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Abstract. Excess transient noise events, or “glitches”, impact the data quality
of ground-based gravitational-wave (GW) detectors and impair the detection of
signals produced by astrophysical sources. Identification of the causes of these
glitches is a crucial starting point for the improvement of GW signal detectability.
However, glitches are the product of linear and non-linear couplings among the
interrelated detector-control systems that include mitigation of ground motion and
regulation of optic motion, which generally makes it difficult to find their origin.
We present a new software called PyChChoo which uses time series recorded in
the instrumental control systems and environmental sensors around times when
glitches are present in the detector’s output to reveal essential clues about their
origin. Applying PyChChoo on the most adversely affecting glitches on background
triggers generated by one of unmodeled GW detection pipelines called coherent
WaveBurst (cWB) operated in the data from the LIGO detectors between January
1st, 2020 and February 3rd, 2020, we find that 80% of triggers are marked as either
being vetoed or unvetoed in common between our analysis and the current LIGO
infrastructure.

1. Introduction

The dawn of gravitational-wave (GW) astronomy was opened with the first direct
detection of a GW signal produced from a binary black hole (BBH) merger [1] on
September 14, 2015.
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During the first and second observing runs of LIGO [2] and Virgo [3], nine
additional BBH mergers and a binary neutron star (BNS) merger were detected with
high confidence [!]. Furthermore, 39 events were observed with high confidence
during the first half of the third observation run [5]. The detection rate was
approximately 1 per week.

In order to detect GW signals, the ground-based GW detectors must be
extremely sensitive, causing them to become susceptible to instrumental and
environmental artifacts [1]. In particular, transient noise artifacts, or glitches may
mimic GW signals in their morphology so that it is crucial to differentiate if trigger
events identified by GW detection pipelines are astrophysical or terrestrial in origin
to reduce false detections.

The initial and essential task to identify an event trigger as a glitch is to
understand the origin of the glitch. Glitches are, however, the product of linear
and non-linear coupling among the interrelated detector-control systems that include
mitigation of ground motion and regulation of optical motion, which typically makes
it difficult to find their origin. Clues of the origin may be recorded in some of around
fifty thousand auxiliary channels such as instrumental sensors and environmental
monitors. Because the number of channels is numerous, the task to find the clues is
typically made by automated software packages.

LIGO-Virgo collaboration has been using software engines that find the
statistical correlation between the excess power recorded in the auxiliary channels
and glitches present in the detector’s output. An algorithm called use-percentage
veto (UPV) [0] finds the statistical correlation using the percentage of the number
of the excess power events identified in each of the auxiliary channels in coincidence
with glitches in the detector’s output, relative to the total number of excess power
events. As a consequence, UPV vetoes time periods that have a high correlation
factor. Similarly, hierarchical Veto (hWWETO) [7] uses a coincidence statistic to find
the correlation while minimizing the vetoed time as much as possible. For finding
the correlation for a single glitch, Pointy Poisson [8] uses a statistical confidence level
that can reject the chance-coincidence hypothesis estimated from the excess power
events in the longer time window. iDQ [9] calculates the probability that glitches are
present in the detector’s output as a function of time, inferred from excess power in
the auxiliary channels.

In this paper, we present a new software (publicly accessible in GitLab) called
PyChChoo (“Python-based glitCh Characterization tool”) designed to identify the
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clue of the origin of glitches in GW detectors and remove the effect in the detector’s
output. Using a set of glitches, PyChChoo conditions the time series recorded in the
auxiliary channels around the glitch-time and then counts the fraction of frequency
bins above a threshold in a given frequency band in order to quantify the excess
power in coincidence with the glitch. To identify highly correlated channels (so-
called witness channels), PyChChoo uses the probability showing the loudness of
the excess-power measure in the glitch set compared with the measure in another
set which is created with randomly selected timestamps when the detector’s output
is quiet. After witness channels are identified, removable glitches are determined by
the probability that the excess-power measure for a glitch belongs to the glitch set.

The most novel feature of this algorithm is that it can be used as a “targeted”
approach. To understand the origin of a particular population of glitches having
their specific characteristics denoted such as the peak frequency, signal-to-noise
ratio (SNR) and/or time-frequency morphology, a user can choose the list of those
glitches for running PyChChoo. Instead of providing a single channel that is the most
significantly correlated, the algorithm can find multiple channels to help a thorough
understanding of potential unknown physical couplings inside instruments. Besides,
the ultimate goal of GW searches is to detect more signals. Not all glitches are
adversely affecting GW detection pipelines. Therefore, studying all glitches present in
the detector’s output that typically is made with UPV and hVETO might introduce
redundant removal time periods. To compensate for this issue, only adversely
affecting glitches for a GW pipeline can be chosen for running this algorithm. We
demonstrate the “targeted” approach using triggers with high-ranking statistics that
are generated by one of unmodeled GW detection pipelines. Finding the witness
channels is particularly beneficial for unmodeled GW detection pipelines [10—12]
because they are more susceptible to glitches than matched-filter pipelines [13, 1]
by their design. Conversely, they have potential capabilities to detect GW signals
with unknown waveforms or signals empowered by unknown sources.

