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The linear assignment problem is a fundamental problem in combinatorial optimization with a wide range

of applications, from operational research to data science. It consists of assigning “agents” to “tasks” on a

one-to-one basis, while minimizing the total cost associated with the assignment. While many exact algorithms

have been developed to identify such an optimal assignment, most of these methods are computationally

prohibitive for large size problems. In this paper, we propose an alternative approach to solving the assignment

problem using techniques adapted from statistical physics. Our first contribution is to fully describe this

formalism, including all the proofs of its main claims. In particular we derive a strongly concave effective

free-energy function that captures the constraints of the assignment problem at a finite temperature. We

prove that this free energy decreases monotonically as a function of β, the inverse of temperature, to the

optimal assignment cost, providing a robust framework for temperature annealing. We prove also that for

large enough β values the exact solution to the generic assignment problem can be derived using simple

roundoff to the nearest integer of the elements of the computed assignment matrix. Our second contribution

is to derive a provably convergent method to handle degenerate assignment problems, with a characteriza-

tion of those problems. We describe computer implementations of our framework that are optimized for

parallel architectures, one based on CPU, the other based on GPU. We show that the latter enables solv-

ing large assignment problems (of the orders of a few 10 000s) in computing clock times of the orders

of minutes.
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I. INTRODUCTION

Imagine that there are N flour milling plants around Paris,

France that serve N bakeries within Paris, and let us assume

balance, namely, that there is as much flour produced by one

plant as needed by one bakery. A company in charge of the

distribution of the flour will take into account the individual

cost of transporting flour from one plant to one bakery to

find an “optimal distribution plan,” namely, an assignment of

an exclusive flour milling plant to each bakery that leads to

a minimal overall cost for the transport. Finding a solution

to this seemingly simple practical task has become a classi-

cal problem in combinatorial optimization referred to as the

assignment problem or alternatively, using the language of

graph theory, as the bipartite weighted matching problem (for

a comprehensive analysis of assignment problems, see, for

example, Ref. [1]). Interests in solving it have been stimulated

by applications in operational research, economics, and data

science, among others. With such a wide range of applica-

tions, it has been and remains a topic of research of equal

importance for mathematicians, statisticians, and computer

scientists. As a consequence, many solutions, exact or approx-

imate, have been proposed. In this paper, we are interested in

filling the gap in one group of approximate solutions based on

mean-field theory and show that they can be modified to yield

an exact solution in non degenerate as well as in degenerate

situations in a computer efficient manner.

Let P be the set of plants, and B the set of bakeries. We are

concerned with the balanced assignment problem, namely, we

assume |P| = |B| = N . We note that the unbalanced problem

(i.e., when there are different numbers of plants and bakeries)

can always be reduced to the balanced case by adding pseudo

plants or bakeries so that the two corresponding sets have the

same cardinality. If we define as C(i, j) the cost of transport

between plant i and bakery j, then the assignment problem

can be formalized as finding a bijection f between P and B

that minimizes

U =
∑

i∈P

C(i, f (i)). (1)

Note that f can be seen as a permutation of {1, . . . , N}.
This is a linear problem. It can be solved naively by test-

ing all possible bijections f , or equivalently all permutations

of {1, . . . , N}: this is, however, extremely inefficient, as the

number of such permutations is N! and unnecessary. There

are indeed polynomial time algorithms to solve the assign-

ment problem. The most famous of such algorithms was most

likely originally proposed by Ref. [2] and published posthu-

mously in Latin, and rediscovered 60 years later by Ref. [3]

and dubbed the Hungarian algorithm. Initially developed as

a O(N4) algorithm, it has since been sped up and its fastest

exact, general version is of order O(N3 + N2 ln N ) when using

Fibonacci heaps [4]. The Hungarian algorithm remains the

most efficient exact algorithm when applied to a generic cost
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matrix C (there are faster versions for special cost matrices

C; see, for example, Refs. [5,6]). It is a global algorithm

that iteratively identifies assignments between the two sets of

points, or, in the language of graph theory, by augmenting

paths between the two graphs to be matched. While it has

polynomial worst-case running time, its main limitation is

that it is serial, i.e., it cannot be improved with paralleliza-

tion. There are alternate solutions to the assignment problem

such as the auction algorithms [7,8] that are based on finding

local updates, rather than full augmenting paths between the

two graphs. These methods have worse asymptotic computing

time behaviors, but they often work better in practice [9].

These algorithms have an average time complexity of O(N2)

and their structure is such that it is possible to parallelize them

(see, for example, Ref. [10]). Note, however, that their gains

in computing time compared to the Hungarian algorithm are

highly problem-dependent: The parallelization gain may be

modest for some cost matrices C, and in some degenerate

cases, auction algorithms may even run forever [11].

The Hungarian and the auction algorithms are iterative

methods aimed at finding the best bijection f within the

discrete set of all possible permutations, of cardinality N!.

On par with the invisible hand algorithm (IHA) proposed

by Ref. [12], we propose instead to use continuous systems

motivated by statistical physics. We have adapted an algo-

rithm we have recently proposed to solve the balanced optimal

transport problem [13,14] to solve specifically the assignment

problem. We focus on the balanced assignment problem (i.e.,

with the same number of points in the two sets of points

considered), with minimal cost, with an understanding that

our method could be easily extended to handle unbalanced

and/or maximal cost assignment problems. Our goals in this

paper are to

(1) Establish and validate a continuous framework for

solving the assignment problem using statistical physics,

(2) Establish that, in the generic case in which the assign-

ment problem has a unique solution, the framework proposed

above is guaranteed to converge arbitrarily close to that solu-

tion, and derive criteria to generate this solution,

(3) Describe a modification of the method that is guaran-

teed to find at least one solution for degenerate assignment

problems with multiple solutions, and

(4) Demonstrate that the implementation of this frame-

work can be efficiently parallelized on multiple cores / CPUs

and/or a general purpose GPU.

Note that the first two goals were already achieved by the

IHA algorithm [12]. In this paper, we propose a different

statistical physics formulation of a relaxed version of the

assignment problem, validate that it has similar theoretical

properties as the IHA in terms of convergence, and include

a comparison of its performance with respect to the IHA algo-

rithm, showing that the latter becomes significantly slower for

large systems. An analysis of the differences is provided. In

addition, the IHA does not handle degenerate cases; a signifi-

cant contribution in this paper is that such cases are considered

explicitly within our framework (goal 3 listed above).

The following four sections map with the four goals

listed above. We conclude with a discussion in which we

compare our framework with alternate methods for solv-

ing continuous assignment problems, as well as with a

presentation of possible extensions to very large assignment

problems.

II. A FINITE-TEMPERATURE ASSIGNMENT PROBLEM

We consider two sets of points S1 and S2 of the same

cardinality N . We encode the cost of transport between S1

and S2 as a positive matrix C(k, l ) with (k, l ) ∈ {1, . . . , N}2.

The assignment problem can then be formulated as finding

a binary permutation matrix G of correspondence between

points in S1 and points in S2 that minimizes the matching cost

U defined as

U (G) =
∑

k,l

G(k, l )C(k, l ), (2)

where the summations extend over all k in S1 and l in S2. The

minimum of U is to be found for the values of G(k, l ) that

satisfy the following constraints:

∀k,
∑

l

G(k, l ) = 1, (3a)

∀l,
∑

k

G(k, l ) = 1, (3b)

∀(k, l ), G(k, l ) ∈ {0, 1}. (3c)

The solution to the assignment problem provides an opti-

mal permutation matrix G∗ and the corresponding minimum

matching cost U ∗ = U (G∗). Minimizing Eq. (2) under the

constraints Eq. (3) is a discrete optimization problem, namely,

an integer linear program problem. We solve it using a

statistical physics approach by rephrasing it as a temperature-

dependent problem with real variables, with the integer

optimal solution found at the limit of zero temperature. This

relaxed version of the assignment problem is a special case of

a discrete optimal transport (OT) problem [15,16] in which the

masses associated to the points in S1 and S2 are all equal to 1.

Many methods have been proposed for solving the OT prob-

lem, from directly solving the linear system stem to solving

entropy-regularized version of this system [17]. Here we in-

troduce a modified version of our statistical physics approach

for solving this problem, adapting it to the specifics of the as-

signment problem. Note that this algorithm is a generalization

of the so-called invisible hand algorithm [12].

A. An effective free energy for the assignment problem

In statistical physics, a system that is in thermal equi-

librium at finite temperature will sample many states. The

corresponding Gibbs distribution represents the probability of

this system to exist in any specific state. The most probable

state is then the one with lowest energy. Hence, minimizing

an energy function can be reformulated as the problem of

finding the most probable state of the system it defines. In the

assignment problem between two sets S1 and S2, the “system”

is identified with the different binary transport plans between

S1 and S2 that satisfy the marginal constraints Eqs. (3a) and

(3b) as well as the constraint (3c). Those plans belong to the

permutation polytope which we denote as G.

Each state in this system is identified with a transport

plan G ∈ G, and its corresponding energy U (G) is defined in
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Eq. (2). The probability P(G) associated with a transport plan

G is defined as

P(G) =
1

Z (β )
e−βU (G). (4)

In this equation, β = 1/kBT where kB is the Boltzmann con-

stant and T the temperature, and Z (β ) is the partition function

computed over all states of the system. This partition function

is given by

Z (β ) = e−βF (β ) =
∫

G∈G
e−βU (G)dG, (5)

where dG can be seen as the Lebesgue measure for the space

of transport plans G and F (β ) is the free energy of the system.

This free energy is of limited practical interest as it cannot be

computed explicitly. We propose a scheme for approximating

it using the saddle point approximation.

Taking into account the constraints on the transport plan G,

the partition function can be written as

Z (β ) =
∑

G(k,l )∈{0,1}

e−β
∑

kl C(k,l )G(k,l )

∏

k

δ

(

∑

l

Gkl − 1

)

∏

l

δ

(

∑

k

Gkl − 1

)

. (6)

The first sum imposes that the G(k, l ) take values of 0

or 1 only. The constraints that there is only one 1 per line

and only one 1 per column are imposed through the δ func-

tions. We use the Fourier representation of those δ functions,

thereby introducing new auxiliary variables λ(k) and μ(l ),

with (k, l ) ∈ {1, . . . , N}2. After rearrangements, the partition

function can be written as (up to a multiplicative constant),

Z (β ) =
∫ +∞

−∞

∏

k

dλ(k)

∫ +∞

−∞

∏

l

dμ(l )eβ(
∑

k iλ(k)+
∑

l iμl )

∑

G(k,l )∈{0,1}

e−β
∑

k,l G(k,l )[C(k,l )+iλ(k)+iμ(l )]. (7)

Note that we have scaled the auxiliary variables λ and μ

by a factor β for scale consistency with the energy term.

Performing the summations over the variables G(k, l ), we get

Z (β ) =
∫ +∞

−∞

∏

k

dλ(k)

∫ +∞

−∞

∏

l

dμl e
−βFβ (λ,µ), (8)

where Fβ is a functional, or effective free energy defined by

Fβ (λ,µ) = −

(

∑

k

iλ(k) +
∑

l

iμ(l )

)

−
1

β

∑

kl

ln
(

1 + e−β[C(k,l )+iλ(k)+iμ(l )]
)

. (9)

Note that compared to the internal energy U defined in Eq. (2)

that depends on N2 constrained binary variables G(k, l ), the

effective free energy Fβ (λ,µ) depends on 2N unconstrained

variables λ(k) and μ(l ). In the following we will show how

finding the extremum of this function allows us to solve the

assignment problem.

