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FEATURE ARTICLE

THE NATURAL HISTORY OF MODEL ORGANISMS

The house sparrow in the
service of basic and applied
biology

Abstract From the northernmost tip of Scandinavia to the southernmost corner of Patagonia, and
across six continents, house sparrows (Passer domesticus) inhabit most human-modified habitats of
the globe. With over 7,000 articles published, the species has become a workhorse for not only the
study of self-urbanized wildlife, but also for understanding life history and body size evolution, sexual
selection and many other biological phenomena. Traditionally, house sparrows were studied for their
adaptations to local biotic and climatic conditions, but more recently, the species has come to serve
as a focus for studies seeking to reveal the genomic, epigenetic and physiological underpinnings of
success among invasive vertebrate species. Here, we review the natural history of house sparrows,
highlight what the study of these birds has meant to bioscience generally, and describe the many
resources available for future work on this species.

HALEY E HANSON*, NOREEN S MATHEWS, MARK E HAUBER AND

LYNN B MARTIN

Introduction

House sparrows are small, sexually dimorphic
birds in the family Passeridae. The species is one
of the most widely distributed and common
birds in the world, represented by 12 different
subspecies (Summers-Smith, 2009). House spar-
rows can be found living and breeding in climac-
tically extreme environments from deserts in
southern California to cities above the Arctic cir-
cle, where they are found almost exclusively in
proximity to  human  habitation
(Hanson et al., 2020b). Considered anthrode-
pendent, some populations have gone extinct
locally without human presence (Ravinet et al.,
2018; Summers-Smith, 1988). It is for this rela-
tionship with people that they received their
identifier domesticus, which derives

close

species
from the Latin domus or 'house’, from Carl Lin-
naeus in 1758 (Jobling, 2009; Anderson, 2006).
Their ubiquity and close association with humans
have undoubtedly led to their detailed study
across biological and even sociological disci-
plines. Here, we explore the natural history of

house sparrows and the contributions that these
birds have made to basic biology and beyond.

Native distribution and natural
range expansions

House sparrows are native to parts of Asia,
North Africa and most of Europe, (with the
exception of Italy which is occupied by the Ital-
ian sparrow P. italiae; Animation 1). Becoming
commensal some 10,000 years ago, house spar-
rows are now strongly associated with habitats
that have been modified by humans. However,
they also continue to increase their geographic
range by exploiting ongoing and accelerating
anthropogenic change (Ravinet et al., 2018;
Saetre et al., 2012). A reliance on humans is evi-
dent from their colonization of Northern Europe,
Eastern Europe and Central Asia in the early
1800s, as agriculture spread and urbanization
increased (Summers-Smith, 1963). Though still
widespread, significant declines have been
reported in the native range of the species since
the 1970s. This topic remains contentious
(Box 1), but these declines have been attributed
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Figure 1. Adult and nestling house sparrows. (A) Female house sparrow. (B) Male house sparrow. (C) Nestling
house sparrows. (D) Male house sparrow provisioning nestlings. Image Credits: All images taken by Janneke Case

in Tampa, Florida, United States, in 2019.

to a multitude of factors, including infectious dis-
ease, pollution, pesticide use, predator dynam-
ics, new building methodologies and
more efficient grain harvesting and storage
(Shaw et al., 2008; Summers-Smith, 2003;
Singh et al, 2013, Bell et al, 2010;
Dadam et al., 2019).

Introduced distribution and range
expansions

House sparrows are one of the most ubiquitous
birds in the world (Anderson, 2006). In approxi-
mately 170 years, they colonized the globe such
that they now reside in every continent except
Antarctica and occupy an estimated 76,600,000

km? (Birdlife international, 2018). There have
been over 250 introduction or translocation
events recorded worldwide (Table 1), with the
first deliberate successful introduction occurring
in 1851 in New York City (Summers-
Smith, 1988). Many introductions stemmed
from colonial acclimatization societies purpose-
fully releasing birds for cultural reasons or as
failed attempts at biological control. More
recently, introductions have been accidental.
Ship-assisted dispersal (e.g., cargo ships, cruise
liners) has been documented, and other types of
vehicle-assisted  dispersal are also likely
(Sainz-Borgo et al., 2016; Schrey et al., 2014,
Clergeau et al., 2004; Szent-lvany, 1959; Sum-
mers-Smith, 1963).