2. Software architecture

PyChChoo aims to identify the essential clues of the origin of glitches in the detector’s
output and remove the effect of those glitches. A set of glitches can be selected from
any event trigger generators (ETGs) or glitch databases, e.g., Omicron [15], pyCBC-
live [16], the database created based on Gravity Spy [17], or user-defined glitches on
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demand. Those glitches can be further down-selected based on their characteristics
such as peak frequencies, SNRs, and/or particular glitch-class, etc.

2.1. Quantify excess power

In order to identify the origin of glitches driven from terrestrial disturbances, a set
of system control sensors and environmental monitors that do not causally follow
from the detector’s output (so-called safe auxiliary channels) is used. To identify
safe channels, LIGO uses hVETO [7] and Pointy Poison [3].

Witness channels are expected to show excess power in coincidence with a glitch
detected in the detector’s output. Those channels might record excess power in
different frequency bands. Also, a measure quantifying the excess power depends on
a provided time window used to calculate itself. To account for these dependencies
on excess-power values, PyChChoo uses the one-sided amplitude spectrum density
(ASD) that indicates the noise amplitude. The one-sided ASD is a square root of
the one-sided power spectrum density (PSD) S(f) defined as

S007 = )80 = (DA (1)

where the brackets (- --) denote an ensemble average over noise realizations [18], and
n(f) and n(f’) are the Fourier transforms of the time series n(t) at the frequencies
f and f’, respectively. Using the ASD of the time series recorded in a set of safe
channels in the quiet time, we define the stationarity upper threshold (SUT) as
follows.

The SUT is obtained from the time series when no glitches are present in
the detector’s output. We consider Omicron triggers [15] with SNR < 5.5 to
be the absence of glitches. To calculate values of SUT, PyChChoo first selects
random timestamps during the quiet period and then chooses time windows for each
of the timestamps by randomly selecting durations (¢4) which are log-uniformly
distributed between the minimum duration (¢4,:,) and the maximum duration
(tamaz). The value of tg .y is chosen to be 0.02 seconds because of the computational
requirement for the ASD calculation in GWPY [19]. The value of tg,q, is typically
chosen to be 35 seconds where the majority of glitches (82% of glitches in the
Gravity Spy glitch-database in the second observation run (02)) have durations
less than this value. After setting the time window for each of the timestamps, the
ASD is calculated using time series in this time window. This ASD is subsequently
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normalized with the median value of ASDs of overlapping periodograms with a single
fast Fourier transform (FFT) duration of ¢4, in the time window of 128 seconds
spanning around the timestamp.

Using a set of timestamps, the value of SUT is defined as a 3-0 standard
deviation above the mean value of the normalized ASD for each channel in a
given frequency band with a given duration. To obtain values of SUT for any
durations, PyChChoo interpolates SUT as a function of duration for each channel
in a given frequency band. We find that the polynomial best fit with the degree
of 10 while removing the outliers outside of the median absolute error with a 6-o
is suitable. Figure 1 shows the interpolated SUT as a function of duration for the
two representative channels in particular frequency bands. The interpolated SUT
are saved and to be used to evaluate glitches like the following.
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Figure 1. Stationarity upper threshold (SUT) of two representa-
tive channels: L1:ASC-SRC2.Y_OUT.DQ in 1-128 Hz (left) and L1:PEM-
EXMAG_VEA FLOOR._Y DQ in 2048-4096 Hz (right) as a function of duration.
The red curves are the polynomial best fits with the degree of 10 obtained from the
gray curves that denote the values SUT for 8010 different random samples. Out-
lying values of SUT outside of the median absolute error with a 6-0 are removed.

For each glitch, PyChChoo conditions the time series recorded in each of the
safe channels in the time window:

W =[t, — aty, b, + (1 — a)td , 2)

where ¢, is the time of a glitch, ¢, is its duration, and « is a fraction of the duration
before t,. A value of o = 0.5 sets the window to be evenly spanned around the
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glitch time ¢,. A value of t4 can be chosen to be the duration provided by an ETG or
manually selected if needed. Witness channels are expected to record excess power in
particular frequency bands in this window when the glitch is present in the detector’s
output.

To quantify the excess power for a glitch, PyChChoo firstly calculates the ASD
of the time series in the window W, secondly normalize the ASD with the median
value of ASDs which are obtained from the time series in the 128-second window
spanning evenly around ¢4, finally counts the fraction (¢) of the frequency bins above
the value of SUT in a given frequency band. Because the sampling frequencies differ
between channels (from 256 Hz to 16384 Hz), the lower and/or upper bounds of a
chosen frequency band can be greater than the Nyquist frequency of some channels.
When only the upper bound is above the Nyquist frequency, we use the frequency
bins up to the Nyquist frequency for calculating ¢. When the lower bound is above
the Nyquist frequency, we define the value of ¢ to be zero.