B. Optimizing the effective free energy

Let Ḡ(k, l ) be the expectation value of G(k, l ) with respect

to the Gibbs distribution given in Eq. (4). As mentioned above,

it is unfortunately not possible to compute this value directly

as the partition function defined in Eq. (8) is not known

analytically. Instead, we derive a saddle point approximation

(SPA) by looking for extrema of the effective free energy with

respect to the variables λ and μ:

∂Fβ (λ,µ)

∂λk

= 0 and
∂Fβ (λ,µ)

∂μl

= 0. (10)

After some rearrangements, those two equations can be writ-

ten as

∀k,
∑

l

X (k, l ) = 1, (11a)

∀l,
∑

k

X (k, l ) = 1, (11b)

where

X (k, l ) = h{β[Ckl + iλ(k) + iμ(l )]} (12)

and

h(x) =
1

ex + 1
. (13)

We will prove that in the limit β → ∞ (or equivalently

T → 0), the matrix X converges to the solution of the assign-

ment problem G∗ (see above).

As is often the case, the saddle-point may be purely imagi-

nary. In the present case, one can easily see from Eq. (11) that

the variables iλ(k) and iμ(l ) must be real and in the following,

we will replace {iλ(k), iμ(l )} by {λ(k), μ(l )}. We observe that

the values of the matrix X (k, l ) are invariant under the trans-

lation {λ(k) + K, μ(l ) − K} where K is an arbitrary constant.

This translational degree of freedom leaves the free energy Feff

unchanged.

To analyze the SPA, we need to check the existence and

assess the unicity of the critical points of the free energy. The

following theorem shows that Fβ (λ,µ) is weakly concave and

can be made strictly concave on a subspace of the parameter

space that is easily defined.

Theorem 1. The Hessian of the effective free energy

Fβ (λ,µ) is negative semi-definite with (2N − 1) nega-

tive eigenvalues and one zero eigenvalue. Furthermore, the

eigenvector corresponding to the zero eigenvalue is (1,...,1,

−1, ....−1) (with N 1s, and N −1s), and thus corresponds

to the constant translation invariance of this energy. Setting

one of the parameters λ(k) or μ(l ) as zero, the free-energy

function on this restricted parameter space is strictly concave.

Proof. See Appendix A. �

For a given value of the parameter β, the X (k, l ) that are

solutions to the system of Eqs. (11) form a transport plan X MF
β

between S1 and S2 that is optimal with respect to the free

energy defined in Eq. (9). We can associate to this transport

plan an optimal free energy F MF(β ) and an optimum energy

U MF(β ) =
∑

k,l X MF
β (k, l )C(k, l ). Note that those two values

are the mean-field approximations of the exact free energy

and internal energy of the system, respectively. We now list

important properties of U MF(β ) and F MF(β ):
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Property 1. F MF(β ) and U MF(β )) are, respectively, mono-

tonic increasing and monotonic decreasing functions of the

parameter β.

Proof. See Appendix B for F MF(β ) and Appendix C for

U MF(β ). �

Theorem 1 and the property 1 above highlight a num-

ber of advantages of the proposed framework that rephrases

the assignment problem as a temperature-dependent process.

First, at each temperature the assignment problem is turned

into a strongly concave problem with a unique solution. This

problem has a linear complexity in the number of variables,

compared to the quadratic complexity of the original problem.

The concavity allows for the use of simple algorithms for find-

ing a minimum of the effective free-energy function [Eq. (9)].

We note also that Eq. (12) provides good numerical stability

for computing the transport plan, because of the behavior of

the function h(x) (see below). Finally, the convergence as a

function of temperature is monotonic.

C. Rewriting the free energy

Equation (9) provides an expression of the free energy

as a function of the unconstrained variables λ(k) and μ(l ).

This free energy is not “standard” as it does not include the

corresponding energy U . We derive a new form for this free

energy. To simplify notations, let us define

xkl = C(k, l ) + λ(k) + μ(l ),

X (k, l ) = h(βxkl ), (14)

Uβ (λ,µ) =
∑

kl

C(k, l )X (k, l ),

where h(x) is the function defined above. We have the follow-

ing property:

Theorem 2. The effective free energy of the assignment

problem can be written as

Fβ (λ,µ) = Uβ (λ,µ) − T Sβ (λ,µ)

+
∑

k

λk

(

∑

l

X (k, l ) − 1

)

+
∑

l

μl

(

∑

k

X (k, l ) − 1

)

, (15)

where we have defined the entropy S as

Sβ (λ,µ) =
∑

kl

(βxkl h(βxkl ) + ln[1 + e−βxkl ]). (16)

In particular, at a maximum of the free energy,

F MF(β ) = U MF(β ) − T SMF(β ). (17)

This form of the free energy has an intuitive physical inter-

pretation. The first term is the original assignment energy, the

second is −T times an entropy term, and the third and fourth

terms impose constraints via Lagrange multipliers.

Proof. Using the definition of the free energy [Eq. (9)], and

adding and subtracting the internal energy, we get

Fβ (λ,µ) = Uβ (λ,µ) −
∑

kl

C(k, l )X (k, l )

−

(

∑

k

λ(k) +
∑

l

μ(l )

)

+
1

β

∑

kl

ln[1 + e−βxkl ]. (18)

As C(k, l ) = xkl − λ(k) − μ(l ), we get

Fβ (λ,µ) = Uβ (λ,µ) +
∑

k

λk

(

∑

l

X (k, l ) − 1

)

+
∑

l

μl

(

∑

k

X (k, l ) − 1

)

1

β

∑

kl

(βxkl X (k, l ) + ln[1 + e−βxkl ]), (19)

which concludes the proof. �

By noticing that the function H (x) = − ln(1 + e−x ) is an

antiderivative of the function h(x) = 1/(1 + ex ), we have

more general definitions for the internal energy Uβ and the

entropy Sβ as a function of λ and µ,

Uβ (λ,µ) =
∑

kl

C(k, l )h(βxkl ),

Sβ (λ,µ) =
∑

kl

t (βxkl )

=
∑

kl

[βxkl h(βxkl ) − H (βxkl )], (20)

or alternatively, as a function of the transport plan X ,

Uβ (X ) =
∑

kl

C(k, l )X (k, l )

Sβ (X ) =
∑

kl

J[X (k, l )]

=
∑

kl

(

X (k, l )h−1[X (k, l )] − H{h−1[X (k, l )]}
)

.

(21)

In the specific case considered here in which h(x) = 1/(1 +
ex ), the functions t (x) and J (x) are defined as

t : R → R, t (x) =
x

1 + ex
+ ln(1 + e−x ),

J : [0, 1] → R, J (x) = −x ln(x) − (1 − x) ln(1 − x).

(22)

Note that J ′(x) = ln ( 1−x
x

) = h−1(x), and therefore that J (x)

is the Legendre transform of −H (x). J (x) is positive on [0,1],

null only for x = 0 and x = 1, and maximum for x = 0.5 in

which case it is equal to ln(2). In Fig. 1, we illustrate the

different functions h(x), H (x), t (x) and J (x) as their properties

are central to the rest of the paper.
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FIG. 1. The different functions h(x), H (x), t (x), and J (x) (see text for details).

III. SOLVING THE GENERIC ASSIGNMENT PROBLEM

In the previous section, we have described a formalism

based on statistical physics for solving the assignment

problem. We have derived an effective free energy, Fβ (λ,µ),

that depends on 2N unconstrained variables λ and µ. We

have shown that this free energy is (weakly) concave and

that its maximum is found by solving a system of nonlinear

equations, at each inverse temperature β. We have also shown

that the trajectory of the maxima F MF(β ) as a function of

β is monotonic, increasing. We need to establish now that

this trajectory allows us to find the actual solution of the

assignment problem. Recall that this solution is defined by a

permutation matrix G∗ and its corresponding energy U ∗. In

this section, we will assume that the assignment problem is

non degenerate and that it has a unique solution. We will fully

characterize what it means in the next section.

We first prove that the optimal assignment energy U ∗, is

equal to the infinite inverse temperature limit of both the

mean-field free energy and the internal energy:

Theorem 3.

U ∗ = lim
β→+∞

F MF(β ),

U ∗ = lim
β→+∞

U MF(β ). (23)

Proof. See Appendix D. �

As the trajectories of F MF(β ) and U MF(β ) as a function

of β were already found to be respectively monotonically

increasing and monotonically decreasing, this theorem adds

the information at the infinite inverse temperature limit (or

equivalently at the zero temperature limit), both converge to

the optimal assignment energy. These results validate our sta-

tistical physics approach and the saddle-point approximation

in particular. They are however results at convergence, i.e., at

infinite inverse temperature, and we need to assess how well

the solution at a finite inverse temperature approximates the

exact solution.

The following theorem puts bounds on the entropy, internal

energy, and free energy at the SPA. Let us define A(N ) =
N2 ln(N ) − N (N − 1) ln(N − 1); then

Theorem 4.

0 � SMF(β ) � A(N ), (24)

U ∗ −
A(N ))

β
� F MF(β ) � U ∗, (25)

U ∗
� U MF(β ) � U ∗ +

A(N )

β
. (26)

Proof. See Appendix E. �

The two previous theorems are valid for all assignment

problems. We establish now bounds on the element of the

assignment matrix X MF
β in the specific case that this assignment

problem has a unique solution. The matrix X MF
β denotes the
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unique doubly stochastic matrix associated with the minimum

of the free energy at the inverse temperature β. The next

theorem bounds how close this doubly stochastic matrix is to

the unique permutation matrix, G∗, representing the optimal

solution to the assignment problem.

Theorem 5. Suppose that the assignment problem associ-

ated with the N × N cost matrix C admits a unique optimal

assignment matrix, G∗. Let � be the difference in total cost

between the optimal solution and the second best solution.

Then,

max
k,l

∣

∣X MF
β (k, l ) − G∗(k, l )

∣

∣ �
A(N )

β�
. (27)

Proof. See Appendix F. �

This theorem validates that in the generic case for which

the solution to the assignment problem is unique, the con-

verged solution matrix X MF
∞ when β → +∞ is this unique

solution to the assignment problem, G∗. In addition, it pro-

vides bounds to how close X MF
β is from the optimal solution

at any inverse temperature β. We can use this result to find

bounds on the inverse temperature required to recover the

optimal assignment from the free-energy optimum:

Theorem 6. Suppose that the assignment problem associ-

ated with the N × N cost matrix C admits a unique optimal

assignment matrix, G∗. Let � be the difference in total cost

between the optimal solution and the second best solution.

Then, rounding off each of the entries of X MF
β to the near-

est integer yields the permutation matrix G∗ that solves the

assignment problem whenever

β >
2A(N )

�
. (28)

Proof. The proof follows directly from Theorem 5. Round-

ing off to the nearest integer will yield the optimal assignment

matrix whenever

max
k,l

∣

∣X MF
β (k, l ) − G∗(k, l )

∣

∣ <
1

2
. (29)

This condition is met if

A(N )

β�
<

1

2
, (30)

i.e., if

β >
2A(N )

�
. (31)

�

We can then conclude that in the generic case we can

solve the assignment problem exactly at finite, although

sufficiently high inverse temperature β. Assuming finite pre-

cision, the inverse temperature required for convergence

is O[A(N )]. Since A(N ) = N2 ln(N ) − N (N − 1) ln(N − 1),

A(N ) is O[N ln(N )], and therefore the inverse temperature is

of order N ln(N ). Theorem 6 is important theoretically as it

validates that the mean-field approach converges to the solu-

tion of a generic assignment problem. It also provides a recipe

for setting a cutoff for the value of the inverse temperature β

that guarantees that the optimal solution has been found. It is,

however, not easy to implement as it is difficult to estimate �.