Hanson et al. eLife 2020;9:€52803. DOI: https://doi.org/10.7554/eLife.52803

20f12


https://doi.org/10.7554/eLife.52803

e Life Feature Article

The Natural History of Model Organisms | The house sparrow in the service of basic and applied biology

1800

Animation 1. House sparrow distribution from 1800
to 2019.

https://elifesciences.org/articles/52803#video’
Image Credit: Haley E Hanson, Noreen S Mathews, and Jaime E Zolik. For
sources used, please refer to https://doi.org/10.6084/m9 figshare

11915955.v1.

Dimorphism in morphology and
behavior

Male house sparrows tend to be heavier and
larger than females (Figure 1, Hanson et al.,
2020b). Plumage coloration differs between the
sexes. Males have gray crests and black post-
ocular stripes with conspicuous white spots
behind the eyes (Figure 1b). Male abdomens
are gray whereas bills, tails, wings and body
feathers are black or dark brown. Plumage in
females is drabber, with crests that are dark
brown and post-ocular stripes that are light
brown. Females lack black head markings and
have gray-brown to light brown cheeks, bills and
feathers (Figure 1a). Female plumage resembles
juveniles and females from other Passer species
so much that distinguishing them visually is often
difficult (Anderson, 2006). Subspecies also dif-
fer in size, mass and male plumage (See Sum-
mers-Smith, 1988).

The most conspicuous morphological differ-
ence between male and female sparrows is the
large black throat badge of males. Arguably,
this badge is one of the factors that made this
species a model in behavioral ecology (Sanchez-
Tojar et al., 2018). Large badge size has been
thought to convey an individual's propensity to
win in male-male competitive interactions; the
logic was that possessing information a priori
about a competitor could save both the badge-
holder and his opponents from wasted energy
and risk of injury (Rohwer, 1975). Recently, how-
ever, the largest meta-analysis to date revealed
that badge size is at best an unreliable signal of
dominance status (Sanchez-Téjar et al., 2018).
The currently favored hypothesis for badge size
is that it serves some role in mate choice, as
females tend to choose males with large

badges, and badge size is positively correlated
with male sexual behaviors (Veiga, 1996).

Importantly, many morphological characteris-
tics also vary geographically. Most well-known
through the pioneering work of Richard F John-
ston and Robert K Selander, plumage color and
aspects of body size (wing, tail and tarsus
length, skeletal characteristics, and body mass)
were found to vary within and between native
and introduced populations (Selander and John-
ston, 1967; Johnston and Selander, 1964;
Johnston and Selander, 1971; Johnston, 1969,
Johnston, 1973). Introduced populations in
North America were discovered to have pale
coloration in hot, arid climates, but darker color-
ation in cooler, humid climates (Johnston and
Selander, 1964). Body size of birds also
increased with latitude, and perhaps most inter-
estingly, all of these geographic trends in bio-
logical traits arose rapidly in the introduced
populations (Johnston and Selander, 1964;
Selander and Johnston, 1967; Johnston and
Selander, 1971).

Diet and foraging
Nestling house sparrows are fed an insect-based
diet for the first three days after hatching. Later,
following fledging, they favor grains, especially
outside urban areas (Anderson, 2006). Adult
house sparrows have a fairly opportunistic diet
throughout much of the year, especially in cities
and suburbs where human refuse is plentiful
(Summers-Smith, 1988). One of the reasons
house sparrows are so adept at exploiting
diverse diets might involve plasticity in the
release of digestive enzymes (Brzek et al.,
2009). Behaviorally, responses to food also
seem to play a role in range expansions, another
reason this species has been used as a model.
For example, house sparrows in the roughly 40-
year-old Panama population consume unfamiliar
foods more quickly than birds from a much older
invasive population in New Jersey in the United
States (Martin and Fitzgerald, 2005). A similar
pattern is observed among Kenyan sparrows
such that birds living at the expanding range
edge of that colonization approach and eat
novel foods more quickly than birds from the
core of the population (Liebl and Martin, 2014).
A tendency to eat novel foods may benefit
birds in habitats where resources are scarce or
unfamiliar, but such behavior could also come
with risks. Spoiled foods or exposure to novel
toxins, for example, may activate the immune
system (Martin and Fitzgerald, 2005). This
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Box 1. Outstanding
questions about the
natural history of house
sparrows.

1. How did house sparrows come to
colonize most of the planet? What
characteristics make them more suc-
cessful than most vertebrate species?
Are some populations or subspecies
more predisposed to invading new
areas than others?

