
Detecting Sensor-Based Repackaged Malware

Boyu Liu, Duanyue Yun, Xin Guo, Xiao Ji, Huiyu Song
Data Science Institute

Columbia University, USA

{bl2791, dy2400, xg2331, xj2247, hs3160}@columbia.edu

Shirish Singh, Gail Kaiser
Dept. of Computer Science

Columbia University, USA

{shirish, kaiser}@cs.columbia.edu

Abstract—Android is the most targeted mobile OS. Studies
have found that repackaging is one of the most common tech-
niques that adversaries use to distribute malware, and detecting
such malware can be difficult because they share large parts of
the code with benign apps. Other studies have highlighted the
privacy implications of zero-permission sensors. In this work,
we investigate if repackaged malicious apps utilize more sensors
than the benign counterpart for malicious purposes. We analyzed
15,297 app pairs for sensor usage. We provide evidence that
zero-permission sensors are indeed used by malicious apps to
perform various activities. We use this information to train a
robust classifier to detect repackaged malware in the wild.

Index Terms—Repackaged Malware, Malware Detection, Mo-
bile Sensors, Malicious Payload, Third-party libraries

I. INTRODUCTION

Repackaged malware is built by decompiling a benign

app and slightly modifying the code by adding a malicious

payload [1], either through third-party libraries or external API

calls. Detection of repackaged malware is challenging for two

primary reasons: 1) high code similarity with the benign app,

and 2) malicious code embedded in libraries.

The privacy implications of zero-permission sensors have

previously been studied [2], [3]. Malware often uses additional

sensors to steal information. In contrast, benign apps use

sensors to provide functionality to the user. The sensor data can

be utilized either in the app code or via third party libraries.

In this study, we found evidence that repackaged malware

utilize additional sensors to perform malicious activities. We

developed a tool to extract sensor types actually used by the

apps (Figure 1). We incorporated the sensor-related features

into various classification models for detecting malware. The

contributions of our work are three-fold:

• We developed a tool to extract the sensors actually used

by an app as opposed to the sensors mentioned in the

Android manifest file but never used.

• We found evidence that the proportion of malicious apps

using sensors is higher than that of benign apps.

• We built and compared five classifiers with sensor and

library usage features to detect repackaged malware.

II. DATASET

To perform the study, we used 15,297 original-repackaged

Android app pairs from the Repack repository [1]. The 15,297

repackaged apps correspond to 2,776 original apps, making a

total of 18,073 apps. According to past studies [4], not all

Fig. 1. Overview of our framework

repackaged apps are malware (some are simply plagiarism).

We relied on VirusTotal [5] reports to vet the apps in the

dataset. VirusTotal aggregates detection results from over 60

antivirus engines, making its malware detection robust enough

to be treated as the ground truth. In our study, we consider an

app to be benign if the app was not flagged by any antivirus

engine and an app to be malware if more than two antivirus

tools flag the sample. We disregard all other samples (those

flagged by only one antivirus tool). After incorporating the

ground truth using the VirusTotal reports, we have 2,004 be-

nign apps remaining from the original app samples. Among the

repackaged apps, there were 9,142 malware and 2,858 benign

apps. We disregard the benign repackaged apps. Consequently,

the final labeled dataset contains 2,004 benign apps and 9,142

malicious repackaged apps. Section III-B discusses how we

evaluate the models to accommodate the imbalanced dataset.

A. Pipeline of Sensor Feature Extraction

We built a pipeline to extract sensor features. To improve

the validity of our static code analysis and reduce the noise978-1-7281-6251-5/20/$31.00 ©2020 IEEE

introduced in the code base, we searched for sensor usage

starting from the activities and services files. We aimed to

keep the sensors that are actually used in the app. Algorithm

1 shows how we extracted the sensor usage features from

Android package (APK) files.

Algorithm 1 Sensor Feature Extraction

Result: Return a list L of sensors used by an app

1 Collects a list l of activities and services of the app

2 for file in l do

3 for line in file do

4 if line contains package/library then

5 Explore files inside the package/library;

6 Generate function list F using sensors;

7 else if line USES sensor then

8 Add sensor type into L;

9 else if line contains function in F then

10 Add sensor type into L;

11 end

12 end

B. Basic Feature Generation

Besides sensor usage features, we also extracted other

machine learning interpretable features from the APK files. We

used Androwarn [6] to generate features from six categories:

Permissions from Android Manifest file, Packages, Hardware,

Intents, Classes, and Leaks.

