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We lay the foundation for a version of r-spin theory in genus zero for Riemann surfaces
with boundary. In particular, we define the notion of r-spin disks, their moduli space,
and the Witten bundle; we show that the moduli space is a compact smooth orientable
orbifold with corners, and we prove that the Witten bundle is canonically relatively
oriented relative to the moduli space. In the sequel to this paper, we use these con-
structions to define open r-spin intersection theory and relate it to the Gelfand-Dickey

hierarchy, thus providing an analog of Witten's r-spin conjecture in the open setting.

1 Introduction

On a smooth marked curve (C; z,,...,z,), an r-spin structure is a line bundle S together

with an isomorphism

i=1
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2 A. Buryak et al.

where a; € {0,1,...,r — 1}. There is a natural compactification Mgly,/{,;zl,..‘,an} of the
moduli space of r-spin structures on smooth curves, and this space admits a virtual
fundamental class ¢y, known as Witten's class. In genus zero, Witten's class is
defined by

cy = e((R'n,S)), (1.1)

where 7 : C — M(l)/ {’:11,..‘,an} is the universal curve and S is the universal r-spin
structure. In higher genus, on the other hand, Rln*S may not be a vector bundle, and
there are several (all much more intricate) versions of the definition of Witten's class
[6, 7, 13, 21, 25].

Given any of these definitions, one defines the closed r-spin intersection

numbers by

a an\i.c . 1- d dn
<Td11 "'Td:z>g = | Cw Ny YT (1.2)
glay,...an}
—1 .
where ¥q,..., ¥, € H%( g,/{ral,...,a,,}) are the 1st Chern classes of the cotangent line

bundles at the n marked points. This theory has received a great deal of attention
in recent years; for example, it led to a proof of a conjecturally complete set of
tautological relations on ﬂgln [23], and it is a special case of Fan-Jarvis—Ruan-Witten
theory [13] as well as the gauged linear sigma model [14]. For our purposes, perhaps
the most interesting feature of r-spin theory was proven by Faber-Shadrin-Zvonkine
[12]: after a simple change of variables, the generating function of the closed r-spin
intersection numbers becomes a tau function of the rth Gelfand-Dickey hierarchy. This
statement generalizes Witten's celebrated conjecture (proven by Kontsevich) regarding
the generating function of ¢-integrals on 'A_/lg,n'

A different direction in which the intersection theory of M, ,, can be generalized
is the consideration of Riemann surfaces with boundary. This work was undertaken by
Pandharipande, Solomon, and the 3rd author in [24], in which a moduli space MOM
was constructed that parameterizes tuples (X;x;,...,Xx;;2;,...,2;) where X is a stable
disk, x; € 02 are boundary marked points, and z; € ¥ \ 9% are internal marked points.
The authors also constructed intersection numbers on M, ; that can be viewed as
integrals of ¢ -classes at the internal marked points. This construction was extended
in [28] to all genera, yielding a generating function F° of open intersection numbers.

In order to define the extension, Solomon and the 3rd author introduced graded
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Open r-Spin Theory I: Foundations 3

2-spin structures and proved that the moduli space of 2-spin surfaces with boundary is
canonically oriented. The open analog of Witten's conjecture was proved by the 1st and
3rd authors in [2, 5, 29], relating exp(F°) to the wave function of the KdV hierarchy.
Combining r-spin theory with open theory, one might hope to define open r-spin
theory and generalize Witten's conjecture to this setting. In order to do so even in genus
zero, though, one first must define an appropriate open r-spin moduli space m(l),/,:,{ah__qal}
and an open analog of Witten's bundle (R!x,S)". We carry out the construction of such

a moduli space in this paper, referring to its objects as graded r-spin disks.

1.1 Moduli space of graded r-spin disks

Graded r-spin disks are defined, roughly, as follows. Let C be an orbifold curve equipped
with an involution ¢ : C — C that realizes the coarse underlying curve |C| as a union of
two Riemann surfaces ¥ and X (where X is obtained from ¥ by reversing the complex

structure) glued along their common boundary:
ICl = 2 Uyg =.

Let z;,...,2z; € £ \ 3% be a collection of internal marked points, let z; := ¢(z;) € < be
their conjugates, and let x;,...,x; € 9% be a collection of boundary marked points. On
such a curve, a graded r-spin structure with twists a,, ..., a; is an orbifold line bundle

S on C together with an isomorphism

1 l k
SIET = i @0 [ =D ajlz] — > alz] - > (r — 2)lx]]
i=1 i=1

j=1

on the coarse underlying curve |C|, an anti-holomorphic involution ¢ : S — S lifting ¢,
and a certain orientation of (S|az\{xj})¢: which we refer to as a grading. In what follows,
we prove that there exists a moduli space M}){,;{amal} of graded r-spin disks with twists
a,...,a; and that this moduli space is a compact, orientable, effective, smooth orbifold
with corners.

On /\_/l(lJ,/I:,{al,...,al}' there is an open Witten bundle, which is a real vector bundle,

defined roughly as

W= R7.(S' ® w,)), = (R'7,S)Y,
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"

where “+" denotes the space of ¢-invariant sections and “—” the space of ¢-anti-
invariant sections. There are also cotangent line bundles L, ...,L; at the internal marked
points. We define these bundles carefully below and explore their behavior under
forgetful morphisms and restriction to boundary strata.

It is straightforward to show that the cotangent line bundles have canonical
complex orientations. The open Witten bundle, on the other hand, is a real vector bundle
and hence it is not clear that it is orientable at all. One of the main results of this paper
is that not only is W orientable, but it carries a canonical relative orientation relative to
the moduli space; the grading plays a central role in the construction of this canonical
orientation. We also analyze the behavior of the canonical orientation under restriction

to boundary strata.

1.2 Companion works

This paper lays the foundations for the sequel [4], in which we use the construction of
—1/r
0,kfai,..a

numbers and prove an open r-spin version of Witten's conjecture. In particular, in [4],

, and its associated bundles to define genus-zero open r-spin intersection

we calculate all the genus-zero open r-spin intersection numbers and prove an explicit
relationship between their generating function and the genus-zero part of the Gelfand—
Dickey wave function. In addition to verifying the generalization of Witten's conjecture
in genus zero, this leads to a conjecture for higher-genus open intersection numbers.
The content of [4] also illuminates an intriguing connection between open r-spin
theory and an extension of closed r-spin theory, in which one allows a single marked
point with twist —1. We define this “closed extended r-spin theory” carefully in the
companion paper [3] to this work, and in [4], we make the correspondence between the

two theories precise.

1.3 Plan of the paper and the main ideas

The structure of the current paper is as follows. In Section 2, we define r-spin disks
and introduce the notion of a grading, and in Section 3, we describe the moduli space
of graded r-disks, its orbifold structure, and its orientation. Section 4 contains the
definition of the cotangent line bundles L; and the open Witten bundle W, as well as
an investigation of the behavior of these bundles under certain important morphisms.
In Section 5, we establish the canonical relative orientation of VW and analyze its
behavior under the relevant morphisms. This section is the main technical contribution

of this paper, and in particular, it is where the importance of the grading is manifested;
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without the grading, as we discuss in Remark 2.8, the Witten bundle may not be
canonically oriented relative to the moduli space. However, equipped with the grading,
for any collection of internal twists and a specific number of boundary twists, we are
able to produce in Construction 5.6 an explicit basis for the fiber of the Witten bundle.
The canonical relative orientation of the Witten bundle for any collection of twists arises
from there by analyzing the behavior of this basis under degenerations of the underlying

surface.

2 Graded r-Spin Disks

We denote by [n] the set {1,2,...,n}and by N the set of natural numbers Ly Throughout

what follows, a marking of a set A is a function
m:A— 2N

such that, for all distinct a,a’ € A, we have m(a) N m(a’) = @. A marking is strict if @ is
not in its image.

Given a marking, we identify elements of A\ m~! (%) with their images in 2V, and
if the image is a singleton, we identify it with an element of N. Such functions are used
in what follows to label the marked points on a curve; the possibility of marking some
points by ¥ or with a set is desired to handle marked points that arise via normalization

of a nodal curve.

2.1 Smooth r-spin surfaces

Recall that an orbifold Riemann surface is a smooth, proper, possibly disconnected,
one-dimensional Deligne-Mumford stack over C. We sometimes refer to such a surface
as closed, to distinguish it from the Riemann surfaces considered below that may have
boundary.

A (smooth) marked orbifold Riemann surface with boundary is a tuple
(Cl ¢r 2! {Zi}ielr {Xj}jeBr mI/ mB)r

in which

(i) Cis a (closed) orbifold Riemann surface;
(ii) ¢ : C — C is an anti-holomorphic involution (conjugation) that realizes

the coarse underlying Riemann surface |C| topologically as two Riemann
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6 A. Buryak et al.

(iii)

(iv)

surfaces ¥ and ¥ (where ¥ is obtained from ¥ by reversing the complex

structure) glued along their common boundary 4% = 3% = Fix(|¢|):

IC] =X Uy Z;

z; € C is a collection of distinct points (the internal marked points) labeled
by the set I, whose images in |C| lie in ¥ \ 9%, with conjugate marked points
z; = ¢(z;);

x; € Fix(¢) is a collection of distinct points (the boundary marked points)
labeled by the set B, whose images in |C| lie in 9%;

the only nontrivial isotropy of C occurs at the (internal, conjugate, and
boundary) marked points;

I: 7 - 2N and m# : B — 2N are maps such that, for any connected

m
component C’' of C with marked points labeled by I’ € I and B’ C B, the
restrictions m!|; and m?|y are markings, and whenever C' N ¢(C') # ¢, the

marking m!|; is strict.

A marked orbifold Riemann surface C is stable if each genus-zero connected component

has at least three marked points (including conjugate marked points) and each genus-

one connected component has at least one marked point.
We observe that the choice of a preferred half ¥ C |C|, which is a part of the data

of an orbifold Riemann surface with boundary, endows 9% with a canonical orientation.

In what follows, we typically suppress ¢ from the notation and write X for ¢ (x) when x

lies in X.

An isomorphism of marked orbifold Riemann surfaces with boundary

I B1\ ~ I, _ By
(Clr¢1r X142y dier 4%y jljep My oy ) = (02r¢2r YoilZo i bier, {Xo jYjep, Mg )

consists of an isomorphism s : C; — C, and bijections f : I, — I,, f8 : B, — B, such

that

So¢, =¢,0s8,
(2, ;) = zy g8y for all j € B, and s(x; ;) = x, p1;) forall i € I,

L _ Iz T B _ B2 B
my =my of" and m' =m,” o f°.
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Let C be a marked orbifold Riemann surface with boundary in which every

marked point has isotropy group Z/rZ. We denote

W¢10g = P O 10g = 0c | D Lz + D 1z + D x|, (2.1)

iel iel jeB

where p : C — |C| is the morphism to the coarse underlying Riemann surface and [z],
[z;], and [x;] denote the degree-1/r orbifold divisors of the marked points. An r-spin

structure on C is an orbifold line bundle L together with an isomorphism
T L% = g o, (2.2)

and an anti-holomorphic involution ¢ : L — L lifting ¢ such that ¢®" agrees under r with
the involution on wg),, induced by ¢. We denote by mult, (L) the multiplicity of L at a
point p, which is defined as the integer m € {0, 1,...,r — 1} such that the local structure
of the total space of L near p is [C?/(Z/rZ)] with the action

; : (XI V) = (EXlng)
by the canonical generator ¢ of the isotropy group.

Associated to an r-spin structure L on C, there is a unique twisted r-spin

structure S on C, defined as the complex line bundle

S:=LO0|- > rizl- > orzl- > rixl|. (2.3)

i multzi (L)=0 i multgl. (L)=0 Jl multxj (L)=0
This bundle satisfies
ST Zp o @O | = > rlzl- DL rml- DL x|, (24
i multzi (L)=0 i multgi (L)=0 Jl multX]. (L)=0

in which, on the right-hand side, [z;], [Z;], and [Xj] now denote the corresponding divisors

on |C|. It follows that the coarse underlying bundle |S| := p,S satisfies

ISIET Z w0 @0 [ = alz] - > alz] - > bilx)] (2.5)

iel iel jeB
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8 A. Buryak et al.

with a;, bj €{0,1,...,r— 1} defined by the requirement that
a;, = multzi (L) -1 modr, bj = multh (L)—1 modr.

We refer to the numbers a; and b; as internal and boundary twists. In fact, pushforward
under p defines an equivalence of categories between bundles S satisfying (2.4) and
bundles |S| satisfying (2.5) for some choice of a; and bj,' hence, in particular, the data of
|S| and its twists are equivalent to the data of an r-spin structure on C. See the appendix
of [10] for a more detailed discussion of this equivalence.

Let

J:=5"®wg, (2.6)

which inherits an involution that we also denote by ¢. Using the fact that
we=p o ®0 [ D (r=Dlzl+ D (r—Dizl+ > r—Dix1],
iel iel jeB
which follows directly from (2.1), one shows easily that
J = p*(|5|v ® “)ICI) Q0 Zmultzi Dzl + Zmultz—i(J)[z_i] + Zmultxj(J)[Xj] ,
iel iel jeB
and hence

|J| = |S|v ® ¢ (2.7)

In particular, since |J| is a bundle on a non-orbifold curve and hence has integral degree,

the following observation is immediate.

Observations 2.1. The twists a;, bj for a twisted r-spin structure on a smooth marked

orbifold Riemann surface with boundary satisfy the following congruence condition:

2> a;+2.b;+(@—D(r—2)
e .= €
r

Z, (2.8)

where g is the genus of C. (In case C is disconnected, we define g = >, g(C;) —I+1, where

C;,...,C; are the connected components of C.)
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Open r-Spin Theory I: Foundations 9

All of the above also works in the more familiar setting of closed marked orbifold
Riemann surfaces (C, {z;};;, m!). However, in this case, it is important in what follows to
allow the possibility of limited —1 twists; see Observation 4.1. Thus, we define a closed
twisted r-spin structure as a closed marked orbifold Riemann surface equipped with an

orbifold line bundle S satisfying
S = p* (w1 ®O [ - D izl |,
iEIO

where I, C I is a subset of the marked points such that multZi (S) =0forallie I, and
each connected component of C contains at most one marked such point z; with i ¢ I,.

In this case, one has

|S|®r = Cl)|C| ® O (— Z a’i[Zi])

iel

with a; € {~1,0,...,r—1} and a; = —1 for at most one marked point z; in each connected

component of C. Analogously to Observation 2.1, we have the following.
Observations 2.2. The twists a; for a closed twisted r-spin structure satisfy

2.8, +@g-Dr—-2) c
r

Z. (2.9)

An isomorphism of r-spin structures consists of an isomorphism of marked orb-
ifold Riemann surfaces with boundary, as defined above, together with an isomorphism
S :5*Ly = L, of the spin bundles such that

(i) $commutes with the involutions, that is,So¢, = ¢, o;

(ii) the diagram

71
*7 Q®r *
s*Ly" —— s we,

| |

Qr T2
L1 —> g,

Jlog

log

commutes, where the right-hand vertical arrow is induced by s.
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10 A. Buryak et al.

Similarly, an isomorphism of twisted r-spin structures is an isomorphism s : s*S, = S;,

satisfying the analogs of (i) and (ii).

2.2 Gradings on smooth r-spin disks

From here forward, we restrict to Riemann surfaces with boundary in which each
connected component has genus zero, which we refer to as disks. The definitions extend
to higher genus, as well, but they are not needed for the current work. We denote by
(C ¢, 2,1z} ier {Xj}jeB,mI,mB) a smooth marked orbifold disk. Note that we allow the
case X = {4, and that if a smooth marked orbifold disk is connected (meaning that C is
connected), then 9% # .

Let A C 0%\ {Xj};cp be an open subset (where we identify the boundary marked
points with their images in |C|), and let s € F(A,wwl)q’ be a section fixed under the
fiberwise involution on o |4 induced by ¢. We call s positive if, for any p € A and any
tangent vector v € T,,(9%) in the direction of orientation, we have (s(p), v) > 0. A similar

notion of positivity applies to ¢-fixed sections of any tensor power of w g over A.

Definition 2.3. Given a twisted r-spin structure S, a lifting of S over A is a continuous,

$-invariant section

verl (A, |S|$)
such that the image of v®" under the map on sections induced by the injection

IS|®" — g, (2.10)

is positive. A lifting of J over A is a ¢-invariant section

werl (A, |J|5)
for which there exists a lifting v of S over A with (w,v) € I'(4, ")\CI) positive on A, where
(—,—) is induced by the natural pairing between |S|¥ and |S|. We consider two liftings v

and v’ (of either S or J) equivalent if v = cv’ for a continuous function ¢ : A — R*. We

write [v] for the equivalence class of v.

Observe that a twisted r-spin structure admits a lifting of S over A precisely if it

admits a lifting of J over A. Moreover, there is a bijection between equivalence classes of
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Open r-Spin Theory I: Foundations 11

liftings of S and of J, in which [v] corresponds to [w] if (w, v) is everywhere positive for
all representatives v and w of [v] and [w]. If a twisted r-spin structure admits a lifting
(of either S or J) over all of 9% \ {x;}icp, We call it compatible.

We now define the notion of a lifting “alternating” at a boundary marked point.