A simpler procedure is based on the following result:

Theorem 7. Suppose that the assignment problem associ-

ated with the N × N cost matrix C admits a unique optimal

assignment matrix, G∗. Let us assume that at an inverse tem-

perature β, the current solution matrix X MF
β is strictly row

dominant. Then, rounding off each of the entries of X MF
β to the

nearest integer yields the permutation matrix G∗ that solves

the assignment problem.

This theorem defines a criteria that is easily implemented to

terminate the annealing process in β when solving the assign-

ment problem with our method. Note that this theorem is not

equivalent to Theorem 6. It does not guarantee convergence,

i.e., it does not establish that the matrix X MF
β becomes row

dominant, but only claims that if it does, then the annealing

process can be stopped. From Theorem 6 we know however

that if the assignment problem has a unique solution, then our

framework will converge to this solution, and, in doing so, the

trajectory of the X MF
β matrices is guaranteed to reach a row

dominant matrix.

Proof. See Appendix G. �

In Sec. VI, we will compare these possible cutoff schemes

for β.

IV. SOLVING DEGENERATE ASSIGNMENT PROBLEMS

In our statistical physics approach described in Sec. II,

the binary assignment problem has been relaxed. Indeed, we

build a collection of real matrices X MF
β that minimizes the

assignment cost and that are doubly stochastic, but at a finite

inverse temperature this matrix cannot be binary as X MF
β is

given as h(βxkl ), where all values h(x) are strictly in (0,1)

(see Fig. 1). In the previous section, we have shown that

if this relaxed assignment problem has a unique solution,

then the trajectories of the X MF
β as β increases converge to

the permutation matrix G∗ that solves the integer assignment

problem. The question remains as to whether this is always

the case, and if it is not, then how we can still find an integer

solution to the assignment problem.

Let S1 and S2 be two sets of points of cardinality N and let

C be a cost matrix between S1 and S2. The relaxed assignment

problem can be formulated as finding the assignment matrix

Gr that minimizes

U (G) =
∑

k,l

Gr (k, l )C(k, l ), (32)

where the summations extend over all k in S1 and l in S2. The

minimum of U is to be found for the values of Gr (k, l ) that

satisfy the following constraints:

∀k,
∑

l

Gr (k, l ) = 1, (33a)

∀l,
∑

k

Gr (k, l ) = 1, (33b)

∀(k, l ), 0 � Gr (k, l ) � 1. (33c)

Note that the assignment problem defined in Eqs. (2) and

(3) is a special case of this relaxed problem. The two prob-

lems have the same solution under circumstances that will be

described below. In general, it is not expected that solving

this relaxed problem will lead to an optimal matrix G∗
r that

042101-6



FAST COMPUTATION OF EXACT SOLUTIONS OF … PHYSICAL REVIEW E 103, 042101 (2021)

is binary. However, Ref. [18] have proved that this relaxed

assignment problem always has an optimal solution where

G∗
r take integer values. We rewrite the corresponding theorem

here and sketches its proof, as it contains elements that we will

use later.

Theorem 8 ([18]). If the relaxed assignment problem has

at least one feasible solution, then it has at least one integral

optimal solution. This solution is an optimal solution for the

corresponding integer assignment program.

Proof. Let G∗
r be an optimal solution to the relaxed assign-

ment problem described in Eqs. (32) and (33) and let U (G∗
r )

be the associated minimum assignment cost. Let us denote as

K the number of nonintegral values in G∗
r . If K = 0, then G∗

r

is a permutation matrix and we are done. If K > 0, then let

G∗
r (k1, l1) be one of its nonintegral values:

0 < G∗
r (k1, l1) < 1. (34)

Since
∑

k

G∗
r (k, l1) = 1, (35)

there exists k2 ∈ S1 with k2 �= k1 such that G∗
r (k2, l1) is nonin-

tegral. Similarly, we can find l2 �= l1 in S2 such that G∗
r (k2, l2)

is nonintegral. We can continue in this manner, leading to a

path [(k1, l1), (k2, l1), . . .] with nonintegral values in G∗
r . As

the number of points in S1 and S2 is finite, we will ultimately

reach a pair that we have already visited. This means that we

have identified a cycle A among all edges between S1 and S2;

the cardinality of this cycle is even (bipartite graph). We write

this cycle as

A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )}, (36)

where 2M = |A|. For a small real number ǫ, we define the

matrix Gǫ as

Gǫ (k, l ) = G∗
r (k, l ) (k, l ) /∈ A,

Gǫ (a2i, b2i ) = G∗
r (a2i, b2i ) + ǫ i ∈ {1, . . . , M},

Gǫ (a2i+1, b2i+1) = G∗
r (a2i+1, b2i+1) − ǫ i ∈ {1, . . . , M}.

As two consecutive pairs in A leads to the addition and

subtraction of the same quantity ǫ on one row or one column

of G∗
r , it is easy to verify that Gǫ is doubly stochastic and

therefore satisfies the constraints of the assignment problem.

In addition, for sufficiently small ǫ, we have

0 � Gǫ (ai, bi ) � 1 (37)

for all (ai, bi ) ∈ A, as by construction those pairs where cho-

sen such that 0 < G∗
r (ai, bi ) < 1. Let us now compute the

assignment cost Uǫ associated with Gǫ :

Uǫ =
∑

k,l

Gǫ (k, l )C(k, l )

=
∑

(k,l )/∈A

Gǫ (k, l )C(k, l ) +
2M
∑

i=1

Gǫ (ai, bi )C(ai, bi )

=
∑

(k,l )/∈A

G∗
r (k, l )C(k, l ) +

2M
∑

i=1

[G∗
r (ai, bi ) + (−1)iǫ]C(ai, bi )

= U (G∗
r ) + ǫŴ, (38)

where we have defined Ŵ =
∑2M

i=1(−1)iC(ai, bi ). Since G∗
r

is optimal, we have Ŵ = 0, for otherwise, we would have

Uǫ < U (G∗
r ) either by choosing ǫ > 0 if Ŵ < 0, or by choos-

ing ǫ < 0 for Ŵ > 0. This means that Gǫ is another optimal

solution of the relaxed assignment problem. By choosing

the largest ǫ > 0 for which the constraints 0 � Gǫ (ai, bi ) �

1 ∀i are still satisfied, one of the (ai, bi ) ∈ A will be such

that Gǫ (ai, bi ) ∈ {0, 1}. Therefore, Gǫ has fewer nonintegral

elements than G∗
r and the procedure can be repeated until

K = 0. �

The proof described above provides an algorithm for

modifying a fractional optimal solution to the relaxed as-

signment problem into an integer solution with the same

optimal assignment cost. This algorithm, however, is nu-

merically unstable and difficult to implement for large N .

Indeed, a fractional solution to the assignment problem will

not satisfy the constraints exactly (because of numerical

imprecision) and therefore cycles are difficult to identify.

An alternate solution to following this algorithm would

be to add a penalty term to the energy function of the

form
∑

kl G(k, l )[1 − G(k, l )] that would be minimum when

G(k, l ) is 0 or 1, therefore pushing the solution towards in-

teger values. We propose a different solution. We first list an

interesting side result from the proof above as a property on

its own:

Property 2. If the relaxed assignment problem

has an optimum solution that contains fractional

elements, then there exists (at least) one cycle A =
{(a1, b1), (a2, b2), . . . , (a2M , b2M )} in the cost matrix C

for which Ŵ =
∑2M

i=1(−1)iC(ai, bi ) = 0. Reversely, if

the cost matrix C does not contain any cycle of the

form A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )} for which
∑2M

i=1(−1)iC(ai, bi ) = 0, then the corresponding assignment

problem has a unique integer solution.

Proof. The proof of the first part of the proposition fol-

lows exactly the proof of Theorem 8 that is sketched above.

The second part is basically its contrapositive. Briefly, we

start from the fact that the cost matrix C does not contain

any cycle of the form A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )}
for which

∑2M
i=1(−1)iC(ai, bi ) = 0. Let us assume now that

the corresponding assignment matrix has an optimal solu-

tion matrix that contains fractional elements. Then, based

on the proof of Theorem 8, we can identify (at least) one

cycle in the cost matrix, which is contradictory to our hy-

pothesis. Therefore, the assignment problem has only integer

solutions that are permutation matrices. Let us assume now

that it has (at least) two different optimal permutation ma-

trices π1 and π2 as solutions, i.e., with the same optimal

cost U ∗. We can then build a doubly stochastic matrix Ga =
aπ1 + (1 − a)π2 for each a ∈ [0, 1]. The cost associated

with Ga is

U (G) = a
∑

kl

C(k, l )π1(k, l ) + (1 − a)
∑

kl

C(k, l )π2(k, l )

= a
∑

k

C(k, π1(k)) + (1 − a)C(k, π2(k))

= aU ∗ + (1 − a)U ∗ = U ∗, (39)
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for all a ∈ [0, 1]. This would mean that Ga is also an optimal

solution to the assignment problem. However, for a strictly

in (0,1), Ga is fractional, which contradicts the fact that the

assignment problem only has integer solutions. Therefore, the

assignment problem has a unique solution. �

This property implies that when solving the assignment

problem for generic cost matrices that do not contain specific

cycles, we can follow the strategy described in Sec. III. If the

cost matrix is degenerate and contains (at least) one cycle,

then we propose to randomly perturb that matrix to bring it

back to the generic problem. We do need to specify the per-

turbation level that guarantees that a solution of the perturbed

problem is also a solution to the original problem. This is the

purpose of the following theorem:

Theorem 9. Suppose that the solution X MF
β to the assign-

ment problem associated with the N × N cost matrix C has

a nonzero entropy SMF(β ) when β → +∞. Let � be the

difference in total cost between the optimal solution and the

second best solution. Then, adding random uniform noise with

support [0, α] to each value of C and solving the assignment

problem on this perturbed matrix will generate one integer

solution that is also solution to the unperturbed assignment

problem with probability one, whenever

α <
�

2N
. (40)

If all the entries of the cost matrix C are scaled to be integers,

then � � 1 and it suffices to have

α <
1

2N
. (41)

Proof. See Appendix H. �

This theorem gives us a general strategy for solv-

ing a minimum cost assignment problem for any cost

matrix C:

(a) Solve the assignment problem using the approach de-

scribed in Secs. II A and II B. If the trajectory of the entropy

converges to 0 as β → +∞, then the solution is guaranteed

to be a permutation. All results from Sec. III apply and in

particular the solution matrix G∗ obtained by rounding off

each element of X MF
β when β is large enough is guaranteed to

be an optimal solution to the assignment problem. In practice,

β is set to be large enough when the entropy SMF(β ) falls

below a cutoff value, usually 10−6.

(b) If the approach described in (a) fails as the entropy

does not converge to 0, then scale the cost matrix to be integer,

and add random uniform noise in the interval [0, 1
2N

]. Solve

the assignment problem with the perturbed matrix: its solu-

tion is guaranteed to solve also the unperturbed assignment

problem.

V. IMPLEMENTATION

We have implemented the finite-temperature assignment

framework described here in a C++ program matching that

is succinctly described in Algorithm 1.

Algorithm 1. Matching: A temperature-dependent framework

for solving the assignment problem

Input: The size of the assignment problem, N , the cost matrix C,

and the initial value β0 for β

Initialize: Initialize arrays λ and µ to 0. Set ST EP =
√

10. Set

β0 = β0/ST EP

for k = 1, . . . until convergence do

(1) Set βk = ST EP ∗ βk−1.