III. EXPERIMENT DESIGN AND RESULTS

A. Statistical Testing

To obtain an understanding of whether sensor usage features

could be helpful in malware detection, we conducted a hypoth-

esis test comparing the proportions of apps using at least one

sensor between malicious and benign apps. Let p1 denote the

proportion of malicious apps using at least one sensor, and

p2 denotes that of benign apps. Our null hypothesis is that p1
is the same as p2, and the alternative hypothesis is that p1 is

greater than p2, which implies that the proportion of malicious

apps using sensors is higher. These can be summarized in the

mathematical notation below:

H0 : p1 = p2 (1)

Ha : p1 > p2 (2)

The test statistic is calculated as follows:

z =
p̂1 − p̂2

√

p̂(1− p̂)
(

1

n1

+ 1

n2

)

= 7.405

where p̂1, p̂2 are the group specific proportions calculated

using the data sample, p̂ is the overall proportion, n1, n2 are

the corresponding group sizes.

When rounding to 3 decimal places, the p-value is 0. There-

fore, at 1% significance level, we reject the null hypothesis that

the proportions of sensor usage in malware and benign apps

are the same. We find evidence that the proportion of malicious

apps (0.187) using sensors is higher than that of benign apps

(0.137).

B. Modeling

1) Training and Testing Data: We trained our models on

80% of the original benign and repackaged malicious apps

(8,916 apps) and tested on the remaining 20% (2,230 apps).

The dataset was split randomly. We excluded repackaged

benign apps from the training dataset. As mentioned in the

Repack paper [1], these repackaged benign apps are plagia-

rized or copied versions of the original apps. They might not

have any additional features and just be simple replicas of the

original app. However, these 2,858 repackaged benign apps

were used for testing.

2) Evaluation Metrics: In this study, we use malware preci-

sion, malware recall, and balanced accuracy as the evaluation

metrics. Malware precision and malware recall are the basic

metrics that can indicate the ability of our models to detect

repackaged malware. However, as described in Section II, the

dataset is imbalanced, so when evaluating the models, we

choose balanced accuracy as another metric, which can be

used to assess the overall performance of our models on both

repackaged malware and benign apps. The formula of balanced

accuracy is as follows:

Balanced accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (3)

where TP is True Positive, TN is True Negative, FN is False

Negative, FP is False Positive.

3) Models: We trained five classifiers to detect repackaged

malware on the training set containing sensor features, in-

cluding Support Vector Machine (SVM), K-nearest neighbor

(KNN), XGBoost, Logistic Regression (LR), and Deep Neural

Network (DNN). Table I summarizes the methods we used and

the optimal hyperparameter settings for each classifier.

• SVM: For hyperparameter tuning, we tried two different

kernels: ‘poly’ and ‘rbf’. We also tuned the parameter

C, which controls the strength of regularization. After

tuning, the model gives precision, recall and balanced

accuracy of 0.959, 0.847 and 84.0%, respectively.

• KNN: Since the dataset is imbalanced, we used the

Synthetic Minority Oversampling Technique (SMOTE)

to add synthetic interpolated data to the benign class.

After doing 5-fold cross validation, the optimal number

of neighbors k is 5 and the optimal weight function is

’distance’1. KNN provides a test malware recall of 0.933

with sensor features and 0.928 without sensor features.

The model achieves precision and balanced accuracy of

0.922 and 78.7% respectively.

• XGBoost: We tuned hyperparameters using Bayesian Op-

timizer to maximize the AUC score.The parameters ’max

depth’ and ’n estimator’ control the complexity of the

1’distance’ : weight points by the inverse of their distance. Closer neighbors
of a query point will have a higher weight than farther neighbors.

trees, while ’learning rate’ and ’reg alpha’ prevent model

over-fitting. We achieved malware precision, malware

recall and balanced accuracy of 0.938, 0.894, and 81.2%

respectively, with the highest AUC score of 0.928.

• LR: The model hyperparameter ’C’ usually needs to be

tuned, which is the inverse of the regularization param-

eter. When we use ’l2’ norm as the penalty of LR, the

optimal ’C’ is 0.7. Under this optimal setting, the malware

precision, malware recall and balanced accuracy of LR is

0.940, 0.806 and 78.6%. respectively.

• DNN: In order to tune parameters for DNN, we first

tuned the number of layers to be 3 to prevent over-fitting.

Keras-Tunner was used to find the best combinations of

’n unites’, ’learning rate’ and ’activation’, which max-

imize the precision of the validation set. We achieved

malware precision, malware recall and balanced accuracy

of 0.947, 0.879, and 83.1% respectively.

