise scaling by an rth root of unity.

Let us now consider which of these automorphisms respect the graded structure.

By compatibility with the involution, a ghost automorphism at an internal node deter-

mines the ghost automorphism at its conjugate node but is otherwise unconstrained.
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Nontrivial ghost automorphisms at boundary and contracted boundary nodes, on the

other hand, cannot respect both the conjugation and the graded structure. Indeed, at a

boundary node, (2.16) may constitute an automorphism only if ξ is real. For odd r, this

implies that ξ = 1. When r is even, ξ = −1 is also a possibility; however, in this case, by

Remark 2.14, this ghost automorphism acts on the spin bundle by changing the gluing

of the fibers at the node by a factor of ξm, in which m is the multiplicity at one half

node. By Observation 2.15, the twists at the half nodes are even, so m is odd. It follows

that ξm = (−1)m = −1, and hence the ghost automorphism does not respect the grading.

At a contracted boundary node, we consider the automorphisms in local coordinates, in

which they have the form

(x, y) �→ (ξx, ζy),

where ξ and ζ are rth roots of unity. Such an automorphism is compatible with the

conjugation, which locally has the form (x, y) �→ (ȳ, x̄), only if ζ = ξ̄ = ξ−1. But in this

case, given the orbifold structure at the node, it is the identity automorphism.

It follows, then, that there are rn contributing ghost automorphisms, where 2n

is the number of internal nodes. Since we have already argued in Proposition 2.13 that

the fiberwise scalings on disk components do not respect the graded structure, there

are no further automorphisms. �

3 Moduli Space of Graded r-Spin Disks

Henceforth, we usually denote an r-spin disk with a lifting simply by �, the preferred

half, suppressing most of the notation.

3.1 Stable graded r-spin graphs

It is useful to encode some of the combinatorial data of graded r-spin disks in a

decorated dual graph.

Definition 3.1. A genus-zero pre-stable dual graph is a tuple

� = (V,H, σ0,∼,HCB,m),

in which

(i) V is a finite set (the vertices) equipped with a decomposition V = VO � VC

into open and closed vertices;
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(ii) H is a finite set (the half-edges) equipped with a decomposition H = HB ∪HI

into boundary and internal half edges;

(iii) σ0 : H → V is a function, viewed as associating to each half edge the vertex

from which it emanates;

(iv) ∼ is an equivalence relation onH, which decomposes as a pair of equivalence

relations ∼B on HB and ∼I on HI . The equivalence classes are required to be

of size 1 or 2, and those of size 1 are referred to as tails. We denote by

TB ⊆ HB and TI ⊆ HI the sets of equivalence classes of size 1 in HB and HI ,

respectively;

(v) HCB is a subset of TI , the contracted boundary tails;

(vi) m is a function given by

m = mB � mI : TB � (TI \ HCB) → 2N,

where mB and mI (the boundary and internal markings) satisfy the def-

inition of a marking when restricted to any connected component of �,

and where mI is strict on connected components with an open vertex or

a contracted boundary tail.

Note that (V,H, σ0) defines a graph and that we do not require this graph to be

connected; denote its set of connected components by Conn(�) = {�i}. We require the

above data to satisfy the following conditions:

(1) For each boundary half-edge h ∈ HB, we have σ0(h) ∈ VO;

(2) For each �i, we have h1(�i) = 0;

(3) Each �i contains at most one half edge in HCB, and if �i contains such a half

edge, then all vertices of �i are closed;

(4) For each �i, the sub-graph formed by its open vertices (if any exist) and their

incident boundary edges is connected.

Conditions (2), (3), and (4) guarantee that for any nodal graded r-spin surface with dual

graph �, each connected component of the closed surface C has genus zero.

We refer to elements of TB as boundary tails and to elements of TI \ HCB as

internal tails, and we denote T := TI � TB. Note that ∼ induces a fixed-point-free

involution on H \ T, which we denote by σ1. Write

EB := (HB \ TB)/ ∼B, EI := (HI \ TI)/ ∼I
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and refer to these as boundary edges and internal edges. The set of edges is E := EB�EI .

Denote by σB
0 the restriction of σ0 to HB, and similarly for σ I

0.

For each vertex v, set k(v) := |(σB
0 )−1(v)| and l(v) := |(σ I

0)
−1(v)|. We say that an

open vertex v ∈ VO is stable if k(v) + 2l(v) > 2, and we say that a closed vertex v ∈ VC

is stable if l(v) > 2. A graph is stable if all of its vertices are stable, and it is closed if

VO = ∅. A graph is smooth if there are no edges or contracted boundary tails.

Definition 3.2. An isomorphism between two genus-zero pre-stable dual graphs

� = (V,H, σ0,∼,HCB,m) and �′ = (V ′,H ′, σ ′
0,∼′,H ′CB,m′)

is a pair f = (f V , f H), where f V : V → V ′ and f H : H → H ′ are bijections satisfying

(1) h1 ∼ h2 if and only if f (h1) ∼′ f (h2),

(2) f V ◦ σ0 = σ ′
0 ◦ f H ,

(3) m = m′ ◦ f H ,

(4) f (HCB) = H ′CB.

We denote by Aut(�) the group of automorphisms of �.

Pre-stable dual graphs encode the discrete data of a marked orbifold Riemann

surface with boundary. In order to encode the additional data of a twisted spin structure

and a lifting, we must add further decorations.

Definition 3.3. A genus-zero twisted r-spin dual graph with a lifting is a genus-zero

pre-stable dual graph � as above, together with maps

tw : H → {−1, 0, 1, . . . , r − 1}

(the twist) and

alt : HB → Z/2Z

and a subset T∗ ⊆ TI (the anchors), satisfying the following conditions:

(i) Any connected component of � that is not stable consists either of (a) a single

open vertex with a single internal tail, or (b) a single closed vertex with

exactly two tails, one of which is in HCB and the other of which is in HI .
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(ii) Every closed connected component contains exactly one tail in T∗. All

contracted boundary tails and all tails t with tw(t) = −1 belong to T∗. Open
connected components have no tails in T∗. Any element of T∗ \HCB is marked

by ∅ and is the only tail marked by ∅ in its connected component.

(iii) For any vertex v, the total number of incident half-edges h with h ∈ T∗ or

tw(h) = −1 is at most one.

(iv) For any contracted boundary tail t ∈ HCB, we have tw(t) = r − 1.

(v) For any open vertex v ∈ VO,

2
∑

h∈(σ I
0)−1(v)

tw(h) +
∑

h∈(σB
0 )−1(v)

tw(h) ≡ r − 2 mod r

and

2
∑

h∈(σ I
0)−1(v) tw(h) +∑

h∈(σB
0 )−1(v) tw(h) + 2

r
≡

∑
h∈(σB

0 )−1(v)

alt(h) mod 2.

(vi) For any closed vertex v ∈ VC,

∑
h∈σ−1

0 (v)

tw(h) ≡ r − 2 mod r.

(vii) For any half-edge h ∈ H \ T, we have

tw(h) + tw(σ1(h)) ≡ r − 2 mod r,

and at most one of tw(h) and tw(σ1(h)) equals −1. No boundary half-edge

h satisfies tw(h) = −1. In case h ∈ HI \ TI satisfies tw(h) ≡ −1 mod r,

then tw(h) = r − 1 precisely if, after detaching the edge, h belongs to the

connected component containing an anchor t∗ ∈ T∗ (if h is in a closed

connected component of �) or an open vertex v ∈ VO (if h is in an open

connected component of �).

(viii) For any boundary half-edge h ∈ HB \ TB, if tw(h) �= r − 1 we have

alt(h) + alt(σ1(h)) = 1,

and if tw(h) = r − 1 then alt(h) = alt(σ1(h)) = 0.
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(ix) If r is odd, then for any h ∈ HB,

alt(h) ≡ tw(h) mod 2,

and if r is even, then for any h ∈ HB,

tw(h) ≡ 0 mod 2.

Boundary half-edges h with alt(h) = 1 are called legal, and those with alt(h) = 0 are

called illegal. Half-edges h with tw(h) ∈ {−1, r − 1} are called Ramond, and those with

tw(h) ∈ {0, . . . , r − 2} are called Neveu–Schwarz. An edge is called Ramond if one (hence

both) of its half edges is Ramond, and Neveu–Schwarz otherwise.

We say that a genus-zero twisted r-spin dual graph with a lifting is stable if the

underlying dual graph is stable, in the sense specified above. An isomorphism between

genus-zero twisted r-spin dual graphs with liftings consists of an isomorphism in the

sense of Definition 3.3 that respects tw, alt, and T∗. Analogously to Definition 2.16, we

define a genus-zero graded r-spin graph to be a genus-zero twisted r-spin dual graph

with a lifting such that every boundary tail h ∈ HB has

tw(h) = r − 2, alt(h) = 1.

Any stable graded r-spin disk � induces a stable genus-zero graded r-spin graph �(�).

Namely, the correspondence associates an irreducible component of � to a vertex, a

marked point to a tail, a node to an edge, and a contracted boundary node to a contracted

boundary tail. The twist is represented by tw and the alternation by alt, and the anchors

correspond to elements of T∗.

3.2 Moduli of stable graded r-spin disks

In the situation without boundary, there is a well-studied moduli space M1/r
g,n of stable

Riemann surfaces with r-spin structure, which is known to be a smooth Deligne–

Mumford stack with projective coarse moduli, for which the forgetful map to Mg,n is

finite (see [8] or, in the setting of a slightly different compactification, [16]). This moduli

space admits a decomposition into open and closed substacks,

M1/r
g,n =

⊔
�a=(a1,...,an)

M1/r
g,�a , (3.1)
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where ai ∈ {0, 1, . . . , r − 1} for each i and M1/r
g,�a denotes the substack of r-spin structures

with twist ai at the ith marked point. In genus zero, the situation is even simpler:

according to Proposition 2.13, for any choice of �a such that (2.9) holds, the moduli space

M1/r
0,�a has coarse moduli isomorphic to M0,n and generic additional isotropy Z/rZ. The

isomorphism of coarse moduli is given by the smooth map Forspin that forgets the spin

structure.

When there is no boundary, it is also straightforward to add the information

of a grading. Indeed, the moduli space of graded r-spin spheres for which the anchor

does not have twist r − 1 is canonically isomorphic to M1/r
0,n, whereas the moduli space

of graded r-spin spheres with twist �a and anchor twisted r − 1 is canonically an r-to-1

cover of the moduli space M1/r

0, �a′ on which �a′ agrees with �a except that the anchor has

twist −1.

To generalize the construction of the moduli space to the open setting, we first

note that in [24] the moduli spaceM0,k,l of connected stable marked disks with boundary

marked points marked by {1, . . . , k} and internal marked points marked by {1, . . . , l} was

considered. It is a smooth orientable manifold with corners in the sense of [19], and its

dimension is

dim
R
(M0,k,l) = k + 2l − 3.

Let M1/r
0,k,l denote the set of isomorphism classes of connected stable graded r-spin

disks, with boundary and internal marked points as above. There is a set-theoretic

decomposition analogous to (3.1),

M1/r
0,k,l =

⊔
�a
M1/r

0,k,�a,

in which M1/r
0,k,�a ⊆ M1/r

0,k,l consists of those disks for which the ith internal marked point

has twist ai. By Proposition 2.17, whenever M1/r
0,k,�a �= ∅, there is a bijection given by the

forgetful map

Forspin : M1/r
0,k,�a → M0,k,l,

and we use these to give M1/r
0,k,l the structure of a manifold with corners.
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This describes the coarse underlying space of M1/r
0,k,l. The main theorem of this

section is that it can also be given an orbifold-with-corners structure in the sense of

[22, Section 3].

Theorem 3.4. The moduli space M1/r
0,k,l of connected stable graded r-spin disks with

boundary marked points marked by {1, . . . , k} and internal marked points marked by

{1, . . . , l} is a compact smooth orientable orbifold with corners of real dimension k+2l−3.

Its universal bundle admits a universal grading.

We split the proof of Theorem 3.4 into three parts. Lemma 3.6 shows that

the moduli space is a compact smooth orbifold with corners, Lemma 3.8 proves the

existence of the universal grading, and Proposition 3.13 together with Observation 3.10

proves the orientability.

Remark 3.5. In fact, for all r ≥ 2, the moduli space M1/r
g,k,l of connected stable graded

genus g marked r-spin surfaces with boundary is a compact smooth orbifold with

corners of real dimension k + 2l + 3g − 3, and its universal bundle admits a universal

grading. For r = 2, this is proven in [28], and the moduli space is moreover shown in [29]

to be canonically oriented. The general r case will be proven elsewhere; in this case, the

moduli space may not be orientable.

