Detecting Sensor-Based Repackaged Malware

Boyu Liu, Duanyue Yun, Xin Guo, Xiao Ji, Huiyu Song

Data Science Institute
Columbia University, USA

{b12791, dy2400, xg2331, xj2247, hs3160} @columbia.edu

Abstract—Android is the most targeted mobile OS. Studies
have found that repackaging is one of the most common tech-
niques that adversaries use to distribute malware, and detecting
such malware can be difficult because they share large parts of
the code with benign apps. Other studies have highlighted the
privacy implications of zero-permission sensors. In this work,
we investigate if repackaged malicious apps utilize more sensors
than the benign counterpart for malicious purposes. We analyzed
15,297 app pairs for sensor usage. We provide evidence that
zero-permission sensors are indeed used by malicious apps to
perform various activities. We use this information to train a
robust classifier to detect repackaged malware in the wild.

Index Terms—Repackaged Malware, Malware Detection, Mo-
bile Sensors, Malicious Payload, Third-party libraries

I. INTRODUCTION

Repackaged malware is built by decompiling a benign
app and slightly modifying the code by adding a malicious
payload [1], either through third-party libraries or external API
calls. Detection of repackaged malware is challenging for two
primary reasons: 1) high code similarity with the benign app,
and 2) malicious code embedded in libraries.

The privacy implications of zero-permission sensors have
previously been studied [2], [3]. Malware often uses additional
sensors to steal information. In contrast, benign apps use
sensors to provide functionality to the user. The sensor data can
be utilized either in the app code or via third party libraries.
In this study, we found evidence that repackaged malware
utilize additional sensors to perform malicious activities. We
developed a tool to extract sensor types actually used by the
apps (Figure 1). We incorporated the sensor-related features
into various classification models for detecting malware. The
contributions of our work are three-fold:

o We developed a tool to extract the sensors actually used
by an app as opposed to the sensors mentioned in the
Android manifest file but never used.

o We found evidence that the proportion of malicious apps
using sensors is higher than that of benign apps.

e We built and compared five classifiers with sensor and
library usage features to detect repackaged malware.

II. DATASET
To perform the study, we used 15,297 original-repackaged
Android app pairs from the Repack repository [1]. The 15,297
repackaged apps correspond to 2,776 original apps, making a
total of 18,073 apps. According to past studies [4], not all

978-1-7281-6251-5/20/$31.00 ©2020 IEEE

Shirish Singh, Gail Kaiser

Dept. of Computer Science

Columbia University, USA
{shirish, kaiser}@cs.columbia.edu

Androzoo Local Storage

@ Data
Modeling
R bttt T .
£/ v v Y i X
h)
E ' Keytool Androguard . _._>' .
. 1 - 1
& AR
<. 1 Y I
O . 1 Feature |
E : ' ' Engineering
= [: 1
Q. : ' :
5. Ve ;
g\ . :
\ ’ 1
Q . ! '
F) H . I '
'
1
'
1
‘ f
. — — N Vv Build !
< : - : : Classifier
o' Author " Android ' ' !
= Decompiled : ' !
“:-‘3 ! Signature Java Files Maf';'(f;ﬁ ' ' .
s l l Vo -
X ! ' | :
w ! Extract Extract ' ' '
<., sensor usage permissions : : 1
.g ! information and features | ' :
1
®, . . '
£ L :
1
O [N [N , ' !
S 1 ' 1 2
=1 =1 Potential
= : : : Other Goals E
‘\ Sensor usage Permission and 1 '
e data feature data .’ ' '
__________________________ e N et

Fig. 1. Overview of our framework

repackaged apps are malware (some are simply plagiarism).
We relied on VirusTotal [5] reports to vet the apps in the
dataset. VirusTotal aggregates detection results from over 60
antivirus engines, making its malware detection robust enough
to be treated as the ground truth. In our study, we consider an
app to be benign if the app was not flagged by any antivirus
engine and an app to be malware if more than two antivirus
tools flag the sample. We disregard all other samples (those
flagged by only one antivirus tool). After incorporating the
ground truth using the VirusTotal reports, we have 2,004 be-
nign apps remaining from the original app samples. Among the
repackaged apps, there were 9,142 malware and 2,858 benign
apps. We disregard the benign repackaged apps. Consequently,
the final labeled dataset contains 2,004 benign apps and 9,142
malicious repackaged apps. Section III-B discusses how we
evaluate the models to accommodate the imbalanced dataset.

A. Pipeline of Sensor Feature Extraction

We built a pipeline to extract sensor features. To improve
the validity of our static code analysis and reduce the noise

- e 7 T I B

—
o= =

introduced in the code base, we searched for sensor usage
starting from the activities and services files. We aimed to
keep the sensors that are actually used in the app. Algorithm
1 shows how we extracted the sensor usage features from
Android package (APK) files.