Our best model achieves a detection rate of 95% on repack-

aged malware. Table II shows the malware precision, malware

recall, and balanced accuracy of the models. Among the five

classifiers, SVM has the highest malware precision, and 95.9%

of its predictions are true positive. When considering malware

recall, KNN performs best, identifying 93.3% malware. Other

models also have good performance. But the balanced accu-

racy is not optimal (SVM’s balanced accuracy is 84.0%).

Model Tuning Method Optimal Hyperparameters

SVM 5-fold cross validation kernel: ’rbf’, C: 1
KNN 5-fold cross validation n neighbors: 5,

weights: ’distance’
XGBOOST Bayesian Optimizer lr: 0.3579, max depth: 5

n estimators: 38
reg alpha: 0.4868

LR 5-fold cross validation C: 0.7
DNN Keras Tuner layer: 3, n unit1: 32

Bayesian Optimizer n unit2: 48, lr=0.0001
active function: ’relu’

optimizer: ’adam’

TABLE I
HYPERPARAMETER TUNING

Malware Malware Malware Balanced

Sensor Features Classifier Precision Recall Accuracy

Used SVM 0.959 0.847 84.0%
KNN 0.922 0.933 78.7%

XGBOOST 0.938 0.894 81.2%
LR 0.940 0.806 78.6%

DNN 0.947 0.879 83.1%
Not used SVM 0.945 0.876 82.1%

KNN 0.921 0.928 78.2%
XGBOOST 0.931 0.895 79.7%

LR 0.934 0.824 78.0%
DNN 0.932 0.875 79.2%

TABLE II
MODEL EVALUATION

In order to evaluate the effect of the sensor features that we

extracted from APK files on the performance of classification,

we trained another five classifiers on the dataset without

sensor features. The results are also listed in Table II. The

models using sensor features have higher malware precision

and balanced accuracy than the models training on the dataset

without sensor features, indicating that sensor features actually

bring new information to the classifiers and enable them to

make more accurate predictions.
Figure 2 shows the ROC curves of the five classifiers. The

solid and dotted lines represent classifiers with sensor features

and without sensor features, respectively. The dotted lines

are slightly to the right of the solid lines, and the AUCs of

classifiers with sensor features are also higher than the AUCs

of classifiers without sensor features. This study demonstrates

that adding sensor-related features improves the classifier.

Fig. 2. ROC Curves of XGBoost, DNN, SVM, LR, and KNN

IV. CONCLUSION

We evaluated our work on a repackaged app dataset [1]

containing 15,297 original-repackaged app pairs. To verify our

hypothesis that a malicious app is more likely to use sensors,

we conducted a two-proportion z-test. At 1% significance

level, we find evidence that the proportion of malicious apps

using at least one sensor is higher than that of benign apps.

We used static analysis tools to extract features from the APK

files and trained five classifiers to detect repackaged malware.

Our models achieve 95% malware detection rate.

ACKNOWLEDGMENT

Gail Kaiser and Shirish Singh are supported in part by NSF

CNS-1563555, CCF-1815494 and CNS-1842456.

REFERENCES

[1] L. Li, T. F. Bissyande, and J. Klein, “Rebooting research on detecting
repackaged android apps: Literature review and benchmark,” IEEE Trans-

actions on Software Engineering, pp. 1–1, 2019.
[2] J. L. Kröger, P. Raschke, and T. R. Bhuiyan, “Privacy Implications of Ac-

celerometer Data: A Review of Possible Inferences,” in 3rd International

Conference on Cryptography, Security and Privacy (ICCSP). ACM,
January 2019, pp. 81–87.

[3] S. Singh, D. M. Shila, and G. Kaiser, “Side Channel Attack on
Smartphone Sensors to Infer Gender of the User: Poster Abstract,”
in Proceedings of the 17th Conference on Embedded Networked

Sensor Systems, ser. SenSys ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 436–437. [Online]. Available:
https://doi.org/10.1145/3356250.3361939

[4] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, and R. Khoury,
“Empirical study of android repackaged applications,” Empirical Software

Engineering, vol. 24, no. 6, pp. 3587–3629, 2019.
[5] VirusTotal, “VirusTotal,” https://www.virustotal.com/gui/, (Accessed on

11/15/2020).
[6] T. D., “maaaaz/androwarn: Yet another static code analyzer for malicious

Android applications,” https://github.com/maaaaz/androwarn, (Accessed
on 11/15/2020).