Definition 2.4. Let w be a lifting of J over 9% \ {x;};c5. A boundary marked point x; is
said to be illegal if there exists a lifting w’ € [w] that can be continuously extended to
x; without vanishing. If x; is not illegal, we say that it is legal and that w alternates
at x;. (One can define legality in the exact same manner for liftings of S, and it is
straightforward to see that x; is legal for the class [w] of liftings of J precisely if it

is legal for the corresponding class [v] of liftings of S.)

It is immediate that legality is well defined under equivalence of v. Furthermore,

legality and compatibility are closely related to the twists.

Proposition 2.5.

(1) When r is odd, any twisted r-spin structure is compatible, and there is a
unique equivalence class of liftings.

(2) When r is even, the boundary twists b; in a compatible twisted r-spin
structure must be even. Whenever the boundary twists are even, either the
r-spin structure is compatible or it becomes compatible after replacing ¢ by
gopot ! for & an rth root of —1, which yields an isomorphic r-spin structure.

(3) Suppose r is odd and v is a lifting over a punctured neighborhood of a
boundary marked point x;. Then Xj is legal if and only if its twist is odd.

(4) Suppose ris even. If a lifting over 9% \ {x;},5 alternates precisely at a subset
D < {x;}jep then

2> a;+> b;+2
2. i rz J =|D| mod 2. (2.11)

If (2.11) holds, then there exist exactly two liftings (up to equivalence) that

alternate precisely at D C {Xj}jeB, one of which is the negative of the other.

Proof. We begin by choosing trivializations

wf’q ~9Y xR (2.12)
0
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12 A. Buryak et al.

and

o | =D alzl = D alz] - D bjlx)]

iel iel jeB

= 0%\ {Xj}jeB) x R
02\ {xj}jeB

such that a section of either of these bundles is positive precisely if its image lies in
the positive ray RT™ C R in each fiber. Let I; be the connected component of ¥ \ {x;};cp
defined by the property that x; is the left endpoint of the closure of I; with respect to
the orientation of 9%. Since the rth tensor power of a ¢-invariant section of |S| is ¢-
invariant, one can see that on each I;, either there is a section v; € I'(T;, |S|‘5) with V]@r
mapping to 1 under the composition of (2.10) and (2.12), or there is a section v; with V]@
mapping to —1.

Now, for the 1st item, suppose r is odd. Then, by replacing v; with —v; if
necessary, we find for each I; a section v; € I'(T;, IS|?) such that V]®r maps to 1 under
the composition of (2.10) and (2.12). Thus, there is always a lifting.

If r is even, then if there is a section v; € I'(j, |S|‘5) with V?r mapping to the
constant section € ==*1, then (—Vj)®r maps to (—l)rej = €, and there is no real section
that maps to —e;. We see that when r is even, the structure is compatible precisely if
€; = 1forallj.

Suppose the elements of B are enumerated cyclically so that x; follows x;_, in the
cyclic order of j € {1,...,|B|} around the boundary. Choose a local coordinate x on 9%
centered around a boundary marked point x;. Then the map on local sections induced

by (2.10) is multiplication by the local section x% of (’)(bj[Xj]). The section

Xibj el U\ {X]}' a)lc' — Z ai[Zi] — Z ai[Z_i] - Zb][X]] ’

iel iel jeB

defined in a small punctured neighborhood U\ {x;} without any other markings, extends
to all of U as a nowhere-vanishing local section that we denote by s. In addition, there
exists a section v € F(|S|$|Umj) with v®" mapping to €;S. Since s does not vanish, v can
be extended to all of U without vanishing in such a way that v®" maps to s. Given that

x~b changes sign at x; precisely when b; is odd, we see that

b.
Ej = (—].) ]6]'—1'
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Open r-Spin Theory I: Foundations 13

Thus, if each € equals 1, then all bj must be even. In case all bJ- are even, it could still be
the case that ¢; = —1 for each j, but then replacing é by & o o £7! reverses the notion of
positivity and hence ensures that the spin structure is compatible. The 2nd item follows.

For the 3rd item, by the considerations of the previous two items, for r odd there
is a unique rth root

v(x) = x b/,

Its rth power v®" does not change sign after crossing x; (and hence gives rise to a lifting)
precisely if b; is even.

The last item is a consequence of the real zero count for a section of |J|. Using

(2.7), we have

22 a;+2bj+2-2r 2% a;+>b+2
r B r

mod 2.

deg(lJ]) =

Viewing the degree as the number of zeroes minus the number of poles of a meromorphic

section, one sees also that
deg(|J]) = deg (|J||,5;) mod 2,

since we may choose a ¢-invariant meromorphic section, and for such sections non-real
zeroes and poles come in conjugate pairs.

The number of zeroes minus the number of poles of a ¢-invariant meromorphic
section of |J||32 is even precisely if the real subbundle |J|$ on d0X is orientable. The
orientability of |J|‘g — 0%, on the other hand, can be deduced from the number of
legal marked points on dX: a section w, as in Definition 2.4, gives a trivialization of
|J |¢~§ |55, away from boundary marked points, and the transition functions between these
trivializations are sign-reversing exactly at the legal marked points. Equation (2.11)
follows. The same considerations also allow us, assuming (2.11) holds, to construct
a lifting that alternates precisely at the points of D. The equivalence class of such a
lifting is determined by choosing a lifting at any unmarked boundary points, and there

are exactly two such choices. |
The last paragraph of the above proof also yields the following statement.

Corollary 2.6. The bundle |J |$ on 9¥ is orientable if and only if the number of legal

marked points on 9% is even.
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14 A. Buryak et al.

If S is a compatible twisted spin structure on a smooth marked orbifold disk,
then we define a grading of S as a lifting w for J over 9% \ {x;},.p that alternates at
every boundary marked point. We apply the same notion of equivalence as above to the
grading w.

Given this, we can now define our main objects of study, in the case where C is

smooth.

Definition 2.7. A graded r-spin structure on a smooth marked orbifold disk is a
compatible twisted spin structure S in which all boundary twists are r — 2, together

with an equivalence class [w] of gradings.

Remark 2.8. The key reason for introducing the grading is that it induces a notion
of positivity—that is, a choice of a preferred real ray in szz at any unmarked boundary
point g. Without this choice, for even r, the Witten bundle may not be orientable relative
to the moduli space. Indeed, the grading cancels the automorphism of the spin bundle
obtained by scaling it fibers by —1. This automorphism lifts to the Witten bundle as
scaling by —1 again. Thus, if the rank of the Witten bundle is odd, this automorphism
is orientation reversing, and in particular the Witten bundle is neither orientable nor
relatively orientable. However, as we will show in Theorem 5.1, the Witten bundle on the
moduli space of graded r-spin structures indeed admits a canonical relative orientation.

The positivity induced by the grading will also play a crucial role in the sequel,
[4], in the definition of boundary conditions for the open r—spin intersection numbers.

For that definition we also need to restrict to boundary twists of r — 2. In the
closed r-spin cohomological field theory, twists of r—2 correspond to point constraints,
which are those that couple nontrivially with the unit. In the open setting the role
of boundary twist r — 2 appears in the construction of the intersection numbers,
specifically in [4, Proposition 3.20]. In that work, we use the combinatorics of Witten
bundle ranks that arise from these specific twists in our construction of canonical
boundary conditions for the bundles @L?d" @ W. These boundary conditions are
necessary in order to ensure that the Euler class of such a bundle has a well-defined

integral over a moduli space with boundary.

Remark 2.9. Graded 2-spin structures were first introduced and explored by Solomon
and the 3rd author in [27], in which an equivalent definition of graded structures is also
described, purely in terms of the preferred half-surface X considered as an orbifold

Riemann surface with corners; a similar definition can be given for the graded r-spin
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Open r-Spin Theory I: Foundations 15

case as well. The moduli space of graded 2-spin surfaces is described in [28], where
the authors prove that the higher-genus open intersection theory of [24] is defined. A
combinatorial description of graded 2-spin structures in terms of Kasteleyn orientations
of triangulations appears in [29], and it is used to prove a combinatorial formula for

open intersection numbers.

A smooth marked orbifold disk together with a twisted spin structure and a
grading is called a smooth graded r-spin disk. An isomorphism of graded r-spin disks
consists of an isomorphism of twisted spin structures, as defined above, such that the
image of the equivalence class of gradings [w;] on C; under the map on sections induced
by s and § is the equivalence class [w].

If Fix(¢) = @, the above notion of grading is vacuous, but we require an

additional datum.

Definition 2.10. A smooth graded r-spin sphere is a smooth r-spin sphere together

with a choice of a distinguished marking z;, referred to as the anchor, such that

(1) ml(z;) = ¥ and z is the only marked point marked #;

(2) if there is a marked point with twist —1, then it must be the anchor;

(3) if the twist a; of the anchoris r—1, we have amap 7’ : (S| ® O (Iz;1))*" l, — C
defined as the composition

(ISl® O ([Zi]))®r |, ~ wIC\([Zi])|zi =C

Zj

where the 2nd identification is the residue map. In this case, we also fix
an involution ¢ on the fiber (ISI® O (Iz])), and require it to satisfy two

properties: first,
U (@(M)®) = —7/(vET)

for all v € (|S| ® O (Iz])),., where w > W is the standard conjugation; and

second,

{r’(v@”) lve(SI®O ([Zi]))i} DiR,,
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16 A. Buryak et al.

where i is the root of —1 in the upper half plane. Finally, we pick a
positive direction on (|S| ® O ([zi]))f, , meaning a connected component V of
(ISl® O ([zi]))f, \ {0} such that t’(v®") € iR, forany v e V.

Since
1z, ® (ISI® O (1)), = wg(zD],.,

the involution ¢ induces a conjugation on the fiber |7],,, also denoted by b,

by the requirement that
($(w), () = —(w, V)

under the identification of w g (lz;]),, with C. Similarly, a positive direction
is defined on |J|fi by the requirement that w € |J|fl. is positive if, for any

positive v € (|S| ® O ([Zi]))i-’ one has
(w,v) €iR,.

An isomorphism of graded r-spin spheres is an isomorphism of r-spin spheres that
preserves the anchor and, in the case where the anchor has twist r — 1, also preserves

the involution ¢ and the positive direction.

Remark 2.11. The anchor is an auxiliary tool that is useful when sphere components
arise from normalization. The anchor of a sphere component should be thought of as
the half node at which the component met a disk component, or met a simple path of
sphere components connecting it to a disk component, or met a contracted boundary
node. This situation is relevant in what follows when the anchor has twist —1 or r — 1.
An anchor of twist —1 appears when there is an internal Ramond node. In this
case, as we shall see below, the Witten bundle does not decompose as a direct sum.
Still, by choosing a preferred half edge (the anchor) we can obtain a slightly weaker
decomposition, Proposition 4.7, which will be crucial for the inductive construction of
the intersection theory in the sequel. An anchor of twist r—1, on the other hand, appears
when a graded r-spin disk without boundary markings degenerates to a sphere, with the
boundary contracting to a point. In this case, the global parity constraint induced by
the grading determines the twist of the contracted boundary node to be r — 1, and the

residue map described above is the limiting notion of grading under this degeneration.
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Open r-Spin Theory I: Foundations 17

We observe the following parity constraint, which follows from Observation 2.1

when r is odd and from item 4 of Proposition 2.5 when r is even.

Observations 2.12. For any graded spin disk, we have

e=|B|—1 mod 2, (2.13)

where e is defined by equation (2.8) with g = 0 and b; = r — 2 for all j.

In both the closed (sphere) theory and the open (disk) theory, one has an

existence and a uniqueness result.

Proposition 2.13. If (C,{z,,...,z)}) is amarked sphereand a;,...,q; € {-1,0,...,r—1}
are twists satisfying (2.9) such that at most one a; equals —1, then there exists a unique
twisted r-spin structure on C with twists a,, ..., a;. The only automorphisms are given
by scaling S fiberwise by an rth root of unity. For any choice of z;, there exists a unique
graded r-spin structure on (C,S) with anchor z;, and it has no automorphisms if the
anchor has twist r — 1.

Suppose (C,¢,%,{z;,...,2;},{x;,...,%x;}) is a connected marked disk and
ap,....,a; € {0,1,...,r =1}, b;,...,by € {0,1,...,r — 2} are such that (2.8) holds. If
r is even, let D C [k] be an arbitrary set for which (2.11) holds, and if r is odd, let
D := {i € [k] | 2 { by}. Then C admits a unique r-spin structure with a lifting such that
the internal twists are given by the integers a;, the boundary twists are given by the
integers b;, and D is the set of legal boundary marked points. The r-spin structure has
no automorphisms that preserve the lifting.

In particular, when all bj are equal to r — 2 and (2.8) and (2.13) hold, there exists
a unique graded r-spin structure on this disk with internal twists given by the integers

a;, and this graded structure has no automorphisms.

Proof. The 1st partis well known; see, for example, the appendix of [10]. The statement
regarding the grading in the closed setting is clear, except for the automorphism claim
in case the anchor has twist r— 1. In this case, when r is odd, scaling by a root of unity is
not compatible with the involution ¢ in the fiber of the anchor. When r is even, scaling
by —1 is compatible with the involution but not with the choice of positive direction.
Now, fix a connected marked disk and twists a,, ..., q; such that (2.8) and (2.11)

hold. Note that the integrality requirement for the closed case (Observation 2.2) is
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18 A. Buryak et al.

satisfied on the closed marked Riemann surface
Cilzy,o 1220, 2 X, X D),

so there exists a twisted r-spin structure S on C.
To define a twisted r-spin structure in the sense of surfaces with boundary, we

must produce an involution

¢S — IS

lifting the involution |¢| on |C|. In order to do so, choose a boundary point p € 9% \
{x1,...,x}, and choose a vector v € IS, such that the image of v®" in wi¢llps under the
injection (2.10), is positive. For any other point g € ¥ that is not a marked point, and
any u € [S|,, we define a(q, u) = (¢(q),¢~>(u)) as follows. Let ¥ be a path in the total

space of

S| |>3\{Zi}iem,{Xj}je[k1

with 7(0) = (p,v) and y(1) = (q,u), and let y be the image of y®" image in the total

space of the bundle o ls\(, There is a unique path in the total space of

T
|S| |¢(Z)\{~2i}igm,{x]-}je[k]’ denoted by}lglé);)]};[ﬁi starting at (p, v), whose rth power maps to ¢ (y).
Define ¢(q, u) to be its endpoint.

It is easy to see that the above definition is independent of choices, and
the conjugation extends uniquely, up to isomorphism, to the marked points. So
far, we have defined a twisted r-spin structure on the marked disk, and what
remains is to define the grading. For this, one can take as the lifting any smooth

section v of |S|$|az\{ that alternates at each boundary marking; such a section

%7t
exists because the I;eﬁ‘[i]ty constraint (2.11) is satisfied. The lifting determines a
grading w.

The absence of automorphisms, when r is odd, is due to the involution: fiberwise
multiplication by an rth root of unity does not commute with ¢, so it is not an
automorphism. When r is even, multiplication by —1 does commute with the involution,
but it does not preserve the grading w, so it is again not an automorphism of the graded

structure. ]
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Open r-Spin Theory I: Foundations 19
2.3 Stable graded r-spin disks

Thus far, we have considered only graded r-spin structures on smooth curves. In order
to compactify the moduli space of such objects, however, we also need to allow the
curves C to be nodal.

A nodal marked orbifold Riemann surface with boundary is a tuple
(Cr ¢r Er {Zi}igjr {Xj}jEBI mIr mB)/

defined exactly as in Section 2.1 except that C is a nodal, possibly disconnected, orbifold
Riemann surface (curve) as in [1], and Fix(|¢|) is locally homeomorphic near every point

either to an open subset of R, to the union of the coordinate axes
{xy = 0} C R?,

or to a single point. We recall from [1] that C is only allowed to have a nontrivial isotropy
at marked points and nodes, each of which has isotropy group Z/rZ, and all nodes are
required to be balanced in the sense that, in the local picture {xy = 0} C C2? at the node,

the action of the distinguished generator ¢ of the isotropy group is given by

x,y) — ¢x,¢7y).

The nodes in a Riemann surface with boundary can be divided into three types:

(1) Internal nodes, which are nodes in the interior X (together with a conjugate
node in 2);
(2) Boundary nodes, which are nodes in 9%, around which 9% is locally

homeomorphic to the union of the coordinate axes
{xy =0} C R?;

(3) Contracted boundary nodes, which are nodes arising in the limiting case

where one component of Fix(|¢|) is a single point.

The three types of nodes are illustrated in Figure 1.
A nodal Riemann surface is stable if every connected component of its normal-

ization is stable.
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(A) Internal node (B) Boundary node (¢) Contracted boundary

Fig. 1. The closed curve |C|, with the open disk ¥ shaded.