Algorithm 1 Sensor Feature Extraction
Result: Return a list L of sensors used by an app
Collects a list [of activities and services of the app
for file in [do
for line in file do
if line contains package/library then
Explore files inside the package/library;
Generate function list F' using sensors;
else if [ine USES sensor then
‘ Add sensor type into L;
else if line contains function in F' then
| Add sensor type into L;

end
end

B. Basic Feature Generation

Besides sensor usage features, we also extracted other
machine learning interpretable features from the APK files. We
used Androwarn [6] to generate features from six categories:
Permissions from Android Manifest file, Packages, Hardware,
Intents, Classes, and Leaks.

III. EXPERIMENT DESIGN AND RESULTS
A. Statistical Testing

To obtain an understanding of whether sensor usage features
could be helpful in malware detection, we conducted a hypoth-
esis test comparing the proportions of apps using at least one
sensor between malicious and benign apps. Let p; denote the
proportion of malicious apps using at least one sensor, and
p2 denotes that of benign apps. Our null hypothesis is that p;
is the same as py, and the alternative hypothesis is that p; is
greater than ps, which implies that the proportion of malicious
apps using sensors is higher. These can be summarized in the
mathematical notation below:

(D
2

Hy:p1=p2
H,:p1>p2

The test statistic is calculated as follows:
D1 — P2

\/p(l —) (n% + n%)
where pp, po are the group specific proportions calculated
using the data sample, p is the overall proportion, ny, no are
the corresponding group sizes.
When rounding to 3 decimal places, the p-value is 0. There-
fore, at 1% significance level, we reject the null hypothesis that
the proportions of sensor usage in malware and benign apps

= 7.405

z =

are the same. We find evidence that the proportion of malicious
apps (0.187) using sensors is higher than that of benign apps
(0.137).

B. Modeling

1) Training and Testing Data: We trained our models on
80% of the original benign and repackaged malicious apps
(8,916 apps) and tested on the remaining 20% (2,230 apps).
The dataset was split randomly. We excluded repackaged
benign apps from the training dataset. As mentioned in the
Repack paper [1], these repackaged benign apps are plagia-
rized or copied versions of the original apps. They might not
have any additional features and just be simple replicas of the
original app. However, these 2,858 repackaged benign apps
were used for testing.

2) Evaluation Metrics: In this study, we use malware preci-
sion, malware recall, and balanced accuracy as the evaluation
metrics. Malware precision and malware recall are the basic
metrics that can indicate the ability of our models to detect
repackaged malware. However, as described in Section II, the
dataset is imbalanced, so when evaluating the models, we
choose balanced accuracy as another metric, which can be
used to assess the overall performance of our models on both
repackaged malware and benign apps. The formula of balanced
accuracy is as follows:

1(TP n TN)
2"'TP+FN TN+ FP

where TP is True Positive, TN is True Negative, FN is False
Negative, FP is False Positive.

3) Models: We trained five classifiers to detect repackaged
malware on the training set containing sensor features, in-
cluding Support Vector Machine (SVM), K-nearest neighbor
(KNN), XGBoost, Logistic Regression (LR), and Deep Neural
Network (DNN). Table I summarizes the methods we used and
the optimal hyperparameter settings for each classifier.

Balanced accuracy =

3)

o SVM: For hyperparameter tuning, we tried two different
kernels: ‘poly’ and ‘rbf’. We also tuned the parameter
C, which controls the strength of regularization. After
tuning, the model gives precision, recall and balanced
accuracy of 0.959, 0.847 and 84.0%, respectively.

e KNN: Since the dataset is imbalanced, we used the
Synthetic Minority Oversampling Technique (SMOTE)
to add synthetic interpolated data to the benign class.
After doing 5-fold cross validation, the optimal number
of neighbors k is 5 and the optimal weight function is
"distance’!. KNN provides a test malware recall of 0.933
with sensor features and 0.928 without sensor features.
The model achieves precision and balanced accuracy of
0.922 and 78.7% respectively.

e XGBoost: We tuned hyperparameters using Bayesian Op-
timizer to maximize the AUC score.The parameters *max
depth’ and ’n_estimator’ control the complexity of the

"distance’ : weight points by the inverse of their distance. Closer neighbors
of a query point will have a higher weight than farther neighbors.

trees, while ’learning rate’ and ‘reg_alpha’ prevent model
over-fitting. We achieved malware precision, malware
recall and balanced accuracy of 0.938, 0.894, and 81.2%
respectively, with the highest AUC score of 0.928.

e LR: The model hyperparameter C’ usually needs to be
tuned, which is the inverse of the regularization param-
eter. When we use ’12° norm as the penalty of LR, the
optimal *C’ is 0.7. Under this optimal setting, the malware
precision, malware recall and balanced accuracy of LR is
0.940, 0.806 and 78.6%. respectively.

e DNN: In order to tune parameters for DNN, we first
tuned the number of layers to be 3 to prevent over-fitting.
Keras-Tunner was used to find the best combinations of
‘n_unites’, ’learning rate’ and ’activation’, which max-
imize the precision of the validation set. We achieved
malware precision, malware recall and balanced accuracy
of 0.947, 0.879, and 83.1% respectively.

