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Natural ecosystems are currently experiencing unprecedented rates of anthropogenic
disturbance. Given the potential ramifications of more frequent disturbances, it is
imperative that we accurately quantify ecosystem responses to severe disturbance.
Specifically, ecologists and managers need estimates of resistance and recovery from
disturbance that are free of observation error, not biased by temporal stochasticity and
that standardize disturbance magnitude among many disparate ecosystems relative to
normal interannual variability. Here, I propose a statistical framework that estimates
all four components of ecosystem responses to disturbance (resistance, recovery, elas-
ticity and return time), while resolving all of the issues described above. Coupling
autoregressive time series with exogenous predictors (ARX) models with impulse
response functions (IRFs) allows researchers to statistically subject all ecosystems to
similar levels of disturbance, estimate lag effects and obtain standardized estimates of
resistance to and recovery from disturbance that are free from observation error and
stochastic processes inherent in raw data.

Keywords: autoregression, climate change, statistics, stress, times series

Introduction

Natural ecosystems are currently experiencing unprecedented rates of disturbance due
to human activity. Such disturbances immediately impact ecosystem function and can
also often impair ecosystem function long after the disturbance itself has abated (Smith
2011). More frequent and severe droughts, for example, cause long-term shifts in plant
community composition, widespread tree mortality and catastrophic declines in pri-
mary production (Ciais et al. 2005, Anderegg et al. 2015, Knapp et al. 2015a). Heat
waves often co-occur with drought (Perkins et al. 2012), exacerbating soil water loss in
terrestrial ecosystems and causing extensive mortality of foundational, habitat-forming
species in marine systems (Ciais et al. 2005, Le Nohaic et al. 2017, Smale et al. 2019).
Other pulse disturbances, such as hurricanes or abnormal frost events, can also ini-
tiate rapid and lasting changes in ecosystem function (Lodge and McDowell 1991,
Lirman et al. 2011). Hence, mitigating the consequences of disturbance with pre-
ventative or restorative actions, or forecasting how ecosystems will respond to future
global change, are important goals in ecological research. However, achieving these
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goals first requires that we improve our ability to accurately
quantify ecosystem change following disturbance, predict
trajectories of recovery and identify the abiotic and biotic
constraints that dictate ecosystem responses to disturbance
(Nimmo et al. 2015).

Ecosystem change following disturbance consists of four
quantifiable components (Hodgson et al. 2015), hereaf-
ter referred to collectively as the ecosystem response to dis-
turbance. First resistance (a.k.a. sensitivity) to disturbance
describes the degree to which an ecosystem is instantaneously
impacted by disturbance. Recovery from disturbance refers to
the ability of an ecosystem to return to a stable state imme-
diately following disturbance. Elasticity and return time refer
to the rate and duration of time, respectively, required for
an ecosystem to return to stability. The related concept of
lag effects more broadly describes whether an altered eco-
system state persists after the disturbance has been removed
(Sala et al. 2012); recovery, elasticity and return time are all
quantifiable aspects of a lag effect. Thus, lag effects exist when
an ecosystem does not recovery fully following disturbance
and exhibits a non-zero return time. Although these four
components have already been extensively studied in various
ecosystems and with regard to different types of disturbance,
they remain difficult to quantify in a standardized and accu-
rate manner that enables syntheses and comparisons among
ecosystems.

The most significant obstacles to synthesizing informa-
tion are the inconsistent terminology and diverse methods
that ecologists use to measure ecosystem responses. The terms
resistance and sensitivity have been used interchangeably

and possess at least five mathematical formulations in the
drought literature alone (Table 1). Second, comparing esti-
mates of resistance among sites or years is difficult even when
using a single metric due to analytical flaws. Consider the
example of estimating the instantaneous impact of extreme
drought on aboveground net primary production (ANPP).
Calculating resistance as the ratio of ANPP during drought
to ANPP of the previous year (Lloret et al. 2011, Gazol et al.
2017, 2018, Stuart-Haéntjens et al. 2018) incorporates both
temporal stochasticity and observation errors that can lead to
inaccurate results. Moreover, using this metric, the context of
drought resistance varies from site-to-site and year-to-year,
rending impossible any inter- or even intra-site comparisons
of ecosystem resistance to drought. Atctempts to describe eco-
system recovery are even more inconsistent in both terminol-
ogy and methods (Table 1), and suffer from many of the same
analytical flaws. Here, I propose a statistical framework based
on econometric techniques that simultaneously estimates
all four components of ecosystem responses to disturbance
using accepted, standardized language while resolving statisti-
cal problems with previous methods. Such a method is sorely
needed, as most studies of ecosystem responses to disturbance
analyze time series data but fail to use the appropriate autore-
gressive time series approaches (Kannenberg et al. 2020).

Problems with prior methods

The methods outlined in Table 1 consist of either ratio-based
or regression-based procedures. Both methodologies possess

Table 1. Definitions and mathematical equations used to calculate ecosystem resistance, resilience, recovery and legacy effects following

an extreme stress event.

Method Name Equation Units Citation
Reduction during stress
1 Sensitivity Xt —Xt4 Change in primary production per mm Wilcox et al. 2017
P change in rainfall
PPt —ppte4
2 Sensitivity Ax Slope of the primary production — Huxman et al. 2004b, Knapp et al. 2015b
Appt precipitation relationship
3 Sensitivity x —x) Percent decline from long-term mean Griffin-Nolan et al. 2018
100 x (f)
X
4 Resistance Xt Proportion decline from Lloret et al. 2011, Gazol et al. 2017, 2018
N pre-drought year
5 Resistance Xt Log proportion decline from Stuart-Haéntjens et al. 2018
|n(x—) pre-drought year
t-1
Return following stress
6 Recovery Xt Proportion increase in post-drought year  Lloret et al. 2011, Gazol et al. 2017, 2018
Xt
7 Resilience Xt Proportion decrease in post-drought year  Lloret et al. 2011
— from pre-drought
Xt
8 Resilience Xt Log proportion decrease in post-drought  Stuart-Haéntjens et al. 2018
ln(xij year from pre-drought
t-1
9 Legacy effects X —x ) Percent decrease in post-drought year Griffin-Nolan et al. 2018
100 X( ; ) from long-term mean
t+1
10 Legacy effects c Observed — predicted for Salaetal. 2012, Anderegg et al. 2015
X1+ Xer

post-drought year
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statistical and logical issues that should discourage their
future application.