An r-spin structure on a nodal marked orbifold Riemann surface with boundary
is defined, exactly as in the smooth case, as a complex line bundle L on C with an
isomorphism t as in (2.2), together with an involution ¢ : L — L lifting ¢ that is

compatible with 7. There is an associated twisted r-spin structure S, defined by

S:=LR0O|- Zr[zi] - Z"[Z_i] - Z rix;] |, (2.14)

i€ly i€ly Jl multxj (L)=0

where I, C I is a subset of the marked points such that multzi (L) =0foralli € I, and
such that the connected components of C not meeting the ¢-fixed locus contain at most
one multiplicity-zero marked point z; with i ¢ I;, whereas the connected components
meeting the ¢-fixed locus do not contain any multiplicity-zero z; with i ¢ I,. The bundle

S satisfies

S = p* [wgug®O [ =D rlz] =D iz - > x| ], (2.15)

i€l i€l Jl multxj (L)=0
and we again define J =S¥ ® w, as in (2.6).

Remark 2.14. Closed orbifold Riemann surfaces have additional “ghost” automor-
phisms in the presence of nodes, which play a role in our calculation of the automor-
phism groups of stable graded r-spin disks below. Specifically, in the local picture of a

node as {xy = 0} C C?, there is one ghost automorphism of the form

x,y)— Ex,y) (2.16)
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Open r-Spin Theory I: Foundations 21

for each rth root of unity &. These act trivially on the coarse underlying curve |C|, but
they act nontrivially on the orbifold C and induce a nontrivial action on orbifold line
bundles. Indeed, let g be a node of C with branches p and p’ (given locally by y = 0
and x = 0, respectively), and let m be the multiplicity of S at p (where multiplicity at a
branch of a node is defined analogously to multiplicity at a marked point). Then, if g is
a ghost automorphism given by (2.16), the lift g : g*S = S multiplies the fiber over p by
&™, or in other words, changes the gluing of the fibers of S over p and p’ by a factor of

&™; see [8, Proposition 2.5.3].

From here on, we restrict again to the case where each connected component has
genus zero. Let n : C — C be the normalization morphism. Then n*L — C is an r-spin
structure, but n*S is not a twisted spin structure, in general, since it may not satisfy the
requisite conditions on the subset I,. Still, there is a canonical way to associate to S a

twisted spin structure on C, by setting

S:=n*'S@0|-> rig|. (2.17)
qeR
Here, [q] is the degree-1/r orbifold divisor of a point g, and R is the subset of the half-
nodes q € c (thought of as marked points of C) with mult,(n*S) = 0 that satisfy one of
the following:

(1) n(q) is a boundary node;

(2) n(q) is a contracted boundary node;

(3) n(q) is an internal node of C that belongs to a connected component not
containing any marked point of twist —1 and not meeting the ¢-fixed locus;

(4) n(q) is an internal node of C that belongs to a connected component
containing a marked point of twist —1, and if one normalizes C only at n(q),
then the half node corresponding to g is in the same connected component
as the marked point of twist —1;

(5) n(q) is an internal node of C that belongs to a connected component meeting
the ¢-fixed locus, and if one normalizes C only at n(qg), then the half node

corresponding to g is in the connected component meeting the ¢-fixed locus.

Thus, for each irreducible component C; of C, if {2;}ie, {2} ier;, and (X} jcp, are the marked

points lying in C; and {py}iy, are the branches of nodes in C;, we have the equation

(|§|||Cl|)®r = wlCll ® o\ - Zai[zi] - Zai[z—i] — ZbJ[X]] — Z Ch[ph] (218)

i€l i€l Jj€B; heN;
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with
a;c,e{-1,0,...,r—1}, bje{O,...,r—l}.

The numbers q;, bj, and c;, are the twists of the corresponding internal marked points,
boundary marked points, and half nodes.

Note that if p and p’ are the two branches of a node, then we have
Cpt+Cy=r—2 modr.

If Cp = —1 mod r (and hence Cp = —1 mod r, as well), we say that the node is Ramond.
Otherwise, we have Cptey=r— 2, and we say that the node is Neveu-Schwarz.

As long as C does not have a contracted boundary node, the notion of lifting can
be defined as before, as a continuous, ¢-invariant section of |S| on (an open subset of)
the complement of the special points in X whose rth power is positive, and we say that
a twisted r-spin structure is compatible if it admits a lifting over the entire complement
A of the special points in dZ. Two liftings v and v’ are equivalent if there is a continuous
function ¢ : A — R* such that v = cv’. We similarly define liftings and equivalence for J,
and the same correspondence between equivalence classes of liftings for S and J holds.
If w is a lifting of J over A, then it induces a lifting of

J = wp ® Sv
over the complement of the special points in the boundary 3% of the normalization. We
say that w alternates at a marked point or half-node g, and that g is legal, if the induced
lifting on J alternates at q. Otherwise, the lifting does not alternate, and the point is
said to be illegal. A lifting w of J over A that alternates at all boundary marked points
is a grading if, in addition, one of the two half nodes of every Neveu-Schwarz boundary

node is legal and the other is illegal.

Observations 2.15. In a compatible r-spin structure for even r, all boundary half nodes
have twists of even parity, by item 2 of Proposition 2.5. In particular, in this case, there
are no Ramond boundary nodes, since the twist of such a node is odd. When r is odd,
Ramond boundary nodes may exist, but both of their half nodes are necessary illegal.
Indeed, since the twist of a Ramond boundary halfnode is r — 1 (by the definition of S
and the twists in (2.17) and (2.18)), which is even, the illegality of Ramond boundary half

nodes follows from item 3 of Proposition 2.5.
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If C has a contracted boundary node, on the other hand, then in any connected
component with such a node, the complement of the special points in 9% is empty,
so we must adapt the definition of a lifting. Given that each connected component of
C has genus zero, there can only be one contracted boundary node in each connected
component. Restrict to one such component, and let g be the contracted boundary
node. Assume, additionally, that g is Ramond. Recall that the fiber o |q is canonically
identified with C via the residue, and the involution ¢ is sent, under this identification,
to the involution z +— —Zz, whose fixed points are the purely imaginary numbers (The
residue of a conjugation-invariant form ¢ can be calculated as # ¢, ¢, where L C ¥ is
a small loop surrounding g whose orientation is such that q is to the left of L. Applying
conjugation and using the invariance of ¢ shows that the residue is imaginary.). We

define a lifting as a ¢-invariant element
ve (g ISh =15,
such that the image of v®" under the map
1SI¥"], = @il

is positive imaginary, meaning that it lies in iR, . In this case, we call the twisted r-
spin structure compatible if the contracted boundary node is Ramond and a lifting
exists. Two liftings are equivalent if, at the contracted boundary node, they differ by
multiplication by a positive number. There always exists a ¢-invariant w € |J || q such
that (v, w) is positive imaginary, and we refer to this w as a grading; this is the limiting
case of the notion of grading for smooth curves.

With or without a contracted boundary node, we now have the following

definition:

Definition 2.16. A stable genus-zero graded r-spin surface is a nodal marked orbifold
Riemann surface with boundary whose coarse underlying surface (|C|,{zi},{2i},{xj})
is a stable Riemann surface in which each connected component has genus zero,

together with

(1) acompatible twisted r-spin structure S in which all boundary marked points
have twist r — 2 and all contracted boundary nodes are Ramond,;

(2) an equivalence class of gradings;
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(3) a choice of one distinguished special point (called the anchor and marked
) in each connected component C’' of C that is either disjoint from the set
Fix(¢) or meets the set Fix(¢) in a single contracted boundary node. If either
a contracted boundary node or marked point of twist —1 exists, we require
the anchor to be this point; if not, the anchor is simply required to be a
marked point. We also require that the collection of anchors is ¢-invariant,
so that it descends to X. Finally, if the twist of an anchor z; is r — 1, we fix
an involution ¢ on the fiber (|S| ® O ([Zi]))zi and an orientation of the ¢-fixed

subspace, as in Definition 2.10.

The internal and boundary marked points are required to satisfy the same properties
as in the smooth case, and in particular, an anchor, if it is a marked point, is the only

marked point in its connected component that is marked @.

We conclude this subsection with an existence and uniqueness result analogous
to Proposition 2.13. Here, we refer to irreducible components of C that do not meet
the preimage of Fix(|¢|), or that meet the preimage of Fix(|¢|) in a single contracted
boundary node, as sphere components, and we refer to the other irreducible components

as disk components.

Proposition 2.17. Suppose that (C,¢, X, {z,...,2)},{x;,...,X;}) is a connected stable
marked diskand a;,...,a; € {0,1,...,r—1} are such that (2.8) and (2.13) hold with |B| = k
and b; = r — 2 for all j. Then there exists a unique graded r-spin structure on this stable
disk with internal twists given by the integers a;.

The order of the automorphism group of the graded r-spin structure is r™ where

2n is the number of internal nodes of C.

Proof. The proof of the existence and uniqueness of the graded structure closely
mirrors the proof of Proposition 2.13. In particular, there exists a unique twisted r-
spin structure on the closed genus-zero surface C with the given twists at all internal,
conjugate, and boundary marked points, so what remains is to produce the involution
é : S — S and the sections v and w.

First, suppose that there is no contracted boundary node. Then the involution
¢ can be defined component by component. Namely, starting from some boundary
point p, we first construct the involution on a single component using the argument
of Proposition 2.13. At each node, there is an identification of the fibers of S on the

two half nodes, so when we encounter a boundary half node, the involution on one side
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induces the involution on the other side, and we use the other half node as the basepoint
for the construction of the involution in its component. An analogous treatment works
for conjugate internal nodes. The resulting involution is unique up to an isomorphism.

The lifting v and the grading w can be defined componentwise, uniquely up to
isomorphism (as we prove below), using either the parity of the twist (in the case where
r is odd) or the parity constraint (2.11) (in the case where r is even) to determine whether
it alternates at each halfnode. Ramond boundary nodes appear only when r is odd, and
then there is no choice in the lifting. For Neveu-Schwarz boundary nodes, there are two
choices of lifting when r is even, but they are equivalent via the isomorphism scaling
the fibers of S by —1.

To prove that there is a unique choice of grading satisfying the requisite
condition at a Neveu-Schwarz boundary node g, let p and p’ be the two branches with
respective twists ¢, and c,. When r is odd, the fact that w alternates at exactly one
branch is immediate from item 3 of Proposition 2.5, since exactly one of ¢, and Ccp is
odd. When r is even, assume for simplicity that the nodal Riemann surface C consists of
two sphere components joined at the node g. Then, adding the parity constraints (2.11)

on the two components, one obtains

4+2% a;+2.bj+c,t+cy
r

_ alt alt
= k+8p +6p/ mod 2,

where k is the number of boundary marked points, and (Sgh is defined to be 1 if w
alternates at p and 0 otherwise. Combining this with the parity constraint (2.11) on the

entire curve, one finds

24c,+cy
p P _ alt alt
so we indeed see that if CptCy=r— 2, then w alternates at exactly one branch.
This completes the proof of the existence of the graded r-spin structure in the
case where there is no contracted boundary node. When there is a contracted boundary
node, it must be Ramond. To see this, apply constraint (2.8) to see that the internal

twists satisfy

—2-2>a;=0 modr. (2.19)
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On a single component of C, on the other hand, the degree of the restriction of S is

—2->a;—¢,
r ’
so we must have
—Z—Zai—cpEO mod 7. (2.20)

Combining (2.19) and (2.20), we find that 2(c,+1) =0 mod r. When r is odd, this is

sufficient to conclude that ¢, =r —1 mod r. When r is even, we apply (2.13) to find

2+22ai
r

=0 mod 2.
Therefore, we have

1+2a _,
r
so 14> a; =0 mod r. Combining this with (2.20) again shows that ¢, =r—1 mod r.

When there is a contracted boundary node g, the involution ¢ can be defined
first in the fiber of g, by choosing a lifting of the conjugation on w10g|q. There are r
such choices; when r is odd, they are all equivalent, while when r is even, there are r/2
equivalent choices that make the structure compatible, but in either case, we choose
one. We then extend the conjugation to the other components of C, if there are any,
component by component, using the argument in the beginning of this proof. Since the
contracted boundary node is Ramond, we can now choose the grading as above. We
observe that, again, there is no choice when r is odd and there are two equivalent choices
when r is even.

Finally, we compute the order of the automorphism group. The closed case is
known (see, e.g., [18, Proposition 1.18] or [11, Section 2.3]): an r-spin structure on a
closed, genus-zero stable curve with N nodes has r"*! automorphisms. Namely, each
node contributes r ghost automorphisms of the curve, which can each be lifted to the
spin bundle, as in Remark 2.14, and each of the resulting automorphisms of the spin
structure can be composed with a global fiberwise scaling by an rth root of unity.

Let us now consider which of these automorphisms respect the graded structure.
By compatibility with the involution, a ghost automorphism at an internal node deter-

mines the ghost automorphism at its conjugate node but is otherwise unconstrained.
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Nontrivial ghost automorphisms at boundary and contracted boundary nodes, on the
other hand, cannot respect both the conjugation and the graded structure. Indeed, at a
boundary node, (2.16) may constitute an automorphism only if ¢ is real. For odd r, this
implies that £ = 1. When r is even, § = —1 is also a possibility; however, in this case, by
Remark 2.14, this ghost automorphism acts on the spin bundle by changing the gluing
of the fibers at the node by a factor of £™, in which m is the multiplicity at one half
node. By Observation 2.15, the twists at the half nodes are even, so m is odd. It follows
that ¢™ = (—1)"™ = —1, and hence the ghost automorphism does not respect the grading.
At a contracted boundary node, we consider the automorphisms in local coordinates, in

which they have the form
x,y) = (¢x,8y),

where & and ¢ are rth roots of unity. Such an automorphism is compatible with the
conjugation, which locally has the form (x,y) — (7,X%), only if ¢ = £ = £~!. But in this
case, given the orbifold structure at the node, it is the identity automorphism.

It follows, then, that there are r” contributing ghost automorphisms, where 2n
is the number of internal nodes. Since we have already argued in Proposition 2.13 that
the fiberwise scalings on disk components do not respect the graded structure, there

are no further automorphisms. |

3 Moduli Space of Graded r-Spin Disks

Henceforth, we usually denote an r-spin disk with a lifting simply by X, the preferred

half, suppressing most of the notation.

3.1 Stable graded r-spin graphs

It is useful to encode some of the combinatorial data of graded r-spin disks in a

decorated dual graph.
Definition 3.1. A genus-zero pre-stable dual graph is a tuple
F - (VIHI UOI N,HCB, m)l

in which
(i) V is a finite set (the vertices) equipped with a decomposition V = V9 u V¢

into open and closed vertices;
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(ii)

(v)

(vi)

Note that

connected;

above data
(1)
(2)
(3)

(4)

Conditions

H is a finite set (the half-edges) equipped with a decomposition H = H? U H!
into boundary and internal half edges;

o, : H — V is a function, viewed as associating to each half edge the vertex
from which it emanates;

~ is an equivalence relation on H, which decomposes as a pair of equivalence
relations ~5 on HE and ~; on H!. The equivalence classes are required to be
of size 1 or 2, and those of size 1 are referred to as tails. We denote by
T c HB and T! C H! the sets of equivalence classes of size 1 in H? and HY,
respectively;

HCB is a subset of T, the contracted boundary tails;

m is a function given by
m=mfum!: TP u (T’ \ H?) - 28,

where m? and m! (the boundary and internal markings) satisfy the def-
inition of a marking when restricted to any connected component of I,

I

and where m' is strict on connected components with an open vertex or

a contracted boundary tail.

(V,H,0,) defines a graph and that we do not require this graph to be
denote its set of connected components by Conn(I') = {A;}. We require the

to satisfy the following conditions:

For each boundary half-edge h € HE, we have o, (h) € V?;

For each A;, we have h!(A;) = 0;

Each A; contains at most one half edge in HB, and if A; contains such a half
edge, then all vertices of A; are closed;

For each A;, the sub-graph formed by its open vertices (if any exist) and their

incident boundary edges is connected.

(2), (3), and (4) guarantee that for any nodal graded r-spin surface with dual

graph I', each connected component of the closed surface C has genus zero.

We

refer to elements of T? as boundary tails and to elements of T! \ H°E as

internal tails, and we denote T := T! U T®. Note that ~ induces a fixed-point-free

involution on H \ T, which we denote by ;. Write

EP .= HE\TP)) ~p, E':=H\TH/~
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and refer to these as boundary edges and internal edges. The set of edges is E := EFLE!.
Denote by of the restriction of o, to H?, and similarly for o{.

For each vertex v, set k(v) := [(6£)"}(v)| and L(v) := |(6})~!(v)|. We say that an
open vertex v € VO is stable if k(v) + 2l(v) > 2, and we say that a closed vertex v € V°
is stable if I(v) > 2. A graph is stable if all of its vertices are stable, and it is closed if

V9 = @. A graph is smooth if there are no edges or contracted boundary tails.

Definition 3.2. An isomorphism between two genus-zero pre-stable dual graphs
= (V,H, o9~ H® m)and ' = (V/,H ,0o{,~ ,HE, m))

is a pair f = (fV,fH), where fV : V. — V' and f : H — H’ are bijections satisfying
(1) hy ~ hy if and only if £(h,) ~ f(hy),
(2) fVoaozaéofH,
8 m=m ofH,
(4) f(HCB) — H/CB.

We denote by Aut(I") the group of automorphisms of T'.

Pre-stable dual graphs encode the discrete data of a marked orbifold Riemann
surface with boundary. In order to encode the additional data of a twisted spin structure

and a lifting, we must add further decorations.