Lemma 3.6. M1/r
0,k,l has the structure of a compact smooth orbifold with corners.

Proof. We describe a procedure that defines an orbifold-with-corners structure on

M1/r
0,k,l, analogous to the procedure performed in [22, Section 2]. To define the procedure,

we make reference to the following sequence:

M1/r
0,k,l

(5)→ M̂1/r
0,k,l

(4)
↪→ M̃1/r

0,k,l
(3)→ M̃1/r,Z2

0,k,l
(2)→ M1/r,Z2

0,k+2l
(1)→ M

′1/r
0,k+2l. (3.2)

The moduli spaces and maps appearing in (3.2) are defined as they appear in what

follows.

Step 1: First, M
′1/r
0,k+2l is the suborbifold of M1/r

0,k+2l given by the condition that

the 1st k markings have twist r − 2 and that the integer defined in (2.9) is of the same

parity as k + 1. Inside this space, M1/r,Z2
0,k+2l is the fixed locus of the involution defined by

(C;w1, . . . ,wk+2l, S) �→ (C;w1, . . . ,wk,wk+l+1, . . . ,wk+2l,wk+1, . . . ,wk+l,S),
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where C and S are the same as C and S but with the conjugate complex structure

(more details on the fixed point functor on stacks can be found in [26]). As the fixed

locus of an anti-holomorphic involution, M1/r,Z2
0,k+2l has the structure of a real orbifold.

It parameterizes isomorphism types of marked spin spheres with a real structure (an

involution φ̃ covering the conjugation φ on C) and the prescribed twists, and it maps to

M1/r
0,k+2l (in general, it is not a sub-orbifold, since some isotropy is lost), so it inherits a

universal curve via pullback.

Remark 3.7. Let us digress to discuss the isotropy of M1/r,Z2
0,k+2l, especially near

nodal strata (Without spin structure, the nodal strata of the real moduli space

M0,k,l are discussed in [20, Section 3], and in the closed case with spin struc-

ture, the nodal strata of M1/r
0,l are discussed in [9, Section 4].). The generic point

of M1/r,Z2
0,k+2l has isotropy coming from scaling the fibers of the spin bundle by real

rth roots of unity. When r is odd, there are no such roots and hence no generic

isotropy, while when r is even, there is generic Z/2Z isotropy. Nodal strata have

additional Z/rZ isotropy for each internal Neveu–Schwarz node, coming from the ghost

automorphisms.

For boundary nodes, there is a difference in behavior for r odd or even. When r

is odd, boundary nodes also contribute no further isotropy. Furthermore, if U × [−1, 1]

is a neighborhood in the moduli space of a curve with a single boundary node, such that

U × {0} is the intersection with the nodal stratum and (u, t) for t �= 0 corresponds to a

smooth real sphere, then the passage from t < 0 to t > 0 geometrically corresponds to

flipping one of the two disk components and defining the involution on the spin bundle

in the unique possible way. Thus, in this case, the behavior near the node is exactly

like in the real, non-spin case, and the spin moduli continues to be a trivial degree-one

cover of the non-spin moduli generically. When r is even, on the other hand, boundary

nodes contribute additional Z/2Z isotropy, coming from ghost automorphisms of the

form (x, y) → (−x, y); see the discussion in the proof of Proposition 2.17. On the moduli

level, the picture is that a neighborhood of a nodal curve with a single boundary node

looks locally like U × [−1, 1]/(Z/2Z), where U × {0} is the nodal locus and the generator

of Z/2Z takes (u, t) to (u,−t).

Contracted boundary nodes add no additional isotropy, as we saw in the end of

the proof of Proposition 2.17. On the moduli level, again let U×[−1, 1] be a neighborhood

in the moduli space of a curve with a contracted boundary, such that U × {0} is the

intersection with the nodal stratum and (u, t) for t > 0 corresponds to a smooth

real sphere on which the conjugation has nonempty fixed locus. Then (u, t) for t < 0
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corresponds to a real sphere on which the conjugation has no fixed points, so after

taking the quotient by the conjugation, the result is a marked real projective plane. �

Step 2: Returning to our discussion of (3.2), the next step is to cut M1/r,Z2
0,k+2l along

the real simple normal crossings divisor consisting of curves with at least one real node,

via the “real hyperplane blow-up”, as in [22], yielding an orbifold with corners M̃1/r,Z2
0,k,l .

We direct the reader to [22, Section 3.3] for more details, but the idea is the following.

Near the real divisor consisting of curves with a contracted boundary node—

or, when r is odd, near the real divisor consisting of curves with a boundary node (a

real node that is not an isolated fixed point of the conjugation)—the real blow-up is the

standard cutting procedure that can be defined without a spin structure. In the notation

of Remark 3.7, the real blow-up corresponds to the natural quotient map

U × [−1, 0] � U × [0, 1] → U × [−1, 0] ∪ U × [0, 1] = U × [−1, 1].

When r is even, the blow-up near the real divisor consisting of curves with a boundary

node is a topologically trivial operation, but nontrivial on the orbifold level. In

particular, in local charts, the real blow-up, when r is even, is equivalent to blowing

up before taking the extra Z/2Z quotient mentioned in Remark 3.7, and then taking the

quotient, so it kills the additional Z/2Z isotropy on nodal strata. In other words, the

blow-up is locally the map

(U × [−1, 0] � U × [0, 1]) /(Z/2Z) → (U × [−1, 0] ∪ U × [0, 1])/(Z/2Z) = U × [−1, 1]/(Z/2Z),

where the generator of Z/2Z takes (u, t) ∈ U × [−1, 0] � U × [0, 1] to (u,−t).

Step 3: Consider the subset of M̃1/r,Z2
0,k,l whose generic point is a smooth marked

real spin sphere with nonempty real locus. Then M̃1/r
0,k,l is the disconnected 2-to-1

cover of this subset given by the choice of a distinguished connected disk component

of C \ Cφ . Equivalently, in the generic (smooth) situation, we first restrict to the

connected components of M̃1/r,Z2
0,k,l consisting of real spheres on which the conjugation

has nonempty fixed locus, and then we choose an orientation for Cφ . It is important to

note, however, that this choice can be uniquely continuously extended to points in the

boundary of M̃1/r
0,k,l.

Step 4: Inside M̃1/r
0,k,l, we denote by M̂1/r

0,k,l the union of connected components

such that the marked points wk+1, . . . ,wk+l lie in the distinguished stable disk and, for

even r, the spin structure is compatible.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa345/6136830 by guest on 02 August 2021



36 A. Buryak et al.

Step 5: Finally, M1/r
0,k,l is the cover of M̂1/r

0,k,l given by a choice of grading. When r

is odd, this is the identity, while when r is even, it is a 2-to-1 cover given by forgetting

the global Z/2Z isotropy.

As a topological space, M1/r
0,k,l is indeed the same space defined previously, but

now it has the additional structure of an orbifold with corners. The proof that M̂1/r
0,k,l is

an orbifold with corners is identical to the proof of the analogous Theorem 2 in [22]. The

spaceM1/r
0,k,l then inherits the orbifold-with-corners structure from M̂1/r

0,k,l. It is moreover

compact since compactness is preserved at every step.
Over M1/r

0,k,l, there is a universal curve whose fibers are compatible stable spin

disks. The content of Lemma 3.8 below is that one may construct a graded structure, in

a continuous way, on the fibers.

Lemma 3.8. One can continuously choose a grading for the fibers of the universal

curve of M1/r
0,k,l. This choice is unique when r is odd, while for even r it is unique up to a

global change of grading in each connected component of the moduli space.

Proof. We first prove the lemma for the universal curve over

Int(M1/r
0,k,l) := M

1
r
0,k,{a1...,al} \ ∂M

1
r
0,k,{a1...,al}.

The statement is clear when r is odd, and its uniqueness up to a possible global change

of grading in each component is immediate when r is even, given the existence. We hence

prove the existence for even r.

The fact that this choice can be made locally in a continuous way is straight-

forward. The obstruction to making such a choice global in Int(M1/r
0,k,l) is the possible

existence of a loop

γ : ∂�̄ → Int(M
1
r
0,k,{a1...,al}),

where �̄ is the closed unit disk, along which a continuous choice of grading alternates.

Since the strata corresponding to disks with an internal “bubble” are of

codimension two, it may be assumed that γ (∂�̄) ⊆ M1/r
0,k,�a. We first show that γ may

be extended to γ̂ : �̄ → M1/r
0,k,�a by verifying that π1(M0,k,l) is trivial. This is true when

l = 0, as every connected component of M0,k,0 is the contractible associahedron. By

considering the forgetful map M0,k,1 → M0,k,0, whose fiber is contractible, it is easy

to see that M0,k,1 is also contractible. For l > 1, it is enough to consider an arbitrary

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa345/6136830 by guest on 02 August 2021



Open r-Spin Theory I: Foundations 37

γ : ∂�̄ → M0,k,l and to show that it can be extended to the disk. By working in the unit

disk model where z1 is mapped to the origin and x1 to 1, one may write γ (θ) as

(1,x2(θ), . . . , xk(θ), 0, z2(θ), . . . , zl(θ)).

An extension γ̂ may be written as

γ̂ (r, θ) = (1,er logx2(θ)+(1−r) 2π i
k , er logx3(θ)+(1−r) 4π i

k , . . . ,

er logxk(θ)+(1−r) 2(k−1)πi
k , 0, rl−1z2(θ), rl−2z3(θ), . . . , rzl(θ)),

where we define the logarithm by excluding the positive real ray.

As �̄ is contractible, standard homotopy arguments now show that we can

uniquely extend the grading from an arbitrary grading at γ (1) to a grading for all points

of γ̂ (�̄). Restricting to ∂�̄, the grading defines a grading for the points of γ . Thus, the

grading does not alternate along γ , and therefore it can be defined globally.

Given a grading for the fibers of the universal curve over the interior of the

moduli space, we extend it to fibers over the boundary by continuity. If �t is a family

of smooth graded r-spin surfaces converging to �0, then the gradings of �t determine,

by continuity, a compatible lifting on �0 away from special points. An argument as in

Proposition 2.17 shows that this lifting is in fact a grading, and it is independent of the

family �t.

Suppose � ∈ ∂M1/r
0,k,l has a contracted boundary node, which in particular forces

that k = 0. Using the same argument as in Proposition 2.17 for the contracted boundary

case, we observe that the contracted boundary node must be Ramond. The limit of

the grading in the smooth case, at the boundary stratum consisting of surfaces with

a contracted boundary node, is precisely a grading in the sense of contracted boundary

nodes defined above. �

Remark 3.9. It is interesting to note that even for nodal spin disks with Neveu–

Schwarz nodes, the choice of grading cannot be performed independently for different

components, if it is required to be continuous. It is the real blow-up stage in the

construction of the orbifold with corners that fixes this choice, up to a global change of

grading in each connected component of the moduli space.

The above results can be carried out in greater generality. First, if the images of

the markings are any sets B and I, one can clearly define the spaceM1/r
0,B,I in the sameway
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as above. Furthermore, associated to each connected stable genus-zero twisted graded

r-spin dual graph �, there is a closed suborbifold with corners M1/r
� ⊆ M1/r

0,B,I whose

general point is a graded r-spin disk with dual graph �. We also allow for the possibility

that � is disconnected, in which caseM1/r
� is defined as the product of the moduli spaces

M1/r
�i

associated to its connected components. Inside M1/r
� , we define M1/r

� as the open

suborbifold consisting of graded r-spin disks whose dual graph is precisely �.

There are forgetful maps between the moduli spaces, but we note that marked

points can only be forgotten if their twist is zero (otherwise (2.5) is not preserved), and

boundary marked points can only be forgotten if they are in addition illegal (otherwise

the grading does not descend to the moduli space with fewer marked points). We define

ForB′,I ′ : M
1/r
� → M1/r

�′ (3.3)

for B′, I ′ ⊆ Z by forgetting all twist-zero internal marked points marked by I ′ and

all twist-zero illegal boundary marked points marked by B′. This process may create

unstable components; we repeatedly contract them. If the process ends with some

unstable components, we remove them. We denote by forB′,I ′(�) the graph �′ resulting
from this procedure.

3.3 Orientation of M
1
r
0,k,{a1...,al}

In the following section, we describe a natural orientation on the spaces M
1
r
0,k,{a1...,al},

thereby completing the proof of Theorem 3.4. The ideas presented here are not new;

in particular, they are similar to those presented in [24,Section 2.5] and are closely

related to the earlier discussion in [15, Section 2.1.2]. First, we reduce the question of

orientability to a simpler setting.