(2) Solve nonlinear Eqs. (11) for λMF and λMF at saddle point

(3) Compute current optimal assignment matrix X MF
β and the

corresponding assignment U MF(β ) and entropy SMF(β )

(4) Check for convergence: If |U MF(βk ) − U MF(βk−1)|/
U MF(βk−1) < T OL, or if X MF

β strictly row dominant, or if the

entropy falls below a cutoff value, then stop

end for

Output: The converged transport plans G
opt

β (k, l ) and the

corresponding transport costs U MF(β ).

Matching is based on an iterative procedure in which the

parameter β (inverse of the temperature) is gradually in-

creased. At each value of β, the nonlinear system of equations

defined by Eq. (11) is solved using an iterative Newton-

Raphson method. At each iteration for this Newton method,

the Jacobian of the system of equations is computed, and

the corresponding linear system of equations is solved us-

ing a preconditioned conjugate gradient approach (we use

an incomplete LU decomposition of the Jacobian matrix as

a preconditioner). Solutions of this system provide updated

estimates for the arrays of parameters λ and µ. These new

estimates are then used to assess how well the SPA equations

are satisfied. Once the errors on the SPA equations fall be-

low a tolerance TOL (usually set to 10−4), the optimal cost

matrix X MF
β and the corresponding assignment U MF(β ) and

entropy SMF(β ) are computed. If the latter falls within the

tolerance TOL, or if the matrix the procedure is deemed to

have converged, then the program is stopped. The values in the

corresponding X MF
β are rounded off and its corresponding cost

defines the minimal assignment cost. Note that the converged

values of λ and µ at a given β serve as input for solving the

SPA nonlinear system of equation at the following β, in spirit

of an annealing procedure.

In some cases, matching has converged in energy, but the

entropy remains nonzero and the current assignment matrix

X MF
β is not row dominant. This indicates that the assignment

problem does not have a unique solution, and that matching

has identified a fractional solution. We then rerun matching

by applying the relaxed procedure described in Sec. IV, by

introducing random noise to each element of the cost matrix

(see above for details).

VI. NUMERICAL SIMULATIONS

In order to confirm our theoretical results, we applied

our method to solve random linear assignment problem with

random cost matrices of size N × N whose elements are inde-

pendent identically distributed (iid) variables with exponential

distribution with mean 1. The authors of Ref. [19] have con-

jectured that the expectation value for the optimal, minimal
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FIG. 2. Convergence of the entropy SMF(β ) (a), and of the internal energy U MF(β ) and free energy F MF(β ) as a function of β when solving

a random assignment problem with a cost matrix C of size 10 000 whose elements are independent identically distributed values drawn from

exponential distributions with mean 1. In panel (b), we show the theoretical bounds on the internal energy and on the free energy computed

from the theoretical bounds given in Theorem 4 as red and blue shaded areas, respectively. The dotted horizontal line show the expected value

for the minimal cost of an exponential random assignment problem of the same size.

assignment cost LN satisfies

lim
N→+∞

E [LN ] =
π2

6
, (42)

and a few years later [20] they conjectured that

E [LN ] =
N

∑

i=1

1

i2
. (43)

Proofs of the two conjectures were subsequently provided

by Refs. [21] and [22], respectively. We note that such ran-

dom problems are guaranteed to have a unique solution: as

the elements of the cost matrix are iid variables, there is a

zero probability that they can form cycles (as defined in the

previous section) and then, based on proposition 2, the cor-

responding assignment problem has a unique solution matrix

whose entries are 0 or 1.

Matching is based on an iterative procedure in which the

parameter β (inverse of the temperature) is gradually in-

creased. At each value of β, the nonlinear system of equations

defined by Eq. (11) is solved using an iterative Newton-

Raphson method. At each iteration for this Newton method,

the Jacobian of the system of equations is computed, and

the corresponding linear system of equations is solved us-

ing a preconditioned conjugate gradient approach (we use

an incomplete LU decomposition of the Jacobian matrix as

a preconditioner). Solutions of this system provide updated

estimates for the arrays of parameters λ and µ. These new

estimates are then used to assess how well the SPA equations

are satisfied. Once the errors on the SPA equations fall below

a tolerance TOL (usually set to 10−4), the optimal cost matrix

X MF
β and the corresponding assignment U MF(β ) and entropy

SMF(β ) are computed. If the latter falls within the tolerance

TOL, then the procedure is deemed to have converged and the

program is stopped. The values in the corresponding X MF
β are

rounded off and its corresponding cost defines the minimal

assignment cost. Note that the converged values of λ and µ

at a given β serve as input for the following β, in spirit of an

annealing procedure.

A. Simple example

We ran the procedure described above on a random cost

matrix with exponential distributions with mean 1 of size

10 000 × 10 000. In Fig. 2(a), we show the trajectory of the

entropy SMF(β ) (left panel) as a function of β generated

while solving the corresponding assignment problem. As this

assignment problem has a unique matrix solution whose el-

ements are either 0 or 1 (i.e., a permutation matrix), it is

expected that the entropy converges to 0, as observed. Based

on Theorem 4, the entropy is bounded in [0, A(10 000)] where

A(10 000) ≈ 105. In Fig. 2(b), we show the corresponding

trajectories of the internal energy U MF(β ) and free energy

F MF(β ) as well as the theoretical bounds on those values

given in Theorem 4. As expected, the internal energy is mono-

tonically decreasing while the free energy is monotonically

increasing, and both converge to the same value, 1.6341. Note

that from Eq. (43), the expected value of the minimum cost

associated with a matrix of this size is E [L10 000] = 1.6445,

i.e., very close to the value observed with the specific cost

matrix that was generated for this example.

B. Solving large assignment problems

We ran simulations on random cost matrices with expo-

nential distributions with mean 1 of sizes N ranging in size

between 50 × 50 and 15 000 × 15 000. We ran five indepen-

dent simulations for each size. As mentioned above, each of

these assignment problems have a unique solution; we verified

that we obtained the correct assignment by running in parallel

the Hungarian algorithm.
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FIG. 3. CPU time and efficiency of matching for solving the assignment problem. Two sets of calculations are performed, on two different

computers. The first set is based on the implementation of matching for CPUs. It is run on an Intel Core i7 processor running at 4.00 GHz,

and 64 GB of memory. The second set is based on the implementation of matching for GPUs. It is run on a Linux server, with Xeon Platinum

8168 CPU at 2.7 GHz, and a NVIDIA RT2080 Ti GPU card with 11 GB of memory. In each set, we run matching on random cost matrices

with exponential distributions with mean 1 of sizes N ranging in size between 50 × 50 and 15 000 × 15 000. (a) The mean computing times

(clock time) are plotted against the sizes of the cost matrices for computation on one core (black), on 8 cores (red), and on the GPU (blue).

The dashed lines represent quadratic polynomial fits to the means. (b) The speedup (computed as the ratio of total computing time over clock

time) is plotted against the size of the assignment problem.

We have claimed that the temperature-based method we

propose enables a fast and robust solution to the assign-

ment problem. To check that it is indeed the case, we have

monitored the running times for our procedure for the dif-

ferent simulations described above. We first note that our

implementation relies heavily on linear algebra, as at each

inverse temperature we solve a nonlinear system of equa-

tion iteratively, with each iteration involving the solution of

a linear system of equation. It is therefore expected that

the whole algorithm can benefit greatly from parallelization.

We have therefore implemented two versions of matching,

one that runs on possibly multiple CPUs, and another that

runs on GPUs. Both rely heavily on the optimized BLAS

and LAPACK libraries for the corresponding processors. The

computing times for the two versions of matching, averaged

over five simulations, are plotted against the size N of the

assignment problem in Fig. 3. As expected, we observe a

significant speedup when matching is run on multiple pro-

cessors: a factor of nearly 7 for large matrices on a 8 CPUs,

and nearly a factor of 200 when matching is run on GPU.

The gain in time is significant: the mean computing time for

solving a random assignment problem with a cost matrix of

size 15 000 × 15 000 is 67 000 s for a serial computation on

a single CPU, and 9700 s and 425 s on a modern 8-CPU

computer and on a modern GPU card, respectively. While we

cannot fully take credit for the effectiveness of the different

implementations of matching as they are based on the highly

efficient machine-specific BLAS and LAPACK libraries, we

note that the method we have presented here provides the

framework for such significant improvement in computing

time compared to a serial computation.

To estimate the overall time complexity of matching, we

need to consider the number M of β values considered, the

number P of iterations required to solve the nonlinear system

of equations at each β, the number of conjugate gradient iter-

ations required to solve the linear Jacobian system at each of

those iterations, and finally the cost of each of those conjugate

gradients. For a cost matrix of size N × N , the linear Jacobian

system is of size 2N × 2N , and the worst case complexity for

solving such a system of equation using conjugate gradient is

2N × 2N × 2N , assuming 2N iterations to reach convergence,

namely, a O(N3) time complexity. The total worst case com-

plexity of matching is therefore of order M × P × N3, where

M is a constant (see below), while P depends on the quality of

the initial guess for the solution of the system (also discussed

below). In practice, we observe a N2 time complexity [see

Fig. 3(a)]. This quadratic time complexity indicates that the

conjugate gradient procedure converges in a small number of

steps which is nearly independent of N .

Matching includes an annealing procedure with respect to

the temperature. In practice, this means that the values of the

converged parameters λ and µ at one value of β are used as

input to the next value of β considered. This is found to signif-

icantly improve convergence. We did repeat the calculations

with matching in which λ and µ are reset to zero for each β

value. The reset was found to lead to significantly less efficient

convergence. This is expected, as the efficiency of solving the

system of nonlinear equations at each β is strongly dependent

on the quality of the initial guess for the solution, with zero

being a poor guess, and the value computed at the prior β a

more reasonable guess.

One option to reduce the computing cost associated with

matching is to limit the number of inverse temperatures β

considered. In all the simulations described above, the tem-

perature annealing is performed until the total entropy SMF(β )

falls below a small tolerance (10−6). When this happens, the
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values X MF
β of the assignment matrix are either very close to 0,

or very close to 1, and it is then safe to round them off to the

nearest integer. There are two other possible criteria that we

can use to determine when to stop the temperature annealing

process and still be guaranteed that we can recover the optimal

assignment. One is to consider the theoretical cutoff defined

in Theorem 6, namely, that β be larger than 2A(N )

�
, where

A(N ) is a number defined by N , and � is the difference in

total cost between the optimal solution and the second best

solution. While this cutoff guarantees that the solution at such

a β is the exact solution, after roundoff to the nearest integer,

it is difficult to implement as � is not known. In practice,

for computations with fixed precision, it can be set to be this

precision, i.e., of the order of 10−8. The second possibility

is to continue the annealing process until the computed as-

signment matrix X MF
β becomes strictly row dominant and then

stop and roundoff the elements of X MF
β to the nearest integer.

The validity of this approach is established in Appendix H.

In Fig. 4, we compare the three stopping criteria and their

impacts on computing time, for random assignment problems

with exponential distributions with mean 1 of sizes N ranging

in size between 50 × 50 and 25 000 × 25 000. All computa-

tions are performed on GPU. Each simulation is run with β

up to 1014, with the different stopping criteria being computed

during the annealing procedure. Five simulations are run for

each matrix size.

There are significant differences in the required maximum

β values to reach convergence with guaranteed exact solutions

after rounding off to the nearest integer, based on the criteria

considered, with the condition of row dominance of the as-

signment matrix giving the smallest β cutoff. This is expected

as the other criteria cannot be satisfied before the matrix is

strictly row dominant. For large assignment problems, the

difference is significant, with a cutoff of the order of 109 for

row dominance, and of the order of 1011 for entropy cutoff.