Definition 3.3. A genus-zero twisted r-spin dual graph with a lifting is a genus-zero

pre-stable dual graph I' as above, together with maps
tw:H — {-1,0,1,...,r—1}
(the twist) and
alt: H® —» 7/27
and a subset T* C T! (the anchors), satisfying the following conditions:
(i) Any connected component of " that is not stable consists either of (a) a single

open vertex with a single internal tail, or (b) a single closed vertex with

exactly two tails, one of which is in H°® and the other of which is in HY.
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(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(wiii)

Every closed connected component contains exactly one tail in T*. All
contracted boundary tails and all tails ¢t with tw(t) = —1 belong to T*. Open

connected components have no tails in T*. Any element of T*\ H°E is marked

by ¥ and is the only tail marked by ¥ in its connected component.

For any vertex v, the total number of incident half-edges h with h € T* or

tw(h) = —1 is at most one.
For any contracted boundary tail t € H°B, we have tw(t) =r — 1.

For any open vertex v € VO,

2 Z tw(h) + Z twh)=r—2 modr

he(@d)~1(v) he(@®)~1(wv)

and

2 Zhe(aé)*l(v) tw(h) + zhe(gés)q(v) tw(h) + 2 B

r
he@) 1)

For any closed vertex v € V¢,

Z twhy=r—2 modr.

heoy Lw)

For any half-edge h € H\ T, we have

tw(h) +tw(o,(h))=r—2 modr,

and at most one of tw(h) and tw(o,(h)) equals —1. No boundary half-edge
h satisfies tw(h) = —1. In case h € H! \ T! satisfies tw(h) = —1 mod 7,
then tw(h) = r — 1 precisely if, after detaching the edge, h belongs to the
connected component containing an anchor t* € T* (if h is in a closed

connected component of I') or an open vertex v € VO (if h is in an open

connected component of I').
For any boundary half-edge h € H? \ T8, if tw(h) # r — 1 we have

alt(h) + alt(o, (h)) = 1,

and if tw(h) = r — 1 then alt(h) = alt(o, (h)) = 0.

= Z alt(h) mod 2.
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(ix) Ifris odd, then for any h € HE,
alt(h) = tw(h) mod 2,
and if r is even, then for any h € H?,
tw(h) =0 mod 2.

Boundary half-edges h with alt(h) = 1 are called legal, and those with alt(h) = 0 are
called illegal. Half-edges h with tw(h) € {—1,r — 1} are called Ramond, and those with
tw(h) € {0,...,r — 2} are called Neveu-Schwarz. An edge is called Ramond if one (hence

both) of its half edges is Ramond, and Neveu-Schwarz otherwise.

We say that a genus-zero twisted r-spin dual graph with a lifting is stable if the
underlying dual graph is stable, in the sense specified above. An isomorphism between
genus-zero twisted r-spin dual graphs with liftings consists of an isomorphism in the
sense of Definition 3.3 that respects tw, alt, and T*. Analogously to Definition 2.16, we
define a genus-zero graded r-spin graph to be a genus-zero twisted r-spin dual graph

with a lifting such that every boundary tail h € H? has
tw(h) =r—2, alt(h) =1.

Any stable graded r-spin disk ¥ induces a stable genus-zero graded r-spin graph I'(XZ).
Namely, the correspondence associates an irreducible component of ¥ to a vertex, a
marked point to a tail, a node to an edge, and a contracted boundary node to a contracted
boundary tail. The twist is represented by tw and the alternation by alt, and the anchors

correspond to elements of T*.

3.2 Moduli of stable graded r-spin disks

In the situation without boundary, there is a well-studied moduli space ﬂ;/,: of stable
Riemann surfaces with r-spin structure, which is known to be a smooth Deligne—
Mumford stack with projective coarse moduli, for which the forgetful map to mg,n is
finite (see [8] or, in the setting of a slightly different compactification, [16]). This moduli

space admits a decomposition into open and closed substacks,

Mgn= || Mys 3.1)
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where a; € {0,1,...,r — 1} for each i and /\/l denotes the substack of r-spin structures
with twist a; at the ith marked point. In genus zero, the situation is even simpler:
according to Proposition 2.13, for any choice of @ such that (2.9) holds, the moduli space
ﬂég has coarse moduli isomorphic to 'A_/lO,n and generic additional isotropy Z/rZ. The

isomorphism of coarse moduli is given by the smooth map For that forgets the spin

spin
structure.

When there is no boundary, it is also straightforward to add the information
of a grading. Indeed, the moduli space of graded r-spin spheres for which the anchor
does not have twist r — 1 is canonically isomorphic to M(l)'/,:, whereas the moduli space
of graded r-spin spheres With twist @ and anchor twisted r — 1 is canonically an r-to-1
cover of the moduli space M f, on which @’ agrees with a except that the anchor has
twist —1.

To generalize the construction of the moduli space to the open setting, we first
note that in [24] the moduli space M ; ; of connected stable marked disks with boundary
marked points marked by {1,...,k} and internal marked points marked by {1,...,l} was
considered. It is a smooth orientable manifold with corners in the sense of [19], and its

dimension is
dimg (Mg ) =k+20—3

-—1 : . .
Let MO,/,:J denote the set of isomorphism classes of connected stable graded r-spin
disks, with boundary and internal marked points as above. There is a set-theoretic

decomposition analogous to (3.1),
l/r —1/r
Mo = |_| Mokar

in which ﬂé/ ra S ﬂ(l,/ 1.1 consists of those disks for which the ith internal marked point
has twist a;. By Proposition 2.17, whenever m(l,/ I:,a # ), there is a bijection given by the
forgetful map

spln MOka - MO,k,l'

.l . .
and we use these to give Moy/ ,;l the structure of a manifold with corners.
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. . . —1 . .
This describes the coarse underlying space of /\/loy/,:’l. The main theorem of this
section is that it can also be given an orbifold-with-corners structure in the sense of
[22, Section 3].

Theorem 3.4. The moduli space /\_/l(l,/ ,;l of connected stable graded r-spin disks with
boundary marked points marked by {1,...,k} and internal marked points marked by
{1,...,1l} is a compact smooth orientable orbifold with corners of real dimension k+21—3.

Its universal bundle admits a universal grading.

We split the proof of Theorem 3.4 into three parts. Lemma 3.6 shows that
the moduli space is a compact smooth orbifold with corners, Lemma 3.8 proves the
existence of the universal grading, and Proposition 3.13 together with Observation 3.10

proves the orientability.

Remark 3.5. In fact, for all r > 2, the moduli space m;/,:,, of connected stable graded
genus g marked r-spin surfaces with boundary is a compact smooth orbifold with
corners of real dimension k + 2 4+ 3g — 3, and its universal bundle admits a universal
grading. For r = 2, this is proven in [28], and the moduli space is moreover shown in [29]
to be canonically oriented. The general r case will be proven elsewhere; in this case, the

moduli space may not be orientable.
—1 . .
Lemma 3.6. Mo,/ kr,l has the structure of a compact smooth orbifold with corners.

Proof. We describe a procedure that defines an orbifold-with-corners structure on
—1 . . .
Mo,/l:,l: analogous to the procedure performed in [22, Section 2]. To define the procedure,

we make reference to the following sequence:
—1/r (6) =1/r @ ~1/r @) ~1/rZs 2) —1/rZs (1) =—1/r
Moxi = Moy = Moy = Moyt ” = Mogia = Mojrar: (3.2)
The moduli spaces and maps appearing in (3.2) are defined as they appear in what
follows.
Step 1: First, Mol,l/c:zz is the suborbifold of /\_/1(1),/1:+21 given by the condition that

the 1st k markings have twist r — 2 and that the integer defined in (2.9) is of the same

parity as k + 1. Inside this space, M(l)l/,g_zzzl is the fixed locus of the involution defined by

(C;WI""’Wk—‘er’S) = (C;Wl""’Wk’Wk—‘rl-‘rl""’Wk—‘rZZ’Wk—‘rl""'Wk—i-l'S)’
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where C and S are the same as C and S but with the conjugate complex structure
(more details on the fixed point functor on stacks can be found in [26]). As the fixed
locus of an anti-holomorphic involution, /V(l)/ ,:fzzl has the structure of a real orbifold.
It parameterizes isomorphism types of marked spin spheres with a real structure (an
involution ¢ covering the conjugation ¢ on C) and the prescribed twists, and it maps to
ﬂé'/krﬂl (in general, it is not a sub-orbifold, since some isotropy is lost), so it inherits a

universal curve via pullback.

"

Remark 3.7. Let us digress to discuss the isotropy of ﬂéf,:f;l, especially near
nodal strata (Without spin structure, the nodal strata of the real moduli space
Mo,k,l are discussed in [20, Section 3], and in the closed case with spin struc-
ture, the nodal strata of ﬂél/lr are discussed in [9, Section 4].). The generic point
of ﬂ(l)'/,:jrzzzl has isotropy coming from scaling the fibers of the spin bundle by real
rth roots of unity. When r is odd, there are no such roots and hence no generic
isotropy, while when r is even, there is generic 7Z/27Z isotropy. Nodal strata have
additional Z/rZ isotropy for each internal Neveu-Schwarz node, coming from the ghost
automorphisms.

For boundary nodes, there is a difference in behavior for r odd or even. When r
is odd, boundary nodes also contribute no further isotropy. Furthermore, if U x [—1, 1]
is a neighborhood in the moduli space of a curve with a single boundary node, such that
U x {0} is the intersection with the nodal stratum and (u,t) for t # O corresponds to a
smooth real sphere, then the passage from ¢ < 0 to ¢ > 0 geometrically corresponds to
flipping one of the two disk components and defining the involution on the spin bundle
in the unique possible way. Thus, in this case, the behavior near the node is exactly
like in the real, non-spin case, and the spin moduli continues to be a trivial degree-one
cover of the non-spin moduli generically. When r is even, on the other hand, boundary
nodes contribute additional Z/2Z isotropy, coming from ghost automorphisms of the
form (x,y) — (—x,y); see the discussion in the proof of Proposition 2.17. On the moduli
level, the picture is that a neighborhood of a nodal curve with a single boundary node
looks locally like U x [-1, 11/(Z/27Z), where U x {0} is the nodal locus and the generator
of 7,/27 takes (u,t) to (u, —t).

Contracted boundary nodes add no additional isotropy, as we saw in the end of
the proof of Proposition 2.17. On the moduli level, again let U x[—1, 1] be a neighborhood
in the moduli space of a curve with a contracted boundary, such that U x {0} is the
intersection with the nodal stratum and (u,t) for t > 0 corresponds to a smooth

real sphere on which the conjugation has nonempty fixed locus. Then (u,t) fort < 0
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corresponds to a real sphere on which the conjugation has no fixed points, so after

taking the quotient by the conjugation, the result is a marked real projective plane. H

Step 2: Returning to our discussion of (3.2), the next step is to cut Mé,/;;_zzzl along
the real simple normal crossings divisor consisting of curves with at least one real node,
via the “real hyperplane blow-up”, as in [22], yielding an orbifold with corners Mv(l)/ ,:lZ z,
We direct the reader to [22, Section 3.3] for more details, but the idea is the following.

Near the real divisor consisting of curves with a contracted boundary node—
or, when r is odd, near the real divisor consisting of curves with a boundary node (a
real node that is not an isolated fixed point of the conjugation)—the real blow-up is the
standard cutting procedure that can be defined without a spin structure. In the notation

of Remark 3.7, the real blow-up corresponds to the natural quotient map
Ux[-1,0luUx[0,1] > Ux[-1,000U x[0,1]=U x [-1,1].

When r is even, the blow-up near the real divisor consisting of curves with a boundary
node is a topologically trivial operation, but nontrivial on the orbifold level. In
particular, in local charts, the real blow-up, when r is even, is equivalent to blowing
up before taking the extra Z/27Z quotient mentioned in Remark 3.7, and then taking the
quotient, so it kills the additional Z/2Z isotropy on nodal strata. In other words, the
blow-up is locally the map

(U x [-1,01Lu U x [0,1]) /(Z/2Z) — (U x [-1,00U U x [0, 11)/(Z/2Z) = U x [-1,11/(Z/27),

where the generator of Z/27Z takes (u,t) € U x [-1,0]u U x [0, 1] to (u, —t).

Step 3: Consider the subset of M’(l)/]:llz whose generic point is a smooth marked
real spin sphere with nonempty real locus. Then Mv(l)/,:l is the disconnected 2-to-1
cover of this subset given by the choice of a distinguished connected disk component
of C\ C?. Equivalently, in the generic (smooth) situation, we first restrict to the
connected components of //\/lvé/,:lz % consisting of real spheres on which the conjugation
has nonempty fixed locus, and then we choose an orientation for C?. It is important to
note, however, that this choice can be uniquely continuously extended to points in the
boundary of ﬂé/,:l

Step 4: Inside Mv(l)/krl we denote by f\/\lé/ ,:'l the union of connected components
such that the marked points wy,,..., wy,; lie in the distinguished stable disk and, for

even r, the spin structure is compatible.
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Step 5: Finally, ﬂé{,:ll is the cover of ﬂé/ kr,l given by a choice of grading. When r
is odd, this is the identity, while when r is even, it is a 2-to-1 cover given by forgetting
the global Z/2Z isotropy.

As a topological space, M})fkfl is indeed the same space defined previously, but
now it has the additional structure of an orbifold with corners. The proof that /T/l\(l)/ I:,l is
an orbifold with corners is identical to the proof of the analogous Theorem 2 in [22]. The
space ﬂé/ ,:,l then inherits the orbifold-with-corners structure from Mé/ kr’l. It is moreover

compact since compactness is preserved at every step.
—-—1/r . . . . .
Over MO,/k,ll there is a universal curve whose fibers are compatible stable spin

disks. The content of Lemma 3.8 below is that one may construct a graded structure, in

a continuous way, on the fibers.

Lemma 3.8. One can continuously choose a grading for the fibers of the universal
curve of M(I)/,:l. This choice is unique when r is odd, while for even r it is unique up to a

global change of grading in each connected component of the moduli space.

Proof. We first prove the lemma for the universal curve over

1 1

AT

1/r . AAT
Int(Mg' ) = Mg eiaran N OIMOktar. e

The statement is clear when r is odd, and its uniqueness up to a possible global change
of grading in each component is immediate when r is even, given the existence. We hence
prove the existence for even r.

The fact that this choice can be made locally in a continuous way is straight-
forward. The obstruction to making such a choice global in Int(/\/t(l)’/,:,l) is the possible

existence of a loop
B 1
y 1 0A > Int(Mg g o)

where A is the closed unit disk, along which a continuous choice of grading alternates.

Since the strata corresponding to disks with an internal “bubble” are of
(1),/1:,71' We first show that y may
be extended to y : A — ﬂéfkfa by verifying that 7, (M, ;) is trivial. This is true when

codimension two, it may be assumed that y(dA) € M

I = 0, as every connected component of M, , is the contractible associahedron. By
considering the forgetful map Mg, , — M, o, whose fiber is contractible, it is easy

to see that M, , is also contractible. For [ > 1, it is enough to consider an arbitrary
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y : A - M, ; and to show that it can be extended to the disk. By working in the unit

disk model where z; is mapped to the origin and x; to 1, one may write y(0) as
(llxz(e)l ... IXk(e)l 0122(9)1 e :Zl(e))

An extension y may be written as

p(r,6) = (1’erlogxz(0)+(1—r)%i,erlogxe,(0)+(1—r)%i, L

o 2(k—D)mi _ _
erloexkO+A-nN=2 g pl=16), 7 22,(0), ..., 12(0)),

where we define the logarithm by excluding the positive real ray.

As A is contractible, standard homotopy arguments now show that we can
uniquely extend the grading from an arbitrary grading at y (1) to a grading for all points
of p(A). Restricting to dA, the grading defines a grading for the points of y. Thus, the
grading does not alternate along y, and therefore it can be defined globally.

Given a grading for the fibers of the universal curve over the interior of the
moduli space, we extend it to fibers over the boundary by continuity. If X, is a family
of smooth graded r-spin surfaces converging to ¥, then the gradings of %, determine,
by continuity, a compatible lifting on X, away from special points. An argument as in
Proposition 2.17 shows that this lifting is in fact a grading, and it is independent of the
family %,.

Suppose X € aﬂéfg, has a contracted boundary node, which in particular forces
that k = 0. Using the same argument as in Proposition 2.17 for the contracted boundary
case, we observe that the contracted boundary node must be Ramond. The limit of
the grading in the smooth case, at the boundary stratum consisting of surfaces with
a contracted boundary node, is precisely a grading in the sense of contracted boundary

nodes defined above. [ |

Remark 3.9. It is interesting to note that even for nodal spin disks with Neveu-—
Schwarz nodes, the choice of grading cannot be performed independently for different
components, if it is required to be continuous. It is the real blow-up stage in the
construction of the orbifold with corners that fixes this choice, up to a global change of

grading in each connected component of the moduli space.

The above results can be carried out in greater generality. First, if the images of

. . —1r .
the markings are any sets B and I, one can clearly define the space MOV/;I in the same way
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as above. Furthermore, associated to each connected stable genus-zero twisted graded
r-spin dual graph T, there is a closed suborbifold with corners H;/r - /7(1),/1;,1 whose
general point is a graded r-spin disk with dual graph I"'. We also allow for the possibility
that I' is disconnected, in which case M}/r is defined as the product of the moduli spaces
ﬂ;{r associated to its connected components. Inside M;/r, we define M;/r as the open
suborbifold consisting of graded r-spin disks whose dual graph is precisely I'.