2.2. Probabilistic insight

After a set of glitches (hereafter called target set) is quantified with values of ¢ from
each of the safe auxiliary channels in different frequency bands, the probabilistic
measure is used to identify witness channels. Channels with large values of ¢ in the
target set could have large values of ¢ during the absence of glitches as well. Channels
which record excess power regardless of the presence of glitches indicate no or mild
correlation with the glitches. The probabilistic measure accounts for this factor to
identify witness channels.

To identify witness channels, PyChChoo compares the target set with another
data set (null set). The null set is created by randomly generating time periods with
durations being distributed as that of the target set, and then selecting only the
subset of these time periods that do not overlap with any glitches being present in
the detector’s output. We typically consider Omicron triggers with SNR < 5.5 to
be the absence of glitches. Because the null set represents the data set when the
detector’s output is quiet, channels with large values of ¢ in the null set imply no or
mild correlation with the targeted glitches.

Witness channels are expected to show a larger number of samples with greater
values of ¢ in the target set than the null set. To formulate this manifestation,
we consider the distributions ¢(¢) and n(q) of ¢ in the target and null sets,
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respectively. The probability that the target set has values in the small interval
(q,q + Aq) is t(q¢)Aq, while the probability that the null set has values less than ¢
is N(q) = foq n(q")dq’, which is known as the cumulative distribution. Multiplying
t(q)Aq and A[(q) gives the probability of the pair of the above two situations occur in
unison. Summing ¢(q)AgN(q) over the range of all possible values of ¢, formulated
as

py = / ()2C(q) . (3)

is the probability that arbitrary values of ¢ in the target set are greater than values
< 0.5 imply chance coincidences. Channels with

~

pg ~ 1 indicate evidence of being the witness for the glitches. Therefore, PyChChoo

in the null set. Channels with p,

uses p, to identify the witness channels. In experiments, only a finite number of
samples can be obtained. To compensate for this experimental limit, a continuous
distribution is preferred to make a robust measure for Eq. (3). Because values of ¢
are bounded between 0 and 1, a candidate distribution for ¢ is a Beta distribution.
The shape of the Beta distribution is obtained with the first and second moments
estimated from the measured samples.

After witness channels are identified, the effect of the glitches on the GW
detection pipelines can be mitigated. The simple and standard procedure is to veto
the time periods of glitches that are correlated with witness channels. For a glitch, a
value of ¢ obtained from the witness channel implies either of two mutually exclusive
situations: a value of ¢ follows the target set with being greater than values in the
null set; or a value of ¢ follows the null set with being greater than values in the
target set. Thus, the probability that ¢ belongs to the target set is given as

_ t(q)N(q)
Po= N + T@n() @

where 7 (g) is the cumulative distribution of ¢ in the target set. A value of p, ~ 1

indicates evidence of a strong correlation between excess power in the witness channel
and the glitch. PyChChoo uses p, as a veto criterion.

3. Software validation

For validating PyChChoo’s performance to identify witness channels, we use a
class of glitches with the known instrumental origin that was identified during O2.
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The LIGO-Livingston (L1) detector was contaminated with a new class of glitches
between February 9th, 2017 and April 10th, 2019 due to the magnetic coupling
between the magnetic field produced from electronics racks and the detector’s internal
components such as cables, connectors, and actuators [20]. These glitches were
short-lived spikes with a duration of ~ 0.3 seconds and appeared in the frequency
band of ~ 50-60 Hz in the detector’s output. hVETO [7] identified a series of
coincident excess power in auxiliary channels in the Physical Environmental Monitor
(PEM) mains voltage monitor (MAINSMON) of the Electronics Bay (EBay) in
the X-arm end station (EX) as well as in the EX magnetometers. The follow-up
study conducted by Ref. [20] using the machine-learning-based tools called KAROO
GP [21] and RANDOM FOREST [22], identified a physically coupled channel called
I[SI-ETMX_ST1_BLND_Z T240_CUR_IN1_DQ in the active seismic isolation internal
to the vacuum system (ISI) in addition to the EX magnetometer channels.

As the target set, we choose 595 glitch samples with SNR > 7.5 from this
magnetometer set. Also, we create the null set with a sample size of 477 by analyzing
the randomly chosen timestamps when no Omicron triggers with SNR > 5.5 are
present in the detector’s output. We analyze 700 safe auxiliary channels with 8
different frequency bands. Figure 2 shows values of ¢ for the target and null sets.
One of the EX magnetometer channels called PEM-EX_ MAG_VEA FLOOR_X_DQ
in the PEM sub-system has values of ¢ > 0.6 for 93% of the target set and 0%
of the null set. The Alignment Sensing and Control (ASC) channels show random
fluctuating values of ¢ both in the target and null sets.