The cutoff based on � is even larger (close to 1014), however

this cutoff was set arbitrarily large as it is difficult to actually

estimate �.

Interestingly, while the stopping criteria based on entropy

and based on an estimate of � differ significantly, the corre-

sponding computing times do not and in fact overlap exactly.

When the entropy cutoff is satisfied, the assignment matrix

is basically integer and the system has converged; adding a

few steps in β will not change the computing time, as the

initial values from the entropy converged step will satisfy the

nonlinear SPA systems at larger values of β. Computing times

based on the row dominance cutoff are shorter (mean value

of 1500 s for matrices of size 25 000 × 25 000, compared to

1600 s on the same matrices for the entropy cutoff), but by

less than 10% while the differences in the maximum β value

is of two orders of magnitude. Again, when the procedure has

converged, independent of the cutoff scheme, additional steps

will come at minimal computing costs. We do note, however,

that large values of β (of the order of 109) are required for

large assignment problems (of the order of 25 000), are there-

fore the computing framework is expected to be numerically

stable, which is the case for our own procedure.

C. Comparisons with other algorithms for solving

the assignment problem

Based on the results presented above. Matching is expected

to provide a fast and robust solution to the assignment prob-

lem. To check that it is indeed the case, we have compared

matching, with our own implementations of the invisible hand

algorithm and of the entropy regularized approach to the as-

signment problem.

The IHA [12] is very similar to the method proposed in

this paper. Indeed, in both approach the relaxed assignment

problem is rewritten as the problem of finding a saddle point

approximation for a free-energy functional. The derivations

and consequently the free-energy functionals differ; both,
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FIG. 5. Time complexity for matching, IHA, and Sinkhorn algorithms. (a) The running times for matching, the discrete relaxed solver of

the assignment problem introduced in this paper, for the Invisible Hand Algorithm, with an implementation that mirrors matching (see text for

details), and for a stabilized version of the Sinkhorn algorithm are given as a function of the size N of balanced random assignment problems,

with randomized cost matrix with exponential distributions. Results are shown as mean values over five experiments at each value with N,

with error bars at one standard deviation. (b) The three algorithms are run on the same cost matrix of size 7 500 × 7 500. Theirs computing

times are shown as a function of the annealing parameter β, the inverse of the temperature. For the Sinkhorn algorithm, β is the inverse of the

relaxation parameter ǫ, i.e., the factor in front of the entropy regularization term. All timings are computed on a single I7 processor running at

4.0 GHz with 64 GB of RAM.

however, are written as functions of unconstrained variables

λ and μ, which satisfy a system of equations of the form

∀k,
∑

l

G(k, l ) = 1, (44a)

∀l,
∑

k

G(k, l ) = 1, (44b)

where

G(k, l ) = h{ β[Ckl + λ(k) + μ(l )]}, (45)

where C is the cost matrix, and G the coupling matrix to be

found. The main difference between matching and IHA lays

in the function h(x), with h(x) = 1/(1 + ex ) for the matching

algorithm, and h(x) = e−x for the IHA. The simplicity of the

latter makes it possible to eliminate the variables λ and solve

only for the variables μ. This can be done using a Sinkhorn-

like fixed point algorithm, a steepest descent algorithm (both

approaches were described in the original IHA paper [12]),

or using a Newton approach, as proposed for matching. Our

implementation of the IHA follows the latter.

Our implementation of the Sinkhorn algorithm for solving

the relaxed assignment problem is based on a log-domain

stabilization and eta-scaling heuristic [23] and an overrelax-

ation scheme [24]. These two modifications to the original

algorithm of Cuturi [25] are expected to improve convergence

of the iterative scaling algorithm, as well as robustness for

small values of the relaxation parameter ǫ through the use of

logarithmic stabilization.

We have experimented with applications of matching, IHA,

and Sinkhorn on random cost matrices based on exponential

distributions, as described above. We have solved the corre-

sponding assignment problems using all three methods, for

problem size N between 100 and 7,500, with five independent

runs for each value of N . The optimization is performed

until convergence, using the row dominance criterium of

Theorem 7. All computational experiments were performed

on an iMac computer with a 4.0 GHz Intel I7 processor,

with 64 GB of memory. The computing times are plotted

against N in Fig. 5(a). With the exceptions of small problem

sizes, matching and IHA are found to be faster than Sinkhorn,

with matching becoming faster as the problem size increases.

We have assigned this difference to the fact that Sinkhorn is

known to slow down significantly for very small ǫ values,

despite the log-stabilization and ǫ scaling, as illustrated in

Fig. 5(b). Matching and our implementation of IHA use the

same strategy of solving the nonlinear system of equations to

find the saddle point with an iterative Newton’s approach. We

have tried a steepest descent approach as well as a rewriting

of IHA using s Sinkhorn iterative scheme, as proposed in

Ref. [12]), but found that those implementations were slower

than the Newton’s approach described here. Matching is faster

than IHA for large values of N ; we believe that this is a

consequence of the modified free-energy functional we have

introduced. This will be discussed below.

D. Solving pathological assignment problems

All the numerical experiments presented above relate to

assignment problems with random cost matrices drawn from

exponential distributions. To further analyze the behavior and

efficiency of our approach, we repeated our analyses on two

other types of cost matrices, namely, real matrices whose

elements are drawn from the Cauchy distribution, and integer

matrices whose elements are drawn uniformly from a given

interval.
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FIG. 6. CPU time for solving pathological assignment problems. We compare the computing times of the Hungarian algorithm (black) with

the computing times of two versions of our matching algorithm, one running on an 8-core CPU (blue) and one running on GPU (red), when

those algorithms are applied to two types of cost matrices, random real matrices whose elements are drawn from a standard Cauchy distribution

(a), and random integer matrices whose elements are drawn uniformly from the interval [0,10] (b). The mean computing times (clock time)

over five independent calculations are plotted against the sizes of the cost matrices. The dashed lines represent quadratic polynomial fits to the

means. Technical details are provided in the caption of Fig. 3.

The standard Cauchy distribution is defined with the prob-

ability distribution

f (x) =
1

π (1 + x2)
.

It is a canonical example of a “pathological” distribution since

both its expected value and its variance are undefined. We

ran simulations on random cost matrices whose elements are

drawn from this standard Cauchy distribution. Those matrices

vary in sizes between 50 × 50 and 10 000 × 10 000. We ran

five independent simulations for each size. To our knowledge,

there are no known theoretical results on the expected values

of the optimal cost for the assignment problems associated

to those cost matrices. For each experiment, we have then

verified that we obtained the correct optimal assignment cost

by running in parallel the Hungarian algorithm. We note that

for all those experiments, the Hungarian and our algorithm not

only found the same optimal cost but also the same assign-

ment, hinting that these assignment problems have a unique

solution. The computing times for the Hungarian algorithm

and for the two versions of matching (i.e., CPU-based and

GPU-based), averaged over five independent simulations, are

plotted against the size N of the assignment problem in Fig. 6,

left panel. Much akin to the simulations based on random

cost matrices derived from exponential distributions, we ob-

serve that matching provides a significant speed improvement

compared to the Hungarian algorithm. This improvement is

a consequence of the fact that matching benefits from par-

allelization (see above): the difference between applications

of the Hungarian algorithm and of the GPU-based matching

algorithm is of order 200 in favor of the latter for matrices of

size 10 000 × 10 000.

We observe very different behaviors, however, when we

consider random integer matrices. We ran simulations on such

random cost matrices whose integer elements are drawn uni-

formly in the interval [0, M], with M = 10, and with sizes

N ranging in size between 50 × 50 and 10 000 × 10 000. For

all those simulations, simple applications of the matching

algorithm lead to non integer assignment matrices, indicative

of the fact that the corresponding cost matrices are degenerate.

We applied the method described in Sec. IV (i.e., addition of

small random noise to the cost matrix) to identify an integer

assignment with the same optimal cost. We note also that

in all cases, the solutions found by the Hungarian algorithm

and by matching had the same optimal cost but different

assignments. The computing times for the Hungarian algo-

rithm and for the two versions of matching (i.e., CPU-based

and GPU-based), averaged over five independent simulations,

are plotted against the size N of the assignment problem in

Fig. 6, right panel. In opposition to the random assignment

problems based on real matrices, the Hungarian algorithm

was always found to be faster than matching, for all matrix

sizes considered. The Hungarian algorithm is an algorithm

that proceeds by iteratively removing ambiguities when at-

tempting assignments between “agents” and “tasks” through

modifications of the cost matrix that do not affect the opti-

mal solution. Those modifications proceeds by subtractions

between rows or between columns to reach values of zeros,

and an unambiguous zero defines an assignment. When the

matrix elements are integer values, drawn from a small inter-

val, the chances of getting many zeros when performing those

operations are significantly higher than if the matrix elements

are real. The Hungarian algorithm greatly benefits from this

fact, while matching handles integer values as if they were

real values. Figure 6 shows that the Hungarian algorithm is

significantly faster than the two implementations of matching,

with a speedup of approximatively 700 compared to the 8-

CPU version, and of approximately 20 for the GPU version,

for matrices of size 10 000 × 10 000. We also investigated the

importance of M, that defines the size of the interval from

which the random integer elements of the cost matrices are

drawn. Results are shown in Fig. 7. As matching does not
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FIG. 7. CPU time for solving integer assignment problems. We

compare the computing times of the Hungarian algorithm (black)

with the computing times of the multicore CPU version of our match-

ing algorithm,when those algorithms are applied to random integer

matrices of sizes 2000 × 2000 whose elements are drawn uniformly

from the interval [0, M]. The mean computing times (clock time)

over five independent calculations are plotted against the sizes M of

the intervals from which the elements of the cost matrices are drawn.

note that the computing times for matching remain constant, while

those for the Hungarian algorithm increase as M increases. Technical

details are provided in the caption of Fig. 3.

differentiate if the cost matrix is real or integer, we observe

that its computing cost is independent of M, for a given

matrix size. The Hungarian algorithm, however, is found to be

strongly dependent on the value of M, with computing times

that increase as M increases. This corroborate our assertion

that the diversity inside the cost matrix affects the perfor-

mance of the Hungarian algorithm.

VII. DISCUSSION

In this paper, we have proposed a statistical physics frame-

work to solve the balanced assignment problem. Given two

sets of points S1 and S2 with the same cardinality N , and a

cost matrix between those sets, we have constructed a weakly

concave free energy parametrized by temperature that cap-

tures the constraints of the assignment problem. Its maximum

defines an optimal assignment between the two sets of points.

We proved that this free energy decreases monotonically as a

function of β (the inverse of temperature) to the optimal as-

signment cost, providing a robust framework for temperature

annealing. We proved also that for large enough β values (i.e.,

small enough temperature), the exact solution to the generic

assignment problem can be derived directly from the maxi-

mum of the free energy using simple roundoff to the nearest

integer of the elements of the assignment matrix associated

with this maximum. We have also derived a provably con-

vergent method to handle degenerate assignment problems,

with a characterization of those problems. We have described

two computer implementations of our framework that are op-

timized for parallel architectures, one based on CPU, the other

based on GPU, and have shown that the latter enables solving

large assignment problems (of the orders of a few 10 000 s) in

computing clock times of the orders of minutes.