There are forgetful maps between the moduli spaces, but we note that marked
points can only be forgotten if their twist is zero (otherwise (2.5) is not preserved), and
boundary marked points can only be forgotten if they are in addition illegal (otherwise
the grading does not descend to the moduli space with fewer marked points). We define

Forg ; M M (3.3)

for B',I' € Z by forgetting all twist-zero internal marked points marked by I’ and
all twist-zero illegal boundary marked points marked by B'. This process may create
unstable components; we repeatedly contract them. If the process ends with some
unstable components, we remove them. We denote by forg (") the graph I'” resulting
from this procedure.

1
-

3.3 Orientation of MJ (@1.al)

1
S,k,{al...,al}’
thereby completing the proof of Theorem 3.4. The ideas presented here are not new;

In the following section, we describe a natural orientation on the spaces M

in particular, they are similar to those presented in [24,Section 2.5] and are closely
related to the earlier discussion in [15, Section 2.1.2]. First, we reduce the question of

orientability to a simpler setting.

_1
Observations 3.10. We claim that the moduli space M] (a1.a)) is orientable exactly
1
by

if Mgy, is orientable and that an orientation on M, induces one on Mg, , .

pullback under the map
1 _
Forspin : M(;,k,{alm,al} - MO,k,l

that forgets the graded spin structure.

1

t M§ kotar.an — Mok on the open moduli

To see this, note that the map Forg;, :

spaces is a diffeomorphism on the coarse underlying level, which means that the open
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1
r

locus MO,k,{al...,az}

is indeed orientable precisely if Mg ; is orientable. To pass from the

open locus to the full moduli space, one can construct M/ (respectively, mo,k,l)

0,k {a;...,a;}

1

from Mg, o, o, (respectively, Mg ;) in two stages. First, add loci parameterizing disks
without boundary nodes or contracted boundary components; such loci are of real
codimension two and hence do not affect orientability. Then, add the boundary of the
moduli space; this contains strata of real codimension one, but the fact that they lie in

the boundary means that they do not affect orientability. This proves the claim.

We henceforth discuss orientations on M, ;;, but, in light of Observation 3.10,

all statements carry over to the spin case. Furthermore, orientations can be studied on
. —1

a connected component at a time, and the connected components of both Mog@ and

MO,B,Z; are indexed by cyclic orders of B.

Notation 3.11. If & : [|B|]] — B is an order of B, we denote its induced cyclic order
by 7, and we denote by /W(l)/ ;g (respectively, /Vngla) the connected component of ﬂ(l)/ Br@
(respectively, MO,B,&) that parameterizes disks for which the cyclic order of boundary
markings taken along the boundary of the disk, with its canonical orientation, is 7. We
denote by Mglglgl,ﬂg‘,?{‘ C My, the subspaces where the induced cyclic order on the

boundary marked points is the cyclic order induced from the standard order 759 on [k].

We denote by Ord(B) the set of all orders of B, by Cyc(B) the set of cyclic
orders, and by Sy the group of permutations of B. Note that S acts both on Ord(B),

o —1 . .
by composition, and on /\/lo!/l;a, by permuting markings.

Definition 3.12. Let {3" = 0p s} be a family of orientations, where B runs over all
sets of size k, I runs over all sets of size [, # runs over all orders of B, and 66[,3,1 is
an orientation for MZ,BJ. We say such a family is covariant if, whenever f2 : B — B’
and fI : I — I’ are bijections and F : mO,B,I — HO,B’,I/ is the induced map, we have
I
the pullback of a covariant family of orientations for MQB,I.

__ 1l
A family {(o" = Engl{a}} of orientations of ng'g{

,. 1s covariant if it is
Aaitier

The fiber of the forgetful map Fory, : Mg ;.1 — Mgy, is a punctured disk with
a canonical complex orientation. For k > 1, the fiber of the forgetful map Mg, ;; —
M 1 18 @ union of open intervals, so it is canonically oriented as the boundary of an

oriented disk (as above). Denote this orientation by oy 1 =)
k1
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Proposition 3.13. Suppose k + 21 > 3. Then there exists a unique covariant family of

orientations g p ; for the spaces HS,B,I with the following properties:

(1) In the zero-dimensional case where kK = [ = 1, the orientation is positive,
while when k = 3 and [ = 0, the orientations are negative.

(2) Fix an integer h, and let 7 € Ord(B) and g € Sy be such that g sends x,;
to X, cyclically. Then g preserves the orientation of Mg'B'I if and only if
h(|B]—1) is even (this holds for any orientation of the moduli space of disks).

(8) The orientation 67, ;,, agrees with the orientation induced from &g , ; by the
fibration M ;.1 — Mg, and the complex orientation on the fiber.

——main ~gstd * = std
(4) On Mg g,q, wehaveogy ;= Oor,1, () ® Fory ;00,7

Remark 3.14. For k odd, the orientations described here differ from those of [24] by

(—I)Tl. This choice is more natural from the point of view of integrable hierarchies.

Proof of Proposition 3.13. If orientations ag,k,l exist, then properties (1)—(4) imply that
they are unique. It remains to check existence.

For property (2) to hold, we must show that permutations of labels that map the
component Mg‘,?l“ to itself affect the orientation according to their sign. This can be

checked with respect to any orientation. Write

z=1(2y,...,7;) € (SHF, Z: 4z, 1#£]
U:=1(z,w) @ W€l ) o\ i 7 ,#J' .
W= (wy,..., wp € (intD*)", w; #w;, 1#]
Denote by y™ain [ the subset where the cyclic order of z;,...,z; on S! = 4D? (with

respect to the orientation induced from the complex orientation of D?) agrees with the
standard order of [k]. Then

Al = y™ain /PSL, (R).

When k is odd, cyclic permutations of the boundary labels preserve the orientation of
U™ain and thus also g‘zlln and M;“Z‘f . When k is even, a cyclic permutation of boundary
labels that moves each boundary label by h multiplies the orientation by the sign (—1)".
Renaming internal markings is a complex map that preserves orientations trivially,

and similarly, arbitrary permutations of the interior labels preserve the orientation
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A direct calculation shows that the orientation on /70,3,1 induced by property
(3) from o 5 ; agree with the orientation induced by property (4) from og; ;. Thus, the
required 6’5,3'1 exists. Existence of ﬁg’k'l satisfying properties (3) and (4) for other k and [
follows from the commutativity of the diagram of forgetful maps

——main ——main
Mo k11— Mokr1

l l

——main ——main
Moy — Mok, -

Covariance, at this point, gives a unique way to extend the orientations to other

connected components and to moduli spaces for different B, I. |

. ~ . . —1/r . .
Notation 3.15. Denote by 6 p ()., the orientation on /\/lol/;?ai}id defined as For:pinog'B'I.
For the next lemma we need the following facts. Let I' be an r-spin dual graph

with a lifting that corresponds to a stratum of MO,B,{ Assume furthermore it

@ilier”
consists of two vertices v; and v, connected by a single edge e, with boundary labels B

and internal labels I. We have
) —1 ~ —1
i det(T Mg q,),.,) = det(V) ® det(TMhacn, r)): (3.4)

where N is the normal bundle of MIIJ " relative to ﬂ(l)/ ;y{ai}iel ; this can be identified with
the tensor product of the tangent line bundles at the half nodes on the moduli spaces
M‘l,fr and M‘l,gr associated to the vertices (To be more precise, the isomorphism (3.4)
holds only on the coarse level, as the actions of the isotropy groups of the moduli space
on the fibers are not the same; see Remarks 4.5 and 4.8. However, these actions are
clearly orientation preserving, so this issue does not affect our orientation analysis,
and will therefore be ignored below.). These two tangent lines are canonically oriented
complex lines when e is internal and are canonically oriented real lines when e is
boundary. In both cases, N carries a canonical orientation, in the 1st case it is the
complex orientation. In the 2nd case /\_/llla/r is a real codimension 1 boundary stratum,
hence N is a real one-dimensional bundle. Nonzero elements in the fibers correspond

to either inward-pointing vectors, vectors that point to the interior of Mogy{ or

Aitier’
outward-pointing ones. The canonical orientation of N is the one that makes the

outward directions positive.
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Lemma 3.16. The orientations ﬁng,{ai}id satisfy the following two properties:

(1)

(2)

Write I = I, UI,, and take B = B, U B,. Let " be the graph with two open
vertices, v; and v,, connected by an edge e, where the vertex v; has internal
tails labeled by I, and k; boundary tails labeled by B;, and let h; denote
the half edges of v;. Let 7 be a cyclic ordering of B in which all tails of v,
are consecutive and all tails of v, are consecutive. Denote by = the unique
ordering of B such that, for any ¥ € M7 with normalization ¥, U ¥, (where

%, corresponds to v;), we have

e under 7, the marked points of ¥, appear before those of X,;
e when 7 is restricted to the points of X;, it agrees with the order of the
points on dX; with its natural orientation, starting after the node.
Let m; be the restriction of m to the points of X, but adding the half-node
Xp, in the end, and let 7, be the restriction to points of X,, but adding the

half-node x,,, in the beginning. By (3.4) we have

_1
det(TM(;’

BAailicr

)z = detV) @ det(TMF),

where N is the normal bundle with the canonical orientation oy given by the

outward-pointing normal. Then

St \(Bi=D)Bs - s
07| pz = (=TT oy ® (0 gy iy )1y B0, 0p00B, 1)

Let I" be a graph with two vertices, an open vertex v° and a closed vertex ve.
By (3.4) we have

det(T M) = det(V) X det(TM ) K det(TM ),
where N is again the normal bundle. Then, for any order r,
an|Mr = ON ® (57;0 & aVc), (35)

where oy and 0, are the canonical complex orientations.

Proof. We prove the 1st item (which is analogous to Lemma 3.16 in [24]) by induction

. ! . o .
on the dimension /\/10,/ 1;1. By Observation 3.10, it is enough to prove the analogous claim

for My 1. ;- The proof of the 2nd item uses exactly the same arguments, so it is omitted.
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Covariance shows that it is enough to prove the claim when B = [k] and = is the
order 1,...,k. The base cases where the moduli space has dimension one or two can be
checked by hand. Suppose, then, that the desired statement holds for all moduli spaces
of dimension less than n, where n > 3. After possibly interchanging the roles of v, and
vy, we can assume that a tail of v, can be forgotten without affecting stability; here,
we use item (2) of Proposition 3.13 and the fact that dimp M, = |B;| mod 2 to see that
the interchanging affects the equation with the correct sign. Let I'” be the stable graph
obtained by removing a tail of v,. If this tail is a boundary tail, assume it is labeled k.
Write v, for the resulting vertex of I'" and n’ for the restriction of = to [k — 1.

Consider first the case where the forgotten tail corresponds to a boundary point

X. With the notation of Proposition 3.13, we have 43, ; = 0

s~
Forgl(z) X Forkoolk’l, o)

0" gy = OFor;!(z) ® Foryo™ | pq,. - (3.6)
By induction, we have
5 g, = (~DIBDIEDo) @ (7 ) 7). (3.7)

We can identify For,:l(N|Mr/) = N ... and the identification preserves natural orienta-

tions. Finally,

/

~7y % ~To
2 = oForgl():) ® Forkov/z. (3.8)

02

Putting equations (3.6), (3.7), and (3.8) together, and recalling that dimyz M, = |B|
mod 2, we obtain the result.

If the forgotten tail corresponds to an internal marked point labeled i, then

~TT k ~TT ~TT k< IT
50,k1 = OFor (x) ® Forjo0 111 = 0" |\ = Opor () ® FOrj o™ ., (3.9)

Fori

where we abuse notation somewhat by using For; to denote the map forgetting the ith

internal marked point. By induction, we have

5 gy, = (BBl oy @ 571 R 672 (3.10
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Observe that Fori_l(N|Mr,) = Ny, and the equation preserves natural orientations.

Finally,

- 7T
oyt = Ofor: 1 (x) ® For;f‘ovi. (3.11)

Putting equations (3.9), (3.10), and (3.11) together, and noting that dimp Fori_l(E) = 2,
we obtain the result. [ |
4 Associated Vector Bundles

4.1 Witten bundle

In closed genus-zero r-spin theory, the virtual fundamental class is defined using the
Witten bundle (R'n,S)Y, where 7 : C — M(l)/,: is the universal family and § — C is the

universal twisted r-spin bundle. This is an orbifold vector bundle with the fibers
H'(C,S)Y =HO(C,J),
of complex rank w

Observations 4.1. As observed in [17] and studied in detail in [3], the Witten bundle
is a bundle as long as at most one marked point has twist —1 and all other twists are

non-negative, since this ensures that Ron*S =0.

We now define an open analog of the Witten bundle. Denote by = : C — H(l),/;:;_zzzl

the universal curve over the moduli space of real spin spheres defined above, and by
S — C the universal spin bundle. Then R'7,S is a vector bundle, since (2.5) implies
that spin structures have negative degree and hence R°7,S = 0. There are universal

involutions
$:C—>Candp:S— S,
which induce an involution on R!x,S. Let
were .= Rz, ), = R'm,S)Y

be the vector bundle of qz-invariant sections of J, where J := §” ® w,; the 2nd equality

uses Serre duality, under which invariant sections become anti-invariant. From here,
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the open Witten bundle, which is a real vector bundle, is defined as
W = w*WPTe,
—1 —1/rZs . - . .
where @ : Moy/,gll — MO{,:+221 is the composition of the morphisms defined above.

Remark 4.2. We pull back W from the moduli space /Vé/ ,:jrzzzl of spheres in order to
avoid the need to define derived pushforward in the orbifold-with-corners context. To
avoid cluttering the notation in what follows, however, we often write W = (ROJT*J )4
even on /\_/1(1)/,;1 Whenever we write such expressions, they should be understood as
pulled back under @ . In addition, we sometimes write W = (Ron*j)+ on Méf;, where
no involution is needed; in this case, the subscript should be ignored and the equation

is to be interpreted as W = R%z, 7.

Remark 4.3. Due to the canonical isomorphism
HO(WJ) = H°(lJ)), (4.1)

the fibers of the Witten bundle can equivalently be viewed as sections of |J| on |C]|.
Furthermore, if C is a graded r-spin disk and p € C is a non-orbifold point, then the
fiber Jp is identified with the fiber IJ1,p) over the image point p(p) € |C|. In particular,
if s € HY(J) is an element of the fiber of the Witten bundle over C corresponding under
(4.1) to p,(s) € HO(|J|), then the evaluation of s at p agrees under the identification
JIp =, with the evaluation of p,(s) at p(p). Because of these observations, we view
the fibers of the Witten bundle interchangeably as H°(J) or as H°(|J|) in what follows.

The real rank of W is

ZZal—I—ZbJ—(r—Z)

r

(4.2)

which is the number e defined in (2.8) after setting g = 0. Indeed, a standard Riemann—
Roch calculation shows that (4.2) is the complex rank of Rz, 7, and taking involution-
invariant parts reduces the real rank by half. Furthermore, in the notation of (3.3), there

is the canonical isomorphism

W = Forg ;W (4.3)
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for any subsets B’,I’ C Z. This identification involves replacing a graded r-spin disk C
by a partially coarsened (and possibly stabilized) disk C’. However, in the same vein as
Remark 4.3, if s € H(J) is an element of the fiber of W over C that corresponds under
(4.3) to an element Fory, ;,(s) in the fiber of Fory WV over C’, and if p € C is a non-special
point whose component is not stabilized when passing to C’, then the evaluation of s at

p coincides under (4.3) with the evaluation of Fory, ,(s) at the image of p.

4.2 Decomposition properties of the Witten bundle

The open Witten bundle, like its closed analog, satisfies a decomposition property along
nodes. In order to state the property, we must define a normalization morphism on the

moduli spaces, which can be described by a “detaching” operation on graphs.

Definition 4.4. Let I" be a genus-zero graded r-spin graph, and let e be an edge of T’
with half-edges h and h'. Then the detaching of I' at e is the disconnected graph

detach,(I') = (V',H', oy, ~' H'°B, m),

defined to agree with I" except that h ' h’. We keep alt and tw the same, and we extend
the marking and the anchor as follows. If e is a boundary edge, set m’(h) = m'(h/) = @.
If e is an internal edge, then exactly one of the components of detach,(I') is closed and
unanchored; suppose, without loss of generality, that this is the component containing
h. Then we set h to be the anchor of its component, and we set m'(h) = ¢ and m’(h’) to
be the union of the markings of the internal tails h” # h in the same component as h.

If t € H®B is a contracted boundary tail, then the detaching of ' at t is the graph
detach,(T") defined to agree with I" except that t € (T")! \ (H)®E. We keep alt and tw the

same and leave t as the anchor.

Note that the new internal and boundary markings still satisfy the requirements
of Definitions 3.1 and 3.3. In particular, since there is a canonical identification of
E() \ {e} with the edges of detach,(I") and of E(I") with the edges of detach,(I"), one
can also iterate the detaching process. For any subset N C E(I') U H3(I'), we denote
by detachy(T") the graph obtained by performing detachy for each element f € N; the
result is independent of the order in which the detachings are performed. When we
write detach(I") without any subscript, we mean detachg ) (I").