Ratio-based methods

The first problem with ratio-based methods is that, by
working with raw observations, estimates of resistance and
recovery include observation error. Sampling errors, spatial
heterogeneity or any number of other processes can cause sig-
nificant variation in the data and potentially yield inaccurate
estimates of resistance and recovery. To illustrate the extent
to which sampling error induces inaccuracies, I conducted
a simple simulation experiment to estimate the resistance
and recovery of ANPP from drought. For each of the 10 000
simulations, I assumed a true average ANPP of x=500 g m™
for ten time steps (i.e. years), similar to levels observed at the
Konza Prairie Biological Station (Griffin-Nolan et al. 2018).
I then imposed drought during the second time step using
a resistance value randomly chosen from a Uniform(0.5,1)
distribution, where x,=x, X resistance. I allowed ANPP to
recover at the next time step with a recovery value randomly
chosen from a Uniform(1,2) distribution, such that x, =x, X
recovery. Next, I imposed a sampling error of + 40 g m™ to
the true values, similar in magnitude to sampling uncertainty
at KPBS (Griffin-Nolan et al. 2018), to create a new variable
y of observed ANPP values: y -~ N(x, 40?). From the observed
data y, I calculated resistance as y,/y, and recovery as y./y,
(Table 1). I repeated this simulation for a low productivity
site, setting mean ANPP to 100 g m™ and sampling error to
+ 15 g m™, representative of the semi-arid shortgrass steppe
in northern Colorado (Griffin-Nolan et al. 2018).

As expected, estimates of resistance and recovery using
observed data (i.e. with noise) were highly variable. Although

the observed values for resistance and recovery were both
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centered around the true value, any single observation of resis-
tance and recovery could deviate significantly from the true
value (Fig. 1). For example, observed resistance varied from
approximately 0.3-0.75 for a true value of 0.5 at the highly
productive site (Fig. 1A). At the low productivity site, errors
were magnified; observed resistance varied from approxi-
mately 0.2-0.9 for a true value of 0.5 (Fig. 1A). The same
patterns held for recovery, wherein sampling error resulted
in large deviations from the true value and errors were larger
for the less productive site (Fig. 1B). Large errors at the less
productive site result from difficulties in using ratios; small
deviations from the true value cause a larger proportional dif-
ference when the denominator (e.g. y, for resistance, y, for
recovery) is small. These simulations also assumed that the
true value of ecosystem function during normal years was
constant, but temporal variability in ecosystem properties
would compound inaccuracies arising from sample errors.
Ecosystem resistance to, or recovery from, drought might
therefore be overestimated if the pre-drought year is dry
(thereby reducing the decline in ANPP caused by drought
and seemingly increasing resistance) or the post-drought
year is abnormally wet (thereby increasing the magnitude of
recovery), further magnifying the lack of precision.

Finally, it is difficult to place estimates of ecosystem
responses to disturbance from ratio-based methods into
a proper context that enables cross-site comparisons.
Continuing the drought example, the degree of disturbance
induced by a given rainfall reduction varies with regional
climate conditions. In other words, a 200 mm reduction
in annual rainfall imposes a much stronger meterological
drought in the arid shortgrass steppe than it does in mesic
tallgrass prairies (Knapp et al. 2015b). However, most ratio-
based methods do not incorporate such context-specificity
(but see Wilcox et al. 2017). The lack of context-specificity
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Figure 1. Relationship between (A) true resistance and observed resistance and (B) true recovery and observed recovery using simulated data.
I simulated a time series of 10 observations for a given value of ANPP (100 or 500 g m™2). For each simulation, I chose a random resistance
value from a Uniform(0.5,1) distribution and a random recovery value from a Uniform(1,2) distribution. I set x, as the drought year, with
a true ANPP equal to ANPP X resistance, and I set x; as the recovery year with a true ANPP equal to x, X recovery. I then introduced a
sampling error of 10 or 40 g m™ for the low and high-productivity simulations, respectively. I calculated the observed resistance and recov-
ery values from the sampled data. Points show the median observed value, dark inner bars show the 50% quantiles, and light outer bars

show the 95% quantiles.
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inhibits accurate cross-site or cross-time comparisons of eco-
system responses to disturbance.

Regression-based methods

Perhaps the most popular method for identifying lag
effects of disturbance is to calculate the predicted ecosys-
tem state using regression and then estimating the degree
of recovery as the residual error of the observed recovery
from the predicted recovery. For example, to estimate
the recovery of ANPP following drought, one would first
regress ANPP against annual precipitation. The regres-
sion equation provides the predicted ANPP in the year
following drought based on rainfall, and the residual of
the post-drought year (observed-predicted) constitutes the
lag effect. The shortgrass steppe of Colorado experienced
an extreme drought in 2012 (Fig. 2A — red dot). Based on
the ANPP—precipitation relationship, we can estimate the
predicted value of ANPP in 2013 (Fig. 2B). The lag effect
is then the observed ANPP in 2013 (Fig. 2A-B — green
dot) minus the predicted value in 2013 (Fig. 2B).