2. How do house sparrows cope with
the apparent challenges of urban life
such as light, noise and air pollution?

3. What factors are contributing to the
decline of house sparrow popula-
tions worldwide (both in native and
introduced populations), and are
these bellwethers for the impending
decline of phylogenetically and/or
ecologically related species?

notion is supported by the observation that pop-
ulations differ quite extensively in how their
immune systems are organized and what para-
sites they harbor throughout their lives
(Kilvitis et al., 2019; Martin et al., 2015;
Martin et al., 2014, Coon and Martin, 2014;
Coon et al., 2014).

Breeding biology

Sparrows tend to build nests in pre-existing cavi-
ties, but they also routinely nest in roofs, eaves
and walls of human-built structures (Figure 1c)
as well as in densely branched trees and shrubs
(Anderson, 2006; Sheldon and Griffith,
2017; Manna et al., 2017). Nests are comprised
mostly of vegetation but some clay, sand, cloth
and even dung may be used (Heij, 1986). In
some cities, nests also contain aromatic plants or
even cigarette butts that contain antiparasitic
secondary compounds (Sengupta and Shrilata,
1997). Males initially choose nesting sites and
subsequently advertise for mates by vocal and
visual displays (Summers-Smith, 1963). How-
ever, unlike many songbirds, males exhibit
aggressive, territorial behavior only in a very
small area around the nest site. Females select
males based on visual and vocal displays and the
location of nest sites (Anderson, 2006). Once
paired, males and females often remain together
for the entire season or even multiple years.
Pairs also commonly use the same nest site for
several years (Summers-Smith, 1963), however,
as is typical in most bird species, males are more
likely to stay in, or habitually return to, the area
around a nest site than females (Morrison et al.,
2008). Both sexes defend the nest, brood the
eggs and care for the young, though females
put more effort into the brooding than males
(Figure 1d; Anderson, 2006). Pairs are socially
monogamous, however, the proportion of off-
spring that are fathered by an extra-pair male
(extra-pair paternity) can reach 26%, particularly
if food is scarce and the environment is harsh
(Stewart et al., 2015). House sparrows typically
begin breeding during the first year of life, but
breeding success is comparatively low in youn-
ger breeders (Hatch and Westneat, 2007).

Table 1. Global house sparrow introduction or translocation events by region.

Introduction and translocation events include both purposeful and inadvertent release of any number
of birds from all subspecies, successful or unsuccessful. We list a range instead of a single number
because of discrepancies among published reports. For sources used, please refer to https://doi.org/

10.6084/m9.figshare.11915955.v1.

Region Number of introductions or translocations
Africa 24-43

Asia 9-11

Oceania 54-60

Europe 4+

North America 135-136

South America 32-35+
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Reproductive biology has been another rea-
son this species has been used as a model, in
particular to understand the cues that influence
the onset of breeding. Towards the global poles,
house sparrows, like other species, rely on
changes in the number of hours of daylight and
temperature to ensure that breeding coincides
with peak food availability (Hau, 2001). Nearer
to the equator, however, both light levels and
temperature are fairly stable year-round
(Hau et al., 1998), and house sparrows in this
region seem to use changes in precipitation
regimes to time breeding. In Panama, India and
Malawi, for instance, house sparrows breed pre-
dominantly during the dry parts of the year, but
in Zambia, sparrows breed both five months
prior to the peak of the rains, and again when
the rains are ongoing
(Nhlane, 2000; Hanson et al., 2020b).

Perhaps the main reason that house sparrows
have been a model organism in basic ornithol-
ogy involves the variation they show in life his-
tory and associated physiological traits along
gradients in their geographic range. Known as
clinal variation, in house sparrows, this phenom-
enon has been documented for metabolic rates
(Hudson and Kimzey, 1966; Kendeigh and
Blem, 1974; Blem, 1973), hormone regulation
(Romero et al., 2006; Breuner and Orchinik,
2001; Liebl and Martin, 2012), and immune
defenses (Kilvitis et al., 2019; Martin and Fitz-
gerald, 2005; Martin et al., 2004). These trends
are best-reflected by clinal variation in clutch
size; just as in most songbirds, house sparrow
clutches are small near the equator and increase
pole-ward (Anderson, 2006). This pattern, which
exists in both the native and non-native distribu-
tion, is intriguing because of the recency of most
introductions. Such recency means that new
populations would have had little time for
genetic adaptation as well as being exposed to
founder effects and other genetic challenges (i.
e., bottlenecks) inherent to introductions
(Baker, 1995; Lowther, 1977).