A. Comparison with other algorithms coming from physics

Statistical physics provides a framework for addressing

otherwise difficult optimization problems. For example, sta-

tistical physicists have long been interested in the assignment

problem (for examples, see Refs. [12,19,26–28]. Of direct

relevance to this paper, the “invisible hand algorithm” [12],

solves the assignment problem using a statistical physics ap-

proach similar to the one we have proposed. Both approaches

use temperature schemes that are provably guaranteed to con-

verge to the exact assignment solution at zero temperature

for generic problems. For both approaches, schemes are pro-

posed to extract the exact solution in bounded computing

time. While we have expanded beyond generic assignment

problems with guaranteed unique solution by building a prov-

ably convergent scheme for solving degenerate assignment

problems (see Sec. IV), the main differences between our

method and invisible hand algorithm sit elsewhere and are

worth discussing. Both methods rely on the construction of a

temperature-dependent free energy, weakly convex for the in-

visible hand algorithm and weakly concave in our case. While

energy functions are derived using different formalisms when

constructing the partition function for the system considered,

they do take similar forms. If C is the cost matrix between the

two sets of points considered, and G is an assignment matrix

between those two sets, then the free-energy functionals take

the form

F (β ) =
∑

kl

C(k, l )G(k, l ) −
1

β

∑

kl

s[G(k, l )]

+
∑

k

λk

[

∑

l

G(k, l ) − 1

]

+
∑

l

μl

[

∑

k

G(k, l ) − 1

]

, (46)

where β is the inverse of the temperature T . Note that we

do not write the exact formulation given in Ref. [12], but an

equivalent form proposed by Ref. [28]. From a physics point

of view, this form for the free energy is intuitive: the first term

is the internal energy, i.e., the assignment cost that needs to be

minimized, the second term is an entropic term, which can be

seen as a regularization term that renders the problem convex

(or concave) as well as a barrier function that will prevent the

G(k, l ) to take some values, and the third and fourth terms im-

pose the row sums and column sums constraints via Lagrange

multipliers, respectively. The two energy functions differ in

expression of the function s(x) that encodes the entropy.

In the invisible hand algorithm, the function s(x) =
−x ln(x), namely, takes the traditional form of the Gibbs

entropy. It serves as a barrier at zero, thereby maintaining

the positivity of the G(k, l ). Interestingly, with this formula-

tion, the invisible hand algorithm is equivalent to the entropy

regularized method that was proposed for solving the opti-

mal transport (OT) problem, i.e., a generalized assignment

problem not limited to binary assignments. Just like for the

invisible hand algorithm, the entropic penalization for the OT
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problem has the advantage that it defines a strongly convex

problem with a unique solution [25]. In addition, its solution

can be found efficiently through the so-called iterative pro-

portional fitting procedure [29], also known as the Sinkhorn’s

algorithm [30], or Sinkhorn-Knopp algorithm [31]. Note that

the use of this algorithm has led Cuturi [25] to propose a

“Lightspeed Computation of Optimal Transport” (in the title

of this paper), which we paraphrased for the title of this paper.

Many variants of those algorithms have been developed for

solving regularized OT problems; we refer to [32–34] for

overviews on those methods. Those algorithms find solutions

for a given value of the relaxation parameter ǫ, which plays

the role of a temperature. For small values of this parameter,

numerical issues can arise and a stabilization of the algorithm

is necessary [35]. Despite such stabilization, convergence of a

stabilized Sinkhorn-Knopp algorithm can nevertheless be very

slow when ǫ is small, and sometimes numerically unstable.

Such small values are, however, desirable for finding good

approximations to the solution of the original problem. The

same difficulty can be mentioned for the invisible hand algo-

rithm, as it can also be solved using the Sinkhorn’s algorithm

(see Ref. [12]).

In contrast, the function s(x) in our formalism takes the

form s(x) = −x ln(x) − (1 − x) ln(1 − x). Note that this is a

typical mixture entropy, where the first term is the entropy

of “particles,” and the second term is the entropy of “holes.”

As such, it introduces barriers both a zero for positivity and

at one to ensure that points are only assigned once. It also

provides a simple and stable expression for the terms of the

assignment matrix as a function of the internal variables of

the free energy, given by the function h(x) = 1/(1 + ex ). h(x)

is continuous, monotonic, bounded between 0 and 1, and

bijective. With this function and the double-barrier entropy

function s we consider, we have run routinely computations

with temperatures of the order of 10−13 without numerical

instabilities.

B. Computational complexity: How large can we go?

Our implementations of the method presented in this pa-

per were found to be efficient with nearly optimal use of

parallelization, both on CPU and on GPU processors. While

we cannot fully take credit for the effectiveness of these

implementations as they are based on the highly efficient

machine-specific BLAS and LAPACK libraries, we note that

the method we have presented here provides the framework

for such significant improvements in computing time com-

pared to a serial computation. In addition, the apparent time

complexity of those implementations were found to be O(N2),

an improvement compared to the O(N3) time complexity of

the Hungarian algorithm (though this needs to be considered

with caution as the former is based on a small sample of

empirical running time averages, while the latter is defined

theoretically). The space complexity of our implementations

is also O(N2), as we need to store both the cost matrix and a

work array of similar size that contains either the assignment

matrix, or part of the Jacobian matrix needed to solve the

nonlinear systems of equations at the saddle point approxima-

tions. Both matrices are of size N × N . Such a requirement

limits the use of our implementations to problems of size up

to 25 000 × 25 000. Indeed, with N = 30 000, handling two

matrices of size N2 in double precision requires 14.4 GB of

memory, which is beyond the capacity of the GPU cards we

have used in our numerical simulations. While GPU cards

with larger memory are available (currently up to 32 GB),

it remains that a O(N2) algorithm in memory complexity is

ultimately limited to assignment problems of up to a few

10 000 points. Handling larger problem sizes for which the

cost matrix is sparse will require some redesign of our algo-

rithm. We will pursue this in future studies.
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APPENDIX A: PROOF OF THEOREM 1: CONCAVITY

OF THE EFFECTIVE FREE ENERGY

We first prove that the effective free energy Fβ (λ,µ) is

weakly concave, by showing that its Hessian H is negative

semidefinite. H is a symmetric matrix of size 2N × 2N , such

that its rows and columns correspond to all N λ values first,

followed by all N μ values. Let h′ be the derivative of the

function h(x) = 1/(1 + ex ), i.e.,

h′(x) = −
ex

(1 + ex )2
. (A1)

We note first that h′(x) ∈ [−1
4

, 0) ∀x ∈ R, i.e., that h′(x) is

always strictly negative. We define the matrix X ′ such that

X ′(k, l ) = h′{β[C(k, l ) + λ(k) + μ(l )]} (A2)

From Eqs. (11), we obtain

H (k, i) =
∂2Fβ (λ,µ)

∂λ(k)∂λ(i)
= βδki

∑

l

X ′(k, l ), (A3)

H (k, l ) =
∂2Fβ (λ,µ)

∂λ(k)∂μ(l )
= βX ′(k, l ), (A4)

H (l, m) =
∂2Fβ (λ,µ)

∂μ(l )∂μ(m)
= βδlm

∑

k

X ′(k, l ), (A5)

where δ are Kronecker functions, the indices k and i belong to

[1, N], and the indices l and m belong to [1, N].

Let x = (x1, x2) be an arbitrary vector of size 2N . The

quadratic form Q(x) = xT Hx is equal to

Q(x) =
∑

i,k

x1(k)H (k, i)x1(i) + 2
∑

k,l

x1(k)H (k, l )x2(l )

+
∑

l,m

x2(l )H (l, m)x2(m)

= β
∑

k,l

x1(k)2H ′(k, l ) + 2β
∑

k,l

x1(k)X ′(k, l )x2(l )

+β
∑

k,l

x2(l )2X ′(k, l )

= β
∑

k,l

[x1(k) + x2(l )]2X ′(k, l ). (A6)
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As X ′(k, l ) is based on the function h′ that is strictly negative,

the summands in the equation above are negative for all k and

l , and therefore Q(x) is negative for all vector x. The Hessian

H is negative, semidefinite. As a consequence Fβ (λ,µ) is

(weakly) concave.

As Q(x) is a sum of negative terms, it is 0 if and only if

all the terms are equal to 0. This means that ∀(k, l ) x1(k) +
x2(l ) = 0. This is realized when all the coordinates to x1 are

equal, and set to a parameter K , and all the coordinates to

x2 are equal, and set to −K . Therefore, 0 is an eigenvalue of

H , with eigenvector x = (1, . . . , 1,−1, . . . ,−1). This eigen-

vector corresponds to the translation invariance for the free

energy. It can be removed by setting one of the parameters

λ(k) or μ(l ) to zero; the free-energy functional Fβ (λ,µ) on

this restricted parameter space is then strictly concave.

APPENDIX B: MONOTONICITY OF F
MF(β)

The effective free energy Fβ (λ,µ) defined in Eq. (9) is

a function of the cost matrix C and of real unconstrained

variables λ(k) and μ(l ). For the sake of simplicity, for any

(k, l ) ∈ [1, N]2, we define

xkl = C(k, l ) + λ(k) + μ(l ). (B1)

The effective free energy is then

Fβ (λ,µ) = −

[

∑

k

λ(k) +
∑

l

μl

]

−
1

β

∑

kl

ln(1 + e−βxkl ).

(B2)

As written above, Fβ (λ,µ) is a function of the independent

variables β, λ(k) and μ(l ). However, under the saddle point

approximation, the variables λ(k) and μ(l ) are constrained by

the conditions

∂Fβ (λ,µ)

∂λ(k)
= 0,

(B3)
∂Fβ (λ,µ)

∂μ(l )
= 0,

and the free energy under those constraints is written as

F MF(β ). In the following, we will use the notations
dF MF(β )

dβ

and
∂F MF(β )

∂β
to differentiate between the total derivative and

partial derivative of F MF(β ) with respect to β, respectively.

Based on the chain rule,

dF MF(β )

dβ
=

∂Fβ (λ,µ)

∂β
+

∑

k

∂Fβ (λ,µ)

∂λ(k)

∂λ(k)

∂β

+
∑

l

∂Fβ (λ,µ)

∂μ(l )

∂μ(l )

∂β
. (B4)

Using the constraints Eq. (B3), we find that

dF MF(β )

dβ
=

∂Fβ (λ,µ)

∂β
, (B5)

namely, that the total derivative with respect to β is in this

specific case equal to the corresponding partial derivative,

which is easily computed to be

dF MF(β )

dβ
=

1

β2

∑

kl

[

ln
(

1 + e−βxMF
kl

)

+
βxMF

kl

1 + eβxMF
kl

]

. (B6)

Let t (x) = ln (1 + e−x ) + x
1+ex . The function t (x) is continu-

ous and defined over all real values x and is bounded below

by 0 (see Fig. 1), i.e., t (x) � 0 ∀x ∈ R.

As

dF MF(β )

dβ
=

1

β2

∑

kl

t (βxkl ), (B7)

we conclude that

dF MF(β )

dβ
� 0, (B8)

namely, that F MF(β ) is a monotonically increasing function

of β.

APPENDIX C: MONOTONICITY OF U
MF(β)

Let

Uβ (λ,µ) =
∑

kl

C(k, l )h(βxkl ), (C1)

where we have used the same definition for xkl = C(k, l ) +
λ(k) + μ(l ) as above, and let the corresponding mean-field

approximation of the internal energy at the saddle point,

U MF(β ) = Uβ (λMF,µMF). (C2)

Before computing
dU MF(β )

dβ
, we prove the following property.

Property 3.

U MF(β ) = F MF(β ) + β
dF MF(β )

dβ
, (C3)

i.e., it extends the well-known relationship between the

free energy and the average energy to their mean-field

counterparts.