However, identifying lag effects and quantifying recovery
using this method suffers from logical and statistical issues.
Statistically, observations will almost never fall exactly along
the regression line; by definition of the sum-to-zero prop-
erty of residuals, half the points will be above and half will
be below the line. Thus, every observation will exhibit a lag
effect to some degree. To circumvent this problem, some
researchers consider only ‘significant’ lag effects, wherein the
observation falls outside of the 95% CI of the regression line
(Griflin-Nolan et al. 2018, Fig. 2B). Yet this method is akin
to testing whether a single observation is exactly equal to the
mean value, and says more about certainty of the mean value
than the presence of any lag effect. The recovery point might
fall outside the 95% CI due to observation error, and the
likelihood that a point falls outside the 95% CI of the mean
increases rapidly as sample size increases because the width of
the 95% CI decreases proportionally to the inverse square-
root of sample size (Fig. 2C). For long time series, over 80%
of observations would be considered significant when com-
pared to the 95% CI of the mean, even when data were gen-
erated without autoregressive lags (Fig. 2C). Comparing the
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Figure 2. (A) Time series of ANPP at the Central Plains Experimental Range in the shortgrass steppe of Colorado. The orange dotted line
shows the predicted ANPP based on the ANPP—precipitation relationship. Red dot shows the drought of 2012, green dot shows the year
following the extreme drought. (B) The ANPP—precipitation relationship for the Central Plains Experimental Range. The orange envelope
is the 95% CI of the mean, the blue envelope is the 95% CI of a prediction point. (C) Using the mean 95% CI (orange line) to statistically
test for legacy effects results in high false positive rates as sample size increases and uncertainty about the mean decreases, while using the
observation 95% CI (blue line) avoids this complication. Lines were generated by simulating 10 000 precipitation time series, then using a
simulating primary production—precipitation relationship to estimate primary production in the absence of legacy effects. Type I error rates
are the proportion of observations in a simulated time series that would be considered to possess significant legacy effects, despite being
simulated without legacy effects.
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presence of lag effects among sites might therefore simply be
reporting differences in time series length. One solution is
to use the observation CI instead of the mean CI. The mean
Cl is the most commonly plotted envelope and denotes the
95% CI of the regression line, equivalent to the 95% CI of
the mean at any given point. The observation CI is the 95%
of the individual observations at any given point and provides
the envelope that is likely to contain a single observation. The
mean and observation Cls are analogous to the standard error
of the mean and standard deviation of the data, respectively.
Using the observation CI opposed to the mean CI alleviates
potential type I errors because the width of the observation
CI depends only on residual error, not sample size (Fig. 2C).
Logically, quantifying recovery as the deviation from the
predicted line assumes that the scatter surrounding the regres-
sion is caused entirely by lag effects. Is this true for all points,
or only the single point in which the ecologist is interested? If
lag effects are the only cause of scatter, incorporating autore-
gressive parameters into regression models should perfectly
fit the data. Autoregressive parameters do improve fit, but
they do not model data perfectly and often do not improve
prediction accuracy for a single observation (Oesterheld et al.
2001). Alternatively, if lag effects apply only during the year
following disturbance, do sources of variability present in
other years not occur in the recovery year? If true, then lag
effects should rarely switch signs, yet ANPP in the shortgrass
steppe shows a small negative lag effect following the 2002
drought and a strong positive lag effect following the 2012
drought (thus impairing intra-site comparisons of lag effects,
Fig. 2A). Either lag effects switch from positive to negative on
a regular basis, or unaccounted sources of variation are influ-
encing estimates of lag effects and recovery from raw data. In
reality, many factors likely contribute to an imperfect primary
production—precipitation relationship in all years, including
the within-year distribution of rainfall event size and timing
(Heisler-White et al. 2008), observation error, stochasticity in
community composition and potential lag effects. Ecologists
need a method that accurately separates the signal from the
noise when assessing ecosystem responses to disturbance.

A statistical framework for ecosystem
responses to disturbance

Here, I demonstrate that autoregressive models with exog-
enous predictors (ARX) and impulse response functions
(IRFs) allow researchers to rigorously identify the presence of
lag effects, subject all ecosystems to a similar level of distur-
bance, and obtain estimates of resistance, recovery, elasticity

and return time that are free from stochastic processes inher-
ent in raw data. ARX models and IRFs are particularly
attractive because they are not only powerful, but simple to
implement using any statistical software. ARX models are
simply an autoregression model with an extra parameter and
have already been used, if not identified by name, by ecolo-
gists examining lag effects of drought (Sala et al. 2012) or
as autoregressive population models that include interspecific
effects (Hansen et al. 1999). IRFs themselves require noth-
ing more than a few basic calculations based on parameters
from a fitted ARX model (Table 2). Thus, the IRF technique
can be implemented by any ecologist using freely available
software.

Impulse response functions

In econometrics, impulse response functions are simple
calculations following time series analyses that describe the
trajectory of dynamic systems following stress. They are par-
ticularly useful in systems that are costly or impossible to
manipulate experimentally, such as financial markets. Indeed,
economists have widely implemented IRFs to understand the
resistance and recovery of financial markets to instantaneous
‘shocks’ (Creal and Wu 2017, Gambetti and Musso 2017).
For example, Senbet (2016) used IRFs to visualize the con-
sequences of higher federal interest rates on unemployment,
consumption and other indicators of economic health. IRFs
can also be used to understand how disturbances of different
frequencies or press disturbances impact system dynamics. In
medical studies, IRFs describe how the human body responds
to elevated or depressed hormone activity (Schultz et al.
2015, Chang et al. 2017). Earth system modelers use IRFs
to understand how global temperature or CO, concentra-
tions respond to various disturbances, such as changes in
oceanographic processes or vehicular emissions (Thompson
and Randerson 1999, Joos et al. 2013, Millar et al. 2017,
Zeng et al. 2017).

However, IRFs are currently only defined for a few autore-
gressive models that generally are not structured to test
hypotheses about exogenous disturbances. In econometrics,
IRFs exist only for univariate autoregressive (AR) models and
multivariate vector autoregressive (VAR) models (Lutkepohl
and Kratzig 2004, Bisgaard and Kulahci 2011, Box et al.
2015). AR models would allow ecologists to asses, for exam-
ple, how systems recover from a shock to primary produc-
tion, but there would be no link to an exogenous driver of
production like precipitation. VARs include more than one
process, but the processes are treated as a multivariate prob-
lem (Lutkepohl and Kratzig 2004, Bisgaard and Kulahci

Table 2. Analytical solutions for the simple x*=[a, 0, 0, O, ..., 0] presented here and depicted graphically in Fig. 3. IRF is the equation
needed to graph the curve, or calculate the ecosystem state at any given time. Proofs are given in the Supporting information, as well as
solutions for ARX(2) models. Note that these solutions assume that y, is the initial time step when x,*=a (not y,, see x-axis of Fig. 3).