Using the target and null sets in Fig 2, we calculate the probability p, in
Eq. (4) for channels in each frequency band. Figure 3 shows values of p, for the
magnetometer set. PyChChoo successfully identifies the witness channels including
the EX magnetometer channels as well as ISIFETMX_ST1_BLND_Z T240 CUR._
IN1_DQ channel in 1-128 Hz with p, = 0.95, in agreement with Ref. [20] .

4. Application to an unmodeled GW detection pipeline

In GW signal searches, the detection pipelines generate triggers with ranking
statistics (RSs) (e.g., SNR). Typically, triggers from astrophysical signals have
SNR = 8. The confidence in detecting astrophysical signals is characterized by
a false alarm rate (FAR), which is the rate of terrestrial-noise triggers with RSs
equal or higher than the RS of an astrophysical candidate event. The FAR is
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Figure 2. Left: Values of the excess power measure ¢ for 700 safe auxiliary
channels with 8 different frequency bands in coincidence with 595 magnetometer
glitch set with SNR > 7.5. Right: values of ¢ for the null set with a sample size of
477. The channels in the 8 different frequency bands are shown side by side from
left to right where the chosen frequency bands are 1-128 Hz, 128-256 Hz, 256-512
Hz, 512-1024 Hz, 1024-2048 Hz, 2048-4096 Hz, 4096-8192 Hz, and the range from 1
Hz to the Nyquist frequency. The dark and light gray bars in the top denote each
of the channel groups in the common sub-instrumental sensor or environmental

monitor.

typically required to be smaller than 2.0 per year [5]. For increasing confidence
in GW detections, it is crucial to reduce outlying noise triggers with large values of
RS. As mentioned earlier, unmodeled detection pipelines are typically susceptible to
glitches, causing a large number of noise triggers with high values of RS. Hence, we
focus on noise triggers generated with one of the unmodeled pipelines called coherent
waveburst (cWB) [10,11] in the analysis.

We use a set of background-mode cWB triggers created from the data of the
L1 and LIGO-Hanford (H1) detectors between January 1st, 2020 and February 3rd,
2020. Because the background-mode cWB applies some time shifts much longer than
the light-travel time between detectors, these triggers represent noise artifacts. In
our analysis, there is no trigger of astrophysical signals in origin. In this period, the
detector’s output was significantly contaminated with glitches, resulting in 40 cWB
triggers with the RS of p > 9 being generated. Around the trigger time in the L1
detector, we analyze the data from auxiliary channels with PyChChoo.

Because more than one trigger representing a same glitch could be generated in
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rank Channel Band [HZ] Pg Threshold 0.9
1 PEM-EX_MAG_VEA_FLOOR_X_DQ 1-128 0.99969 pass
2 PEM-EX_MAG_VEA_FLOOR_Y_DQ 1-128 0.99939 pass
3 PEM-EX_MAG_VEA_FLOOR_Y_DQ 128-256 0.9989 pass
4 PEM-EX_MAG_VEA_FLOOR_X_DQ 128-256 0.9983 pass
5 PEM-EX_MAG_VEA_FLOOR_Z_DQ 256-512 0.99163 pass
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Figure 3. p, obtained from the 700 safe auxiliary channels in 8 different frequency
bands for the magnetometer set. The red (cyan) bars denote channels with a given
of frequency band with p, > 0.9 (< 0.9). The channel in the 8 different frequency
bands are shown side by side from left to right where the chosen frequency bands
are 1-128 Hz, 128-256 Hz, 256-512 Hz, 512-1024 Hz, 1024-2048 Hz, 2048-4096 Hz,
4096-8192 Hz, and the range from 1 Hz to the Nyquest frequency. The dark and
light gray background colors denote each of the channel groups in the common
sub-instrumental sensor or environmental monitor. The table shows the top five
channels in different frequency bands. Pass (fail) in the last column in the table
show whether values of p, are above (below) 0.9.

the proximity of trigger times in a detector, we cluster the cWB triggers by keeping
the subset of triggers with the largest value of p in the window of 0.5 seconds to avoid
double-counting glitches. For the target set, we choose the 39 clustered outlying
trigger with p > 9. We consider the clustered trigger times as the center times for
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the target samples. Also, we manually choose the duration of 1 second for these
samples because the durations provided by ¢WB are found to be too small (typically
~ 0.01 seconds) to represent the durations of glitches. For the null set, we create
200 samples with a duration of 1 second during the quiet period when there is no
Omicron trigger with SNR > 5.5. We use the 759 safe channels in the L1 detector
and 9 different frequency bands for each of the channels. In this analysis, we have a
band of 1-50 Hz in addition to a list of bands used in the previous section because
the peak frequency of some cWB triggers is around 20 Hz and the witness of those
triggers are expected to have excess power only in the low-frequency (below ~ 40
Hz) region.