Let " be a stable r-spin dual graph, and let T = detachy(T") for some set N C

E(I')UHCB(T") of edges and contracted boundary tails. Unlike the moduli space of curves,
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. . . —1 —1
the r-spin moduli space does not always have a gluing map /\/lf/r — MOI/,:J, because there
is no canonical way to glue the fibers of the spin bundle at the internal nodes. Instead,

we consider the following diagram of morphisms:

MY & M e, MY S MY S Mgy (4.4)
Here, ﬂp, /VF are the moduli spaces of marked disks with dual graphs r,T, respec-
tively. The morphism q is defined by sending the spin structure S to Sasin (2.17).

The map p is an isomorphism, though we distinguish between its domain and
codomain because they have different universal objects. While the map q is in general
not an isomorphism (see Remark 4.5 below), it has degree one. This fact is known in
the closed case (see, e.g., [11]); the key point is that each element of /W%/r has a single
geometric preimage under g, and in both the domain and codomain of g, the order of
the automorphism group is r¢, where c is the number of components. By the analysis of

automorphisms in Proposition 2.17, the same argument applies in the open case.

Remark 4.5. The reason that g is not, in general, an isomorphism is that it does
not induce an isomorphism on automorphism groups. Automorphisms on a normalized
curve are given by separate fiberwise scalings on each sphere component; on a nodal
curve, however, scalings by ¢ and n at opposite branches of a node only glue to give a
global automorphism if one can act by a ghost automorphism of C to make the scalings
at the two branches agree—in other words (by Remark 2.14), if there exists & € Z/rZ for
which ¢ - €™ = 5, where m is the multiplicity of S at the ¢-branch of the node. Thus,
q is an isomorphism only if each internal node satisfies gcd(r, m) = 1, so that such &
exists. (Boundary nodes need not satisfy any condition, since fiberwise scaling on a disk

component is not an automorphism of the graded spin structure.)

Notation 4.6. For I' and N as above, we denote the map qo ™! : /\_/llla/r — M%/r by
Detachy,. When IV = {e} is a singleton, we denote this map by Detach,,.

. . — ——1
There are two natural universal curves over the fiber product Mg x5 Mr/r. We

define C- by the fiber diagram

| |

— —1/r irop  —1/r
Mr X/\7F Ml" ——— Molk,l,
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and Cr by the fiber diagram

C<~—— Co
MY

q N
~— Mg x50, M,

5

. .y A . —1 . =
in which C is the universal curve over Mf/ " There are universal bundles S and S on these

two universal curves, and they are related by the universal normalization morphism
n:Cs — Cr.

We can now state the decomposition properties of the Witten bundle. We state
the properties in the case where N = {e} for a single edge e, but all can be readily

generalized to the setting where more than one edge is detached.

Proposition 4.7. Let I be a stable genus-zero twisted r-spin dual graph with a lifting.
Suppose that I" has a single edge e, so the general point of M}/r is a stable r-spin disk
with two components C, and C, meeting at a node p. Let T’ = detach,(I"). Let W and W
denote the Witten bundles on ./V(l)/ I:,l and M%/ ", respectively.
Then, topologically, the Witten bundle decomposes as follows along the node p:
(i) If e is a Neveu-Schwarz edge, then p*if W = q*W.

(ii) If eis a Ramond boundary edge, then there is an exact sequence
0 — WiW — ¢gW — T, - 0, (4.5)

where 7, is a trivial real line bundle.

(iii) If eis a Ramond internal edge connecting two closed vertices, write gV =
W, B W,, in which W, is the Witten bundle on the component containing
the anchor of T (defined via S| lc,) and WZ is the Witten bundle on the other

component. Then there is an exact sequence
0— W, = wW*itW — W, — 0. (4.6)

Furthermore, if T is defined to agree with T’ except that the twist at each

Ramond tailis 7—1, and q' : Mp x5, M ﬂ%{r is defined analogously
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to g, then there is an exact sequence
0 - pMifWw — (q’)*VT/’ — 7T — 0, (4.7)

where W is the Witten bundle on ﬂ%{r and 7 is a line bundle whose rth
power is trivial.

(iv) If e is a Ramond internal edge connecting an open vertex to a closed
vertex, write g*WW = Wl EEIVT@ in which Wl is the Witten bundle on the disk
component (defined via §|C1) and Wz is the Witten bundle on the sphere
component. Then the exact sequences (4.6) and (4.7) both hold.

(v) Suppose that I' has a single vertex, no edges, and a contracted boundary
tail t, and let T = detach,(T"). If W and W denote the Witten bundles on
/V(l)/ I:,l and /Vlﬁ/ ", respectively, then the sequence (4.5) also holds in this

case.

Remark 4.8. We say that the Witten bundle decomposes “topologically” as above
to emphasize that, while the coarse underlying Witten bundle behaves as above, the
action of the isotropy groups of the moduli space on the fibers may not respect these
identifications. (This is only relevant for internal nodes, since boundary and contracted
boundary nodes do not contribute isotropy to the moduli space.) For example, in the
case of a Neveu-Schwarz internal node, an element of the fiber of q*W is acted on by
independently scaling the sections of J on the two components, while Remark 4.5 shows

that this is not in general possible for elements of the fiber of p*ifW.

Proof of Proposition 4.7.  First, let us fix some notation. Letting J = S ® w, and

decomposing Cs into components C; and C,, we define:
=7 S, = n*S| S =8| T =8'®
jTl T Ci' 1 Ci’ 1 Ci' l 1 wni

fori = 1,2. We view *i:W = (R%7,7), and ¢*W = (R°7,,J; ® R%75,75)., -

Suppose that e is Neveu-Schwarz. Then the normalization exact sequence yields
0—->S— n*n*S—>S|Ap — 0,

where A, C Cr. is the orbifold divisor corresponding to the node p. Since the twist of

every tail of I' is non-negative, except at most one tail that may have twist —1, we have
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R%7,,S; = R%7,,S, = 0, and we obtain
0> 0;8 - R'7,8 — R'n), S, ®R'm,, S, — 0. (4.8)

The assumption that e is Neveu-Schwarz implies both that 3’: = §; fori = 1,2 and that
al;*S = 0, since sections of an orbifold line bundle necessarily vanish at Neveu-Schwarz
points. Thus, dualizing and taking involution-invariant parts of (4.8) shows that the
fibers of u*i- WV and q*W are canonically identified.

Suppose now that e is a Ramond boundary edge. Then
S, =85 O(=rA; ),

where A;, © C; is the orbifold divisor corresponding to the half node in C;. The

normalization exact sequence for 7 yields
0 - R’r,J — R°%,(n*J) — 03T — 0. (4.9)

Now, passing to coarse underlying bundles (which does not affect cohomology), the
middle term can be re-written:

|n*j|ci| = |n|*(|$|v ®w|ﬂ) c = |Silv ® O(Ai,p) ®(1)|n| = |j\1|

ICi

Thus, the sequence (4.9) can be re-expressed as
0— R%z,J — R%7,, 7, ® R%7,, 7, — opJ — 0. (4.10)

Because e is Ramond, the bundle 7 := (agj) has trivial rth power, using that the

restriction of both w, and w to the locus of nodes is trivial. Taking involution-

7,10
invariant parts in (4.10) yields ?4.5), where the real line 7, is trivialized using the
grading.

Next, suppose that e is a Ramond internal edge connecting two closed vertices.
Denote the two vertices of I' by v; and v,, and let v; be the vertex supporting the anchor.
Then R%r,, S, = 0, and if v, contains at least one tail of positive twist, then Rz, S; =0,

as well. In this case, we still have the sequence (4.8). We also have

0— 038 > R'n), 8, > R'm, S, — 0. (4.11)
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The sequences (4.8) and (4.11) fit together into a commutative diagram

0 —— O‘;S — Rlﬂ*s’\l — > Rln*Sl — 0

| |

0 — 0,8 —— R'7r, S —— R!'n.S, ®R'7, S, ——= 0,

in which the middle vertical arrow can be constructed by dualizing the sequence (4.10).

By the Snake Lemma the cokernel of the middle vertical arrow is R!x,,S, = R7,,S,, so

0— R1n1*§1 — R'7,S — R1n2*§2 — 0.

Dualizing and taking involution-invariant parts prove (4.6).

Still assuming that e is a Ramond internal edge connecting two closed vertices,
suppose that every tail of v; except the anchor has twist zero. In this case the anchor
must have twist —1. Then R%7,,S, is one-dimensional, and in the normalization exact

sequence

0 - R%1,,S, ®R'n,, S, — 0, S — R'7n,S — R'n,, S, ® R'n,,,

the 1st map is an isomorphism. Hence, R'7,S = R!7,,S; ® R'7,,S,. A similar argument

shows that the 1st map in

0 — R%1,,S, — 0y Sy — R%z,,8, - R%1,, 5, — O

is an isomorphism, so we also have R'x,,S; = R!x,,S,. Since S, = S, by construction,
we conclude that R'7,S = R'x,, S, @ R'x,,S,, which implies that (4.6) holds (and, in
fact, splits) in this case. The proof of (4.7) is identical to the proof of (4.5) above.

If eis a Ramond internal edge connecting an open vertex to a closed vertex, then
the proof that (4.6) holds is identical to the proof for an edge joining two closed vertices
(with R%7,,S; = R%%,,S, = 0), and the proof that (4.7) holds is exactly as in (4.5). Finally,
in the situation where I has a single vertex, no edges, and a contracted boundary tail,

the exact sequence (4.5) still holds, by the same proof. |

One further observation will be needed later.

Observations 4.9. Suppose I’ C [I] is such that > ;. a; < r — 1. Let I' be a graph with

exactly two vertices, a closed vertex v containing exactly the internal tails labeled by
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. —1 —
I’ and an open vertex v°, connected by a single edge. Then Mf/r = M,c X M. One can
compute that the twist at the node is r — 2 — >, _;» a; and the Witten bundle W, on M.

has rank zero, so Proposition 4.7 implies that
M*lF‘Wr = q*n;WVO,
where 7, is the projection to the 2nd factor.

4.3 Cotangent line bundles

Foreachi €I, a cotangent line bundle L; is defined on the moduli space of stable marked
disks as the line bundle whose fiber over (C, ¢, X, {z;}, {XJ-}, m!, mB) is the cotangent line
T; X. Alternatively, L; is the pullback via the doubling map of the usual line bundle L;
on Mg .o We define cotangent line bundles L; on Mé{,:,l by the pullback under the
morphism forgetting the spin structure, and for any graph I', we let ]L{ be the pullback
of L; to M/

We mention a few important properties of these bundles in the observa-
tion below. The proofs are identical to the proofs of the analogous statements in

[24, Section 3.5].

Observations 4.10.

(i) If e is an edge of I', I'; and I', are the two connected components of

detach,(I"), and i is a marking of an internal tail of I';, then
]L{ = Proj’{Lfl,

where Proj; : Mlljr — ﬂ}/f is the projection.
(i) fB € Z\{i},I' € Z, and I = fory ('), then there exists a canonical

morphism
’
tF,B/,I/ : FOI‘E/ I/]L{ d L{,

which is an isomorphism away from strata where the component containing
z; is contracted by the forgetful map, and which vanishes identically on the
remaining strata.

(iii) }Lir is canonically oriented as a complex line bundle.
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5 Orientation: Constructions and Properties
5.1 Relative orientation of the Witten bundle

The open Witten bundle does not carry a canonical complex orientation. Nevertheless,
it is canonically relatively oriented, relative to the moduli space of stable graded r-spin
disks. Before stating this precisely, we require some notation.

Consider a set B of boundary markings, a set I of internal markings, and a set of

twists {a;};;. Given decompositions I =I; uI, and B = B; U B, such that

Byl—1=>a; modr, [By=> a; modr (5.1)

ieh iclp
and hence

22 e, @i+ 1Byl (r — 2)
r

= |B,| mod 2,

let I' = I'p, 1,.5,,8, b€ the graph with two open vertices v; and v, joined by a boundary
edge e, in which v; contains the internal tails marked by I; and the boundary tails
marked by B;. If h; is the half edge of e incident to v;, then a straightforward computation
shows that

tw(h,) = alt(h;) = 0.

Let us denote by BT the graph with vertices v| and v, obtained by detaching e and
forgetting h,; this is a very special case of the notion of the “base” of a graph I', defined

. . 5 l/r 51
in general in the sequel. Let MV{r, V{r,

and M‘l,gr be the moduli spaces of stable graded
r-spin disks corresponding to the vertices v}, v,, and v,, thought of as r-spin graphs.

By the discussion in Section 3.2, the maps q and u are isomorphisms in the case
of a single boundary edge, which implies that

—1/r —1/r —1/r

MY =M, x M,

Composing with the forgetful map forgetting the twist-zero tail i; on v;, we obtain
a map

Fr: ﬂ}/r — Mllg/lf SV ﬂ‘l,ér

V1
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By Proposition 4.7 and the fact that the Witten class pulls back under the forgetful map,
itW =FiWgr = Wy BW,,. (5.2)

In this situation, we also have

i det(TMg/p, q..,) = det(N) @ det(fy) ® F: det(TMUL), (5.3)

where N is again the normal bundle of ﬂ;/ ", and Jr is the fiber of F. (which can be
identified with the fiber of the map on ﬂvl that forgets the marked point x;, associated
to h;). Note that f also carries a canonical orientation, as a subset of the boundary
of a disk.

The main theorem of this section is the following.

. —1 . . . .
Theorem 5.1. The morphism W — Mo/g {a;);.; 18 canonically relatively oriented. More
Diiel
precisely, for any sets B and I of boundary and internal markings, and any set {a;};; of
the internal twists, there exists a distinguished orientation 0y g (4. , Of TMOgr{ai}iel SW.

ie
These orientations satisfy the following properties:
(i) Ifff:B — B and fI : I — I are bijections such that f! preserves twists,
and if

L/ —1/r
F: Mo ayiq = Mop fan;r

is the induced map, then 0y 5 4., = F*0q 5 ( In particular the canonical

Ailier*
orientation is invariant to renumbering marked points.
(i) IfI =1, ul, and B = B UB, satisfy (5.1) and I' = I'y },., p , then under the

isomorphisms (5.2) and (5.3), we have

- _ *
Ir0o,8,(a;}ie; = ON Q 0p, ® Fr (00,31 q & o{hz}Ulez)’

in which oy and oy, are the canonical orientations on N and f}., respectively
(Since the rank of the Witten bundle and the dimension of the moduli are
of the same parity, the canonical orientations represent even variables, this
means, in particular, that if.oy g (4.
holds.).

— £3
= 0y ® Op, ® F1-(0(p,)uB,,1, ¥ 00 3, 1,) alsO

iel
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(iii) IfT is a graph with one open vertex v° and one closed vertex v°, then under

the identification
it det(TMo'3 (a,.,) = det(V) ® (det(TM,0) K det(TM,0)) ,
we have
1100,,(as)ies = On ® (Oyo KOy, (5.4)

where oy, is canonically defined as above and 0,0, 0, are the orientations on

vor
the total space associated to the two vertices, o, is the standard complex

one.

Remark 5.2. Note that in the last item we have used thatif 0 — A i) B— C— 0isan

exact sequence of vector bundles, then there is a canonical isomorphism
det(4) ® det(C) = det(B).

In case e is Neveu-Schwarz, the Witten bundle decomposes as a direct sum by
Proposition 4.7, but when e is Ramond, we use (4.6) in order to write (5.4). In both
cases, the decomposition may not respect the isotropy group actions, but these actions
are orientation preserving as they are induced from scaling the closed Witten bundle

summand by roots of unity.

The proof of Theorem 5.1 is the content of the remainder of this section.
Equipped with this theorem, we will have a canonical relative orientation o, on W —
M;/ " whenever T is a connected smooth graded graph. Furthermore, we can extend the
definition to the case where I'" is a smooth graded graph, but not necessarily connected,

by putting

or =Xy cconn(r)Oar

in which we use that the Witten bundle W on /\_/l;/ "is canonically isomorphic to the
direct sum of the Witten bundles on the moduli spaces /W}\/ " associated to A € Conn(T").
The key point in the proof of Theorem 5.1 is Construction 5.6, which defines

an explicit frame for the Witten bundle of tuples ({a;};c;. k), for k = k(ay,...,a). By
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studying the properties of these frames and using compatibility relations we are able to

construct orientations in full generality and analyze their properties.

Remark 5.3. Theorem 5.1 determines a unique family of orientations, up to the
following ambiguity: if 0g g (4., is @ family satisfying the conditions of the theorem,
then (_1)|B|_100r3r{ai}isl also satisfies these conditions; see Lemma 5.17 and Remark 5.18

below.

5.2 Extending the internal twists

. . . . —1
Throughout this section, we write W, ; ; for the Witten bundle on MO{ ,:,;1 for any tuple

a={a,,..., a;}
_1
Thus far, we have assumed that in the open r-spin moduli space M(;,k,{al..i,al}' the
internal twists satisfy a; € {—1,0,1,...,r — 1}. However, when defining orientations,

it is useful to allow more general twists. In fact, there exists a smooth orientable
. . —1 . -

orbifold with corners MOV/,;;Z for any tuple of non-negative integers a = {a,,...,q;},

parameterizing stable nodal marked orbifold Riemann surfaces with boundary together

with an orbifold line bundle S, an isomorphism

|S|®r ~ o) Q0| — Zai[zi] — Zai[ii] — Z(T‘ — 2)[X]] '

iel iel jeB

and a grading. Moreover, there is a Witten bundle on this moduli space, defined as
before.