Observations 3.10. We claim that the moduli space M
1
r
0,k,{a1...,al} is orientable exactly

if M0,k,l is orientable and that an orientation on M0,k,l induces one on M
1
r
0,k,{a1...,al} by

pullback under the map

Forspin : M
1
r
0,k,{a1...,al} → M0,k,l

that forgets the graded spin structure.

To see this, note that the map Forspin : M
1
r
0,k,{a1...,al} → M0,k,l on the open moduli

spaces is a diffeomorphism on the coarse underlying level, which means that the open
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locus M
1
r
0,k,{a1...,al} is indeed orientable precisely if M0,k,l is orientable. To pass from the

open locus to the full moduli space, one can construct M
1
r
0,k,{a1...,al} (respectively, M0,k,l)

fromM
1
r
0,k,{a1...,al} (respectively,M0,k,l) in two stages. First, add loci parameterizing disks

without boundary nodes or contracted boundary components; such loci are of real

codimension two and hence do not affect orientability. Then, add the boundary of the

moduli space; this contains strata of real codimension one, but the fact that they lie in

the boundary means that they do not affect orientability. This proves the claim.

We henceforth discuss orientations on M0,k,l, but, in light of Observation 3.10,

all statements carry over to the spin case. Furthermore, orientations can be studied on

a connected component at a time, and the connected components of both M1/r
0,B,�a and

M0,B,�a are indexed by cyclic orders of B.

Notation 3.11. If π : [|B|] → B is an order of B, we denote its induced cyclic order

by π̂ , and we denote by M1/r,π̂
0,B,�a (respectively, Mπ̂

0,B,�a) the connected component of M1/r
0,B,�a

(respectively, M0,B,�a) that parameterizes disks for which the cyclic order of boundary

markings taken along the boundary of the disk, with its canonical orientation, is π̂ . We

denote by Mmain
0,k,l ,M

main
0,k,l ⊆ M0,k,l the subspaces where the induced cyclic order on the

boundary marked points is the cyclic order induced from the standard order πstd on [k].

We denote by Ord(B) the set of all orders of B, by Cyc(B) the set of cyclic

orders, and by SB the group of permutations of B. Note that SB acts both on Ord(B),

by composition, and on M1/r
0,B,�a, by permuting markings.

Definition 3.12. Let {õπ = õ
π
0,B,I} be a family of orientations, where B runs over all

sets of size k, I runs over all sets of size l, π runs over all orders of B, and õ
π
0,B,I is

an orientation for Mπ̂

0,B,I . We say such a family is covariant if, whenever f B : B → B′

and f I : I → I ′ are bijections and F : M0,B,I → M0,B′,I ′ is the induced map, we have

õ
π
0,B,I = F∗õf

B◦π

0,B′,I ′ . A family {õπ = õ
π
0,B,{�a}} of orientations of M

1
r ,π̂
0,B,{ai}i∈I is covariant if it is

the pullback of a covariant family of orientations for Mπ̂

0,B,I .

The fiber of the forgetful map Fork+1 : M0,k,l+1 → M0,k,l is a punctured disk with

a canonical complex orientation. For k ≥ 1, the fiber of the forgetful map M0,k+1,l →
M0,k,l is a union of open intervals, so it is canonically oriented as the boundary of an

oriented disk (as above). Denote this orientation by oFor−1
k+1(�)

.
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Proposition 3.13. Suppose k + 2l ≥ 3. Then there exists a unique covariant family of

orientations õ
π
0,B,I for the spaces Mπ̂

0,B,I with the following properties:

(1) In the zero-dimensional case where k = l = 1, the orientation is positive,

while when k = 3 and l = 0, the orientations are negative.

(2) Fix an integer h, and let π ∈ Ord(B) and g ∈ SB be such that g sends xπ(i)

to xπ(i+h) cyclically. Then g preserves the orientation of Mπ̂

0,B,I if and only if

h(|B|−1) is even (this holds for any orientation of the moduli space of disks).

(3) The orientation õ
π
0,k,l+1 agrees with the orientation induced from õ

π
0,k,l by the

fibration M0,k,l+1 → M0,k,l and the complex orientation on the fiber.

(4) On Mmain
0,k+1,l, we have õ

πstd

0,k+1,l = oFor−1
k+1(�)

⊗ For∗
k+1õ0,k,lπ

std.

Remark 3.14. For k odd, the orientations described here differ from those of [24] by

(−1)
k−1
2 . This choice is more natural from the point of view of integrable hierarchies.

Proof of Proposition 3.13. If orientations õ
π
0,k,l exist, then properties (1)–(4) imply that

they are unique. It remains to check existence.

For property (2) to hold, we must show that permutations of labels that map the

component Mmain
0,k,l to itself affect the orientation according to their sign. This can be

checked with respect to any orientation. Write

U :=
{

(z,w)

∣∣∣∣∣ z = (z1, . . . , zk) ∈ (S1)k, zi �= zj, i �= j

w = (w1, . . . ,wl) ∈ (intD2)l, wi �= wj, i �= j

}
.

Denote by Umain ⊆ U the subset where the cyclic order of z1, . . . , zk on S1 = ∂D2 (with

respect to the orientation induced from the complex orientation of D2) agrees with the

standard order of [k]. Then

Mmain
0,k,l = Umain/PSL2(R).

When k is odd, cyclic permutations of the boundary labels preserve the orientation of

Umain and thus alsoMmain
0,k,l andMmain

0,k,l . When k is even, a cyclic permutation of boundary

labels that moves each boundary label by h multiplies the orientation by the sign (−1)h.

Renaming internal markings is a complex map that preserves orientations trivially,

and similarly, arbitrary permutations of the interior labels preserve the orientation

of Mmain
0,k,l .
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A direct calculation shows that the orientation on M0,3,1 induced by property

(3) from õ
π
0,3,0 agree with the orientation induced by property (4) from õ

π
0,1,1. Thus, the

required õ
π
0,3,1 exists. Existence of õπ

0,k,l satisfying properties (3) and (4) for other k and l

follows from the commutativity of the diagram of forgetful maps

Covariance, at this point, gives a unique way to extend the orientations to other

connected components and to moduli spaces for different B, I. �

Notation 3.15. Denote by õ
π
0,B,{ai}i∈I the orientation onM1/r,π̂

0,B,{ai}i∈I defined as For∗
spinõ

π
0,B,I .

For the next lemma we need the following facts. Let � be an r-spin dual graph

with a lifting that corresponds to a stratum of M0,B,{ai}i∈I . Assume furthermore it

consists of two vertices v1 and v2 connected by a single edge e, with boundary labels B

and internal labels I. We have

i∗� det(TM1/r
0,B,{ai}i∈I ) ∼= det(N) ⊗ det(TM1/r

detache(�)), (3.4)

where N is the normal bundle of M1/r
� relative to M1/r

0,B,{ai}i∈I ; this can be identified with

the tensor product of the tangent line bundles at the half nodes on the moduli spaces

M1/r
v1 and M1/r

v2 associated to the vertices (To be more precise, the isomorphism (3.4)

holds only on the coarse level, as the actions of the isotropy groups of the moduli space

on the fibers are not the same; see Remarks 4.5 and 4.8. However, these actions are

clearly orientation preserving, so this issue does not affect our orientation analysis,

and will therefore be ignored below.). These two tangent lines are canonically oriented

complex lines when e is internal and are canonically oriented real lines when e is

boundary. In both cases, N carries a canonical orientation, in the 1st case it is the

complex orientation. In the 2nd case M1/r
� is a real codimension 1 boundary stratum,

hence N is a real one-dimensional bundle. Nonzero elements in the fibers correspond

to either inward-pointing vectors, vectors that point to the interior of M1/r
0,B,{ai}i∈I , or

outward-pointing ones. The canonical orientation of N is the one that makes the

outward directions positive.
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Lemma 3.16. The orientations õ
π
0,B,{ai}i∈I satisfy the following two properties:

(1) Write I = I1 � I2, and take B = B1 � B2. Let � be the graph with two open

vertices, v1 and v2, connected by an edge e, where the vertex vi has internal

tails labeled by Ii and ki boundary tails labeled by Bi, and let hi denote

the half edges of vi. Let π̂ be a cyclic ordering of B in which all tails of v1
are consecutive and all tails of v2 are consecutive. Denote by π the unique

ordering of B such that, for any � ∈ Mπ̂
� with normalization �1 � �2 (where

�i corresponds to vi), we have

• under π , the marked points of �1 appear before those of �2;

• when π is restricted to the points of �i, it agrees with the order of the

points on ∂�i with its natural orientation, starting after the node.

Let π1 be the restriction of π to the points of �1, but adding the half-node

xh1 in the end, and let π2 be the restriction to points of �2, but adding the

half-node xh2 in the beginning. By (3.4) we have

det(TM
1
r
0,B,{ai}i∈I )|Mπ̂

�
= det(N) ⊗ det(TMπ̂

�),

where N is the normal bundle with the canonical orientation oN given by the

outward-pointing normal. Then

õ
π |Mπ̂

�
= (−1)(|B1|−1)|B2|oN ⊗ (õ

π1
0,B1∪{h1},I1 � õ

π2
0,{h2}∪B2,I2).

(2) Let � be a graph with two vertices, an open vertex vo and a closed vertex vc.

By (3.4) we have

det(TM�) = det(N) � det(TMvc ) � det(TMvo),

where N is again the normal bundle. Then, for any order π ,

õ
π |M�

= oN ⊗ (õπ
vo � õvc ), (3.5)

where oN and õvc are the canonical complex orientations.

Proof. We prove the 1st item (which is analogous to Lemma 3.16 in [24]) by induction

on the dimension M1/r
0,B,I . By Observation 3.10, it is enough to prove the analogous claim

for M0,k,l. The proof of the 2nd item uses exactly the same arguments, so it is omitted.
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Covariance shows that it is enough to prove the claim when B = [k] and π is the

order 1, . . . , k. The base cases where the moduli space has dimension one or two can be

checked by hand. Suppose, then, that the desired statement holds for all moduli spaces

of dimension less than n, where n ≥ 3. After possibly interchanging the roles of v1 and

v2, we can assume that a tail of v2 can be forgotten without affecting stability; here,

we use item (2) of Proposition 3.13 and the fact that dim
R
Mvi ≡ |Bi| mod 2 to see that

the interchanging affects the equation with the correct sign. Let �′ be the stable graph

obtained by removing a tail of v2. If this tail is a boundary tail, assume it is labeled k.

Write v′
2 for the resulting vertex of �′ and π ′ for the restriction of π to [k − 1].

Consider first the case where the forgotten tail corresponds to a boundary point

xk. With the notation of Proposition 3.13, we have õ
π
0,k,l = oFor−1

k (�)
⊗ For∗

kõ
π ′
0,k,l, so

õ
π |M�

= oFor−1
k (�)

⊗ For∗
kõ

π ′ |M�′ . (3.6)

By induction, we have

õ
π ′ |M�′ = (−1)(|B1|−1)(|B2|−1)oN ⊗ (õπ1

v1 � õ
π2
v′
2
). (3.7)

We can identify For−1
k (N|M�′ )

∼= NM�
, and the identification preserves natural orienta-

tions. Finally,

õ
π2
v2 = oFor−1

k (�)
⊗ For∗

kõ
π ′
2

v′
2
. (3.8)

Putting equations (3.6), (3.7), and (3.8) together, and recalling that dim
R
Mv1 ≡ |B1|

mod 2, we obtain the result.

If the forgotten tail corresponds to an internal marked point labeled i, then

õ
π
0,k,l = oFor−1

i (�)
⊗ For∗

i õ
π
0,k,l−1 ⇒ õ

π |M�
= oFor−1

i (�)
⊗ For∗

i õ
π |M�′ , (3.9)

where we abuse notation somewhat by using Fori to denote the map forgetting the ith

internal marked point. By induction, we have

õ
π ′ |M�′ = (−1)(|B1|−1)|B2|oN ⊗ õ

π1
v1 � õ

π2
v′
2
. (3.10)
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Observe that For−1
i (N|M�′ )

∼= NM�
, and the equation preserves natural orientations.

Finally,

õ
π2
v2 = oFor−1

i (�)
⊗ For∗

i õ
π ′
2

v′
2
. (3.11)

Putting equations (3.9), (3.10), and (3.11) together, and noting that dim
R
For−1

i (�) = 2,

we obtain the result. �

4 Associated Vector Bundles

4.1 Witten bundle

In closed genus-zero r-spin theory, the virtual fundamental class is defined using the

Witten bundle (R1π∗S)∨, where π : C → M1/r
0,n is the universal family and S → C is the

universal twisted r-spin bundle. This is an orbifold vector bundle with the fibers

H1(C, S)∨ ∼= H0(C, J),

of complex rank
∑

ai−(r−2)

r .