Proof. Using Eqs. (B2) and (B6), and the definition of

h(x) = 1/(1 + ex ), we find that

β
dF MF(β )

dβ
= −F MF(β ) −

∑

k

λMF(k) −
∑

l

μMF(l )

+
∑

kl

xMF
kl h

(

βxMF
kl

)

. (C4)

Let us recall that

xMF
kl = C(k, l ) + λMF

k + μMF
l .

In addition, all mean-field values correspond to the maxi-

mum of the effective free energy, for which the constraints
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are satisfied, namely,
∑

l h(βxMF
kl ) = 1 and

∑

k h(βxMF
kl ) = 1.

Replacing in Eq. (C4), we get

β
dF MF(β )

dβ
= −F MF(β ) −

∑

kl

λMF(k)h
(

βxMF
kl

)

−
∑

kl

μMF(l )h
(

βxMF
kl

)

+
∑

kl

(C(k, l ) + λMF(k) + μMF(l ))h
(

βxMF
kl

)

,

(C5)

i.e.,

β
dF MF(β )

dβ
= −F MF(β ) +

∑

kl

C(k, l )h
(

βxMF
kl

)

= −F MF(β ) + U MF(β ), (C6)

which concludes the proof. �

Based on the chain rule,

dU MF(β )

dβ
=

∂U MF(β )

∂β
+

∑

k

∂U MF(β )

∂λ(k)

∂λ(k)

∂β

+
∑

l

∂U MF(β )

∂μ(l )

∂μ(l )

∂β
. (C7)

Let us compute all partial derivatives in this equation using

Proposition 4:

∂U MF(β )

∂λ(k)
=

∂F MF(β )

∂λ(k)
+ β

∂

∂λk

(

∂F MF(β )

∂β

)

=
∂F MF(β )

∂λ(k)
+ β

∂

∂β

(

∂F MF(β )

∂λ(k)

)

= 0, (C8)

where the zero is a consequence of the SPA constraints. Sim-

ilarly, we find

∂U MF(β )

∂μ(l )
= 0. (C9)

Finally,

∂U MF(β )

∂β
= 2

∂F MF(β )

∂β
+ β

∂

∂β

(

∂F MF(β )

∂β

)

= 2
∂F MF(β )

∂β

+β

(

−
2

β

∂F MF(β )

∂β
+

1

β2

∑

kl

βxMF
kl t ′(βxMF

kl

)

)

,

(C10)

i.e.,

∂U MF(β )

∂β
=

1

β

∑

kl

βxMF
kl t ′(βxMF

kl

)

, (C11)

where f is defined above [see Eq. (B6)]. As t ′(x) = − x
(1+ex )2 ,

we get

∂U MF(β )

∂β
= −

1

β

∑

kl

(

xMF
kl

)2

(1 + eβxMF(k,l ))2
. (C12)

Therefore,

dU MF(β )

dβ
=

∂U MF(β )

∂β
� 0, (C13)

and the function U MF(β ) is a monotonically decreasing func-

tion of β.

APPENDIX D: PROOF OF THEOREM 3: CONVERGENCE

OF THE MEAN-FIELD FREE ENERGY AND THE

INTERNAL ENERGY TO THE OPTIMAL

ASSIGNMENT COST

We prove first that the optimal assignment energy U ∗ is

equal to the limit of the mean-field free energy when the

inverse temperature β → +∞. For simplicity in notation, we

define F MF(∞) = limβ→+∞ F MF(β ).

We first prove that U ∗ � F MF(∞).

Let U MF(β ) be the mean-field internal energy at the inverse

temperature β:

U MF(β ) =
∑

k,l

C(k, l )X MF
β (k, l ), (D1)

where X MF
β is the solution to the SPA system of equations. At

a finite inverse temperature β, X MF
β is strictly nonintegral, as

each of its terms is of the form hβ(xkl ), where h(x) = 1/(1 +
ex ), and therefore strictly in (0,1). However, X MF

β satisfies the

constraints on row sums and column sums, it is a doubly

stochastic matrix. The set SN of doubly stochastic matrices of

size N × N forms a convex polytope that is the convex hull of

the set of permutation matrices. In addition, the vertices of SN

are exactly the permutation matrices (Birkhoff–von Neumann

theorem, see Ref. [36]). Therefore, X MF
β can be written as a

linear combination of the permutation matrices πk ∈ �N ,

X MF
β =

∑

π∈�N

aππ, (D2)

with all aπ ∈ [0, 1] and
∑

π∈�N
aπ = 1. The summation ex-

tends over all N! permutations in �N . Therefore,

U MF(β ) =
∑

k,l

C(k, l )X MF
β (k, l )

=
∑

π∈�N

aπ

∑

k

C[k, π (k)]. (D3)

As U ∗ is the minimum matching cost over all possible permu-

tations of {1, N}, for all π ∈ �N , we have
∑

k

C[k, π (k)] � U ∗. (D4)

Combining Eqs. (D3) and (D4), we get

U MF(β ) �
∑

π∈�N

aπU ∗, (D5)
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from which we conclude that at each β,

U ∗
� U MF(β ). (D6)

The mean-field free energy and internal energy are related

by Eq. (17). In this equation, the entropy can be written as

SMF(β ) = −
∑

kl

X MF
β (k, l ) ln

[

X MF
β (k, l )

]

−
∑

kl

[

1 − X MF
β (k, l )

]

ln
[

1 − X MF
β (k, l )

]

. (D7)

This entropy is positive (see Fig. 1) and satisfies the following

constraints:

0 � SMF(β ) � N2 ln(2). (D8)

Using Eq. (17), after rearrangement we obtain

U MF(β ) −
1

β
N2 ln(2) � F MF(β ) � U MF(β ). (D9)

Taking the limits when β → +∞, we get

F MF(∞) = U MF(∞), (D10)

and since U ∗ � U MF(β ) for all β, U ∗ � F MF(∞).

We now prove the converse inequality, F MF(∞) � U ∗. Let

us first recall the definition of the free energy,

Fβ (λ,µ) = −
∑

k

λ(k) −
∑

l

μ(l )

−
1

β

∑

kl

ln
(

1 + e−β[C(k,l )+λ(k)+μ(l )]
)

. (D11)

For sake of clarity, let us write again x(k, l ) = C(k, l ) +
λ(k) + μ(l ). Note first this property of limits:

lim
β→+∞

ln(1 + e−aβ )

β
=

{

0 if a � 0,

−a if a � 0.
(D12)

Therefore,

lim
β→+∞

Fβ (λ,µ) = −
∑

k

λ(k) −
∑

l

μ(l ) +
∑

kl|x(k,l )�0

x(k, l ).

(D13)

In this limit, the third term on the right only includes the terms

C(k, l ) + λ(k) + μ(l ) that are negative.

Let us consider a permutation π of {1, N}. We can write

N
∑

k=1

C[k, π (k)] =
N

∑

k=1

{C(k, l ) + λ(k) + μ[π (k)]}

−
∑

k

λ(k) −
∑

l

μ(l ), (D14)

i.e.,

N
∑

k=1

C[k, π (k)] =
N

∑

k=1

x[k, π (k)] −
∑

k

λ(k) −
∑

l

μ(l ).

(D15)

For each index k, the summand included in the first term

on the right is always larger or equal to the sum of all the

corresponding terms that are negative:

x(k, π (k)) �
∑

l|x(k,l )�0

x(k, l ). (D16)

Therefore,

N
∑

k=1

C[k, π (k)] �
∑

kl|x(k,l )�0

x(k, l ) −
∑

k

λ(k) −
∑

l

μ(l ),

(D17)

i.e.,

N
∑

k=1

C[k, π (k)] � lim
β→+∞

Fβ (λ,µ), (D18)

where this inequality follows from Eq. (D13).

Equation (D18) is valid for all permutations π : It is there-

fore valid for the optimal permutation π∗ that solves the

assignment problem. Since U ∗ =
∑

k C(k, π∗(k), we have

U ∗
� lim

β→+∞
Fβ (λ,µ). (D19)

As this equation is true for all λ and µ, it is true in particular

for λ = λMF and µ = µMF, leading to

U ∗
� lim

β→+∞
F MF(β ) = F MF(∞). (D20)

We have shown that U ∗ � F MF(∞) and F MF(∞) �

U ∗; therefore, U ∗ = F MF(∞). The corresponding result for

the internal energy, U ∗ = U MF(∞) follows directly from

Eq. (D10).

APPENDIX E: PROOF OF THEOREM 4: BOUNDS ON THE

ENTROPY, INTERNAL ENERGY, AND FREE ENERGY

1. Bounds on the entropy

In the previous Appendix, we have already derived bounds

on the entropy, see Eq. (D13). These bounds were found

from the behavior of the function J (x) that defines the en-

tropy, which is bound in the interval [0, ln(2)]. However,

a tighter upper bound can be found by noticing that the

values of the variable x, i.e., the different Xβ (k, l ) are con-

strained. Using Lagrange multipliers to optimize the entropy

S =
∑

kl J[X (k, l )] under the constraints
∑

l X (k, l ) = 1 and
∑

k X (k, l ) = 1, we find that the maximum is found when

X (k, l ) = 1/N , in which case,

SMF(β ) � N2J

(

1

N

)

� N2

[

−
1

N
ln

(

1

N

)

−
(

1 −
1

N

)

ln

(

1 −
1

N

)]

� A(N ), (E1)

where we have defined A(N ) = N2 ln(N ) − N (N − 1) ln(N −
1). As the entropy is positive, we conclude

0 � SMF(β ) � A(N ). (E2)
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2. Bounds on the free energy

In Appendix C, we have shown that [see Eq. (C6)]

β
dF MF(β )

dβ
= −F MF(β ) + U MF(β ). (E3)

Using this equation and the relationship between free energy,

energy, and entropy at SPA [see Eq. (17)], we obtain

dF MF(β )

dβ
=

1

β2
SMF(β ). (E4)

From the bounds on the entropy,

0 �
dF MF(β )

dβ
�

A(N )

β2
. (E5)

By integrating over β between β and +∞,

0 � F MF(∞) − F MF(β ) �
A(N )

β
. (E6)

Finally, as F MF(∞) = U ∗,

U ∗ −
A(N )

β
� F MF(β ) � U ∗. (E7)

3. Bounds on the energy

As U MF(β ) = F MF(β ) + 1
β

SMF(β ), using the inequalities

in Eqs. (E2) and (E7), we get

U MF(β ) � U ∗ +
A(N )

β
. (E8)

In addition, as U MF(β ) is monotonic, decreasing, with limit

U ∗ as β → +∞, U ∗ � U MF(β ). Therefore,

U ∗
� U MF(β ) � U ∗ +

A(N )

β
. (E9)

APPENDIX F: PROOF OF THEOREM 5: BOUNDS

ON ASSIGNMENT MATRIX X
MF
β

This proof is inspired by the proof of Theorem 6 in

Appendix 2 of Ref. [12].

We first recall that X MF
β is a doubly stochastic matrix, it can

be written as a linear combination of the permutation matrices

πk ∈ �N ,

X MF
β =

∑

π∈�N

aππk, (F1)

with all aπ ∈ [0, 1] and
∑

π∈�N
aπ = 1 (see Appendix D for

details).

To prove that maxk,l |X MF
β (k, l ) − G∗(k, l )| � A(N )

β�
, where

G∗ is the optimal solution of the assignment problem, � =
U 2∗ − U ∗ the difference in total cost between the second

best solution and the optimal solution (� > 0 as we have

assumed that the assignment problem has a unique solution),

and A(N ) = N2 ln(N ) − N (N − 1) ln(N − 1), we use a proof

by contradiction. We assume that there exists a pair (i, j) such

that

A(N )

β�
<

∣

∣X MF
β (i, j) − G∗(i, j)

∣

∣. (F2)

Let us denote B(i, j) = |X MF
β (i, j) − G∗(i, j)|. As G∗ is a

permutation matrix, G∗(i, j) = 0 or G∗(i, j) = 1.