Genetics, epigenetics and the
microbiome

Given the broad distribution of the species and
its recent arrival in many regions, house spar-
rows have been used as models of genetic,
genomic and more recently epigenetic changes
during range expansion. Early studies using allo-
zymes (variants of enzymes encoded by alleles
of the same gene) revealed little genetic varia-
tion among and within North American

populations, but suggested that introduced
populations underwent genetic bottlenecks and
were significantly differentiated from source and
native European populations (Parkin and Cole,
1985; Klitz, 1973). DNA fingerprinting, or minis-
atellites, was used on house sparrows before
any other bird species, and microsatellite
research followed soon after, revealing subtler
genetic  differences among  populations
(Burke and Bruford, 1987, Neumann and Wet-
ton, 1996). Microsatellite analyses have been
valuable to inferring invasion history, population
structure and dispersal behavior, as well as
establishing relatedness such as parentage
(Wetzel et al., 2012, Mock et al., 2012,
Schroeder et al., 2013; Jensen et al., 2013;
Liker et al., 2009, Schrey et al., 2011,
Lima et al., 2012, Schrey et al., 2014,
Andrew et al., 2018b; Kekkonen et al., 2011).
Critically, it was microsatellite data that provided
the genetic evidence of extra-pair paternity in
this socially monogamous, pair-bonded species
(Griffith et al., 1999).

Recently, an annotated genome became
available for house sparrows (Elgvin et al.,
2017). The genome belongs to a female house
sparrow from a pedigreed, inbred population
from the island of Aldra in Norway, and was
studied to better understand speciation in the
Italian sparrow (P. italiae; Elgvin et al., 2017).
The ltalian sparrow is a hybrid of the house spar-
row and the Spanish sparrow (P. hispaniolensis),
and this system has led to a wealth of insight
about genetic mechanisms affecting hybrid spe-
ciation (Hermansen et al., 2011,
Hermansen et al., 2014; Trier et al., 2014;
Elgvin et al., 2017, Elgvin et al., 2011). For
example, Runemark et al. (2018) investigated
the genomes of isolated island populations of
the Italian sparrow to understand the formation
of hybrid genomes. They found that the contri-
bution of parental genome (in this case, the
house sparrow and the Spanish sparrow) can dif-
fer greatly across populations, but some geno-
mic regions have less variation than others.

Prior to the annotated genome, a high-den-
sity single-nucleotide polymorphism (SNP) array
was developed for the species (Hagen et al.,
2013; Lundregan et al., 2018). This tool was
used to detect signatures of adaptation in intro-
duced populations in climatically varied environ-
ments across Australia, and to understand the
genetic basis of variation in bill morphology
(Andrew et al., 2018a; Lundregan et al., 2018).
Other next-generation sequencing tools, such as
tissue-specific  transcriptomic  assemblies, a
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seminal fluid proteome and a genome-wide link-
age map, are also available for the species
(Ekblom et al., 2014; Razali et al., 2017:
Matsushima et al., 2019, Mirén et al., 2014;
Rowe et al., 2020; Hagen et al., 2020).

Epigenetic variation, namely DNA methyla-
tion, has also begun to be investigated in house
sparrows (Kilvitis et al., 2018; Kilvitis et al.,
2019; Riyahi et al.,, 2017). House sparrows
exhibit marked phenotypic variation across intro-
duced populations, even though many non-
native populations experienced bottlenecks and
founder effects upon introduction
(Johnston and Selander, 1971; Liebl and Mar-
tin, 2012; Martin et al., 2015; Bokony et al.,
2012; Martin and Fitzgerald, 2005; Ben Cohen
and Dor, 2018, Hanson et al., 2020b). It has
been hypothesized that DNA methylation or
other molecular epigenetic mechanisms may
have affected the ability of populations to colo-
nize new areas (Box 1). Schrey et al. (2012), for
example, found that variation in DNA methyla-
tion was inversely correlated with genetic diver-
sity among recently invaded Kenyan
populations, suggesting that populations might
compensate for low genetic diversity with epige-
netic diversity. In Australian house sparrows, a
similar pattern was found as well as an epige-
netic signature mirroring that of genetic popula-
tion clustering arising from the original source
population (Sheldon et al., 2018). These obser-
vations and other data led to the hypothesis that
house sparrows might exhibit high epigenetic
potential, or the capacity for epigenetic mecha-
nisms within the genome to facilitate phenotypic
plasticity (Kilvitis et al., 2017). One form of epi-
genetic potential is the number of CpG sites
(sequences in the genome where DNA methyla-
tion can occur) in gene promoters. Indeed,
towards the expanding edge of the very recent
Kenyan invasion, CpG sites across the genome
were significantly higher than in older Kenyan
house sparrow populations, suggesting that epi-
genetic potential may generally mediate the
introduction  success of the  species
(Hanson et al., 2020a).