Figure 4 shows three witness channels with values of p, > 0.9. The first-
ranked channel (ASC-CSOFT) monitors the motions of mirrors in the arm in the
GW detector. The second-ranked channel (LSC-REFL) typically monitors the laser
intensity dips. The third-ranked channel (SUS-ETMX) monitors the displacement
in the suspension system in the end station in the X-arm.

Using values of p, obtained with the top two channels in the frequency band
in Fig. 4, we consider triggers to be vetoed using the 1-second window around the
trigger. We find that the channels up to the second-ranked are sufficient because no
additional triggers can be removed by adding the third-ranked channel. For vetoing
triggers, we choose a conservative criterion of p, > 0.95. The left panel in Fig. 5
shows the cWB outlying triggers which can be vetoed. The triggers with a central
frequency less than 80 Hz are typically vetoed with the ASC-CSOFT channel because
the mirror motion produces low-frequency glitches shown in the left panels in Fig.
6. Because the glitches produced by the laser power intensity dips typically have a
large bandwidth ranging from ~10 to ~ 2000 Hz, vetoed triggers with the LSC-REFL
have the central frequencies of either less than ~ 110 Hz or greater than ~ 800 Hz.
Figure 6 shows two representative glitches witnessed with either the ASC-CSOFT
or LSC-REFL channels. Overall, 72.5% of 40 outlying triggers in this search period
can be vetoed with our analysis. The right panel in Fig. 5 shows that the rates of p
in the cWB triggers before and after the veto.

As a complementary check, we compare our veto performance with that obtained
by the current LIGO infrastructure. Using a set of veto periods obtained from three
different flag categories indicating: 1) a critical issue with an abnormally operating
detector (CAT1) ; 2) times of glitches with understood physical coupling between
auxiliary channels and the detector’s output (CAT2); and 3) times of glitches with
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rank Channel Band [HZ] Pg Threshold 0.9
1 ASC-CSOFT_P_OUT_DQ 1-50 0.92627 pass
2 LSC-REFL_A_LF_OUT_DQ 1-128 0.92274 pass
3 SUS-ETMX_L1_WIT_P_DQ 1-50 0.91013 pass
4 ASC-CSOFT_P_OUT_DQ 1-128 0.89045 fail
5 CAL-PCALY_EXC_SUM_DQ 1-128 0.88624 fail
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Figure 4. p, obtained from the 759 safe auxiliary channels in 8 different frequency
bands for the clustered outlying ¢WB triggers with p > 9 from January lst to
February 3rd, 2020. The red (cyan) bars denote channels with a given of frequency
band with p, > 0.9 (< 0.9). The channels in the 9 different frequency bands are
shown side by side from left to right where the chosen frequency bands are 1-50
Hz, 1-128 Hz, 128-256 Hz, 256-512 Hz, 512-1024 Hz, 1024-2048 Hz, 2048-4096 Hz,
4096-8192 Hz, and the range from 1 Hz to the Nyquist frequency. The dark and
light gray background colors denote each of the channel groups in the common
sub-instrumental sensor or environmental monitor. The table shows the top five
channels in different frequency bands. Pass (fail) in the last column in the table
show whether values of p, are above (below) 0.9.

unknown causes but statistical correlation (CAT3), 35 out of the cWB outliers can
be vetoed. Because the periods of the CAT1 flag are already removed commonly for
the analyses, we compare unvetoed triggers between our analysis and the union of the
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Figure 5. Left: 40 outlying background ¢cWB triggers with the ranking statistic
of p > 9. The orange-x (blue-+) markers denote the triggers vetoed with ASC-
CSOFT (LSC-REFL) channels based on the criterion of p, > 0.95. The black-
circles denote the remaining triggers in our analysis. The green-squares denote the
triggers vetoed with the CAT2 and CATS3 flags. Right: Rate of all the background
cWB triggers between January 1st, 2020 and February 3rd, 2020. The grey and
red histograms denote the rates with ¢cWB triggers before and after our veto,
respectively. The blue-dashed histogram is the rate after the CAT and CATS3 flags
applied.

CAT2 and CATS3 flags. There are 4 commonly unvetoed triggers. We veto a single
trigger that is not vetoed with the CAT2 and CAT3 flags because of the chance-
coincident excess power witnessed with the LSC-LEFT channel. Seven triggers are
vetoed with the CAT2 and CAT3 flags but not vetoed with our analysis. This
discrepancy can be explained for two reasons. Because our veto window is 1 second
around the trigger time, the quantity for the excess power outside this window is
not large enough to pass our veto criterion. Otherwise, channels other than the two
high-ranked witness channels selected in our analysis might witness coincident excess
power. Table 1 summarizes details about these triggers. In conclusion, we have 80%
of 40 triggers are in common between our analysis and the CAT2 and CAT3 flags.