Observations 4.1. As observed in [17] and studied in detail in [3], the Witten bundle

is a bundle as long as at most one marked point has twist −1 and all other twists are

non-negative, since this ensures that R0π∗S = 0.

We now define an open analog of the Witten bundle. Denote by π : C → M1/r,Z2
0,k+2l

the universal curve over the moduli space of real spin spheres defined above, and by

S → C the universal spin bundle. Then R1π∗S is a vector bundle, since (2.5) implies

that spin structures have negative degree and hence R0π∗S = 0. There are universal

involutions

φ : C → C and φ̃ : S → S,

which induce an involution on R1π∗S. Let

Wpre := (R0π∗J )+ = (R1π∗S)∨−

be the vector bundle of φ̃-invariant sections of J, where J := S∨ ⊗ ωπ ; the 2nd equality

uses Serre duality, under which invariant sections become anti-invariant. From here,
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the open Witten bundle, which is a real vector bundle, is defined as

W := � ∗Wpre,

where � : M1/r
0,k,l → M1/r,Z2

0,k+2l is the composition of the morphisms defined above.

Remark 4.2. We pull back W from the moduli space M1/r,Z2
0,k+2l of spheres in order to

avoid the need to define derived pushforward in the orbifold-with-corners context. To

avoid cluttering the notation in what follows, however, we often write W = (R0π∗J )+
even on M1/r

0,k,l. Whenever we write such expressions, they should be understood as

pulled back under � . In addition, we sometimes write W = (R0π∗J )+ on M1/r
0,n, where

no involution is needed; in this case, the subscript should be ignored and the equation

is to be interpreted as W = R0π∗J .

Remark 4.3. Due to the canonical isomorphism

H0(J) = H0(|J|), (4.1)

the fibers of the Witten bundle can equivalently be viewed as sections of |J| on |C|.
Furthermore, if C is a graded r-spin disk and p ∈ C is a non-orbifold point, then the

fiber Jp is identified with the fiber |J|ρ(p) over the image point ρ(p) ∈ |C|. In particular,

if s ∈ H0(J) is an element of the fiber of the Witten bundle over C corresponding under

(4.1) to ρ∗(s) ∈ H0(|J|), then the evaluation of s at p agrees under the identification

Jp = |J|ρ(p) with the evaluation of ρ∗(s) at ρ(p). Because of these observations, we view

the fibers of the Witten bundle interchangeably as H0(J) or as H0(|J|) in what follows.

The real rank of W is

2
∑

ai +∑
bj − (r − 2)

r
, (4.2)

which is the number e defined in (2.8) after setting g = 0. Indeed, a standard Riemann–

Roch calculation shows that (4.2) is the complex rank of R0π∗J , and taking involution-

invariant parts reduces the real rank by half. Furthermore, in the notation of (3.3), there

is the canonical isomorphism

W = For∗
B′,I ′W (4.3)
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for any subsets B′, I ′ ⊆ Z. This identification involves replacing a graded r-spin disk C

by a partially coarsened (and possibly stabilized) disk C′. However, in the same vein as

Remark 4.3, if s ∈ H0(J) is an element of the fiber of W over C that corresponds under

(4.3) to an element For∗
B′,I ′(s) in the fiber of For∗

B′,I ′W over C′, and if p ∈ C is a non-special

point whose component is not stabilized when passing to C′, then the evaluation of s at

p coincides under (4.3) with the evaluation of For∗
B′,I ′(s) at the image of p.

4.2 Decomposition properties of the Witten bundle

The open Witten bundle, like its closed analog, satisfies a decomposition property along

nodes. In order to state the property, we must define a normalization morphism on the

moduli spaces, which can be described by a “detaching” operation on graphs.

Definition 4.4. Let � be a genus-zero graded r-spin graph, and let e be an edge of �

with half-edges h and h′. Then the detaching of � at e is the disconnected graph

detache(�) = (V ′,H ′, σ ′
0,∼′,H ′CB,m′),

defined to agree with � except that h �∼′ h′. We keep alt and tw the same, and we extend

the marking and the anchor as follows. If e is a boundary edge, set m′(h) = m′(h′) = ∅.
If e is an internal edge, then exactly one of the components of detache(�) is closed and

unanchored; suppose, without loss of generality, that this is the component containing

h. Then we set h to be the anchor of its component, and we set m′(h) = ∅ and m′(h′) to
be the union of the markings of the internal tails h′′ �= h in the same component as h.

If t ∈ HCB is a contracted boundary tail, then the detaching of � at t is the graph

detacht(�) defined to agree with � except that t ∈ (T ′)I \ (H ′)CB. We keep alt and tw the

same and leave t as the anchor.

Note that the new internal and boundary markings still satisfy the requirements

of Definitions 3.1 and 3.3. In particular, since there is a canonical identification of

E(�) \ {e} with the edges of detache(�) and of E(�) with the edges of detacht(�), one

can also iterate the detaching process. For any subset N ⊆ E(�) ∪ HCB(�), we denote

by detachN(�) the graph obtained by performing detachf for each element f ∈ N; the

result is independent of the order in which the detachings are performed. When we

write detach(�) without any subscript, we mean detachE(�)(�).

Let � be a stable r-spin dual graph, and let �̂ = detachN(�) for some set N ⊆
E(�)∪HCB(�) of edges and contracted boundary tails. Unlike the moduli space of curves,
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the r-spin moduli space does not always have a gluing mapM1/r
�̂

→ M1/r
0,k,l, because there

is no canonical way to glue the fibers of the spin bundle at the internal nodes. Instead,

we consider the following diagram of morphisms:

M1/r
�̂

q←− M�̂ ×M�
M1/r

�

μ−→ M1/r
�

i�−→ M1/r
0,k,l. (4.4)

Here, M�, M�̂ are the moduli spaces of marked disks with dual graphs �, �̂, respec-

tively. The morphism q is defined by sending the spin structure S to Ŝ as in (2.17).

The map μ is an isomorphism, though we distinguish between its domain and

codomain because they have different universal objects. While the map q is in general

not an isomorphism (see Remark 4.5 below), it has degree one. This fact is known in

the closed case (see, e.g., [11]); the key point is that each element of M1/r
�̂

has a single

geometric preimage under q, and in both the domain and codomain of q, the order of

the automorphism group is rc, where c is the number of components. By the analysis of

automorphisms in Proposition 2.17, the same argument applies in the open case.

Remark 4.5. The reason that q is not, in general, an isomorphism is that it does

not induce an isomorphism on automorphism groups. Automorphisms on a normalized

curve are given by separate fiberwise scalings on each sphere component; on a nodal

curve, however, scalings by ζ and η at opposite branches of a node only glue to give a

global automorphism if one can act by a ghost automorphism of C to make the scalings

at the two branches agree—in other words (by Remark 2.14), if there exists ξ ∈ Z/rZ for

which ζ · ξm = η, where m is the multiplicity of S at the ζ -branch of the node. Thus,

q is an isomorphism only if each internal node satisfies gcd(r,m) = 1, so that such ξ

exists. (Boundary nodes need not satisfy any condition, since fiberwise scaling on a disk

component is not an automorphism of the graded spin structure.)

Notation 4.6. For � and N as above, we denote the map q ◦ μ−1 : M1/r
� → M1/r

�̂
by

DetachN . When N = {e} is a singleton, we denote this map by Detache.

There are two natural universal curves over the fiber productM�̂ ×M�
M1/r

� . We

define C� by the fiber diagram
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and C�̂ by the fiber diagram

in which Ĉ is the universal curve overM1/r
�̂

. There are universal bundles S and Ŝ on these

two universal curves, and they are related by the universal normalization morphism

n : C�̂ → C�.

We can now state the decomposition properties of the Witten bundle. We state

the properties in the case where N = {e} for a single edge e, but all can be readily

generalized to the setting where more than one edge is detached.

Proposition 4.7. Let � be a stable genus-zero twisted r-spin dual graph with a lifting.

Suppose that � has a single edge e, so the general point of M1/r
� is a stable r-spin disk

with two components C1 and C2 meeting at a node p. Let �̂ = detache(�). Let W and Ŵ
denote the Witten bundles on M1/r

0,k,l and M1/r
�̂

, respectively.

Then, topologically, the Witten bundle decomposes as follows along the node p:

(i) If e is a Neveu–Schwarz edge, then μ∗i∗�W = q∗Ŵ.

(ii) If e is a Ramond boundary edge, then there is an exact sequence

0 → μ∗i∗�W → q∗Ŵ → T+ → 0, (4.5)

where T+ is a trivial real line bundle.

(iii) If e is a Ramond internal edge connecting two closed vertices, write q∗Ŵ =
Ŵ1 � Ŵ2, in which Ŵ1 is the Witten bundle on the component containing

the anchor of � (defined via Ŝ|C1 ) and Ŵ2 is the Witten bundle on the other

component. Then there is an exact sequence

0 → Ŵ2 → μ∗i∗�W → Ŵ1 → 0. (4.6)

Furthermore, if �̂′ is defined to agree with �̂ except that the twist at each

Ramond tail is r−1, and q′ : M�̂ ×M�
M1/r

� → M1/r
�̂′ is defined analogously
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to q, then there is an exact sequence

0 → μ∗i∗�W → (q′)∗Ŵ ′ → T → 0, (4.7)

where Ŵ ′ is the Witten bundle on M1/r
�̂′ and T is a line bundle whose rth

power is trivial.

(iv) If e is a Ramond internal edge connecting an open vertex to a closed

vertex, write q∗Ŵ = Ŵ1�Ŵ2, in which Ŵ1 is the Witten bundle on the disk

component (defined via Ŝ|C1 ) and Ŵ2 is the Witten bundle on the sphere

component. Then the exact sequences (4.6) and (4.7) both hold.

(v) Suppose that � has a single vertex, no edges, and a contracted boundary

tail t, and let �̂ = detacht(�). If W and Ŵ denote the Witten bundles on

M1/r
0,k,l and M1/r

�̂
, respectively, then the sequence (4.5) also holds in this

case.

Remark 4.8. We say that the Witten bundle decomposes “topologically” as above

to emphasize that, while the coarse underlying Witten bundle behaves as above, the

action of the isotropy groups of the moduli space on the fibers may not respect these

identifications. (This is only relevant for internal nodes, since boundary and contracted

boundary nodes do not contribute isotropy to the moduli space.) For example, in the

case of a Neveu–Schwarz internal node, an element of the fiber of q∗Ŵ is acted on by

independently scaling the sections of J on the two components, while Remark 4.5 shows

that this is not in general possible for elements of the fiber of μ∗i∗�W.

Proof of Proposition 4.7. First, let us fix some notation. Letting J = S∨ ⊗ ωπ and

decomposing C�̂ into components C1 and C2, we define:

πi = π̂ |Ci , Si = n∗S|Ci , Ŝi = Ŝ|Ci , Ĵi = Ŝ∨
i ⊗ ωπi

for i = 1, 2. We view μ∗i∗�W = (R0π∗J )+ and q∗Ŵ = (R0π1∗Ĵ1 ⊕ R0π2∗Ĵ2)+.
Suppose that e is Neveu–Schwarz. Then the normalization exact sequence yields

0 → S → n∗n∗S → S|�p
→ 0,

where �p ⊆ C� is the orbifold divisor corresponding to the node p. Since the twist of

every tail of � is non-negative, except at most one tail that may have twist −1, we have
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R0π1∗S1 = R0π2∗S2 = 0, and we obtain

0 → σ ∗
pS → R1π∗S → R1π1∗S1 ⊕ R1π2∗S2 → 0. (4.8)

The assumption that e is Neveu–Schwarz implies both that Ŝi = Si for i = 1, 2 and that

σ ∗
pS = 0, since sections of an orbifold line bundle necessarily vanish at Neveu–Schwarz

points. Thus, dualizing and taking involution-invariant parts of (4.8) shows that the

fibers of μ∗i∗�W and q∗Ŵ are canonically identified.

Suppose now that e is a Ramond boundary edge. Then

Ŝi = Si ⊗ O(−r�i,p),

where �i,p ⊆ Ci is the orbifold divisor corresponding to the half node in Ci. The

normalization exact sequence for J yields

0 → R0π∗J → R0π̂∗(n∗J ) → σ ∗
pJ → 0. (4.9)

Now, passing to coarse underlying bundles (which does not affect cohomology), the

middle term can be re-written:

∣∣n∗J |Ci
∣∣ = |n|∗

(
|S|∨ ⊗ ω|π |

)∣∣∣∣|Ci| = |Si|∨ ⊗ O(�i,p) ⊗ ω|π | = |Ĵi|.