The relationship between the Witten bundle with twist a; and twist a; 4+ r was
observed by Jarvis—Kimura-Vaintrob [18] in the closed case, and the same is true in the

open theory.

Lemma 5.4. Leta = {a,,...,q;} be a tuple of non-negative integers, and let a’ = {a, +

r,Qy,...,aq;}. Then there is an isomorphism

. -1 —1
and the Witten bundles on Mol/kr@, and MO,/,:’;Z are related by a short exact sequence

0—->L—>Wyra — K*Wo,k,a — 0,
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in which L is an orbifold line bundle satisfying

E@T o~ (L¥)®(al+1) )

Proof. The isomorphism « is given by sending the twisted r-spin structure S’ to
S:=S®0 (rlzll + 7'[21]) '

where [z,] and [Z,] denote the orbifold divisors of the 1st internal marked point and its

conjugate, so that
1SI =1S'| ® O (Iz,]1 + [2;])
on |C|. If &’ denotes the universal twisted r-spin structure on the universal curve C over

Mé'/kr'a/ and S :=8' ® O (A,, + A ) for the divisors A, , A, < C corresponding to z; and

z,, then the short exact sequence
0— |8 S| — |8 -0
IS — IS — | ||A21+A21
implies
0 1 1
0 — Rz, (IS”AzlJrAzl) — Rl%,|S'| - R7,|S| — 0.
Taking ¢-invariants part yields

0 — of|S| — (Rln*|8’|)+ - (Rln*|8|)+ -0,

where o, is the section of |C| associated to the 1st internal marked point. The 1st bundle

in this sequence satisfies

l
(0FISD®" = o} (a)lﬂlllog (— > (a; + l)AZi)) = S@+D,
i=1

since 0w, 1og is trivial. Dualizing thus proves the claim. |

1.20Z 1sNBny Z0 uo 1senb Aq 0E£8IE | 9/SYSRRUIUIWIEE0 L "0 /I0P/aloIIB-80UBAPE/UIWI/WOD dNO"OlWapeoe//:sdpy WoJj papeojumoq



58 A. Buryak et al.
5.3 Orientability of the Witten bundle

Before we show how to choose canonical orientations, we first confirm that the Witten
. . . —1 . .
bundles are orientable. For this, recall the action of S; on Mogﬁ by permuting markings,

and note that this action lifts canonically to Wy 5.

Lemma 5.5. The bundles Wy i (4, 4, are orientable.
——1/r3 .
Moreover, suppose g € Sp preserves the component Mol/glg, meaning that there

exists an integer h such that
gr(@) =n(@+h),

. . . . ——1/rA
interpreted cyclically. Then, for any orientation o of Wy x4, 0y — Mogg, the permuta-
tion g acts with sign ¢”, where ¢ = ¢, = (—~1)¥"1. The action of g € S; by permuting the

internal markings, which also lifts canonically to Wy i (4, . is orientation preserving.

.ag}’

Proof. Suppose, first, thatl > 1and k—1 > > a,. Observe that

k—lzZai mod r.

There exists a (usually non-unique) tuple (@, ..., a;) with
a;>0, @;=a; modr, » a;=k—1.

By Lemma 5.4, the bundles W := Wy i (5, 4, and W= Wo k(a,..ay differ by a bundle E

that is a direct sum of complex line bundles. Thus, one has
det(E) ® det(W) = det(W),

so, since E is canonically oriented, orienting W is equivalent to orienting W. Note that Sp
and S; act with the trivial sign on E. We can thus reduce to the case wherek—1 =} a,.

In this case, the Witten bundle is of real rank e = > a; = k — 1. Since
the boundary of the base space does not affect the orlentablhty of a bundle, W —

Ok, lar....al) is orientable precisely if W — ./\/lOk{a1 an \ aMok{al an is orlentable

Furthermore, this is the case exactly if W is orientable on the moduli space MO klar...a))

of smooth graded r-spin disks, since compact strata of real codimension two do not

affect orientability. It is therefore enough to prove that the bundle W is orientable
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over each connected component MOk{al of Mok{a ) associated to an order

ai}
7 : [k] — [k] with induced cyclic order 7.

The following gives explicit sections of W — /\/l that form a basis in

0, k {a1
any fiber.

Construction/Notation 5.6. Let X be a smooth graded r-spin disk. Identifying ¥ with
the upper half plane, let

(X () — X)) dw ) V-1(z; - zj)dw

= ’ ., k, i = [N i l/
(W — X)) (W — X)) breld g (W —z)(w — z)) Tl

where +/—1 is the root in the upper half plane. Define sections

1 a; -1 0
@)z =03 = OFfa,, ap)z = | DT LE [ Giaintlany | €HE WD,

ielll ielk]

forj € [k — 1], where k + 1 is taken to be 1. More precisely, inside the parentheses in the

above formula, a global section of

o '®0 Za[z]+2a[z]+2(r—2)[x] = |J|®"

is written. This section is ¢-invariant and positive on the arc from x; to x;; with
respect to the canonical orientation. One can construct an rth root in the sense of a
global section o; of |J| whose rth power is mapped to the expression in parentheses.
Indeed, this can be done locally away from special points, and the order of zeroes and
poles at special points guarantee that the construction extends globally and univalently.
When r is odd, a real rth root is unique. When r is even, there are two real rth roots, one
of which agrees with the grading on the arc from x; to x;,; and the other of which

agrees on the complementary arc; we choose o; to be the one that agrees on the arc from

X1 to X7 5. [ ]

We claim that, for any ¥ € M the sections (o]-”)E for j € [k — 1] form

0, k {ai,...a;}’
a basis of the fiber of WV over X. To see this, observe first that the forms §; and §;; are

PSL, (]R)invariant and conjugation invariant. It is immediate that for all j, o; is nowhere

vanishing on ./\/l As the number of those sections is k — 1, it is enough to show

Ok{al ai}’

1.20Z 1sNBny Z0 uo 1senb Aq 0E£8IE | 9/SYSRRUIUIWIEE0 L "0 /I0P/aloIIB-80UBAPE/UIWI/WOD dNO"OlWapeoe//:sdpy WoJj papeojumoq



60 A. Buryak et al.

that they are linearly independent. But this is clear, since (o;)y has poles only at x_,,
and Xy (14j)r and by calculating coefficients of poles (e.g., at X,i) fori e {2,...,k}), we see
that if

2.6z =0,

1 ~
77

Ok (ar,...ay 1S orientable.

then ¢; = 0 for all j € [k — 1]. Thus, W — M

Remark 5.7. Let (%,S,[wl]) be a graded spin disk as above and (¥/,S,[w']) =
(2,S,[-w)) the same disk with opposite grading. The two disks represent the same
moduli point, and we would expect that the orientation described above will be the
same, whether we calculate it at the fiber of X or of X’. As a sanity check we shall
verify it directly. Recall that the isomorphism « between (¥, S, [w]) and (X', 5, [w']) is
realized as the identity on the surface and acts by negation on the bundle and grading.
The induced map on the fibers of the Witten bundles H%(J) = H°(J) is given by sending
a section s’ € HO(J') to a*(s’) = —s'. Since the grading is also flipped, it is evident
that oc*(oj/) = o;, where aj/ is defined via Construction 5.6 applied to X’. Thus, the
isomorphism « takes the constructed orientation of the Witten fiber at ¥’ to that of the
Witten bundle at X, as expected (In higher genus, changing the grading of one boundary
is not an isomorphism. In that case, the orientation may change. For example, in [28],
which deals with the all-genus r = 2 case, it is proven that changing the grading of a
boundary with m boundary marking changes the canonical orientation of the moduli

space by (—1)""!; see also [29, Section 6.2].).

The next case is [ = 0. Recall from equation (3.3) that W x (o, is the pullback of
Wo ks by the forgetful map Mgy oy > M, 5. The fiber of this forgetful map is an open
disk, and in particular, it is contractible. Thus, W, ; 4 is orientable exactly if W ;. (o, is
orientable, and the latter is orientable by the 1st case.

The last caseiswhenl> 1 and k—1 < > a;. Let k' = 1+3> a;, so that Wy o (4,
is orientable by the 1st case. Consider the boundary stratum ﬂl{/r defined by a graph I’
with two open vertices v; and v,, in which v; has k' — k boundary tails and no internal
tails, while v, has the rest. Note that the half-edge h; of v; has tw(h;) = alt(h;) = 0. By

Proposition 4.7 and equation (3.3), we have an identification

%k ~
IrWok gar,ay = ok k1,0 BWo ki tar,...ar)
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Hence,

det(WO,k’,{al,.“,lll})|ﬂr ~ det(WO,k’—k-i—l,(/)) X det(WO,k,{al,...,al})'
As Wo i iay,.ay @0d Wo io_i41 4 are orientable by the 1st two steps, Wy i (4,....q, 1S @lso
orientable.

Regarding the signs of actions of Sy and S;, consider first the case where I = 1.
In this situation, k = 1 + a; mod r. As noted above, the bundles Wy ; o, and Wy i 1,
differ by a direct sum of complex line bundles by Lemma 5.4, and this decomposition
is invariant under Sg. The claim in this case follows, then, if we prove it for the bundle
Wo k,ik—1)- Moreover, it suffices to prove the lemma for h = —1, so we assume this in
what follows.

Observe that, since the bundle is orientable and all components of the moduli
space are isomorphic, the claim can be verified for any specific component by fixing
any orientation o for ¥ over this component and comparing og.y to g*oy, where g - X is
obtained from ¥ by renaming markings according to g and ¥ is an arbitrary point in
the specified component.

Using these comments, fix a generic smooth ¥ and write £’ = g- £. Let o™ be the
orientation determined by the ordered basis (o7, ..., 0 ;). Comparing og o with g*o% is
equivalent to calculating the ratio of o™ to 097" at the same point of the moduli space.
To this end, first observe that the residues of (o]")y at x, ;) and x,,; are real and

of opposite sign. The sign of the residue at x,;, is independent of j, and moreover, it

equals the sign of the residue of (UJ?T/)E at x,,(;, for 7' = g - m. Thus, the coordinate
change between the ordered bases (ey,...,e_;) = (o,...,00_)g5, €. e ) =
(O—{T/I ey UZJCT—,I)g~E iS given bY

/ / ,

€1 =~ + P18y, € = —0p_2€1 + P 2€p_1, €1 = —_1€1,

where «;, ; are positive numbers depending on X. Hence, the induced sign on the
orientation is equal to the sign of [[(—«;), which is (=1)k-1,

The case [ = 0 follows by the same argument as in the proof of orientability
above: we first add an internal point with twist zero, and then we reduce to the
casel=1.

Finally, for [ > 1, we compare the two orientations at a generic point of M,
where T is a graph with two vertices, a closed vertex v; with all internal tails and an

open vertex v, with only boundary tails. By Proposition 4.7, we have u*W)| v = ¢* OV, H
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W,,), and the decomposition is invariant under the actions of Sz and S;. Now, ©* and g*
are complex maps and hence preserve signs. Furthermore, W, is canonically oriented
as a complex bundle, g € Sy acts on it trivially, and g € S; (which preserves twists) acts
on it as a complex isomorphism, hence preserves sign. Thus, the sign induced by g on
the orientation of Wy y (4, 4, (OF, equivalently, on the orientation of W]|,,.) is the sign
it induces on the orientation of W, . It is 1 for g € S;, and it equals (=) for g € Sy by

the 1st case.

5.4 Choosing canonical orientations

Notation 5.8. Denote by I'g i (4, 4, the connected graded smooth graph with a single
vertex v, boundary tails marked by [k], and internal tails marked [I], such that the ith

internal tail has twist a;.

Throughout what follows, we continue with the notation from the proof of Lemma 5.5.

Definition 5.9. Fix a set of twists a of size [ and an integer k > 0. Let {0”} be a family
of orientations, one for each W — Mngl/ar , in which 7 runs over all orderings of B and B
runs over all sets of size k. We say that the family {0"} is covariant if, whenever f5 : B —
B
/ I . / st 1 ; — or
B’ and f* : I — I’ are bijections such that f* preserves twists, we have og'B'a = F*"Q,B/,a'
—1 —1 . .
where F: W — Mogr{ai}id) - W - MO,/;C{ai}iep) is the induced map.

Remark 5.10. By the 2nd part of Lemma 5.5, whenever {0”} is a covariant family and
g € Sg cyclically satisfies g(w(i)) = 7 (i+ h) for some integer h, we have the equality o™ =
eho97  where ¢ = g = (—=1)k=1. Thus, associated to any multiset (@, k) are exactly two
covariant orientations, determined by choosing o™ for a single 7 to be any orientation

of the Witten bundle of ﬂé/ ,:g , and then extending covariantly.

Definition 5.11. Suppose a; < r —1foreachiand k —1 = >, ;a;. When k > 1,

for an order 7 of the boundary marked points, denote by of , - the orientation of Wé/kr g
defined using the ordered basis o™ = (o{’, ... ,0,7(’_1) on the smooth locus. For any I of size

l and B of size k = 1 + > ;; a;, this uniquely defines a covariant family of orientations
{00 5 {ai}id}n. When k = 1 and hence all a; = 0, the Witten bundle is zero-dimensional; in
this case, define its orientations {og ;3 (o), } to be the positive orientations.

In case | = 0, a is the empty vector, and k = r + 1, Remark 5.10 implies that

there are exactly two covariant families, induced by the two choices of orientation of
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the Witten bundle on the space MéB’@ with |B| = r + 1. Fix one of these orientations, to
be chosen later, and denote it by o, ;.

Now, let,k > 0, and fix a,,...,a; € {0,...,r — 1} with Mjkl{ali_”al} % (). Suppose
we have a covariant family of orientations with twists {a;,...,q;} and B of size k. We
now show how to induce, given o,,, as above, a covariant family of orientations with
the same twists but for B’ of size k' := k £ r, assuming k’ is non-negative.

Suppose, first, that k' = k — r. Let B’ be a set of size k — r, and let =’ be an order
of B'. Let B be a set of size k containing B’, and let = be an order of B that extends =/,
such that the 1st k — r element of B with respect to 7 are those of B'.

Let ' be a graph with two open vertices and no closed vertices, for which there
is one vertex v, that contains all the internal tails, all the boundary tails marked by
B’, and one half-edge hy. The other vertex, v;, contains the remaining r boundary tails
marked by B\ B’ and the half-edge o, k. By construction, tw(hy) = alt(hy) = 0. Observe
that in M;/ "% the boundary marked points on the component corresponding to v, are
cyclically ordered by 7. The Witten bundle Wy on M}/ " can be identified with Wy BW,,

so we have an identification

detOVp) = det(WVO) X det(WVl).

— 31

. . L . : : . .
Define an orientation indp ., 0" on W — Mo (aicn @S the unique orientation

satisfying

T 1 T 1
0 |Wﬂ1/r,ﬁ = (indy , 0" Koyi,,
r

where 7, is the order on the half edges of v; induced from =, starting from o, k.

This procedure defines o™ uniquely from o”. The construction is easily seen to
be independent of choices and yields a covariant family. Moreover, inverting the steps
allows us to define o™ uniquely from 0", and if the latter comes from a covariant family,
so will the former. Thus, the case k¥’ = k + r is also treated.

Therefore, given twists {a;} we can uniquely define a covariant family of

. . —1 . . . .
orientations o” for any set B such that Mo,/zg,a # ¥ by inducing the orientations

iel’

iteratively, starting from the covariant family of Definition 5.11 (the case k = > a; + 1)

or, when I = ¢, fromo,_ ;.
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Definition 5.12. Given o, and the orientations of Definition 5.11, define {0o”} as the
unique covariant family of orientations induced by the above procedure from the family

{00,5,(a);; =+ defined when k — 1 =3 a;.

Observations 5.13. IfI CI' and a; =0 foralli eI, then ong,{ai}id/ = For}‘,\Iongl{ai}ieﬂ.
Indeed, the case |[B| — 1 = > a; follows from the definitions, while the general case
follows easily by noting that the forgetful map behaves well with respect to the

induction procedure.

5.5 Properties of the orientations

The family of orientations in Definition 5.12 respects the decomposition properties of
the Witten bundle.

To make this precise, we first state two lemmas, whose proofs are postponed to
the next section. We first fix decompositions I = I, ul,, B = B, UB,, and k = k; + k,
such that

kl—lzZai mod r, kzzZai mod r.

iel icly

Let I' be a graph with two open vertices, v; and v,, connected by an edge e, in which the
vertex v; has internal tails labeled by I; and k; boundary tails labeled by B;. If h; are the

half edges of v;, then a simple calculation shows that
tw(h,) = alt(h;) = 0.

Let 7 be an order in which the elements of B, are consecutive and come before the
elements of B,. Consider ¥ € M7, where the normalization of ¥ has components ¥, and
¥, corresponding to v, and v,, respectively. Let 7; be the restriction of = to the points
of ¥, and let r, be the restriction to points of ¥, but with the half-node x;, added as
the 1st point.