Model IRF Resistance Recovery Elasticity Return time
ARX(0) y* = px*, Bo n/a n/a n/a
ARX(T) V¥ =9, pa Bor @,Po log(e,) log(0.05)/log(¢,)
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2011). For example, ANPP would be driven by lag effects of
ANPD, current precipitation and lag effects of precipitation.
However, precipitation would also be driven be lag effects of
precipitation, current ANPP and lagged ANPP. Such bidi-
rectional pathways do not make sense for most disturbance
processes operating at small scales (e.g. coral cover and ocean
temperatures). ARX models, on the other hand, include an
independent exogenous prediction, but IRFs for ARX mod-
els have never been defined nor, to my knowledge, applied to
disturbance problems in any field.

Identifying ARX-IRFs requires fitting ARX(p) models
with time series data to first identify whether lag effects are
present. ARX(p) models modify autoregressive AR models of

order including one or more exogenous predictions:
der p by including g predict

Ve = Boe; + CrYyratPayrat ...t Qpyp T &

This model states that ecosystem state at time # (y,) depends
on contemporary exogenous values (x, e.g. annual precipita-
tion, sea-surface temperature anomaly, etc.), previous ecosys-
tem states up to p time steps in the past ()/H), i.e. lag effects),
and error from both unmeasured processes and sampling
issues (g,). The appropriate order p can be chosen via infor-
mation theoretic methods (e.g. AIC, BIC) or via x? likeli-
hood ratio tests comparing successively lower orders (e.g.
ARX(2) versus ARX(1), ARX(1) versus ARX(0), etc.), with
p-values corrected for multiple comparisons. The lowest order
model, ARX(0), is simply a linear regression of ecosystem
state against the exogenous variable with no intercept if the
response data have been standardized prior to regression (the
intercept is the mean, and standardization of the response
makes the mean equal to 0). Both the exogenous predictor x
and ecosystem state y should be standardized to N(0,1), espe-
cially if the objective is to compare resistance and recovery
from disturbance among different sites or ecosystems.

Once the appropriate ARX(p) model has been identified,
the next step is to derive the IRE IRFs use the ficted ARX(p)
parameters to model the trajectory of ecosystem state through
time following either a single or repeated disturbance. In other
words, IRFs use the fitted model to predict ecosystem state in
whatever time series of the exogenous predictor the researcher
chooses. For disturbance ecology, we are often interested in
how a disturbance affects ecosystems immediately, and how
ecosystems recover from disturbance. This could be expressed
by a new exogenous time series that has a disturbance in the
first step, and allows the exogenous predictor to recover to
the mean value for all subsequent time steps (as is common
with IRFs for other models, (Lutkepohl and Kratzig 2004,
Bisgaard and Kulahci 2011, Box et al. 2015)). Such a time
step could be expressed as:

x*=[m0,0,o,...,o]

where a denotes the disturbance intensity at the initial time
point. It is critically important that the exogenous predictor

x be standardized prior to model fitting, such that « is the
stress unit in standard deviations (for example, if the predic-
tor is rainfall, then «=—2 is a 2 standard deviation reduction
in rainfall) and the mean is equal to 0. In this way, ecologists
can statistically subject disparate ecosystems to the same level
of relative disturbance (e.g. a 20 decline in precipitation) to
estimate resistance using the same x* series for each ecosystem
and calculating the resulting IRE

IRFs are essentially functions, or curves, that describe
how the system changes through time for a given sequence of
disturbances. For the single, initial disturbance x* used here,
IRFs contain all the information needed to quantify resis-
tance, recovery, elasticity and return time (Fig. 3). Following
the definitions of (Hodgson et al. 2015), resistance mea-
sures the instantaneous impact of disturbance when x*=a.
Recovery is the extent to which ecosystem state remains sup-
pressed (or elevated) once the exogenous predictor returns to
average conditions (x*=0). Elasticity is the rate of return to
average conditions, and return time is the amount of time
required to achieve average conditions once the exogenous
predictor returns to normal. For the single pulse x* presented
here, the IRF has simple analytical solutions for ARX(0)
and ARX(1) models (Table 2). More complicated x* func-
tions, such as multiple pulses, or higher order ARX(p > 1)
models, can be solved computationally (Supporting informa-
tion). The use of IRFs and x* provides three benefits: First,
observation error is removed via the use of a statistical model.
Second, temporal stochasticity is eliminated via the use of
x*, wherein the exogenous predictor can stabilize at average
values (or take any form the researcher desires). Third, by pre-
senting both the disturbance and ecosystem response in units
of standard deviations relative to normal conditions, distur-
bance magnitudes can be identical across ecosystems, and
each of the four responses is directly comparable, facilitating
cross-system comparisons.

Behavior of ARX models and IRFs

In comparison to the regression-based method of assessing
significant lag effects (Fig. 2), ARX models have a very low
probability of incorrectly identifying a lag effect when none
are present. This can be illustrated with a simulation experi-
ment. [ estimated the parameters (means and covariances) for
the ANPP—precipitation relationship of the shortgrass steppe
in Colorado using linear regression. Then, I randomly drew
intercept and slope parameters from a multivariate normal
distribution of the parameter variance—covariance matrix.
Using the simulated parameters, I calculated the time series
of ANPP based solely on the precipitation pattern (no lag
effects) and added noise to each estimate based on the resid-
ual error from the original regression. I then standardized
both precipitation and ANPP prior to fitting three models:
ARX(0), ARX(1) and ARX(2). The best model was chosen
based on minimum BIC. This procedure was repeated 5000
times at various time series lengths. The type I error for lag
effects was taken as the proportion of simulations in which
ARX(1) or ARX(2) models were chosen to be the best model,
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Figure 3. Graphical depiction of an IRE In this IRE the ecosystem is subject to an initial shock in the exogenous predictor with magnitude
a. The system then returns to its average conditions for the rest of the time series. Resistance is measured by the decline in ecosystem state
during the shock, with more negative values implying less resistance. Recovery is the extent to which an ecosystem remains altered post-
disturbance, with more negative values implying less recovery. Elasticity is the rate at which the system recovers (i.e. slope, Ay/Ax), and
return time is the amount of time it takes for a system to return to nominal levels. Note that this example implies a harmful disturbance.
However, the sign of all values and the curve could flip for positive disturbances, such as a pulse of nitrogen enrichment on plant

production.

thereby misidentifying lag effects. The type I error rate was
high (approximately 0.25) for short time series, but quickly
dropped to negligible levels for long time series (Fig. 4A). Even
the high type I error rate for short time series was approxi-
mately half the type I error rate for the 95% CI approach
(Fig. 2C), indicating that using information criteria to select
ARX models provides a marked improved in accuracy.