Thus, the sequence (4.9) can be re-expressed as

0 → R0π∗J → R0π1∗Ĵ1 ⊕ R0π2∗Ĵ2 → σ ∗
pJ → 0. (4.10)

Because e is Ramond, the bundle T := (σ ∗
pJ ) has trivial rth power, using that the

restriction of both ωπ and ωπ ,log to the locus of nodes is trivial. Taking involution-

invariant parts in (4.10) yields (4.5), where the real line T+ is trivialized using the

grading.

Next, suppose that e is a Ramond internal edge connecting two closed vertices.

Denote the two vertices of � by v1 and v2, and let v1 be the vertex supporting the anchor.

Then R0π2∗S2 = 0, and if v1 contains at least one tail of positive twist, then R0π1∗S1 = 0,

as well. In this case, we still have the sequence (4.8). We also have

0 → σ ∗
pS → R1π1∗Ŝ1 → R1π1∗S1 → 0. (4.11)
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The sequences (4.8) and (4.11) fit together into a commutative diagram

in which the middle vertical arrow can be constructed by dualizing the sequence (4.10).

By the Snake Lemma the cokernel of the middle vertical arrow is R1π2∗S2 = R1π2∗Ŝ2, so

0 → R1π1∗Ŝ1 → R1π∗S → R1π2∗Ŝ2 → 0.

Dualizing and taking involution-invariant parts prove (4.6).

Still assuming that e is a Ramond internal edge connecting two closed vertices,

suppose that every tail of v1 except the anchor has twist zero. In this case the anchor

must have twist −1. Then R0π1∗S1 is one-dimensional, and in the normalization exact

sequence

0 → R0π1∗S1 ⊕ R1π2∗S2 → σ ∗
pS → R1π∗S → R1π1∗S1 ⊕ R1π2∗,

the 1st map is an isomorphism. Hence, R1π∗S ∼= R1π1∗S1 ⊕ R1π2∗S2. A similar argument

shows that the 1st map in

0 → R0π1∗S1 → σ ∗
pS1 → R0π1∗Ŝ1 → R0π1∗S1 → 0

is an isomorphism, so we also have R1π1∗Ŝ1
∼= R1π1∗S1. Since Ŝ2 = S2 by construction,

we conclude that R1π∗S ∼= R1π1∗Ŝ1 ⊕ R1π2∗Ŝ2, which implies that (4.6) holds (and, in

fact, splits) in this case. The proof of (4.7) is identical to the proof of (4.5) above.

If e is a Ramond internal edge connecting an open vertex to a closed vertex, then

the proof that (4.6) holds is identical to the proof for an edge joining two closed vertices

(with R0π1∗S1 = R0π2∗S2 = 0), and the proof that (4.7) holds is exactly as in (4.5). Finally,

in the situation where � has a single vertex, no edges, and a contracted boundary tail,

the exact sequence (4.5) still holds, by the same proof. �

One further observation will be needed later.

Observations 4.9. Suppose I ′ ⊆ [l] is such that
∑

i∈I ′ ai ≤ r − 1. Let � be a graph with

exactly two vertices, a closed vertex vc containing exactly the internal tails labeled by

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa345/6136830 by guest on 02 August 2021



52 A. Buryak et al.

I ′ and an open vertex vo, connected by a single edge. Then M1/r
�̂

= Mvc × Mvo . One can

compute that the twist at the node is r − 2 −∑
i∈I ′ ai and the Witten bundle Wvc on Mvc

has rank zero, so Proposition 4.7 implies that

μ∗i∗�W� = q∗π∗
2Wvo ,

where π2 is the projection to the 2nd factor.

4.3 Cotangent line bundles

For each i ∈ I, a cotangent line bundle Li is defined on the moduli space of stable marked

disks as the line bundle whose fiber over (C,φ,�, {zi}, {xj},mI ,mB) is the cotangent line

T∗
zi�. Alternatively, Li is the pullback via the doubling map of the usual line bundle Li

on M0,k+2l. We define cotangent line bundles Li on M1/r
0,k,l by the pullback under the

morphism forgetting the spin structure, and for any graph �, we let L�
i be the pullback

of Li to M1/r
� .

We mention a few important properties of these bundles in the observa-

tion below. The proofs are identical to the proofs of the analogous statements in

[24, Section 3.5].

Observations 4.10.

(i) If e is an edge of �, �1 and �2 are the two connected components of

detache(�), and i is a marking of an internal tail of �1, then

L�
i = Proj∗1L

�1
i ,

where Proj1 : M1/r
� → M1/r

�1
is the projection.

(ii) If B′ ⊆ Z \ {i}, I ′ ⊆ Z, and �′ = forB′,I ′(�), then there exists a canonical

morphism

t�,B′,I ′ : For
∗
B′,I ′L

�′
i → L�

i ,

which is an isomorphism away from strata where the component containing

zi is contracted by the forgetful map, and which vanishes identically on the

remaining strata.

(iii) L�
i is canonically oriented as a complex line bundle.
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5 Orientation: Constructions and Properties

5.1 Relative orientation of the Witten bundle

The open Witten bundle does not carry a canonical complex orientation. Nevertheless,

it is canonically relatively oriented, relative to the moduli space of stable graded r-spin

disks. Before stating this precisely, we require some notation.

Consider a set B of boundary markings, a set I of internal markings, and a set of

twists {ai}i∈I . Given decompositions I = I1 � I2 and B = B1 � B2 such that

|B1| − 1 =
∑
i∈I1

ai mod r, |B2| =
∑
i∈I2

ai mod r (5.1)

and hence

2
∑

i∈I2 ai + |B2|(r − 2)

r
≡ |B2| mod 2,

let � = �I1,I2;B1,B2 be the graph with two open vertices v1 and v2 joined by a boundary

edge e, in which vi contains the internal tails marked by Ii and the boundary tails

marked by Bi. If hi is the half edge of e incident to vi, then a straightforward computation

shows that

tw(h1) = alt(h1) = 0.

Let us denote by B� the graph with vertices v′
1 and v2 obtained by detaching e and

forgetting h1; this is a very special case of the notion of the “base” of a graph �, defined

in general in the sequel. LetM1/r
v′
1
,M1/r

v1 , andM1/r
v2 be the moduli spaces of stable graded

r-spin disks corresponding to the vertices v′
1, v1, and v2, thought of as r-spin graphs.

By the discussion in Section 3.2, the maps q and μ are isomorphisms in the case

of a single boundary edge, which implies that

M1/r
�

∼= M1/r
v1 × M1/r

v2 .

Composing with the forgetful map forgetting the twist-zero tail h1 on v1, we obtain

a map

F� : M1/r
� → M1/r

B�
∼= M1/r

v′
1

× M1/r
v2 .
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By Proposition 4.7 and the fact that the Witten class pulls back under the forgetful map,

i∗�W = F∗
�WB� = Wv′

1
�Wv2 . (5.2)

In this situation, we also have

i∗� det(TM1/r
0,B,{ai}i∈I ) ∼= det(N) ⊗ det(f�) ⊗ F∗

� det(TM1/r
B�), (5.3)

where N is again the normal bundle of M1/r
� , and f� is the fiber of F� (which can be

identified with the fiber of the map onMv1 that forgets the marked point xh1 associated

to h1). Note that f� also carries a canonical orientation, as a subset of the boundary

of a disk.

The main theorem of this section is the following.

Theorem 5.1. The morphism W → M1/r
0,B,{ai}i∈I is canonically relatively oriented. More

precisely, for any sets B and I of boundary and internal markings, and any set {ai}i∈I of
the internal twists, there exists a distinguished orientation o0,B,{ai}i∈I of TM

1/r
0,B,{ai}i∈I ⊕W.

These orientations satisfy the following properties:

(i) If f B : B → B′ and f I : I → I ′ are bijections such that f I preserves twists,

and if

F : M1/r
0,B,{ai}i∈I → M1/r

0,B′,{ai}i∈I′

is the induced map, then o0,B,{ai}i∈I = F∗o0,B′,{ai}i∈I′ . In particular the canonical

orientation is invariant to renumbering marked points.

(ii) If I = I1 � I2 and B = B1 � B2 satisfy (5.1) and � = �I1,I2;B1,B2 , then under the

isomorphisms (5.2) and (5.3), we have

i∗�o0,B,{ai}i∈I = oN ⊗ oh1 ⊗ F∗
�(o0,B1,I1 � o{h2}∪B2,I2),

in which oN and oh1 are the canonical orientations on N and f�, respectively

(Since the rank of the Witten bundle and the dimension of the moduli are

of the same parity, the canonical orientations represent even variables, this

means, in particular, that i∗�o0,B,{ai}i∈I = oN ⊗oh1 ⊗F∗
�(o{h2}∪B2,I2 �o0,B1,I1) also

holds.).
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(iii) If � is a graph with one open vertex vo and one closed vertex vc, then under

the identification

i∗� det(TM1/r
0,B,{ai}i∈I ) = det(N) ⊗ (

det(TMvo) � det(TMvc )
)
,

we have

i∗�o0,B,{ai}i∈I = oN ⊗ (
ovo � ovc

)
, (5.4)

where oN is canonically defined as above and ovo , ovc are the orientations on

the total space associated to the two vertices, ovc is the standard complex

one.

Remark 5.2. Note that in the last item we have used that if 0 → A
f−→ B → C → 0 is an

exact sequence of vector bundles, then there is a canonical isomorphism

det(A) ⊗ det(C) ∼= det(B).

In case e is Neveu–Schwarz, the Witten bundle decomposes as a direct sum by

Proposition 4.7, but when e is Ramond, we use (4.6) in order to write (5.4). In both

cases, the decomposition may not respect the isotropy group actions, but these actions

are orientation preserving as they are induced from scaling the closed Witten bundle

summand by roots of unity.

The proof of Theorem 5.1 is the content of the remainder of this section.

Equipped with this theorem, we will have a canonical relative orientation o� on W →
M1/r

� whenever � is a connected smooth graded graph. Furthermore, we can extend the

definition to the case where � is a smooth graded graph, but not necessarily connected,

by putting

o� = ��∈Conn(�)o�,

in which we use that the Witten bundle W on M1/r
� is canonically isomorphic to the

direct sum of the Witten bundles on the moduli spaces M1/r
� associated to � ∈ Conn(�).

The key point in the proof of Theorem 5.1 is Construction 5.6, which defines

an explicit frame for the Witten bundle of tuples ({ai}i∈[l], k), for k = k(a1, . . . ,al). By
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studying the properties of these frames and using compatibility relations we are able to

construct orientations in full generality and analyze their properties.

Remark 5.3. Theorem 5.1 determines a unique family of orientations, up to the

following ambiguity: if o0,B,{ai}i∈I is a family satisfying the conditions of the theorem,

then (−1)|B|−1o0,B,{ai}i∈I also satisfies these conditions; see Lemma 5.17 and Remark 5.18

below.

5.2 Extending the internal twists

Throughout this section, we write W0,k,�a for the Witten bundle on M1/r
0,k,�a for any tuple

�a = {a1, . . . ,al}.
Thus far, we have assumed that in the open r-spin moduli space M

1
r
0,k,{a1...,al}, the

internal twists satisfy ai ∈ {−1, 0, 1, . . . , r − 1}. However, when defining orientations,

it is useful to allow more general twists. In fact, there exists a smooth orientable

orbifold with corners M1/r
0,k,�a for any tuple of non-negative integers �a = {a1, . . . ,al},

parameterizing stable nodal marked orbifold Riemann surfaces with boundary together

with an orbifold line bundle S, an isomorphism

|S|⊗r ∼= ω|C| ⊗ O

⎛⎝−
∑
i∈I

ai[zi] −
∑
i∈I

ai[zi] −
∑
j∈B

(r − 2)[xj]

⎞⎠ ,

and a grading. Moreover, there is a Witten bundle on this moduli space, defined as

before.

The relationship between the Witten bundle with twist ai and twist ai + r was

observed by Jarvis–Kimura–Vaintrob [18] in the closed case, and the same is true in the

open theory.

Lemma 5.4. Let �a = {a1, . . . ,al} be a tuple of non-negative integers, and let �a′ = {a1 +
r,a2, . . . ,al}. Then there is an isomorphism

κ : M1/r
0,k,�a′ → M1/r

0,k,�a,

and the Witten bundles on M1/r
0,k,�a′ and M1/r

0,k,�a are related by a short exact sequence

0 → L̃ → W0,k,�a′ → κ∗W0,k,�a → 0,
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in which L̃ is an orbifold line bundle satisfying

L̃⊗r ∼= (
L∨
1

)⊗(a1+1) .