5. Conclusion

In this paper, we have presented a new software, PyChChoo, designed to identify
the origin of glitches and remove the effect of glitches.
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Figure 6. The time-frequency representation of the glitches in the detector’s
output (top) and the excess power in the witness auxiliary channels (bottom)
using the Q-transform [15]. The left and right panels show the glitches witnessed
with the ASC-CSOFT and LSC-REFL channels, respectively. The trigger times
are marked as zero on the maps. The ASC-CSOFT channel in 1-50 Hz and and
the LSC-REFL channel in 1-128 Hz have the values of p, = 0.999 and p, = 0.954
for each glitch, respectively.

Using a set of time series recorded in the instrumental and environmental
monitors which do not causally follow from the detector’s output, PyChChoo queries
the time series from each of the sensors around the times of glitches and then counts
the fraction (¢q) of frequency bins above the stationarity upper threshold to quantify
excess power. Comparing with another data set when the detector’s output is quiet
that is analyzed in the same way, the witness sensors are probabilistically identified
based on values of ¢q. To remove the effect of the glitches in the detector’s output,
time periods when the witness sensors monitor excess power in coincidence with the
glitches, are marked as a veto. The veto criterion is given as a probability that a
value of ¢ obtained with a witness channel belongs to the distribution of ¢ in the
glitch set.

To demonstrate the effect on GW searches, we have used the background triggers
given by the cWB pipeline running on the L1 and H1 detectors from January 1st,
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2020 to February 3rd, 2020. Because these triggers are generated by applying some
time shifts longer than the light-travel time between detectors, there is no trigger
of astrophysical signals in origin in our analysis. During this period, the detector’s
output was significantly contaminated with glitches. We analyze the data of the
L1 auxiliary channels using the L1 trigger time of the outlying triggers with the
ranking statistic of p > 9. We find at least two kinds of adversely affecting glitches
to the pipeline, one of which seems to be due to the mirror-motions witnessed by the
ASC-CSOFT channel and the other one seems to be typically caused by the laser
intensity dips witnessed by the LSC-REFL channel with high confidence. Using
these two witness channels, we consider that 72.5% of 40 outlying triggers to be
vetoed. We find that none of the ¢cWB triggers marked as being vetoed are in
coincidence with super events reported in the database server of the candidate GW
events (GraceDB) [23].

As a complementary check, we compare our results with the current LIGO
infrastructure; the CAT2 and CAT3 flags. We veto a single trigger that is not vetoed
with the CAT2 and CAT?2 flags because of the coincident excess power witness with
the LSC-LEFT channel. Our analysis does not veto 7 triggers that are vetoed with
the CAT2 and CAT3 flags because the excess power is present outside of the 1-
second window used in our analysis or the coincident excess power is not witnessed
with our selected two channels. Overall, 80% of the triggers are in common between
our analysis and the LIGO infrastructure.

As mentioned, these 40 outlying triggers seem to have at least two distinct
sources of glitches. In our analysis, we have used all triggers to calculate
py-  Values of p, could be higher by grouping glitch samples based on ¢ of
all channels and calculate p, for each group. To group samples, machine-
learning clustering algorithms such as GAUSSIAN MIXTURE CLUSTERING [27,25] or
AGGLOMERATIVE CLUSTERING [20] can be applied after using some dimensionality
reduction algorithms including PRINCIPLE COMPONENT ANALYSIS (PCA) [27-29]
in SCIKIT-LEARN [30]. PyChChoo has the in-progress implementation using
GAUSSIAN MIXTURE CLUSTERING and PCA incorporating statistical tests such
as a one-sided binomial test and a one-sided Welch’s t-test [31] to determine the
number of clusters. Also, because the background ¢cWB triggers are generated by
applying some time shifts between detectors, our analysis might have a bias due to
one realization of time shifts. To reduce the bias, a higher number of time shifts can
be chosen to generate a larger number of background cWB triggers.
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PyChChoo has several advantages. Firstly, it can work with any ETGs running
only on the detector’s output without the use of them running on auxiliary channels.
Secondly, because a list of glitches can be chosen by a user, it can be used to help to
understand the origin of glitches which are only adversely affecting a particular GW
detection pipeline with specific parameters, e.g., high ranking statistic. The current
existing veto infrastructure typically uses Omicron ETG. Omicron is intended to
capture a wide variety of glitches including those that are not similar to astrophysical
GW signals. Analyzing only the data set obtained from a particular GW detection
pipeline might make improvements in reducing veto times. Also, it takes less than
1 minute to analyze all the safe auxiliary channels and identify potentially witness
channels for a given trigger. Therefore, it can be used for medium latency operations
to assess if a trigger is due to astrophysical or terrestrial origin.