To judge the accuracy of IRFs in estimating resistance
and recovery, I conducted a second simulation experiment.
For each of 10 000 simulations, I set ®x=—2 to estimate
resistance and recovery from a 26 drought. I then drew
a value of resistance from a Uniform(—2,0) distribution,
and calculated the corresponding precipitation coeflicient
as P=Resistance/a. I also drew the autoregressive param-
eter @, from a Uniform(0,1) distribution and calculated
Recovery=Resistance X @,. I standardized the shortgrass
steppe precipitation record, and simulated standardized
ANPP data from an ARX(1) model based on the simulated f§
and @, parameters. I back-converted standardized ANPP to
the original scale assuming a mean of 100 g m™ and a stan-
dard deviation of 15 g m™. I added noise to the data using an
error rate of 15 g m™ I then re-standardized the noisy ANPP
data and fit an ARX(1) model to the simulated data. From
the ARX(1) model, I calculated the observed resistance and
recovery based on IRFs for a 26 drought (a=—2). To further
evaluate how ARX models improve estimates of resistance
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and recovery, for each simulation I also calculated resistance
to the 2012 drought using the ratio-based method on the
raw, unstandardized (noise-present) data.

ARX models and IRFs substantially improved the accu-
racy and precision of ecosystem responses to disturbance.
Resistance to a 26 drought was estimated accurately, the
median points fall along the 1:1 line (Fig. 4B). Estimates of
recovery were less accurate, and tended to be overestimated
although the mismatch was slight (Fig. 4C). The degree of
mismatch depends on the relative variation in the response
and exogenous predictor; if the exogenous predictor is highly
variable relative to the response, estimates of @, and there-
fore recovery will be inaccurate (Supporting information).
Both resistance and recovery were estimated imprecisely
(Fig. 4B—C), but this is to be expected when estimating
resistance to and recovery from an unknown disturbance.
Estimates based on a known disturbance, such as the drought
of 2012, were highly accurate and precise, especially com-
pared to the common ratio-based method. As above, the
ratio-based method based on raw data (including observation
errors) were accurate but imprecise: a true resistance of 0.7
yielded estimates from below 0.4 to above 1.1 (Fig. 4D). In
contrast, estimates of resistance to the 2012 drought based on
noise-free values predicted by an ARX(1) model were highly
precise; a true resistance of 0.7 yielded estimates of between
0.6 and 0.8 (Fig. 4D), a 2.5-fold increase in precision.
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Figure 4. (A) Type I error rate for identifying lag effects using information criteria to choose the appropriate autoregressive order for ARX(p)
models. The error rate was calculated as the proportion of simulations in which information theory incorrectly identified autoregressive
structure to data simulated with no autoregressive structure. (B) Resistance to a 26 drought using simulated ANPP data. A known resistance
value was used to generate simulated ANPP data, which were then subject to IRF analysis to estimate resistance as fat. The orange line shows
the 1:1 relationship, points show the medians, dark areas show the 50% quantile, and light areas show the 95% quantile. (C) Recovery from
a 26 drought using simulated ANPP data. A known recovery value was used to generate simulated ANPP data, which were then subject to
IRF analysis to estimate recovery as @pa. The orange line shows the 1:1 relationship, points show the medians, dark areas show the 50%
quantile, and light areas show the 95% quantile. (D) Comparison of resistance estimates based on the traditional ratio-based method
applied to raw simulated data, or the noise-free fitted values based on an ARX(1) fit to simulated data. The green line shows the 1:1 relation-
ship, points show the medians, dark areas show the 50% quantile, and light areas show the 95% quantile.

Case studies

The following section demonstrates the utility of ARX mod-
els and IRFs to different ecological questions. It is important
to note that these case studies are intended as demonstrations
only and do not represent thorough analyses of the actual
phenomena in question. Thus, some data pre-treatment (i.e.
gap-filling) presented here must be carefully considered in
any actual model-ficting exercise. Further, in some examples,
I make simplifying assumptions (i.e. lions prey only on wil-
debeest) in order to demonstrate the utility of IRFs. As with
any statistical method, treatment of the data put into the
model and careful consideration of the ecological process in
question are critically important. Further, some example data
are better suited to other methods, such as population mod-
els, but are used here as they illustrate the concept.

Crab larvae and sea surface temperature of the
North Sea

Populations might, in some cases, exhibit lag effects by means
of ‘reproductive inertia’. For example, consider a population
that has a large recruitment year due to favorable environ-
mental conditions, such as warmer temperatures. If condi-
tions return to nominal, the next year should still see elevated
recruitment due to the higher-than-normal abundances of
adults from the previous year. Such ‘inertia’ would manifest
as lag effects, and stronger lag effects yield longer residual
effects. However, the stochastic nature of both environments
and populations makes understanding how long the effects of
a single disturbance persist difficult. IRFs can illuminate just
how long such effects persist by removing temporal stochas-
ticity in the exogenous predictor.
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As an illustration, I extracted data from a 47-year time
series (1958-2005) of sea surface temperatures (SST) and
decapod larval abundances in the North Sea compiled by
Continuous Plankton Recorder Survey (Kirby et al. 2008)
(Fig. 5A). Prior to analyses, I standardized and detrended
both SST and larval abundances. Then, I fit the following
three models:

ARX(0) DLA, = BSTT,
ARX (1) DLAt = BSTTt + (PlDLAt—l

ARX (2) DLAt = BSTTt + (plDLAt4 + (pzDLAt,z

where DLA is decapod larval abundance and SST is sea-sur-
face temperatures. I chose the best model using BIC.
Decapod larval abundances were best described by
an ARX(1) model (Table 3). Decapod larval abundances
increased strongly with increasing SST (f=0.42 + 0.13,
p=0.001). In addition, there was a strong, positive lag effect
(p,=0.74 + 0.01, p < 0.001). This ARX(1) model allowed
me to assess how decapod larval abundance responds to a
disturbance of anomalously warm SST. In particular, I calcu-
lated the IRF for decapod larval abundance to a 26 increase
in SST in order to estimate the ecosystem responses to distur-
bance. Such effects are difficult to determine using raw time
series due to stochastic fluctuations in SST that might mask
autoregressive patterns. By using IRFs, I was able to simulate
every year at average temperatures following a warm year.
Decapod larval abundances were not resistant to distur-
bance; a 26 increase in SST yielded a large, 0.86 increase in
decapod larval abundances (Fig. 5B). However, strong auto-
correlation (@, =0.74) indicated lag effects of decapod larval
abundances. The lag effect resulted in low recovery, low elas-
ticity and long return times. In the year following the warm
disturbance, larval abundances recovered to 0.66 above what
would be expected based on temperature alone (Fig. 5B).
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—— Decapod larvae
—— SST

2.0
15
1.0
0.5
0.0
-0.5
-1.0

-15

1960

1970 1980 1990 2000

The low elasticity suggested a low rate of recovery and pro-
duced a long return time, decapod abundances required
almost 10 years to stabilize at pre-disturbance levels (Fig. 5B).
Such autocorrelation likely results from population inertia,
where an individual pulse of recruitment returns higher than
average population sizes that diminish through time.

Wildebeest and lions of the Serengeti

Predator populations often exhibit lag effects in both prey and
predator abundance. That is, predator abundances are some-
times determined by prey abundance in the prior year(s),
which affects breeding success, fecundity and juvenile sur-
vival. Common examples include coyotes and lynx preying
on snowshoe hares (O’Donoghue et al. 1997) and wolves and
moose on Isle Royale National Park in the northern United
States (McLaren and Peterson 1994). In other cases, predator
populations respond instantaneously (i.e. in the same year) to
changes in prey abundance (Samhouri et al. 2017). Lions and
wildebeest of the Serengeti are an example of a predator—prey
system that changes synchronously (Samhouri et al. 2017). As
a result, lion population growth rates are sensitive to changes
in wildebeest abundance in the same year. For example, wil-
debeest populations crashed in the mid-20th century due to
an outbreak of rinderpest (Sinclair 1973), and lions popu-
lations subsequently declined precipitously due to a lack of
wildebeest and other prey animals, such as buffalo. Herbivore
populations increased quickly after the disease disappeared,
followed by a marked increase in lion populations (Sinclair
1973). However, lions have low fecundity rates and require
several years to reach sexual maturity. Populations might
therefore be slow to increase despite higher food availability
simply due to low initial population sizes (i.c. lag effects). In
such cases, IRFs can be used to answer the question, ‘How
long does it take for a predator population to recover after a
severe reduction in prey abundance?’

To demonstrate, I extracted a 33-year time series on wil-
debeest and lion populations from (Samhouri et al. 2017)

(B) Decapod larvae IRF
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Figure 5. (A) Time series of standardized decapod larvae abundance and sea surface temperatures of the North Sea. (B) Impulse response
function for decapod larvae following a 26 increase in sea surface temperature in the first time point. Sea surface temperatures returned to

average for the remaining time points.
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Table 3. Bayesian information criteria (BIC) for three ARX(p) models
fit to decapod larval abundances and SST time series. Bold denotes
the best model, chosen by ABIC < 2.

Model BIC ABIC
ARX(0) 132.5 32.8
ARX(1) 99.9 0.0
ARX(2) 101.4 1.7

(Fig. 6A). Since ARX models require contiguous time series,
I interpolated missing years using the average of the two near-
est years. Prior to analysis, both time series were detrended by
extracting residuals from linear regressions against year, and
residuals were then standardized to N(0,1). I fit three models:

ARX(0) L = BW,
ARX(1) L =BW; + ¢iL
ARX(Z) L =BW,+ L+ @rL,,

where L is lion abundance and W is wildebeest abundance.
Note that these models are identical to autoregressive mod-
els of population abundance that include interspecific effects
(Hansen et al. 1999), such that ARX models can be used
to determine how populations respond to changes in prey,
competitor or predator abundances. I chose the best model
using BIC.

The best model describing lion abundance was an ARX(2)
model that included current-year wildebeest abundance
(p=0.001), previous year lion abundance (p < 0.001) and
two-year previous lion abundance (p=0.001) (Table 4).
With the model identified, I quantified how an extreme dis-
turbance in wildebeest populations affects lion populations.
Specifically, I calculated the lion IRF to an instantaneous 26
reduction in wildebeest populations, followed by a stable
increase to mean wildebeest population size for the remainder
of the IRE The IRF was calculated recursively (Supporting
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abundance

(A)

—— Wildebeest = —— Lions
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-15
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information). Since ARX(2) models do not have easily iden-
tified solutions for recovery time or elasticity due to oscilla-
tions (Supporting information), I chose recovery time as the
point when the IRF stabilized around the equilibrium and
elasticity as the rate at which lion populations first rebounded
to average levels (Fig. 6B).

Lion populations were highly sensitive (i.e. not resis-
tant) to reductions in wildebeest populations, declining by
1.1c during the 26 reduction in wildebeest (Fig. 6B). In
the following year, strong lag effects prevented recovery and
lion populations remained suppressed below 1o (Fig. 6B).
However, lion populations increased rapidly in subsequent
years (elasticity = 0.46 year™). Populations oscillated for sev-
eral years, a consequence of the second autoregressive param-
eter and a common pattern in discrete-time predator—prey
cycles. Recovery time was 14 years, at which point lion popu-
lations stabilized at average size (Fig. 6B). Thus, this exam-
ple demonstrates that lion populations respond rapidly to a
decline in wildebeest numbers, can remain suppressed for up
to three years following a disease outbreak, and will fluctuate
for nearly a decade before stabilizing.