Proof. The isomorphism κ is given by sending the twisted r-spin structure S′ to

S := S′ ⊗ O
(
r[z1] + r[z1]

)
,

where [z1] and [z1] denote the orbifold divisors of the 1st internal marked point and its

conjugate, so that

|S| = |S′| ⊗ O
(
[z1] + [z1]

)
on |C|. If S ′ denotes the universal twisted r-spin structure on the universal curve C over

M1/r
0,k,�a′ and S := S ′ ⊗O

(
�z1 + �z1

)
for the divisors �z1 ,�z1 ⊆ C corresponding to z1 and

z1, then the short exact sequence

0 → |S ′| → |S| → |S|∣∣
�z1+�z1

→ 0

implies

0 → R0π∗
(
|S|∣∣

�z1+�z1

)
→ R1π∗|S ′| → R1π∗|S| → 0.

Taking φ̃-invariants part yields

0 → σ ∗
1 |S| →

(
R1π∗|S ′|

)
+ →

(
R1π∗|S|

)
+ → 0,

where σ1 is the section of |C| associated to the 1st internal marked point. The 1st bundle

in this sequence satisfies

(σ ∗
1 |S|)⊗r ∼= σ ∗

1

(
ω|π |,log

(
−

l∑
i=1

(ai + 1)�zi

))
∼= L

⊗(a1+1)
1 ,

since σ ∗
1ω|π |,log is trivial. Dualizing thus proves the claim. �
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5.3 Orientability of the Witten bundle

Before we show how to choose canonical orientations, we first confirm that the Witten

bundles are orientable. For this, recall the action of SB onM1/r
0,B,�a by permuting markings,

and note that this action lifts canonically to W0,k,�a.

Lemma 5.5. The bundles W0,k,{a1...,al} are orientable.

Moreover, suppose g ∈ SB preserves the component M1/r,π̂
0,B,�a , meaning that there

exists an integer h such that

g(π(i)) = π(i + h),

interpreted cyclically. Then, for any orientation o of W0,k,{a1...,al} → M1/r,π̂
0,B,�a , the permuta-

tion g acts with sign εh, where ε = εk = (−1)k−1. The action of g ∈ SI by permuting the

internal markings, which also lifts canonically to W0,k,{a1...,al}, is orientation preserving.

Proof. Suppose, first, that l ≥ 1 and k − 1 ≥ ∑
ai. Observe that

k − 1 ≡
∑

ai mod r.

There exists a (usually non-unique) tuple (ã1, . . . , ãl) with

ãi ≥ 0, ãi ≡ ai mod r,
∑

ãi = k − 1.

By Lemma 5.4, the bundles W := W0,k,{a1...,al} and W̃ := W0,k,{ã1...,ãl} differ by a bundle E

that is a direct sum of complex line bundles. Thus, one has

det(E) ⊗ det(W) ∼= det(W̃),

so, since E is canonically oriented, orientingW is equivalent to orienting W̃. Note that SB
and SI act with the trivial sign on E. We can thus reduce to the case where k− 1 = ∑

ai.

In this case, the Witten bundle is of real rank e = ∑
ai = k − 1. Since

the boundary of the base space does not affect the orientability of a bundle, W →
M

1
r
0,k,{a1...,al} is orientable precisely if W → M

1
r
0,k,{a1...,al} \ ∂M

1
r
0,k,{a1...,al} is orientable.

Furthermore, this is the case exactly if W is orientable on the moduli space M
1
r
0,k,{a1...,al}

of smooth graded r-spin disks, since compact strata of real codimension two do not

affect orientability. It is therefore enough to prove that the bundle W is orientable
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over each connected component M
1
r ,π̂
0,k,{a1,...,al} of M

1
r
0,k,{a1...,al} associated to an order

π : [k] → [k] with induced cyclic order π̂ .

The following gives explicit sections of W → M
1
r ,π̂
0,k,{a1,...,al} that form a basis in

any fiber.

Construction/Notation 5.6. Let � be a smooth graded r-spin disk. Identifying � with

the upper half plane, let

ξij = ξπ
ij = (xπ(j) − xπ(i))dw

(w − xπ(i))(w − xπ(j))
, i, j ∈ [k], ξj =

√−1(z̄j − zj)dw

(w − zj)(w − z̄j)
, j ∈ [l],

where
√−1 is the root in the upper half plane. Define sections

(σj)� = (σπ
j )� = (σπ

0,k,{a1,...,al};j)� =
⎛⎝(−1)r+1

∏
i∈[l]

ξ
ai
i

∏
i∈[k]

ξ−1
i(i+1)

ξ r1(1+j)

⎞⎠
1
r

∈ H0(�, |J|),

for j ∈ [k − 1], where k + 1 is taken to be 1. More precisely, inside the parentheses in the

above formula, a global section of

ω⊗r−1
|C| ⊗ O

⎛⎝ l∑
i=1

ai[zi] +
l∑

i=1

ai[zi] +
k∑

j=1

(r − 2)[xj]

⎞⎠ ∼= |J|⊗r

is written. This section is φ-invariant and positive on the arc from x1 to x1+j, with

respect to the canonical orientation. One can construct an rth root in the sense of a

global section σj of |J| whose rth power is mapped to the expression in parentheses.

Indeed, this can be done locally away from special points, and the order of zeroes and

poles at special points guarantee that the construction extends globally and univalently.

When r is odd, a real rth root is unique. When r is even, there are two real rth roots, one

of which agrees with the grading on the arc from x1 to x1+j and the other of which

agrees on the complementary arc; we choose σj to be the one that agrees on the arc from

x1 to x1+j. �

We claim that, for any � ∈ M
1
r π̂

0,k,{a1,...,al}, the sections (σπ
j )� for j ∈ [k − 1] form

a basis of the fiber of W over �. To see this, observe first that the forms ξj and ξij are

PSL2(R)invariant and conjugation invariant. It is immediate that for all j, σj is nowhere

vanishing on M
1
r ,π̂
0,k,{a1,...,al}. As the number of those sections is k− 1, it is enough to show
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that they are linearly independent. But this is clear, since (σj)� has poles only at xπ(1)

and xπ(1+j), and by calculating coefficients of poles (e.g., at xπ(i) for i ∈ {2, . . . , k}), we see

that if

∑
cj(σj)� = 0,

then cj = 0 for all j ∈ [k − 1]. Thus, W → M
1
r ,π̂
0,k,{a1,...,al} is orientable.

Remark 5.7. Let (�, S, [w]) be a graded spin disk as above and (�′, S′, [w′]) =
(�, S, [−w]) the same disk with opposite grading. The two disks represent the same

moduli point, and we would expect that the orientation described above will be the

same, whether we calculate it at the fiber of � or of �′. As a sanity check we shall

verify it directly. Recall that the isomorphism α between (�, S, [w]) and (�′, S′, [w′]) is

realized as the identity on the surface and acts by negation on the bundle and grading.

The induced map on the fibers of the Witten bundles H0(J) ∼= H0(J ′) is given by sending

a section s′ ∈ H0(J ′) to α∗(s′) = −s′. Since the grading is also flipped, it is evident

that α∗(σ ′
j ) = σj, where σ ′

j is defined via Construction 5.6 applied to �′. Thus, the

isomorphism α takes the constructed orientation of the Witten fiber at �′ to that of the

Witten bundle at �, as expected (In higher genus, changing the grading of one boundary

is not an isomorphism. In that case, the orientation may change. For example, in [28],

which deals with the all-genus r = 2 case, it is proven that changing the grading of a

boundary with m boundary marking changes the canonical orientation of the moduli

space by (−1)m−1; see also [29, Section 6.2].).

The next case is l = 0. Recall from equation (3.3) that W0,k,{0} is the pullback of

W0,k,∅ by the forgetful map M0,k,{0} → M0,k,∅. The fiber of this forgetful map is an open

disk, and in particular, it is contractible. Thus, W0,k,∅ is orientable exactly if W0,k,{0} is
orientable, and the latter is orientable by the 1st case.

The last case is when l ≥ 1 and k−1 <
∑

ai. Let k
′ = 1+∑ai, so thatW0,k′,{a1,...,al}

is orientable by the 1st case. Consider the boundary stratum M1/r
� defined by a graph �

with two open vertices v1 and v2, in which v1 has k′ − k boundary tails and no internal

tails, while v2 has the rest. Note that the half-edge h1 of v1 has tw(h1) = alt(h1) = 0. By

Proposition 4.7 and equation (3.3), we have an identification

i∗�W0,k′,{a1,...,al} ∼= W0,k′−k+1,∅ �W0,k,{a1,...,al}.
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Hence,

det(W0,k′,{a1,...,al})|M�
� det(W0,k′−k+1,∅) � det(W0,k,{a1,...,al}).

As W0,k′,{a1,...,al} and W0,k′−k+1,∅ are orientable by the 1st two steps, W0,k,{a1,...,al} is also

orientable.

Regarding the signs of actions of SB and SI , consider first the case where l = 1.

In this situation, k ≡ 1 + a1 mod r. As noted above, the bundles W0,k,a1 and W0,k,{k−1}
differ by a direct sum of complex line bundles by Lemma 5.4, and this decomposition

is invariant under SB. The claim in this case follows, then, if we prove it for the bundle

W0,k,{k−1}. Moreover, it suffices to prove the lemma for h = −1, so we assume this in

what follows.

Observe that, since the bundle is orientable and all components of the moduli

space are isomorphic, the claim can be verified for any specific component by fixing

any orientation o for W over this component and comparing og·� to g∗o� , where g · � is

obtained from � by renaming markings according to g and � is an arbitrary point in

the specified component.

Using these comments, fix a generic smooth � and write �′ = g ·�. Let oπ be the

orientation determined by the ordered basis (σπ
1 , . . . , σ

π
k−1). Comparing oπ

g·� with g∗oπ
� is

equivalent to calculating the ratio of oπ to og·π at the same point of the moduli space.

To this end, first observe that the residues of (σπ
j )� at xπ(1) and xπ(1+j) are real and

of opposite sign. The sign of the residue at xπ(1) is independent of j, and moreover, it

equals the sign of the residue of (σπ ′
j )� at xπ ′(1) for π ′ = g · π . Thus, the coordinate

change between the ordered bases (e1, . . . , ek−1) = (σπ
1 , . . . , σ

π
k−1)g·� , (e′

1, . . . , e
′
k−1) =

(σπ ′
1 , . . . , σπ ′

k−1)g·� is given by

e′
1 = −α1e1 + β1e2, . . . , e

′
k−2 = −αk−2e1 + βk−2ek−1, e

′
k−1 = −αk−1e1,

where αi,βi are positive numbers depending on �. Hence, the induced sign on the

orientation is equal to the sign of
∏

(−αi), which is (−1)k−1.

The case l = 0 follows by the same argument as in the proof of orientability

above: we first add an internal point with twist zero, and then we reduce to the

case l = 1.

Finally, for l > 1, we compare the two orientations at a generic point of M�,

where � is a graph with two vertices, a closed vertex v1 with all internal tails and an

open vertex v2 with only boundary tails. By Proposition 4.7, we have μ∗W|M�
∼= q∗(Wv1�
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Wv2), and the decomposition is invariant under the actions of SB and SI . Now, μ∗ and q∗

are complex maps and hence preserve signs. Furthermore, Wv1 is canonically oriented

as a complex bundle, g ∈ SB acts on it trivially, and g ∈ SI (which preserves twists) acts

on it as a complex isomorphism, hence preserves sign. Thus, the sign induced by g on

the orientation of W0,k,{a1,...,al} (or, equivalently, on the orientation of W|M�
) is the sign

it induces on the orientation of Wv2 . It is 1 for g ∈ SI , and it equals (−1)k−1 for g ∈ SB by

the 1st case.

5.4 Choosing canonical orientations

Notation 5.8. Denote by �0,k,{a1...,al} the connected graded smooth graph with a single

vertex v, boundary tails marked by [k], and internal tails marked [l], such that the ith

internal tail has twist ai.

Throughout what follows, we continue with the notation from the proof of Lemma 5.5.

Definition 5.9. Fix a set of twists �a of size l and an integer k ≥ 0. Let {oπ } be a family

of orientations, one for each W → Mπ̂ ,1/r
0,B,�a , in which π runs over all orderings of B and B

runs over all sets of size k. We say that the family {oπ } is covariant if, whenever f B : B →
B′ and f I : I → I ′ are bijections such that f I preserves twists, we have oπ

0,B,�a = F∗of
B◦π

0,B′,�a,
where F : (W → M1/r

0,B,{ai}i∈I ) → (W → M1/r
0,B′,{ai}i∈I′ ) is the induced map.

Remark 5.10. By the 2nd part of Lemma 5.5, whenever {oπ } is a covariant family and

g ∈ SB cyclically satisfies g(π(i)) = π(i+h) for some integer h, we have the equality oπ =
εhog·π , where ε = εk = (−1)k−1. Thus, associated to any multiset (�a,k) are exactly two

covariant orientations, determined by choosing oπ for a single π to be any orientation

of the Witten bundle of M1/r,π̂
0,k,�a , and then extending covariantly.

