2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

Testing DNN Image Classifiers for Confusion & Bias Errors

Yuchi Tian"
Columbia University
yuchi.tian@columbia.edu

Gail Kaiser
Columbia University
kaiser@cs.columbia.edu

ABSTRACT

We found that many of the reported erroneous cases in popular
DNN image classifiers occur because the trained models confuse
one class with another or show biases towards some classes over
others. Most existing DNN testing techniques focus on per-image
violations, so fail to detect class-level confusions or biases. We
developed a testing technique to automatically detect class-based
confusion and bias errors in DNN-driven image classification soft-
ware. We evaluated our implementation, Deeplnspect, on several
popular image classifiers with precision up to 100% (avg. 72.6%) for
confusion errors, and up to 84.3% (avg. 66.8%) for bias errors.
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1 INTRODUCTION

Image classification has a plethora of applications in software for
safety-critical domains such as self-driving cars, medical diagnosis,
etc. Even day-to-day consumer software includes image classifiers,
such as Google Photo search and Facebook image tagging. Image
classification is a well-studied problem in computer vision, where a
model is trained to classify an image into single or multiple prede-
fined categories [4]. Deep Neural Networks (DNNs) have enabled
major breakthroughs in image classification tasks over the past few
years, sometimes even matching human-level accuracy under some
conditions [3], which has led to their ubiquity in modern software.

However, in spite of such spectacular success, DNN-based image
classification models, like traditional software, are known to have
serious bugs. For example, Google faced backlash in 2015 due to
a notorious error in its photo-tagging app, which tagged pictures
of dark-skinned people as “gorillas” [2]. Analogous to traditional
software bugs, the Software Engineering (SE) literature denotes
these classification errors as model bugs [7], which can arise due to
either imperfect model structure or inadequate training data.

At a high-level, these bugs can affect either an individual image,
where a particular image is mis-classified (e.g., a particular skier is
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mistaken as a part of a mountain), or an image class, where a class of
images is more likely to be mis-classified (e.g., dark-skinned people
are more likely to be misclassified), as shown in Table 1. The latter
bugs are specific to a whole class of images rather than individual
images, implying systematic bugs rather than the DNN equivalent
of off-by-one errors. While much effort from the SE literature on
Neural Network testing has focused on identifying individual-level
violations—using white-box [5, 6, 9, 14], grey-box [7, 13], or concolic
testing [12], detection of class-level violations remains relatively
less explored. This paper focuses on automatically detecting such
class-level bugs, so they can be fixed.

2 ERROR TYPES AND METHODOLOGY

After manual investigation of some public reports describing the
class-level violations listed in Table 1, we determined two root
causes: (i) Confusion: The model cannot differentiate one class
from another. For example, Google Photos confuses skier and moun-
tain [8]. (ii) Bias: The model shows disparate outcomes between
two related groups. For example, Zhao et al. in their paper “Men
also like shopping” [16], find classification bias in favor of women
on activities like shopping, cooking, washing, etc. We further notice
that some class-level properties are violated in both kinds of cases.
For example, in the case of confusion errors, the classification error-
rate between the objects of two classes, say, skier and mountain,
is significantly higher than the overall classification error rate of
the model. Similarly, in the bias scenario reported by Zhao et al., a
DNN model should not have different error rates while classifying
the gender of a person in the shopping category. Unlike individual
image properties, this is a class property affecting all the shopping
images with men or women. Any violation of such a property by
definition affects the whole class although not necessarily every
image in that class, e.g., a man is more prone to be predicted as
a woman when he is shopping, even though some individual im-
ages of a man shopping may still be predicted correctly. Thus, we
need a class-level approach to testing image classifier software for
confusion and bias errors.

The bugs in a DNN model occur due to sub-optimal interac-
tions between the model structure and the training data [7]. To
capture such interactions, the literature has proposed various met-
rics primarily based on either neuron activations [5, 6, 9] or feature
vectors [7]. However, these techniques are primarily targeted at the
individual image level. To detect class-level violations, we abstract
away such model-data interactions at the class level and analyze
the inter-class interactions using that new abstraction. To this end,
we propose a metric using neuron activations and a baseline metric



Table 1: Examples of real-world bugs reported in neural image classifiers

Bug Type Name Report Date  Outcome
Gorilla Tag [2] Jul 1, 2015 Black people were tagged as gorillas by Google photo app.

Confusion Elephant is detected Aug 9, 2018 Image Transplantation (replacing a sub-region of an image by
in a room [11] another image containing a trained object) leads to mis-classification.
Google Photo [8] Dec 10,2018  Google Photo confuses skier and mountain.
Nikon Camera [10] Jan 22, 2010 Camera shows bias toward Caucasian faces when detecting people’s blinks.
Men Like Shopping [16]  July 29,2017  Multi-label object classification models show bias towards women on

Bias activities like shopping, cooking, washing, etc.

Gender Shades[1] 2018

Open-source face recognition services provided by IBM, Microsoft, and Face++

have higher error rates on darker-skin females for gender classification.

using weight vectors of the feature embedding to capture the class
abstraction.

For a set of test input images, we compute the probability of
activation of a neuron per predicted class. Thus, for each class, we
create a vector of neuron activations where each vector element cor-
responds to a neuron activation probability. If the distance between
the two vectors for two different classes is too close, compared to
other class-vector pairs, that means the DNN under test may not
effectively distinguish between those two classes. Motivated by
MODE'’s technique [7], we further create a baseline where each
class is represented by the corresponding weight vector of the last
linear layer of the model under test.

3 EVALUATION AND CONTRIBUTIONS

We evaluate our methodology for both single- and multi-label
classification models in eight different settings. Our experiments
demonstrate that DeepInspect can efficiently detect both Bias and
Confusion errors in popular neural image classifiers. We further
check whether Deeplnspect can detect such classification errors
in state-of-the-art models designed to be robust against norm-
bounded adversarial attacks [15]; Deeplnspect finds hundreds of
errors proving the need for orthogonal testing strategies to detect
such class-level mispredictions. Unlike some other DNN testing
techniques [9, 12, 13], DeepInspect does not need to generate ad-
ditional transformed (synthetic) images to find these errors. The
primary contributions of this paper are:

e We propose a novel neuron-coverage metric to automatically
detect class-level violations (confusion and bias errors) in DNN-
based visual recognition models for image classification.

e We implemented our metric and underlying techniques in Deepln-
spect.

o We evaluated DeepInspect and found many errors in widely-used
DNN models with precision up to 100% (avg. 72.6%) for confusion
errors and up to 84.3% (avg. 66.8%) for bias errors.

Our code is available at https://github.com/ARiSE-Lab/DeepInspect.

The errors reported by Deeplnspect are available at: https://www.

ariselab.info/deepinspect.
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