Resistance and recovery of grasslands from extreme
drought

Ecologists commonly use long-term time series to assess how
grasslands vary in drought resistance and recovery across
global or continental climate gradients (Sala et al. 2012,
Knapp et al. 2015a). However, previous efforts have been
hindered by the difficulties in standardizing drought effects
across sites and accurately quantifying drought resistance free
from temporal stochasticity (Table 1). Here, I demonstrate
how IRFs can resolve this complexity by calculating ecosys-
tem resistance to and recovery from drought for 14 globally-
distributed herbaceous sites previously identified to possess
significant lag effects.

Following Sala et al. 2012, I identified 14 datasets com-
posed of both annual precipitation and ANPP in herbaceous
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Figure 6. (A) Time series of standardized wildebeest and lion population sizes. (B) Impulse response function for lions following a 26 decline
in wildebeest abundances in the first time point. Wildebeest abundances returned to average for the remaining time points.
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Table 4. Bayesian information criteria (BIC) for three ARX(p) models
fit to lion and wildebeest time series. Bold denotes the best model,
chosen by ABIC < 2.

Model BIC ABIC
ARX(0) 88.9 15.7
ARX(T) 78.4 5.2
ARX(2) 73.2 0.0

communities. Gap years in either ANPP or primary produc-
tion were filled using a radial basis function. Radial basis func-
tions (i.e. Gaussian processes) are commonly used to impute
missing data in time series; however there are many impu-
tation methods, including most common attribute, mean
value, K-nearest neighbors, K-means clustering, expectation
maximization, singular value decomposition or multivariate
imputation by chained equations (Luengo et al. 2010, van
Buuren and Groothuis-Oudshoorn 2011). I chose the sim-
plest method because the emphasis here is on ARX examples,
but ecologists should carefully consider the various methods
of missing data imputation for real datasets. I kept only data-
sets with ten or more years. Prior to analyses, I standardized
and detrended ANPP and precipitation for each dataset. I
then fit the following models to each dataset:

ARX(0) ANPP, = BPPT,
ARX (1) ANPP, = BPPT, + ¢; ANPP, ;
ARX(2) ANPD, = BPPT, + ¢;ANPP, ; + ¢, ANPD, ,

where ANPP is standardized, detrended ANPP and PPT is
standardized, detrended precipitation. Following model fit-
ting, I chose the best model for each dataset using BIC. After
identifying the appropriate ARX model for each site, I calcu-
lated resistance and recovery following a 26 decline in precip-
itation. In this way, ecosystem resistance and recovery were
all calculated for the same magnitude of rainfall reduction
relative to ambient conditions at each site. After calculating
resistance and recovery of each site, I regressed each metric
against mean annual precipitation derived from WorldClim.

Using the IRF method, primary production at the major-
ity of sites (71%) was best described by an ARX(0) model,
indicative of no lag effects (Table 5). Of the four sites exhibit-
ing lag effects, three were best fit by an ARX(1) model and
only one site was best fit by an ARX(2) model (Table 5).
Resistance to a 26 decline in precipitation varied among sites
from a minimum of 26 decline in ANPP at XLN to a 0.56
increase in ANPP at NRB (Fig. 7A). Indeed, a significant
positive relationship between drought resistance and mean
annual precipitation (p=0.008) indicated that drier herba-
ceous sites were generally less resistant to drought than mesic
systems. Yet the relationship was not strong (R*=0.41);
even dry sites varied significantly in drought resistance. For
example, JRN possesses roughly the same mean annual pre-
cipitation as XLN, yet JRN was 68% more resistant to a 26
reduction in rainfall than XLN (Fig. 7A). Such variability in
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Table 5. ABIC values of ARX(p) models for 14 grassland sites used in
(Sala et al. 2012). Bold denotes the best model, chosen by ABIC <
2. In the case of multiple competing models, | chose the simplest
model following the principle of parsimony.

Site ARX(0) ARX(T) ARX(2)
Badkhyz, Turkmenistan (BDK) 0.0 2.8 6.3
Cheyenne, Wyoming (CHY) 0.0 2.4 4.3
Dzhanybek, Kazakhstan (DZH) 0.0 3.0 6.5
Jornada, New Mexico (JRN) 0.0 3.2 4.8
Konza Prairie, Kansas (KNZ) 0.0 3.3 6.7
Kursk, Russia (KRS) 0.0 1.3 3.5
Manyberries, Alberta (MBR) 4.1 0.0 2.1
Nairobi, Kenya (NRB) 0.0 0.8 2.6
Niwot Ridge, Colorado (NWT) 14.0 0.0 0.4
Rio Mayo, Argentina (RMY) 0.1 2.1 0.0
Sevilleta, New Mexico (SEV) 0.0 0.9 1.3
Fort Collins, Colorado (SGS) 0.0 0.0 2.7
Tumugi, China (TMG) 1.6 0.0 2.0
Xilingol, China (XLN) 1.90 1.80 0.0

drought resistance among sites of similar precipitation has
been previously reported (Huxman et al. 2004a) and could
derive from differences in species composition, rainfall pat-
terns (e.g. monsoonal, Mediterranean, etc.) or management
history among sites. Relatively few grasslands demonstrated
lag effects, such that most sites exhibited perfect recovery in
the year following drought (Fig. 7B). There was no relation-
ship between mean annual precipitation and the strength of
recovery (Fig. 7B).

Conclusions

Given the expected increase in both the severity and inten-
sity of extreme disturbance events, it is imperative that we
accurately quantify how ecosystems respond to disturbance.
Estimating ecosystem vulnerability to disturbance using long-
term time series data is a promising approach, but ecologists
have not yet coupled time series data with the appropriate
statistical time-series tools. Most current methods possess
flaws that potentially bias estimates of ecosystem susceptibil-
ity to disturbance and potentially misidentify legacy effects.
To resolve these issues, I advocate for using IRFs derived
from autoregressive time series models as a single quantitative
framework that can accurately estimate ecosystem resistance,
recovery, elasticity and return time from disturbance events.
Impulse response functions have numerous advantages over
prior techniques, including the separation of observation and
process errors, standardizing disturbance severity among dif-
ferent locations, and rigorously testing for legacy effects.