Our best model achieves a detection rate of 95% on repack-
aged malware. Table II shows the malware precision, malware
recall, and balanced accuracy of the models. Among the five
classifiers, SVM has the highest malware precision, and 95.9%
of its predictions are true positive. When considering malware
recall, KNN performs best, identifying 93.3% malware. Other
models also have good performance. But the balanced accu-
racy is not optimal (SVM’s balanced accuracy is 84.0%).

Model Tuning Method Optimal Hyperparameters
SVM 5-fold cross validation kernel: ’rbf’, C: 1
KNN 5-fold cross validation n_neighbors: 5,
weights: “distance’
XGBOOST Bayesian Optimizer Ir: 0.3579, max_depth: 5
n_estimators: 38
reg_alpha: 0.4868
LR 5-fold cross validation C: 0.7
DNN Keras Tuner layer: 3, n_unitl: 32
Bayesian Optimizer n_unit2: 48, 1r=0.0001
active_function: ’relu’
optimizer: 'adam’

TABLE I
HYPERPARAMETER TUNING

Malware Malware | Malware | Balanced
Sensor Features Classifier Precision Recall Accuracy
Used SVM 0.959 0.847 84.0%
KNN 0.922 0.933 78.7%
XGBOOST 0.938 0.894 81.2%
LR 0.940 0.806 78.6%
DNN 0.947 0.879 83.1%
Not used SVM 0.945 0.876 82.1%
KNN 0.921 0.928 78.2%
XGBOOST 0.931 0.895 79.7%
LR 0.934 0.824 78.0%
DNN 0.932 0.875 79.2%
TABLE I

MODEL EVALUATION

In order to evaluate the effect of the sensor features that we
extracted from APK files on the performance of classification,
we trained another five classifiers on the dataset without
sensor features. The results are also listed in Table II. The
models using sensor features have higher malware precision
and balanced accuracy than the models training on the dataset
without sensor features, indicating that sensor features actually

bring new information to the classifiers and enable them to
make more accurate predictions.

Figure 2 shows the ROC curves of the five classifiers. The
solid and dotted lines represent classifiers with sensor features
and without sensor features, respectively. The dotted lines
are slightly to the right of the solid lines, and the AUCs of
classifiers with sensor features are also higher than the AUCs
of classifiers without sensor features. This study demonstrates
that adding sensor-related features improves the classifier.

ROC Curve Analysis

09
k)
o7
06
05 — xgh_w_sensor, AUC=0.928
*= xgb_wo_sensor, AUC=0912
— dnn_w_sensor, AUC=0.917
""" dnn_wo_sensor, AUC=0.912
svm_w_sensor, AUC=0.914
svm_wo_sensar, AUC=0.881
= Ir_w_sensor, AUC=0.881
= Ir_wo_sensor, AUC=0.877

— knn_w_sensor, AUC=0.851
""" knn_wa_sensor, AUC=0.848

04

03

True Positive Rate

02

01

0o

00 01 02 03 03 05 o0& 07 08 09 10
False Positive Rate
Fig. 2. ROC Curves of XGBoost, DNN, SVM, LR, and KNN

IV. CONCLUSION

We evaluated our work on a repackaged app dataset [1]
containing 15,297 original-repackaged app pairs. To verify our
hypothesis that a malicious app is more likely to use sensors,
we conducted a two-proportion z-test. At 1% significance
level, we find evidence that the proportion of malicious apps
using at least one sensor is higher than that of benign apps.
We used static analysis tools to extract features from the APK
files and trained five classifiers to detect repackaged malware.
Our models achieve 95% malware detection rate.

ACKNOWLEDGMENT

Gail Kaiser and Shirish Singh are supported in part by NSF
CNS-1563555, CCF-1815494 and CNS-1842456.

REFERENCES

[1] L. Li, T. F. Bissyande, and J. Klein, “Rebooting research on detecting
repackaged android apps: Literature review and benchmark,” IEEE Trans-
actions on Software Engineering, pp. 1-1, 2019.

[2] J. L. Kroger, P. Raschke, and T. R. Bhuiyan, “Privacy Implications of Ac-
celerometer Data: A Review of Possible Inferences,” in 3rd International
Conference on Cryptography, Security and Privacy (ICCSP). ACM,
January 2019, pp. 81-87.

[3] S. Singh, D. M. Shila, and G. Kaiser, “Side Channel Attack on
Smartphone Sensors to Infer Gender of the User: Poster Abstract,”
in Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, ser. SenSys ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 436-437. [Online]. Available:
https://doi.org/10.1145/3356250.3361939

[4] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, and R. Khoury,
“Empirical study of android repackaged applications,” Empirical Software
Engineering, vol. 24, no. 6, pp. 3587-3629, 2019.

[5] VirusTotal, “VirusTotal,” https://www.virustotal.com/gui/, (Accessed on
11/15/2020).

[6] T.D., “maaaaz/androwarn: Yet another static code analyzer for malicious
Android applications,” https://github.com/maaaaz/androwarn, (Accessed
on 11/15/2020).