In addition to the purpose of vetoing glitches and the usage for the medium
latency operations, PyChChoo has another crucial advantage. As discussed in Sec.
3, PyChChoo can find witness channels that hVETO might miss so that it can
be used for the follow-up study about glitches identified by hVETO. This feature
is beneficial for understanding more thoroughly about noise couplings inside the
instruments. For glitches with the instrumental origin, noise couplings that cause
glitches could be potentially mitigated by tuning the pieces of equipment’ setting or
replacing them with improved ones. If mitigating of the cause is difficult to operate or
the cause is of environmental origin, we envision that those glitches can be subtracted
using the data recorded in witness channels based on a method similar to Ref. [32]
but adapted to transient noise artifacts. The Bayesian inference approach to subtract
glitches is available for a signal from the compact binary merger [33,341]. However,
a subtraction method using auxiliary channels could have a significant impact on
unmodeled search pipelines in the future.

As the detector’s sensitivity increases, in particular, at the low-frequency region
below ~ 80 Hz, unmodeled GW detection pipelines play important roles in observing
intermediate binary black hole (IMBBH) following the detection on May 21%¢, 2019
[35]. Understanding the cause of glitches and mitigating those will be more crucial.

Acknowledgements

K.M. is supported by the U.S. National Science Foundation grant PHY-1921006 and
PHY-2011334. The authors would like to thank their LIGO Scientific Collaboration



PyChChoo 17

and Virgo Collaboration colleagues for their help and useful comments, in particular
Amber L. Stuver, Duncan MacLeod, Brennan Hughey, Marco Cavaglia, and Ryan
Quitzow-James. The authors are grateful for computational resources provided by
the LIGO Laboratory and supported by the U.S. National Science Foundation Grants
PHY-0757058 and PHY-0823459, as well as a service of the LIGO Laboratory, the
LIGO Scientific Collaboration and the Virgo Collaboration. LIGO was constructed
and is operated by the California Institute of Technology and Massachusetts Institute
of Technology with funding from the U.S. National Science Foundation under grant
PHY-0757058. Virgo is funded by the French Centre National de la Recherche
Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the
Dutch Nikhef, with contributions by Polish and Hungarian institutes. The publicly
available source code in GitLab is made use of python packages including Scipy [19],
GWPY [36], PANDAS [37], , GWTRIGFIND [38], MATPLOTLIB [39], NDS2UTILS [10],
and SCIKIT-LEARN [30]. This manuscript has been assigned LIGO Document Control
Center number LIGO-P2100031.

References

[1] Abbott B P et al. (Virgo, LIGO Scientific) 2016 Phys. Rev. Lett. 116 061102 (Preprint
1602.03837)

[2] Aasi J et al. (LIGO Scientific) 2015 Class. Quant. Grav. 32 074001 (Preprint 1411 .4547)

[3] Acernese F et al. (VIRGO) 2015 Class. Quant. Grav. 32 024001 (Preprint 1408.3978)

[4] Abbott B et al. (LIGO Scientific, Virgo) 2019 Phys. Rev. X 9 031040 (Preprint 1811.12907)

[5] Abbott R et al. (LIGO Scientific, Virgo) 2020 (Preprint 2010.14527)

[6] Isogai T (LIGO Scientific, Virgo) 2010 J. Phys. Conf. Ser. 243 012005

[7] Smith J R, Abbott T, Hirose E, Leroy N, Macleod D, Mclver J, Saulson P and Shawhan P

2011 Class. Quant. Grav. 28 235005 (Preprint 1107 .2948)
[8] Essick R, Mo G and Katsavounidis E 2020 (Preprint 2011.13787)
[9] Biswas R et al. 2013 Phys. Rev. D 88 062003 (Preprint 1303.6984)

[10] Klimenko S, Yakushin I, Mercer A and Mitselmakher G 2008 Class. Quant. Grav. 25 114029
(Preprint 0802 .3232)

[11] Klimenko S et al. 2016 Phys. Rev. D 93 042004 (Preprint 1511.05999)

[12] Sutton P J et al. 2010 New J. Phys. 12 053034 (Preprint 0908 .3665)

[13] Nitz A H, Dent T, Dal Canton T, Fairhurst S and Brown D A 2017 Astrophys. J. 849 118
(Preprint 1705.01513)

[14] Sachdev S et al. 2019 (Preprint 1901.08580)

[15] Robinet F, Arnaud N, Leroy N, Lundgren A, Macleod D and Mclver J 2020 SoftwareX
100620 ISSN 2352-7110 URL http://www.sciencedirect.com/science/article/pii/
52352711020303332



PyChChoo 18

[16]

1
18
[19]

X

Nitz A H, Dal Canton T, Davis D and Reyes S 2018 Phys. Rev. D 98 024050 (Preprint
1805.11174)

Zevin M et al. 2017 Class. Quant. Grav. 34 064003 (Preprint 1611.04596)

Cutler C and Flanagan E E 1994 Phys. Rev. D 49 2658-2697 (Preprint gr-qc/9402014)