In the first case,

B(i, j) = X MF
β (i, j)

=
∑

π∈�N

aππ (i, j). (F3)

Since G∗ is a permutation matrix, it is included in the decom-

position of X MF
β , and therefore,

B(i, j) = aG∗G∗(i, j) +
∑

π∈�N −{G∗}

aππ (i, j)

=
∑

π∈�N −{G∗}

aππ (i, j)

<
∑

π∈�N −{G∗}

aπ = 1 − aG∗ , (F4)

where the final equality follows from the fact that the sum of

all coefficients a is equal to 1.

In the second case, G∗(i, j) = 1,

B(i, j) = 1 − X MF
β (i, j)

= 1 −
∑

π∈�N

aππ (i, j). (F5)

Again, as G∗ is included in the decomposition of X MF
β ,

B(i, j) = 1 − aG∗G∗(i, j) −
∑

π∈�N −{G∗}

aππ (i, j)

= 1 − aG∗ −
∑

π∈�N −{G∗}

aππ (i, j)

< 1 − aG∗ , (F6)

where the final inequality follows from the fact that
∑

π∈�N −{G∗} aππ (i, j) is positive.

In both cases, we have

A(N )

β�
< 1 − aG∗ . (F7)

Now, let us look at the energy associated with X MF
β :

U MF(β ) =
∑

kl

C(k, l )X MF
β (k, l )

=
∑

π∈�N

aπ

∑

k

C[k, π (k)]

= aG∗U ∗ +
∑

π∈�N −{G∗}

aπ

∑

k

C[k, π (k)]

� aG∗U ∗ +

(

∑

π∈�N −{G∗}

aπ

)

U 2∗

� aG∗U ∗ + (1 − aG∗ )U 2∗

� U ∗ + (1 − aG∗ )�. (F8)

In Theorem 4, we have shown that

U ∗
� U MF(β ) � U ∗ +

A(N )

β
. (F9)
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Therefore,

U ∗ + (1 − aG∗ )� � U ∗ +
A(N )

β
, (F10)

i.e.,

(1 − aG∗ ) �
A(N )

β�
, (F11)

as � is strictly positive.

We have shown that A(N )

β�
< 1 − aG∗ [Eq. (G3)] and

(1 − aG∗ ) � A(N )

β�
[Eq. (G6)], i.e., we have reached a

contradiction. Our hypothesis is wrong, and therefore

max
k,l

|X MF
β (k, l ) − G∗(k, l )| � A(N )

β�
.

APPENDIX G: PROOF OF THEOREM 7: SIMPLE

TERMINATION CRITERIA FOR THE GENERIC

ASSIGNMENT PROBLEM

Let us start by proving the following lemma (note that this

lemma is at the core of the Hungarian algorithm for solving

the assignment problem):

Lemma 1. Let S1 and S2 be two sets of points with the

same cardinality N and let C be a real-valued cost matrix

between S1 and S2. Let G be an assignment matrix be-

tween S1 and S2 that satisfies the constraints on row sum

and column sum, namely, G is a doubly stochastic matrix,

and let U (G,C) be the total cost associated with G, namely,

U (G,C) =
∑

k,l C(k, l )G(k, l ). Let a and b be any two real-

valued vectors of size N , and let Da,b be the matrix defined as

Da,b(k, l ) = C(k, l ) + a(k) + b(l ). Then,

U (Da,b, G) = U (C, G) + m, (G1)

where m =
∑

k a(k) +
∑

l b(l ) is a constant, independent

of G.

Proof. From the definition of D

U (Da,b, G) =
∑

kl

(C(k, l ) + a(k) + b(l ))G(k, l )

= U (C, G) +
∑

kl

a(k)G(k, l )

+
∑

l

b(l )G(k, l )

= U (C, G) +
∑

k

a(k)
∑

l

G(k, l )

+
∑

l

b(l )
∑

k

G(k, l )

= U (C, G) +
∑

k

a(k) +
∑

l

b(l ), (G2)

where the last equality comes from the fact that G is doubly

stochastic. �

It is clear from Lemma 1 that solving the assignment prob-

lem between S1 and S2 with the cost matrix C is equivalent to

solving the assignment problem with the cost matrix Da,b. In

general this is of little help within our approach to solving

the assignment problem, as the latter has no reason to be

simpler than the former. There is one significant exception,

however, corresponding to the setting of Theorem 7. Indeed,

let us consider an inverse temperature β and let λMF and µMF

be the mean-field solutions at that temperature. Let us suppose

that the matrix X MF
β is strictly row dominant. We write first

what it means to be strictly row dominant. On each row k of

X MF
β , there is one element, which we will write as π (k), such

that
∣

∣X MF
β [k, π (k)]

∣

∣ >
∑

l �=π (k)

∣

∣X MF
β (k, l )

∣

∣. (G3)

As X MF
β satisfies the row sum and row column constraints, the

vector {π (1), . . . , π (N )} forms a permutation of {1, . . . , N}.
As all X MF

β (k, l ) are positive, Eq. (G3) is equivalent to

2X MF
β [k, π (k)] >

∑

l

X MF
β (k, l ). (G4)

As the matrix X MF
β is a solution to the assignment problem at

the inverse temperature β, it satisfies the row constraints, and

therefore the sum on the right side is 1, and we have

X MF
β [k, π (k)] > 1

2
. (G5)

It is equally easy to show that Xβ (k, l ) < 1
2

for all l �= π (k).

Since Xβ (k, l ) = h(xMF
kl ), where xMF

kl = C(k, l ) + λMF(k) +
μMF(l ), we get

xMF
kπ (k) < 0,

xMF
kl > 0 ∀l �= π (k). (G6)

By setting the vectors a and b in Lemma 1 to be λMF

and µMF, respectively, we have DλMF,µMF (k, l ) = xMF
kl , and,

therefore,

DλMF,µMF [k, π (k)] < 0,

DλMF,µMF (k, l ) ∀l �= π (k). (G7)

As the assignment problem associated with this matrix

DλMF,µMF corresponds to finding the assignment with minimal

cost, element k in S1 is trivially associated with element π (k)

in S2, as the corresponding cost is negative and therefore

minimal compared to all the other costs DλMF,µMF (k, l ), l �=
π (k) that are positive. Therefore, the assignment problem

associated with the cost matrix DλMF,µMF has for solution

the permutation matrix � corresponding to π , and based on

Lemma 1, it is also the solution to the original assignment

problem.

Finally, we note that since X MF
β [k, π (k)] > 1

2
and

X MF
β (k, l ) < 1

2
, ∀l �= π (k), the permutation matrix � is

constructed from X MF
β by simply rounding off its elements to

the nearest integer.

APPENDIX H: PROOF OF THEOREM 9: SOLVING

THE ASSIGNMENT PROBLEM FOR DEGENERATE

COST MATRICES

Let us introduce first some notations. Let S1 and S2 be two

sets of points with cardinality N , and let C be the cost matrix

between S1 and S2. The assignment problem between S1 and

S2 amounts to minimizing U (G) =
∑

kl C(k, l )G(k, l ), where

G is a permutation matrix. We note G∗ one solution to this
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problem, and U ∗ the minimum cost associated with G∗. We

note U 2∗ the second best cost, such that � = U 2∗ − U ∗ > 0.

Suppose now that we perturb each element of C by a

uniform random number:

Cα (k, l ) = C(k, l ) + αη(k, l ), (H1)

where η(k, l ) is uniform in [0,1] and the different η are

independent of each other. The perturbed assignment prob-

lem between S1 and S2 amounts to minimizing Uα (G) =
∑

kl Cα (k, l )G(k, l ) where G is a permutation matrix. We note

G∗
α one solution to this problem, and U ∗

α the minimum cost

associated with G∗
α . We first prove the following property:

Property 4. Let S1 and S2 be the two sets of points with

cardinality N , and let C be the cost matrix between S1 and

S2. Adding random uniform noise with support [0, α] to each

value of C and solving the assignment problem on this per-

turbed matrix will generate a unique integer solution.

Proof. Let us assume first that the perturbed assignment

problem has (at least) two different integer solutions, namely,

two permutations π1 and π2 such that U ∗
α = Uα (π1) =

Uα (π2). It is easy to show that the matrix Ga = aπ1 + (1 −
a)π2 where a is a real number in (0,1) is also an optimal

solution to the perturbed problem. Indeed, Ga is a doubly

stochastic matrix as it is a combination of two permuta-

tion matrices (see Birkhoff–von Neumann theorem [36]). In

addition,

Uα (Ga) =
∑

kl

Cα (k, l )Ga(k, l )

= a
∑

k

Cα[k, π1(k)] + (1 − a)
∑

k

Cα[k, π2(k)]

= aUα (π1) + (1 − a)Uα (π1) = U ∗
α . (H2)

Therefore, if the perturbed assignment problem has more than

one solution, then it has a solution with fractional components.

Based on Proposition 2, this means that there exists (at least)

one cycle A = {(a1, b1), (a2, b2), . . . , (a2M , b2M )} in the cost

matrix Cα for which Ŵ =
∑2M

i=1(−1)iCα (ai, bi ) = 0, in which

case we would have

α

2M
∑

i=1

(−1)iη(ai, bi ) = −
2M
∑

i=1

(−1)iC(ai, bi ). (H3)

As the variables η are independent random uniform variables

and the term on the right side of the equation is constant,

the probability to have this linear relationship on the η is 0.

Therefore, there are no cycles within the matrix Cα , the

perturbed assignment problem does not have solution with

fractional value and consequently it has a unique integer solu-

tion.

We now provide an upper bound on α such that the solution

G∗
α is also an optimal solution to the unperturbed assignment

problem. First, we note that G∗ and G∗
α are both permutation

matrices, and as G∗ is one optimal solution to the unperturbed

assignment problem,

U ∗
� U (G∗

α ). (H4)

Reversely, as G∗
α is the optimal solution to the perturbed

assignment problem,

Uα (G∗
α ) � Uα (G∗). (H5)

From this equation, we have
∑

kl

Cα (k, l )G∗
α (k, l ) �

∑

kl

Cα (k, l )G∗(k, l ), (H6)

which can be rewritten as

U (G∗
α ) + α

∑

kl

η(k, l )G∗
α (k, l ) � U ∗ + α

∑

kl

η(k, l )G∗(k, l ).

(H7)

Moving all the terms containing η on the right side,

U (G∗
α ) � U ∗ + α

∑

kl

η(k, l )[G∗(k, l ) − G∗
α (k, l )]. (H8)

The matrices G∗ and G∗
α contains exactly N ones and N2 − N

zeros, therefore there are at most 2N nonzero values of the

form G∗(k, l ) − G∗
α (k, l ). As η(k, l ) � 1, we have

U (G∗
α ) � U ∗ + 2Nα. (H9)

If we impose that α < �
2N

, then

U (G∗
α ) < U ∗ + �, (H10)

i.e.,

U (G∗
α ) < U 2∗. (H11)

Combining Eqs. (H4) and (H11),

U ∗
� U (G∗

α ) < U 2∗. (H12)

As U 2∗ is by definition the second best cost for the assignment

problem, there are no solutions to the assignment problem

whose cost is strictly between the optimal cost U ∗ and the

second best cost, U 2∗. Therefore, U ∗ = U (G∗
α ) and G∗

α is

an optimal solution of the unperturbed assignment problem

whenever α < �
2N

. �
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