On MZ, the bundle Wy is again identified with Wy, BW,

vy SO We have the

identification

det(Wp) = det(V,,) K det(V,,), (5.5)
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and this is respected by the orientations in Definition 5.12. That is, we have the

following statement.

. . T . ] 2
Lemma 5.14. For T as above, the orientation o™ agrees with 00,8, .1y X 00, (ha)UBo I under

the isomorphism (5.5).

Similarly, the family of orientations in Definition 5.12 satisfies a decomposition

property along internal nodes. To specify this, write

>a;—(r—2)+((r—2-73 a;) (modr))

r

me({a;}ier) =

where x (modr)’ is the unique element of {—1,0,...,r — 2} congruent to x modulo r.
Now, let " be a graph with two vertices, an open vertex v° and a closed vertex
s . —1 . o
v°. By Proposition 4.7 and Remark 5.2, the Witten bundle W on /\/lr/r satisfies

detOWV,) = (go ™ 1)* ( det(W,0) K det(WVc)), (5.6)

and we have the following.

Lemma 5.15. There exists § = *1, depending only on the choice of o,,;, such that
for any I',v°, and v® as above and any order m, the orientation o”|M? agrees with
g™ (aidicic) o™, K o under the isomorphism (5.6), where o, is the canonical complex
orientation and I¢ are the labels of v°. Moreover, changing 0,.,; to the opposite

orientation changes § to —é.

Definition 5.16. Define o, to be the unique covariant family of orientations of W —
1

Mgm 4 for which the § = 1 in Lemma 5.15. This induces orientations ogBa on the
Witten bundle for all B and a by Definition 5.12.

We can now complete the proof of Theorem 5.1.

1
r
0,B,a’

g B be the orientations on the Witten

Proof of Theorem 5.1. Let 6]~ be the orientations on the moduli spaces M

described explicitly in Notation 3.15, and let o
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bundle described in Definition 5.16. By Lemma 5.14 and Proposition 3.13, the relative

orientation

T bid
00,8 (ai)ier = 00,B,(ai}icr ® 90,B,(ar)ics (5.7)

1 A
7

for the Witten bundle on Mgy .\

argument, together with Remark 5.10, shows the invariance property.

is independent of the choice of n. The same

For the 2nd item, first note that, under the notation of Lemma 5.14 and using

item (2) of Proposition 3.13, we may write
T = o, Ko7l
0y = O, Koy,

where 7] is the extension of 7, defined by writing h, as the last element, and

the pullback of 07;,1 is with respect to the map that forgets the half-node n; . Note
1

also that

dimRﬂzr =|B;|—1 mod 2, rankpW,, = |B,| mod 2.

From here, the 2nd item is a consequence of Lemma 5.14 and Lemma 3.16, where the
sign (—1)(B1I=DIB2l disappears when commuting 672 with o).
1

The last item is a direct consequence of Lemmas 5.15 and 3.16. ]

Lemma 5.17. The properties of Theorem 5.1 characterize precisely two families of

orientations: the family {0 p (4,)..,}5,(a:),., @d the family {(—=1)®I=1og 5 o1 Vg g

Proof. Suppose that {06,3,{@}161}3& is a different family of orientations satisfying

Ailier
the requirements of Theorem 5.1. Let 85 5, € {+1} be the ratio of 05 ;.\ 10 0gp (4.,
Then item (i) shows that 8 g, = § 5 5,- Item (iii) shows that dp 5. = 85 (s ¢; mod rj- SinCe

2 a; =|B|—1 mod r, we denote §g (s 4, mod rj PY 9/p- Finally, item (ii) shows that é,,, =
84410y Thus, §; =0 and §; = 872‘_1, where §, € +1. The claim follows. n

Remark 5.18. This ambiguity from Lemma 5.17 is killed by specifying the orientation
of Witten's bundle for a single real one-dimensional moduli space: the additional
requirement is that if we orient 'A_/lg,Z,{l} for 7 = (1,2) by 6", then the bundle W — /\_/lgyzl{l}
is oriented so that sections that are positive with respect to the grading on the arc from

X; to x,.
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5.6 Proof of Lemmas 5.14 and 5.15

We now return to the proofs of the two lemmas from the previous section.

Proof of Lemma 5.14. We first treat the case

k1—1=2ai, k2=2a2.

iel iely

For convenience, assume that B = [k], that B, = [k;], and that = is the standard order.
We show that if j < k;, then up to rescaling by a positive function, the jth basis element

Y and that if j > ky, it

of o™ converges to ag}cl (@il @S ODE approaches a point in M
R1AGijiel

1

1+kz {aitier, J—k1+1°

We assume that k;, k, > 0, since otherwise, the result is straightforward. Recall

converges to ag This verification implies the lemma.

that a vectoru € Wy 3)5 for X € M;/r'ﬁ can be written as u = u; Bu, withu; € W, )5 .
To calculate a coordinate expression for u;, let {£,},(o,1/2) be a path in Mé,k,{al...,az} such
that lim; ,; X, = X. One can model (X;);., on the upper half plane, preserving the
complex orientation, such that all markings of X5_; tend to 0 as ¢ — 0 but all markings
of ¥; tend to finite, nonzero limits. The resulting marked upper half plane is a model for
¥; in which x;, is mapped to the origin. If the vectors u, € Wy, converge to u, then their
expressions in the coordinates induced from the upper half-plane model converge to the
coordinate expression for u;. Moreover, as t — 0, the ratio between any two markings
going to zero is bounded away from zero, since otherwise, X € ﬂ;/r \ Ml{/r.

Suppose, first, that j > k;, so that 1 4 j is a marked point of X,. Recall that

1
-

_ r+1 a; “1 g
gJ?T_ (=1) Héi Hfi(iﬂ)sl(lﬂ)

iell] iclkl

and we have

il

b3 _ r+1 ai; g —1 e r
ot = [ CDTTE T Gl Eyn) |

il ielka+1]
where x,, 1) = xj,. Then, by the discussion above,
1

et -1 Crminy = %)\« .
V Z a (Gj )z, ~ o
Hhell( —1(zy, — zy))%
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The function in the above by which we multiply ((7]?’ )z, s positive. Moreover, for ¢ close
enough to zero, the ratios between any two factors x,, 4, ;) — X, 1, and zj, —z, are bounded,

hence they tend to zero uniformly. In fact, since > ;. a;, = k; — 1, the expression

ek, —1Er 1) = Xzm)

[her, W =1y — 2))%

has a nonzero limit. Calculating the same expression but in a gauge fixing for which
the points of ¥, approach zero as t — 0, while those of X; have distinct finite images,
the same argument shows that the limiting section, when projected to W, , has zero of
order %

Suppose, now, that j < k;, so that 1 + j is a marked point of %,. Recall that

of = (O T TT €)™ 6"

iel ielky]

Write xj,, for the half node of ¥,. Again, we work with the upper half-plane model for
¥,, where x;, is mapped to the origin and the orientation of the image of 9%, agrees
with the standard real orientation of R. Consider again a path of smooth surfaces %,
where t € (0, %), that converges to X. Choose ij € I] and write

o - %z, —2y)
iy = -
(7, 2,3 — Z;y)

1

This is a well-defined, positive function on M;k{al_“al}, so it has a positive rth root;
furthermore, it vanishes at M. The same considerations as above reveal that the limit
Uf(zt)

of -L77—, when projected on W, , is nonzero, but its projection on W,, vanishes to order
irip
1 — 1/r. Moreover, the projection of the limit on W, has the zero profile of oj”l, hence
they agree up to multiplication by a real function, by degree reasons and involution
invariance. This function is positive, since both sections are positive on the arc from x;
10 X7 ;.
We now turn to the general case. Write
ky—=1—=2icr, @ ky — 2ier, @i
’ m2 == —r .
r

m; =
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The proof is by induction on m = |m,| + |m,|. The case m = 0 has been treated above.
Note that, perhaps by applying Observation 5.13, we may assume I; and I, are nonempty.
Suppose that the claim has been proven for m — 1, and assume m, < 0.

Let B, 2 B, be a set of size k}, = |B,| 4 r, and write B" = B, U B,,. Consider the
graph I'" obtained by attaching to I' an open vertex, connected to v, by an edge whose
half-edge h in v, has tw(h) = alt(h) = 0, and that has r boundary tails labeled by B’ \ B.
Let 7’ be an order on B’ extending =, such that the last elements are those of B\B’ and are
ordered so that tails belonging to the same open vertex are labeled consecutively. Let I',
be the component of v, in detach,(I'’). By the construction of the induced orientation,

we have

' T ’
0" |—p = 0" |—z Ko, , 5.8
|Mr/ |M1- r+l (5.8)

!/
where o, "

to the order induced from n’ after putting the node as the 1st element. On the other

, is the orientation for the Witten bundle of the new component with respect

hand, by the induction assumption, we have

7!

2
X400, (ha)uB) 1y

(5.9)

7’ 1
0 =0
|M’]Z, 0,B1.I1

where 7} is the restriction of r, to B;. By the construction of the induced orientation,
1/r,m)

we have
0,{h2}UBy {ai}ier,’

this time with respect to M,

0"2|_ = o™ Ko, . (5.10)
M2

Putting these observations together, we see that

T . — 1 T2
0" pz = 9,8y, B 00 (hy)UBy 1, (5.11)

The case m, > 0 is treated similarly to the above, so we omit it. The remaining
case is m, = 0. In this case, m; # 0, and the proof is similar, so we merely remark on
the changes. First, we work with the graph I'’ obtained from I" by attaching a new vertex
with r boundary tails, no internal tails, and one legal half edge of twist r — 2 to v;. We
choose the order n’ so that boundary tails of v, come first and those of v, come last.
If we let e, be the edge of v, and e, the edge of the new vertex, then we compare the

. . . ——’ . . . . . .
orientation expressions for W — M, obtained in two ways. First, we induce orientation
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P J—_—; J—
from W — Mg rtoW — Mfl r~ via Ind, and then to W — M, to obtain (using the
e1.,e9 €1

above notation)

7’ rkp .7 bt /
0 |ﬂ:§’:€1(_1) 20" Ko™ WMo, ;.
I‘/

Here, ¢, is the sign appearing from inducing the orientation from W — M’;;l rtoW —
ﬂ?: and (—1)™*2 comes from the fact that, in 7/, the tails of the new vertex are not last,
so we have to perform a shift in #’ in order to calculate the sign induced using Ind. Using
Lemma 5.5, we see that thq total added sign is (_1)rk2_ Next, we induce orientation from
W — Mg;m rtoW— /VZ;Z r» and then, via Ind, to W — HJF[: The result is

T =€ Ko, Ko™ = 62(—1)”‘20”1 Xo™ Mo,

-
T/

0

in which €, is the sign that appears from inducing the orientation to W — ﬂ’; r
€2

and the sign (—1)"*2 comes from changing the order of 0”2 and 0,,,- One of €, or ¢,

is determined by induction to be 1, so the other is also 1. The case m, = 0 is thus

proven. |

Proof of Lemma 5.15. Write

T R s T
M = €lange tailigo BOvo B Over

where IO are the labels in the open part and I¢ in the closed part. By covariance,

is independent of 7 and can be written as ¢/,
B {ai};

e lail, o 1B+ We prove the

b4
e{fli}ielcy{ai}ielo
lemma by showing the following:
(1) €lai), o lail 0.8 = €lail; ¢ meaning that it depends only on {a;};.;c.
(2) If I® =1, UL, where neither I; nor I, is empty and |I;| > 2, then

“aibige = “aidier;, “laidier, WS ier, @i mod r}-

Thus, € is fully determined by its value on pairs of elements.
3) Ifa+b<r theney,, =1.

(4) €14 brcmodr)€ib,c) = €atbmodr)c)€iab) a0d whena <r—1buta+b>r

€a,b} = €{1,a+b-r}€a,b} = €{1+a,b}€{1,a} = €{1+a,b}’
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so thatforr<a+b <2r-2, €lab) = 8 € {£1} is a constant.

(5) — sm°laiige)

e{ai}idC

For the 1st item, it is enough to show that ladedaiigoB = Slaela,_so B
where B € B’ and I° € I'°. To show this, consider the graph I'” consisting of two open
vertices, v° and v/, and a closed vertex, where the open vertices are connected by an edge
€ whose half-edge h in v° has tw(h) = alt(h) = 0, and the component of v° in detach, (I'')
is I'. Denote the internal edge of I' (and of I'') by e. Let =’ be an order extending = to B
such that the 1st elements are those of B. By abuse of notation, denote also by n’ the
restriction of 7 to B’ \ B. We calculate the orientation of W) My in two ways. First, by the
definition of ¢ applied to the moduli space for the graph d,I" obtained by smoothing the

edge € of I/, we have

! !

/g | _ T
5 =€ 0 ) 00 Bl [ Mo c.
Mge/l“’ (ailigrc @il 01 B70B ’{al}iel/oulzielc a; (mod r)} v

0

Applying Lemma 5.14 to M. | gives

1
-
O,B’,{ai}id/ou{zidc a; mod r

7’ T X n’g
0 |M’F;ﬁ :e{ai}idCr{ai}ido’IB/OVO 0, Xoyc.

_1
On the other hand, by Lemma 5.14 applied to M/

0B (ai),_c /0" we have

7’ . _.m 7’
0 |Mgér’ - UO,B,{ai}idcuo Moy

The claim now follows since, by the definition of ¢, we have

7’ T X X 7’
° |M7F;;_e{ai}ielcy{ai}idoﬁovo Oye X0y -

For the 2nd item, first note that if A is a connected, closed r-spin graph
consisting of two vertices v; and v, and an edge between them, then
s —_—
0" pm, =0y, Moy,
where all the orientations in the equation are the canonical complex orientations.

Consider a graph I'" with two internal closed vertices v; and v, and an open vertex
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v°, where v° is connected to v, by e, and v, is connected to v; by e;. We again calculate
the orientation of W — M|, in two ways. First, by the definition of ¢,
T N _ T
0 |M’[§elr = €lai)iegc Ovo B Over
where v° is the closed vertex of d,, I and I¢ are the labels of its tails. Then
°ﬂ|M’§ = e{ai}ielcogo Xo, Xoy,.
On the other hand, by the definition of ¢,

b4 R _ b4
0 |Mge2r - E{Qi}iell e OV,U b 0V1 !
where v'° is the open vertex of d,,I" and I; are the labels of the tails on v;. Again by the

definition of €,

s J— T
0 |M’11 - E{lli}iell E{ai}ieIZ U ier, @i (mod )} 0vo IX Oy, 2 Oy,

as claimed.

For the 3rd item, we use Observation 4.9. Let I = [I] and B = [k] and assume that
k—1=2,a; SupposelI C[llis such that > ; a; <r—1,andlet T be the graph with
a closed vertex v° containing exactly the tails labeled I’ and an internal edge to the open
vertex v° with internal tails labeled by [I] \ I’ and boundary tails labeled [k]. We claim,

0,k aibicunr U2 ailier
agree (where for convenience we omit the pullback maps from the notation).

in this situation, that the two orientations o” |mﬁ and o” on W — M?
r

. . . _ _oa ;L
To prove this claim, write a = >, ;a;, and let 0 = 00k (a; and oj =

Yiemid
U&k,{ai}iem\pU{a}J' Then it is a direct computation to verify that, when ¥ — ¥ € MFT,

the section (aj)z/ converges to a section (81-)2 of Wy, that is the pullback of o]f. Indeed,
denoting by z;, the half node in the disk component of ¥, the projection to W,, of the

limit of (o) s is

V=10 — zpo)dw | - ’
( L L H é’:;llh/r H gh(}1+1)${(l+j) ’

(W = Zpo) (W — Zpo) hell\I' helkl

as claimed. Thanks to the 1st item, this claim implies the 3rd item.
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The 4th item is a direct consequence of the 2nd item, by partitioning the set
{a, b, c} in two different ways. Its 2nd part uses the 3rd item, applied twice to {1, a, b}.

The last item follows by induction on |I¢| > 2. The 3rd and 4th items serve as the
base case. Suppose, then, that we have shown the claim for [I¢| = n, and let |I¢| = n + 1.
Write I¢ = I, UL, with I, = {a, b}, and write ¢ = a + b mod r. Then

_ — (—1)P
e, e = ClaienUleab = (ZD7,

where the power p is given by

c+2a;—(r—2)+(r—2-c— >, a; (modr))
B r
+a+b—(r—2)+(r—2—a—b)(modr)’
- .

The induction now follows from the definition of m® and the two equations

r—2—c—Zai (modr)/zr—Z—Zai (modr)’,

ich ielC

c+(r—2—a—->b)(modr) =r—2.

The “moreover” statement of the lemma is straightforward from the definitions.
Indeed, when k = 1+ " a;, the orientation is defined without 0,41, 80 it does not change
when o, ; changes. For general k’, the construction of orientations in Definition 5.12
uses the map ind;_,;/, and it is immediate from the definition of ind;_,;, that changing

K—Yicra;i—
r

1
0., changes the orientation by a factor of (-1) . The claim now follows from

noting that

ra; —k +1 ¢ Q; dnl+> . 0a;, — k' +1
—z‘da‘r + =m° ({a;}icrc) + {Xiere @i (mo r)}r 2icr0 & )
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