Definition 5.11. Suppose ai ≤ r − 1 for each i and k − 1 = ∑
i∈[l] ai. When k > 1,

for an order π of the boundary marked points, denote by oπ
0,k,�a the orientation of W1/r,π̂

0,k,�a
defined using the ordered basis σπ = (σπ

1 , . . . , σ
π
k−1) on the smooth locus. For any I of size

l and B of size k = 1 +∑
i∈I ai, this uniquely defines a covariant family of orientations

{oπ
0,B,{ai}i∈I }π . When k = 1 and hence all ai = 0, the Witten bundle is zero-dimensional; in

this case, define its orientations {o0,{b},{0}i∈I } to be the positive orientations.

In case l = 0, �a is the empty vector, and k = r + 1, Remark 5.10 implies that

there are exactly two covariant families, induced by the two choices of orientation of
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the Witten bundle on the space M
1
r
0,B,∅ with |B| = r + 1. Fix one of these orientations, to

be chosen later, and denote it by or+1.

Now, let l, k ≥ 0, and fix a1, . . . ,al ∈ {0, . . . , r − 1} with M
1
r
0,k,{a1...,al} �= ∅. Suppose

we have a covariant family of orientations with twists {a1, . . . ,al} and B of size k. We

now show how to induce, given or+1 as above, a covariant family of orientations with

the same twists but for B′ of size k′ := k ± r, assuming k′ is non-negative.

Suppose, first, that k′ = k − r. Let B′ be a set of size k − r, and let π ′ be an order

of B′. Let B be a set of size k containing B′, and let π be an order of B that extends π ′,
such that the 1st k − r element of B with respect to π are those of B′.

Let � be a graph with two open vertices and no closed vertices, for which there

is one vertex v0 that contains all the internal tails, all the boundary tails marked by

B′, and one half-edge h0. The other vertex, v1, contains the remaining r boundary tails

marked by B \ B′ and the half-edge σ1h0. By construction, tw(h0) = alt(h0) = 0. Observe

that in M1/r,π̂
� , the boundary marked points on the component corresponding to v0 are

cyclically ordered by π̂ ′. TheWitten bundleW� onM1/r
� can be identified withWv0�Wv1 ,

so we have an identification

det(W�) = det(Wv0) � det(Wv1).

Define an orientation ind�,π→π ′oπ on W → Mπ̂ ′, 1r
0,B′,{ai}i∈[l] as the unique orientation

satisfying

oπ |W
M1/r,π̂

�

= (ind�,π→π ′oπ ) � o
π1
r+1,

where π1 is the order on the half edges of v1 induced from π , starting from σ1h0.

This procedure defines oπ ′
uniquely from oπ . The construction is easily seen to

be independent of choices and yields a covariant family. Moreover, inverting the steps

allows us to define oπ uniquely from oπ ′
, and if the latter comes from a covariant family,

so will the former. Thus, the case k′ = k + r is also treated.

Therefore, given twists {ai}i∈I , we can uniquely define a covariant family of

orientations oπ for any set B such that M1/r
0,B,�a �= ∅ by inducing the orientations

iteratively, starting from the covariant family of Definition 5.11 (the case k = ∑
ai + 1)

or, when I = ∅, from or+1.
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Definition 5.12. Given or+1 and the orientations of Definition 5.11, define {oπ } as the

unique covariant family of orientations induced by the above procedure from the family

{oπ
0,B,{ai}i∈I }π , defined when k − 1 = ∑

ai.

Observations 5.13. If I ⊆ I ′ and ai = 0 for all i ∈ I ′, then oπ
0,B,{ai}i∈I′ = For∗

I ′\Io
π
0,B,{ai}i∈I′ .

Indeed, the case |B| − 1 = ∑
ai follows from the definitions, while the general case

follows easily by noting that the forgetful map behaves well with respect to the

induction procedure.

5.5 Properties of the orientations

The family of orientations in Definition 5.12 respects the decomposition properties of

the Witten bundle.

To make this precise, we first state two lemmas, whose proofs are postponed to

the next section. We first fix decompositions I = I1 � I2, B = B1 � B2, and k = k1 + k2
such that

k1 − 1 ≡
∑
i∈I1

ai mod r, k2 ≡
∑
i∈I2

ai mod r.

Let � be a graph with two open vertices, v1 and v2, connected by an edge e, in which the

vertex vi has internal tails labeled by Ii and ki boundary tails labeled by Bi. If hi are the

half edges of vi, then a simple calculation shows that

tw(h1) = alt(h1) = 0.

Let π be an order in which the elements of B1 are consecutive and come before the

elements of B2. Consider � ∈ Mπ̂
� , where the normalization of � has components �1 and

�2 corresponding to v1 and v2, respectively. Let π1 be the restriction of π to the points

of �1, and let π2 be the restriction to points of �2 but with the half-node xh2 added as

the 1st point.

On Mπ̂
� , the bundle W� is again identified with Wv1 � Wv2 , so we have the

identification

det(W�) = det(Wv1) � det(Wv2), (5.5)
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and this is respected by the orientations in Definition 5.12. That is, we have the

following statement.

Lemma 5.14. For � as above, the orientation oπ agrees with o
π1
0,B1,I1

� o
π2
0,{h2}∪B2,I2 under

the isomorphism (5.5).

Similarly, the family of orientations in Definition 5.12 satisfies a decomposition

property along internal nodes. To specify this, write

mc({ai}i∈I) =
∑

ai − (r − 2) + ((r − 2 −∑
ai) (modr)′)

r
,

where x (modr)′ is the unique element of {−1, 0, . . . , r − 2} congruent to x modulo r.

Now, let � be a graph with two vertices, an open vertex vo and a closed vertex

vc. By Proposition 4.7 and Remark 5.2, the Witten bundle W� on M1/r
� satisfies

det(W�) ∼= (q ◦ μ−1)∗
(
det(Wvo) � det(Wvc )

)
, (5.6)

and we have the following.

Lemma 5.15. There exists δ = ±1, depending only on the choice of or+1, such that

for any �, vo, and vc as above and any order π , the orientation oπ |Mπ̂
�
agrees with

δm
c({ai}i∈IC )

oπ
vo � ovc under the isomorphism (5.6), where ovc is the canonical complex

orientation and IC are the labels of vc. Moreover, changing or+1 to the opposite

orientation changes δ to −δ.

Definition 5.16. Define or+1 to be the unique covariant family of orientations of W →
M

1
r
0,r+1,∅ for which the δ = 1 in Lemma 5.15. This induces orientations oπ

0,B,�a on the

Witten bundle for all B and �a by Definition 5.12.

We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Let õ
π
0,B,�a be the orientations on the moduli spaces M

1
r
0,B,�a,

described explicitly in Notation 3.15, and let oπ
0,B,�a be the orientations on the Witten
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bundle described in Definition 5.16. By Lemma 5.14 and Proposition 3.13, the relative

orientation

o0,B,{ai}i∈I = õ
π
0,B,{ai}i∈I ⊗ oπ

0,B,{ai}i∈I (5.7)

for the Witten bundle on M
1
r ,π̂
0,B,{ai}i∈I is independent of the choice of π . The same

argument, together with Remark 5.10, shows the invariance property.

For the 2nd item, first note that, under the notation of Lemma 5.14 and using

item (2) of Proposition 3.13, we may write

o
π ′
1

v1 = oh1 � o
π1
v′
1
,

where π ′
1 is the extension of π1 defined by writing h1 as the last element, and

the pullback of o
π1
v′
1
is with respect to the map that forgets the half-node nh1 . Note

also that

dim
R
M1/r

v′
1

≡ |B1| − 1 mod 2, rank
R
Wv2 ≡ |B2| mod 2.

From here, the 2nd item is a consequence of Lemma 5.14 and Lemma 3.16, where the

sign (−1)(|B1|−1)|B2| disappears when commuting õ
π2
v2 with o

π1
v′
1
.

The last item is a direct consequence of Lemmas 5.15 and 3.16. �

Lemma 5.17. The properties of Theorem 5.1 characterize precisely two families of

orientations: the family {o0,B,{ai}i∈I }B,{ai}i∈I and the family {(−1)|B|−1o0,B,{ai}i∈I }B,{ai}i∈I .

Proof. Suppose that {o′
0,B,{ai}i∈I }B,{ai}i∈I is a different family of orientations satisfying

the requirements of Theorem 5.1. Let δB, �ai ∈ {±1} be the ratio of o′
0,B,{ai}i∈I to o0,B,{ai}i∈I .

Then item (i) shows that δB, �ai = δ|B|, �ai . Item (iii) shows that δ|B|, �ai = δ|B|,{∑ai mod r}. Since∑
ai = |B|−1 mod r, we denote δ|B|,{∑ai mod r} by δ|B|. Finally, item (ii) shows that δa+b =

δa+1δb. Thus, δ1 = 0 and δk = δk−1
2 , where δ2 ∈ ±1. The claim follows. �

Remark 5.18. This ambiguity from Lemma 5.17 is killed by specifying the orientation

of Witten’s bundle for a single real one-dimensional moduli space: the additional

requirement is that if we orientMπ̂

0,2,{1} for π = (1, 2) by õ
π , then the bundleW → Mπ̂

0,2,{1}
is oriented so that sections that are positive with respect to the grading on the arc from

x1 to x2.
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5.6 Proof of Lemmas 5.14 and 5.15

We now return to the proofs of the two lemmas from the previous section.

Proof of Lemma 5.14. We first treat the case

k1 − 1 =
∑
i∈I1

ai, k2 =
∑
i∈I2

a2.

For convenience, assume that B = [k], that B1 = [k1], and that π is the standard order.

We show that if j < k1, then up to rescaling by a positive function, the jth basis element

of σπ converges to σ
π1
0,k1,{ai}i∈I1 ;j as one approaches a point in M1/r,π̂

� , and that if j ≥ k1, it

converges to σ
π1
0,1+k2,{ai}i∈I2 ;j−k1+1. This verification implies the lemma.

We assume that k1, k2 > 0, since otherwise, the result is straightforward. Recall

that a vector u ∈ (W0,k,�a)� for � ∈ M1/r,π̂
� can be written as u = u1�u2 with ui ∈ (Wvi)�i

.

To calculate a coordinate expression for ui, let {�t}t∈(0,1/2) be a path in M
1
r
0,k,{a1...,al} such

that limt→0 �t = �. One can model (�t)t>0 on the upper half plane, preserving the

complex orientation, such that all markings of �3−i tend to 0 as t → 0 but all markings

of �i tend to finite, nonzero limits. The resulting marked upper half plane is a model for

�i in which xhi is mapped to the origin. If the vectors ut ∈ W�t
converge to u, then their

expressions in the coordinates induced from the upper half-plane model converge to the

coordinate expression for ui. Moreover, as t → 0, the ratio between any two markings

going to zero is bounded away from zero, since otherwise, � ∈ M1/r
� \ M1/r

� .

Suppose, first, that j ≥ k1, so that 1 + j is a marked point of �2. Recall that

σπ
j =

⎛⎝(−1)r+1
∏
i∈[l]

ξ
ai
i

∏
i∈[k]

ξ−1
i(i+1)

ξ r1(1+j)

⎞⎠
1
r

and we have

σ
π2
1+j−k1

=
⎛⎝(−1)r+1

∏
i∈I2

ξ
ai
i

∏
i∈[k2+1]

(ξ
π2
i(i+1)

)−1(ξ
π2
1(2+j−k1)

)r

⎞⎠
1
r

,

where xπ2(1) = xh2 . Then, by the discussion above,

(∏
h∈[k1−1](xπ(h+1) − xπ(h))∏
h∈I1(

√−1(z̄h − zh))ah

) 1
r

(σπ
j )�t

→ σ
π2
j .
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The function in the above by which we multiply (σπ
j )�t

is positive. Moreover, for t close

enough to zero, the ratios between any two factors xπ(h+1)−xπ(h) and z̄h−zh are bounded,

hence they tend to zero uniformly. In fact, since
∑

h∈I1 ah = k1 − 1, the expression

∏
h∈[k1−1](xπ(h+1) − xπ(h))∏
h∈I1(

√−1(z̄h − zh))ah

has a nonzero limit. Calculating the same expression but in a gauge fixing for which

the points of �2 approach zero as t → 0, while those of �1 have distinct finite images,

the same argument shows that the limiting section, when projected to Wv1 , has zero of

order 1
r .