In addition to epigenetic mechanisms, the
microbiome could also play an important role in
the ecology of the species (Russell et al., 2012;
Borre et al.,, 2014). Gut microbes affect the
growth rates of house sparrow nestlings
(Kohl et al., 2018), and nestlings and adults dif-
fer in the structure and membership of their
microbial communities, with the nestling micro-
bial community being affected by social and
genetic family affiliation but also diet and

environmental microbes (Kohl et al., 2019). Fur-
ther studies are needed to understand what the
microbiome means to the house sparrow, partic-
ularly as this bird favors the same areas as
humans.

As new technologies are developed and
refined, we expect the interest in house sparrow
genetics, epigenetics and the microbiome to
grow. Several local populations of house spar-
rows have been pedigreed, which enables quan-
titative genetic estimates of heritability and
genetic architecture (Schroeder et al., 2015;
Jensen et al., 2003; Wetzel et al., 2012). Addi-
tionally, many museums have large collections of
house sparrows including many specimens col-
lected before 1900 (Table 2). These collections
will be valuable sources of genetic and morpho-
logic data, as well as for use in analyses of pollu-
tants during different eras of human co-
habitation (e.g., DuBay and Fuldner, 2017).

Conclusions
Advocating that house sparrows be used as
model organisms is not simple as many defini-
tions of model species are available
(Bolker, 2009; Bolker, 2014; Bolker, 2017).
This jumble of definitions has led some to claim
that ‘'model’ is one of the most under-powered
concepts in biology (Katz, 2016). These chal-
lenges motivated us to think hard about how
house sparrows could serve as models
(Bolker, 2009). Besides their historic value in the
contexts discussed above (i.e., invasion genetics,
behavioral ecology, life history evolution), we
feel that they generally promise a high return in
basic, practical and even economic insight, a
value not attributable to many other species.
Previously, Bedford and Hoekstra (2015)
made a form of this argument about the mouse
genus Peromyscus. Specifically, they cast the
enormous amount of information available for
Peromyscus as ideal for modelling intraspecific
variation. We are skeptical whether any species
can really model variation; there are simply too
many interactions possible within genomes, not
to mention disparities in the forms and forces of
selection and plasticity among populations. We
agree, though, that Peromyscus, house sparrows
and probably other species could be representa-
tive for many small, short-lived and broadly dis-
tributed vertebrates that are benefitting from
human activity (e.g., urbanization). Moreover, as
with Peromyscus species for Lyme disease, Han-
tavirus and other zoonoses, house sparrows play
important roles in local infectious disease
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Table 2. House sparrows available in museum collections.

Listed are the five largest house sparrow museum collections, the number of specimens present in
each and the time of specimen sampling. Data was compiled from all collections present in the Vert-
Net database (Constable et al., 2010). For search terms and the full table, please refer to https://

doi.org/10.6084/m?9.figshare.11915955.v1.

Collection

Number of specimens

University of Kansas Biodiversity Institute (KU) 12,830
Royal Ontario Museum (ROM) 7,654
Field Museum of Natural History (FMNH) 1,974
Museum of Vertebrate Zoology, UC Berkeley (MVZ) 1,888
American Museum of Natural History (AMNH) 1,776
Specimens collected before 1900 1,597
Specimens collected between 1900-1950 7,460
Specimens collected after 1950 29,401

risk, including West Nile virus, Salmonella and
other infections (Ostfeld et al., 2014,
Tizard, 2004; Kilpatrick et al., 2007).

Furthermore, although we and others have
tended to focus on them as an exemplary
invader, house sparrows also promise insight
into the range expansions and contractions of
native species, phenomena becoming more
common as the global climate continues to
change (Box 1). Just like George Box's claim for
mathematical models, no model organism is per-
fect, but many can be informative (Bolker, 2014,
Box, 1976). Although all model organisms will
thus have some shortcomings, some, such as the
house sparrow, might provide unique value by
helping us learn how to mitigate anthropogenic
effects on natural areas and
(Manger, 2008).

systems
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