Virtanen P, Gommers R, Oliphant T E, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P, Weckesser W, Bright J, van der Walt S J, Brett M, Wilson J, Millman K J,
Mayorov N, Nelson A R J, Jones E, Kern R, Larson E, Carey C J, Polat I, Feng Y, Moore
E W, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero E A, Harris
C R, Archibald A M, Ribeiro A H, Pedregosa F, van Mulbregt P and SciPy 10 Contributors
2020 Nature Methods 17 261-272

Cavaglia M, Staats K and Gill T 2019 Commun. Comput. Phys. 25 963-987 (Preprint
1812.05225)

Staats K, Pantridge E R, Cavaglia M, Milovanov I and Aniyan A 2017 CoRR abs/1708.03157
(Preprint 1708.03157) URL http://arxiv.org/abs/1708.03157

Breiman L 2001 Machine Learning 45 5-32

Gracedb https://gracedb.ligo.org/documentation/index.html accessed: 2021-01-26

Ghosh J and Sen P 1984 On the asymptotic performance of the log likelihood ratio statistic
for the mixture model and related results

Hartigan J A 1985 A failure of likelihood asymptotics for normal mixtures

Gower J C and Ross G J S 1969 Journal of the Royal Statistical Society. Series C (Applied
Statistics) 18 54-64 ISSN 00359254, 14679876 URL http://www.jstor.org/stable/
2346439

FRS K P 1901 The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 2 559-572 (Preprint https://doi.org/10.1080/14786440109462720) URL
https://doi.org/10.1080/14786440109462720

Hotelling H 1933 Journal of Educational Psychology 417-441

Minka T P 2000 Automatic choice of dimensionality for pca Tech. rep.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher
M, Perrot M and Duchesnay E 2011 Journal of Machine Learning Research 12 2825-2830

WELCH B L 1947 Biometrika 34 28-35 ISSN 0006-3444 (Preprint https://academic.oup.
com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf) URL https://doi.org/
10.1093/biomet/34.1-2.28

Ormiston R, Nguyen T, Coughlin M, Adhikari R X and Katsavounidis E 2020 Phys. Rev. Res.
2 033066 (Preprint 2005.06534)

Chatziioannou K, Cornish N, Wijngaarden M and Littenberg T B 2021 (Preprint 2101.01200)

Cornish N J 2021 (Preprint 2101.01188)

Abbott R et al. (LIGO Scientific, Virgo) 2020 Phys. Rev. Lett. 125 101102 (Preprint
2009.01075)

Macleod D, Urban A L, Coughlin S, Massinger T, Pitkin M, rngeorge, paulaltin, Areeda
J, Singer L, Quintero E, Leinweber K and Badger T G 2020 gwpy/gwpy: 2.0.2 URL
https://doi.org/10.5281/zenodo.4301851



PyChChoo

19

[37] pandas development team T 2020 pandas-dev/pandas: Pandas URL https://doi.org/10.
5281/zenodo.3509134

[38] gwtrigfind https://pypi.org/project/guwtrigfind/0.8.0/ accessed: 2021-01-26

[39] Hunter J D 2007 Computing in Science & Engineering 9 90-95

[40] nds2utils https://pypi.org/project/nds2utils/ accessed: 2021-01-26

GPS time  ASC-CSOFT LSC-REFL Comments
in L1 in 1-50 Hz in 1-128 Hz

1262326892.30 0.874 0.905 Excess power in (—2.0, —0.7) seconds in LSC-RELF
1262403661.68 0.824 0.936  Excess power in 1-50 Hz in LSC-REFL with p, = 0.953
1262655787.22 0.785 0.942 Glitches in (0.4, 1.0) seconds at ~ 25 Hz
1262674230.37 0.874 0.930 A glitch at -1.4 seconds at ~ 12 Hz
1262676098.05 0.785 0.938 Glitches below 9 Hz
1262758399.380 0.785 0.950 Quiet within (-8, 8) seconds
1262842889.30 0.824 0.899 -
1263363175.48 0.874 0.905 -
1263715708.16 0.941 0.903 -
1264327099.43 0.785 0.905 =
1264703139.12 0.785 0.905 A glitch in (—2.5,0) seconds
1262664659.84 0.824 0.960 Excess power in the LSC-REFL channel

Table 1. List of 11 unvetoed outlying background cWB triggers with p > 9 in
our analysis using a threshold of p, > 0.95 for the first and second ranked witness

channels with comments for triggers in discrepancy between our analysis and the
CAT2 and CAT3 flags. The trigger in the last row is vetoed because of the chance
coincident excess power witnessed by the LSC-REFL channel. The values in the
columns of ASC-CSOFT and LSC-REFL denote values of p,. The shaded rows
denote the unvetoed triggers based on the CAT2 and CAT3 data quality flags of

LIGO.