Suppose, now, that j < k1, so that 1 + j is a marked point of �1. Recall that

σ
π1
j =

⎛⎝(−1)r+1
∏
i∈I1

ξ
ai
i

∏
i∈[k1]

(ξ
π1
i(i+1)

)−1(ξ
π1
1(1+j))

r

⎞⎠
1
r

.

Write xh1 for the half node of �1. Again, we work with the upper half-plane model for

�1, where xh1 is mapped to the origin and the orientation of the image of ∂�1 agrees

with the standard real orientation of R. Consider again a path of smooth surfaces �t,

where t ∈ (0, 12 ), that converges to �. Choose ij ∈ Ij and write

Ci1i2 = − (z̄i1 − zi1)(z̄i2 − zi2)

(zi1 − zi2)(z̄i1 − z̄i2)
.

This is a well-defined, positive function on M
1
r
0,k,{a1...,al}, so it has a positive rth root;

furthermore, it vanishes at M�. The same considerations as above reveal that the limit

of
σπ
j (�t)

C1/r
i1i2

, when projected on Wv1 , is nonzero, but its projection on Wv2 vanishes to order

1 − 1/r. Moreover, the projection of the limit on Wv1 has the zero profile of σ
π1
j , hence

they agree up to multiplication by a real function, by degree reasons and involution

invariance. This function is positive, since both sections are positive on the arc from x1
to x1+j.

We now turn to the general case. Write

m1 = k1 − 1 −∑
i∈I1 ai

r
, m2 = k2 −∑

i∈I2 ai

r
.
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The proof is by induction on m = |m1| + |m2|. The case m = 0 has been treated above.

Note that, perhaps by applying Observation 5.13, wemay assume I1 and I2 are nonempty.

Suppose that the claim has been proven for m − 1, and assume m2 < 0.

Let B′
2 ⊇ B2 be a set of size k′

2 = |B2| + r, and write B′ = B1 ∪ B′
2. Consider the

graph �′ obtained by attaching to � an open vertex, connected to v2 by an edge whose

half-edge h in v2 has tw(h) = alt(h) = 0, and that has r boundary tails labeled by B′ \ B.

Let π ′ be an order on B′ extending π , such that the last elements are those of B\B′ and are

ordered so that tails belonging to the same open vertex are labeled consecutively. Let �2

be the component of v2 in detache(�
′). By the construction of the induced orientation,

we have

oπ ′ |
Mπ̂ ′

�′
= oπ |Mπ̂

�

� o′
r+1, (5.8)

where o′
r+1 is the orientation for the Witten bundle of the new component with respect

to the order induced from π ′ after putting the node as the 1st element. On the other

hand, by the induction assumption, we have

oπ ′ |
Mπ̂ ′

�′
= o

π1
0,B1,I1

� o
π ′
2

0,{h2}∪B′
2,I2

, (5.9)

where π ′
2 is the restriction of π2 to B′

2. By the construction of the induced orientation,

this time with respect to M1/r,π ′
2

0,{h2}∪B′
2,{ai}i∈I2

, we have

oπ ′
2 |
Mπ̂ ′

2
�2

= oπ2 � o′
r+1. (5.10)

Putting these observations together, we see that

oπ |Mπ̂
�

= o
π1
0,B1,I1

� o
π2
0,{h2}∪B2,I2 . (5.11)

The case m2 > 0 is treated similarly to the above, so we omit it. The remaining

case is m2 = 0. In this case, m1 �= 0, and the proof is similar, so we merely remark on

the changes. First, we work with the graph �′ obtained from � by attaching a new vertex

with r boundary tails, no internal tails, and one legal half edge of twist r − 2 to v1. We

choose the order π ′ so that boundary tails of v1 come first and those of v2 come last.

If we let e1 be the edge of v2 and e2 the edge of the new vertex, then we compare the

orientation expressions forW → Mπ̂ ′
�′ obtained in two ways. First, we induce orientation
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from W → Mπ̂ ′
de1,e2�′ to W → Mπ̂ ′

de1�′ via Ind, and then to W → Mπ̂ ′
�′ , to obtain (using the

above notation)

oπ ′ |
Mπ̂ ′

�′
= ε1(−1)rk2oπ1 � oπ2 � o′

r+1.

Here, ε1 is the sign appearing from inducing the orientation from W → Mπ̂ ′
de1�′ to W →

Mπ̂ ′
�′ and (−1)rk2 comes from the fact that, in π ′, the tails of the new vertex are not last,

so we have to perform a shift in π ′ in order to calculate the sign induced using Ind. Using

Lemma 5.5, we see that the total added sign is (−1)rk2 . Next, we induce orientation from

W → Mπ̂ ′
de1,e2�′ to W → Mπ̂ ′

de2�′ , and then, via Ind, to W → Mπ̂ ′
�′ . The result is

oπ ′ |
Mπ̂ ′

�′
= ε2o

π1 � o′
r+1 � oπ2 = ε2(−1)rk2oπ1 � oπ2 � o′

r+1,

in which ε2 is the sign that appears from inducing the orientation to W → Mπ̂ ′
de2�′

and the sign (−1)rk2 comes from changing the order of oπ2 and o′
r+1. One of ε1 or ε2

is determined by induction to be 1, so the other is also 1. The case m2 = 0 is thus

proven. �

Proof of Lemma 5.15. Write

oπ |Mπ̂
�

= επ{ai}i∈IC ,{ai}i∈IO ,Bo
π
vo � ovc ,

where IO are the labels in the open part and IC in the closed part. By covariance,

επ{ai}i∈IC ,{ai}i∈IO ,B is independent of π and can be written as ε{ai}i∈IC ,{ai}i∈IO ,|B|. We prove the

lemma by showing the following:

(1) ε{ai}i∈IC ,{ai}i∈IO ,B = ε{ai}i∈IC , meaning that it depends only on {ai}i∈IC .
(2) If IC = I1 ∪ I2 where neither I1 nor I2 is empty and |I1| ≥ 2, then

ε{ai}i∈IC = ε{ai}i∈I1 ε{ai}i∈I2∪{∑i∈I1 ai mod r}.

Thus, ε is fully determined by its value on pairs of elements.

(3) If a + b < r, then ε{a,b} = 1.

(4) ε{a,b+c(modr)}ε{b,c} = ε{a+b(modr),c}ε{a,b}, and when a < r − 1 but a + b ≥ r

ε{a,b} = ε{1,a+b−r}ε{a,b} = ε{1+a,b}ε{1,a} = ε{1+a,b},
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so that for r ≤ a + b ≤ 2r − 2, ε{a,b} = δ ∈ {±1} is a constant.

(5) ε{ai}i∈IC = δm
c({ai}i∈IC ).

For the 1st item, it is enough to show that ε{ai}i∈IC ,{ai}i∈IO ,B = ε{ai}i∈IC ,{ai}i∈I′O ,B′ ,

where B ⊆ B′ and IO ⊆ I
′O. To show this, consider the graph �′ consisting of two open

vertices, vo and v′, and a closed vertex, where the open vertices are connected by an edge

e′ whose half-edge h in vo has tw(h) = alt(h) = 0, and the component of vo in detache′(�′)
is �. Denote the internal edge of � (and of �′) by e. Let π ′ be an order extending π to B′

such that the 1st elements are those of B. By abuse of notation, denote also by π ′ the
restriction of π to B′ \B. We calculate the orientation of W|M�′ in two ways. First, by the

definition of ε applied to the moduli space for the graph de′� obtained by smoothing the

edge e′ of �′, we have

oπ ′ |
Mπ̂ ′

de′�′
= ε{ai}i∈IC ,{ai}i∈IO′ ,B′oπ ′

0,B′,{ai}i∈I′O∪{∑
i∈IC ai (mod r)}

� ovc .

Applying Lemma 5.14 to M
1
r
0,B′,{ai}i∈I′O∪{∑i∈IC ai mod r} gives

oπ ′ |
Mπ̂ ′

�′
= ε{ai}i∈IC ,{ai}i∈IO′ ,B′oπ

vo � oπ ′
v′ � ovc .

On the other hand, by Lemma 5.14 applied to M
1
r
0,B′,{ai}i∈IC∪I′O

, we have

oπ ′ |
Mπ̂ ′

de�′
= oπ

0,B,{ai}i∈IC∪IO
� oπ ′

v′ .

The claim now follows since, by the definition of ε, we have

oπ ′ |
Mπ̂ ′

�′
= ε{ai}i∈IC ,{ai}i∈IO ,Bo

π
vo � ovc � oπ ′

v′ .

For the 2nd item, first note that if � is a connected, closed r-spin graph

consisting of two vertices v1 and v2 and an edge between them, then

oπ |M�
= ov1 � ov2 ,

where all the orientations in the equation are the canonical complex orientations.

Consider a graph �′ with two internal closed vertices v1 and v2 and an open vertex
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vo, where vo is connected to v2 by e2 and v2 is connected to v1 by e1. We again calculate

the orientation of W → M�′ in two ways. First, by the definition of ε,

oπ |Mπ̂
de1�

= ε{ai}i∈IC o
π
vo � ovc ,

where vc is the closed vertex of de1� and IC are the labels of its tails. Then

oπ |Mπ̂
�

= ε{ai}i∈IC o
π
vo � ov1 � ov2 .

On the other hand, by the definition of ε,

oπ |Mπ̂
de2�

= ε{ai}i∈I1 � oπ

v′o � ov1 ,

where v
′o is the open vertex of de2� and Ii are the labels of the tails on vi. Again by the

definition of ε,

oπ |Mπ̂
�

= ε{ai}i∈I1 ε{ai}i∈I2∪{∑i∈I1 ai (mod r)}oπ
vo � ov1 � ov2 ,

as claimed.

For the 3rd item, we use Observation 4.9. Let I = [l] and B = [k] and assume that

k − 1 = ∑
i∈[l] ai. Suppose I ′ ⊆ [l] is such that

∑
i∈I ′ ai ≤ r − 1, and let � be the graph with

a closed vertex vc containing exactly the tails labeled I ′ and an internal edge to the open

vertex vo with internal tails labeled by [l] \ I ′ and boundary tails labeled [k]. We claim,

in this situation, that the two orientations oπ |Mπ̂

�

and oπ
0,k,{ai}i∈[l]\I′∪{∑ai}i∈I′ on W → Mπ

�

agree (where for convenience we omit the pullback maps from the notation).

To prove this claim, write a = ∑
i∈I ′ ai, and let σj = σπ

0,k,{ai}i∈[l];j and σ ′
j =

σπ
0,k,{ai}i∈[l]\I′∪{a};j. Then it is a direct computation to verify that, when �′ → � ∈ Mπ

� ,

the section (σj)�′ converges to a section (σ̂j)� of W� that is the pullback of σ ′
j . Indeed,

denoting by zho the half node in the disk component of �, the projection to Wvo of the

limit of (σj)�′ is

⎛⎝(√−1(z̄ho − zho)dw

(w − zho)(w − z̄ho)

)a ∏
h∈[l]\I ′

ξ
ah/r
h

∏
h∈[k]

ξ−1
h(h+1)

ξ r1(1+j)

⎞⎠
1
r

,

as claimed. Thanks to the 1st item, this claim implies the 3rd item.
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The 4th item is a direct consequence of the 2nd item, by partitioning the set

{a, b, c} in two different ways. Its 2nd part uses the 3rd item, applied twice to {1,a,b}.
The last item follows by induction on |IC| ≥ 2. The 3rd and 4th items serve as the

base case. Suppose, then, that we have shown the claim for |IC| = n, and let |IC| = n+ 1.

Write IC = I1 ∪ I2 with I2 = {a,b}, and write c = a + b mod r. Then

ε{ai}i∈IC = ε{ai}i∈I1∪{c}εa,b = (−1)p,

where the power p is given by

p =c +∑
ai − (r − 2) + (r − 2 − c −∑

i∈I1 ai (modr)′)
r

+ a + b − (r − 2) + (r − 2 − a − b)(modr)′

r
.

The induction now follows from the definition of mc and the two equations

r − 2 − c −
∑
i∈I1

ai (modr)′ = r − 2 −
∑
i∈IC

ai (modr)′,

c + (r − 2 − a − b)(modr)′ = r − 2.

The “moreover” statement of the lemma is straightforward from the definitions.

Indeed, when k = 1+∑ai, the orientation is defined without or+1, so it does not change

when or+1 changes. For general k′, the construction of orientations in Definition 5.12

uses the map indk→k′ , and it is immediate from the definition of indk→k′ that changing

or+1 changes the orientation by a factor of (−1)
k′−∑i∈I ai−1

r . The claim now follows from

noting that

∑
i∈I ai − k′ + 1

r
= mc ({ai}i∈IC

)+
{∑

i∈IC ai (modr)
}+∑

i∈IO ai − k′ + 1

r
.

�
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