One advantage of the method proposed here is the relative
ease with which ARX models can be fit and IRFs calculated
in common statistical programming languages. The following
recommendations would prove beneficial for ecologists wish-
ing to implement the method outlined here:

1. Properly pre-treat data — Data must be processed prop-
erly prior to analysis with autoregressive models. First,
data must be examined for gaps, as simple ARX models
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Figure 7. (A) Relationship between resistance to a 26 drought, calculated from impulse response functions and mean annual precipitation
for 14 herbaceous systems. Line shows the best fit by least squares. (B) Relationship between recovery from a 26 drought, calculated from
impulse response functions and mean annual precipitation for 14 herbaceous systems.

proposed here do not function with non-contiguous data.
Small gaps can be filled with a data imputation func-
tion (e.g. radial basis functions, used here). Second, data
must be detrended. ARX models assume stationarity,
wherein the mean and variance do not change through
time. Detrending data by using the residuals from a lin-
ear regression against time can stabilize the mean through
time, but variances must still be checked visually. Third,
data should be standardized in order to facilitate compari-
son among sites by subtracting the mean and dividing by
the standard deviation. For example, if precipitation is
not standardized, then a=—2 for the IRF is only a 2 mm
decline in rainfall, rather than an extreme 26 event. In
some cases, it might be preferable not to standardize. In
the crab larvae example, not standardizing SST and using
a=2 tests the system’s response to a 2°C increase in tem-
perature, relevant for some climate scenarios. However, in
most cases, standardizing the data will allow researchers
to compare IRFs among disparate systems, locations or
stress responses. The decision whether or not to standard-
ize data should be made carefully depending on the ques-
tion asked.

Use a 26 increase or decrease in the exogenous predictor — If
all ecologists use a 20 change in the exogenous predic-
tor, then results are perfectly comparable among studies.
chose 26 because it represents an extreme event. For exam-
ple, a 16 decline in rainfall is the 16% quantile, whereas
a 20 decline in rainfall represents a drought falling in the
2% quantile (assuming a normal distribution), thereby
representing an extreme stress event. However, ecologists
are also free to use whatever o they feel appropriate for the
question at hand, so long as it is reported and justified.

. Report the autoregressive order and parameter values —
Reporting the parameters enables future researchers to
easily extract the IRF and calculate ecosystem disturbance
responses under different x*. For example, ecologists

could standardize all IRFs to a 20 stress if variation exists
in the literature, or could assess ecosystem recovery using
values different from a 50% return in ecosystem function.
Alternatively, future researchers could use IRFs to assess
how systems respond to multiple disturbance events of
either identical or varying magnitude.

4. Use designated AR model fitting functions — The ARX func-
tions specified here could all be fit using least squares.
Doing so, however, requires trimming the first two data
points from all model fits because we cannot use informa-
tion theory or likelihood ratio tests to compare models
fit to different datasets (e.g. n points for ARX(0), n — 1
points for ARX(1), n — 2 points for ARX(2), etc.). For
small datasets, the loss of two data points can substan-
tially alter the results. For example, using OLS to fit an
ARX(0) model to the RMY data without the first two data
points (n=8) results in no relationship between primary
production and precipitation (p=0.65) because the first
two data points are the driest and wettest years. Using the
full dataset (n=10) yields a stcronger primary production—
precipitation relationship (p=0.12). Common statisti-
cal languages have ARIMAX functions (R: TSA library,
Python: statsmodels module) wherein the user can specify
the AR order, incorporate an exogenous predictor, and
utilize the full dataset.

Using time series of adequate length is perhaps the most
important consideration for ARX models and subsequent
IRFs. As described above, ARX models are relatively straight-
forward linear models, and as such the same recommenda-
tions of sample size for linear models apply to ARX models. It
is generally recommended that a dataset contain 10 observa-
tions per parameter being estimated. Thus, ARX(2) models
should ideally be fit to time series with at least 30 contiguous
points. However, I recognize that most time series are consid-
erably shorter. It is possible to use short time series in ARX(2)
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models; I advise no fewer than 10 points. This provides data
points per parameter (plus one). Furthermore, longer time
series have a greater probability of including an extreme event
and thus will model IRFs more accurately.

A second important consideration is the relationship
between the exogenous predictor and the response. The exog-
enous predictor should be linearly related to the ecosystem
response, otherwise ARX models and IRFs will yield nonsen-
sical results. This is best illustrated with an example. An out-
break of crown-of-thorns starfish occurred on the coral reefs
around Moorea in the mid-2000s, devastating coral cover.
Corals slowly recovered after starfish returned to normal den-
sities. | attempted to model this with an ARX model and IRE,
but the effect of starfish on coral cover was non-significant or
even positive! The model correctly identified the slow recov-
ery time of corals, but gave the impression that starfish had
minimal or even positive effects on coral cover. The reason
for this behavior was the dichotomous nature of starfish data:
starfish were either hyperabundant or nearly absent, and the
relationship between starfish abundance and coral cover was
therefore nonlinear and exhibited a threshold response. ARX
models will probably struggle with hurricanes, forest fires
or other stochastic, ‘all-or-nothing’ disturbances. The ARX
model works best for assessing disturbance from an exoge-
nous predictor that exhibits a range of values, such as precipi-
tation, temperature, salinity, etc.

In conclusion, IRFs provide ecologists with a quick and
simple means for quantifying ecosystem responses to distur-
bance, while enabling ecologists to capitalize on the increased
availability of long-term, observational time series data.
Ecologists can use this method to quantify the components
of ecosystem disturbance response in a standardized way
across many sites. Site-specific information on species com-
position, long-term climate, rainfall patterns or any other
important variable can then be used to identify the abiotic
and biotic factors that dictate ecosystem stress response. For
example, the brief analyses presented here suggest that dry
grasslands are often more sensitive to drought than wet grass-
lands, but also that our understanding of differential ecosys-
tem sensitivity to drought remains incomplete. ARX models
can even be used when there are multiple exogenous drivers,
such as temperature and precipitation, by including an addi-
tional predictor in the model. As a result, IRFs should greatly
improve our ability to predict how ecosystems will respond to
the increased severity and frequency of extreme disturbance
events in the future.
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